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This paper focuses on stochastic partial differential equations (SPDEs) under two-time-scale formulation.
Distinct from the work in the existing literature, the systems are driven by α-stable processes with α ∈ (1,2).
In addition, the SPDEs are either modulated by a continuous-time Markov chain with a finite state space or
have an addition fast jump component. The inclusion of the Markov chain is for the needs of treating random
environment, whereas the addition of the fast jump process enables the consideration of discontinuity in the
sample paths of the fast processes. Assuming either a fast changing Markov switching or an additional
fast-varying jump process, this work aims to obtain the averaging principles for such systems. There are
several distinct difficulties. First, the noise is not square integrable. Second, in our setup, for the underlying
SPDE, there is only a unique mild solution and as a result, there is only mild Itô’s formula that can be
used. Moreover, another new aspect is the addition of the fast regime switching and the addition of the fast
varying jump processes in the formulation, which enlarges the applicability of the underlying systems. To
overcome these difficulties, a semigroup approach is taken. Under suitable conditions, it is proved that the
pth moment convergence takes place with p ∈ (1, α), which is stronger than the usual weak convergence
approaches.

Keywords: α-stable process; averaging principle; invariant measure; stochastic partial differential equation;
strong convergence

1. Introduction

Averaging principles for stochastic differential equations (SDEs) have been studied extensively,
for example, in Liu and Vanden-Eijnden [10], Freidlin and Wentzell [11], Khasminskii [20],
Yin and Zhang [34]. Recently, averaging principles for stochastic partial differential equations
(SPDEs) have also drawn much attention; see, for example, Kuksin and Piatnitski [23] and
Maslowski et al. [27]. In particular, Blömker et al. [4] derived averaging results with explicit
error bounds for SPDEs with quadratic nonlinearities, where the limiting system is an SDE; Cer-
rai and Freidlin [7] investigated the weak convergence for two-time-scale stochastic reaction–
diffusion equations with additive noise by using an approach based on Kolmogorov equations
and martingale solutions of stochastic equations; Cerrai [6] generalized Cerrai and Freidlin [7]
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to the case of slow–fast reaction–diffusion equations driven by multiplicative noise, where the
reaction terms appear in both equations; Bréhier [5] gave the strong and weak orders in averag-
ing for stochastic evolution equation of parabolic type with slow and fast time scales. For the
finite-dimensional jump–diffusion case, we refer to Givon [14].

In view of the development on the aforementioned singularly perturbed SPDEs, the noise pro-
cesses considered to date are mainly square integrable processes. However, such requirement
rules out the interesting α-stable processes. It is well known that both Wiener processes and
Poisson-jump processes have finite moments of any order, whereas an α-stable process only has
finite pth moment for p ∈ (0, α). Stochastic equations driven by α-stable processes have proven
to have numerous applications in physics because such processes can be used to model systems
with heavy tails. As a result, such processes have received increasing attentions recently. For
example, Priola and Zabczyk [30] gave a proper starting point on the investigation of structural
properties of SPDEs driven by an additive cylindrical stable noise; Dong et al. [9] studied ergod-
icity of stochastic Burgers equations driven by α/2-subordinated cylindrical Brownian motions
with α ∈ (1,2). For finite-dimensional SDEs driven by α-stable noises, Wang [33] derived gradi-
ent estimate for linear SDEs, Zhang [36] established the Bismut–Elworthy–Li derivative formula
for nonlinear SDEs, and Ouyang [28] established Harnack inequalities for Ornstein–Uhlenbeck
processes by the sharp estimates of density function for rotationally invariant symmetric α-stable
Lévy processes. Nevertheless, two-time-scale formulation for stochastic processes driven by α-
stable processes have not yet been considered to date to the best of our knowledge.

Motivated by the previous works, in this paper we develop averaging principles for two-time-
scale SPDEs driven by α-stable noises that admit unique mild solutions. The time-scale sepa-
ration is given by introducing a small parameter ε > 0. For the case of mean-square integrable
noise, the Itô formula plays an important role in the error analysis between the slow component
and the averaging systems; see, for example, Givon [14], Fu and Duan [12] and Fu and Liu [13].
It has been noted that when the diffusion operators in Fu and Duan [12] and Fu and Liu [13] are
Hilbert–Schmidt, the mild solution is indeed a strong solution. Nevertheless, in our case, only
mild Itô’s formula (see, e.g., Da Prato et al. [8], Theorem 1) is available since the stochastic sys-
tems considered only admit mild solutions, not strong solutions. Moreover, the technique adopted
in Bréhier [5], Lemma 3.1, which is a key ingredient in discussing averaging principle, does not
work for the case of SPDEs driven by α-stable noises either, although the mild solution is treated
there. In our study, in addition to the SPDEs, we assume that the systems are modulated by a
continuous-time Markov chain. This Markov chain has a finite state space resulting in a system
of stochastic differential equations switching back and forth according to the state of the Markov
chain. The Markov chain can be used to model discrete events that are not representable other-
wise. It is by now widely recognized that such regime-switching formulation is an effective way
of modeling many practical situations in which random environment and other random factors
have to be taken into consideration. Perhaps, one of the first efforts in modeling random envi-
ronment using a finite-state Markov chain can be traced back to Griego and Hersh [15] (see also
the extended survey in Hersh [17], where multiple time scale was also used). Much of the recent
modeling and analysis effort stems from the work of Hamilton and Susmel [16], who revealed
the feature of the so-called regime-switching systems under which the dynamics of the systems
can be quite different under different regimes. Their idea stimulated much of the subsequent
study. For example, in the simplest setting, the successfully used regime-switching models in
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financial market portraits the random environment with two states bull and bear markets, whose
volatilities are drastically different.

Our study is divided into two parts. In the first part, we assume that the switching process is
subject to fast variation, either within a weakly irreducible class or within a number of nearly
decomposable weakly irreducible classes (see Yin and Zhang [34], Chapter 4). The idea is that
the original system subject to fast switching is more complex, but the limit system is much
simpler. For many applications, it will be desirable to find the structure of the limit system leading
substantial reduction of computational complexity for such tasks as control and optimization etc.
We show that under suitable conditions, a limit process that is a solution of either an SPDE or an
SPDE with switching is obtained. The key is that in the limit, the coefficients are averaged out
with respect to the stationary measure of the switching processes. In the second part, we assume
that there is an additional fast-varying random process. Although the process is fast varying, it
does not blow up, but rather has an invariant measure. The ergodicity of the fast process helps
us to get a limit process that is a solution of the SPDEs with the coefficients being averaged out
with respect to the stationary distribution of the fast-varying process.

To summarize, there are several distinct difficulties in our problems. First, the noise is not
square integrable. Second, the underlying SPDE admits only a unique mild solution and as a
result, there is only mild Itô’s formula that can be used. Moreover, another new aspect is the
addition of the fast regime switching and the addition of the fast varying jump processes in
the formulation, which enlarges the applicability of the underlying systems. To overcome these
difficulties, using the mild solutions, a semigroup approach is taken. Under suitable conditions,
it is proved that the pth moment convergence takes place with p ∈ (1, α), which is stronger than
the usual weak convergence approaches. We thus term such a convergence as strong convergence.

The rest of the paper is organized as follows. In Section 2, we obtain not only averaging prin-
ciples for SPDEs with two-time-scale Markov switching with a single weakly recurrent class but
also for the case of two-time-scale Markov switching with multiple weakly irreducible classes.
In Section 3, we demonstrate the strong convergence for SPDEs with an additional fast-varying
random process driven by cylindrical stable processes.

2. SPDEs with two-time-scale Markov switching

We first recall some basics on stable processes. A real-valued random variable η is said to have
a stable distribution with stability index α ∈ (0,2), scale parameter σ ∈ (0,∞), skewness pa-
rameter β ∈ [−1,1], and location parameter μ ∈ (−∞,∞), if its characteristic function has the
form:

φη(u) = E exp(iuη) = exp
{−σα|u|α(

1 − iβ sgn(u)�
) + iμu

}
, u ∈ R,

where � = tan(πα/2) for α �= 1 and � = −(2/π) log |u| for α = 1. Note that the monograph
Samorodnitsky and Taqqu [31], pages 2–10, also gives three other equivalent definitions of a
stable distribution. We denote the family of stable distributions by Sα(σ,β,μ) and write X ∼
Sα(σ,β,μ) to indicate that X has the stable distribution Sα(σ,β,μ). A random variable X ∼
Sα(σ,β,μ) is said to be strictly stable if μ = 0 for α �= 1 (if β = 0 for α = 1), symmetric if
β = μ = 0, and standard (normalized) if β = μ = 0 and σ = 1. Let (H, 〈·, ·〉, | · |H ) be a real
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separable Hilbert space. Let L = {L(t)}t≥0 and Z = {Z(t)}t≥0 be a cylindrical α-stable process
and β-stable process defined by the orthogonal expansion, respectively,

L(t) :=
∞∑

k=1

βkLk(t)ek and Z(t) :=
∞∑

k=1

qkZk(t)ek, (2.1)

where {ek}k≥1 is an orthonormal basis of H , {Lk(t)}k≥1 and {Zk(t)}k≥1 are sequences of i.i.d.
(independent and identically distributed) real-valued symmetric α-stable processes and β-stable
processes defined on the stochastic basis (	,F , {Ft }t≥0,P), respectively, and βk, qk > 0 for
each k ≥ 1. ‖ · ‖ stands for the operator norm, and L (ξ) means the law of an H -valued random
variable ξ . Throughout this paper, we assume that α,β ∈ (1,2]. Generic constants will be denoted
by c, and we use the shorthand notation a � b to mean a ≤ cb. If the constant c depends on a
parameter p, we shall also write cp and a �p b.

2.1. Two-time-scale Markov switching with a single weakly irreducible
class

Hybrid systems driven by continuous-time Markov chains have been used to model many practi-
cal scenarios in which abrupt changes may be experienced in the structure and parameters caused
by phenomena such as component failures or repairs; see Sethi and Zhang [32], Remark 5.1,
page 94, for discussions on the modeling of such a system and related optimal control problems.
For finite-dimensional cases, there is extensive literature on such topic, for example, Mao and
Yuan [25], Mariton [26], Yin and Zhu [35] and the references therein. As an infinite-dimensional
example, we consider a one-dimensional rod of length π whose ends are maintained at 0◦ and
whose sides are insulated. Assume that there is an exothermic reaction taking place inside the
rod with heat being produced proportionally to the temperature. The temperature u in the rod
may be modeled by ⎧⎨⎩ ∂u

∂t
= ∂2u

∂x2
+ cu, t > 0, x ∈ (0,π),

u(t,0) = u(t,π) = 0, u(0, x) = u0(x),

(2.2)

where u = u(t, x) and c is a constant dependent on the rate of reaction. In lieu of assuming
the system to be in a fixed configuration, let system (2.2) switch from one mode to another
in a random way when it experiences abrupt changes in its structure and parameters caused
by phenomena such as component failures or repairs, changing subsystem interconnections, or
abrupt environmental disturbances. The system under regime switching could be described by
the following random model⎧⎨⎩ ∂u

∂t
= ∂2u

∂x2
+ c

(
r(t)

)
u, t > 0, x ∈ (0,π),

u(t,0) = u(t,π) = 0, u(0, x) = u0(x), r(0) = r0,

where r(t) is a continuous-time Markov chain with a finite state space S and c :S → R. For
further details, we refer to, for example, Anabtawi [1] and Bao et al. [3].
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With the motivation above, assuming that rε(t) is a continuous-time Markov chain with a finite
state space S := {1, . . . , n}, we consider the following SPDE

dXε(t) = {
AXε(t) + b

(
Xε(t), rε(t)

)}
dt + dL(t), t > 0 (2.3)

with the initial values Xε(0) = x ∈ H and rε(0) = r0 ∈ S.
In (2.3), for any ε ∈ (0,1), rε(t) is a Markov chain with a finite state space S and generator

Qε := Q̃

ε
+ Q̂,

where Q̃ and Q̂ are suitable generators of some Markov chains such that Q̃/ε and Q̂ represent
the fast-varying and the slow-changing parts, respectively. In what follows, we further assume
that Q̃ is weakly irreducible. That is, the system of equations⎧⎪⎨⎪⎩

νQ̃ = 0,
n∑

i=1

νi = 1,
(2.4)

has a unique solution satisfying νi ≥ 0 for all i ∈ S. Throughout this subsection, we assume that
the following conditions fulfill.

(A1) A :D(A) ⊂ H �→ H is a self-adjoint compact operator on H such that −A has discrete
spectrum 0 < λ1 < λ2 < · · · < λk < · · · and limk→∞ λk = ∞. In this case, A generates an ana-
lytic contraction semigroup {etA}t≥0, such that ‖etA‖ ≤ e−λ1t .

(A2) For each i ∈ S, there exists Ki > 0 such that∣∣b(x, i) − b(y, i)
∣∣
H

≤ Ki |x − y|H , x, y ∈ H.

(A3) There exists θ ∈ (0,1) such that αθ ∈ (0,1) and

δ :=
∞∑

k=1

βα
k

λ1−αθ
k

< ∞.

Under assumption (A1)–(A3), according to Mao and Yuan [25], Theorem 3.13, page 89, and
Priola and Zabczyk [30], Theorem 5.3, (2.3) admits a unique mild solution, that is, there exists a
predictable H -valued stochastic process {Xε(t)}t≥0 such that

Xε(t) = eAtx +
∫ t

0
eA(t−s)b

(
Xε(s), rε(s)

)
ds +

∫ t

0
eA(t−s) dL(s), P-a.s. (2.5)

As can be seen, compared with the fast varying rε(·), Xε(·) changes relatively slowly. The in-
tuitive idea can be explained as follows. Using the methods of stochastic averaging initiated in
Khasminskii [19] (see also Khasminskii [20], Khasminskii and Yin [21,22]) and subsequently
developed by Kushner [24], rε(t) can be treated essentially as a “noise” process. With the slow
variable “fixed” or “frozen,” a law of large numbers holds so the noise is averaged out. Moreover,
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the slow component Xε(t) converges to X(t) in an appropriate sense. We will show that the limit
{X(t)}t≥0 satisfies in the mild sense an SPDE

dX(t) = {
AX(t) + b

(
X(t)

)}
dt + dL(t), t > 0, (2.6)

with initial value X(0) = x ∈ H , where b(x) := ∑n
i=1 b(x, i)νi, x ∈ H , an average with respect

to the invariant measure ν := (ν1, . . . , νn) given in (2.4). Our main result of this section is given
as follows.

Theorem 2.1. Let (A1)–(A3) hold and assume further that the initial value Xε(0) = x ∈
D((−A)θ ). Then, for any sufficiently small ε ∈ (0,1),

sup
0≤t≤T

(
E

∣∣Xε(t) − X(t)
∣∣p
H

)1/p �T ερθ , p ∈ (1, α),

where θ ∈ (0,1) is the constant such that (A3) holds and ρ < (α − p)/(α − p + pθα).

To prove Theorem 2.1, we need the following lemma.

Lemma 2.2. Let the assumptions of Theorem 2.1 hold. Then, for any h ∈ (0,1) and p ∈ (1, α),

sup
0≤t≤T

(
E

∣∣X(t + h) − X(t)
∣∣p
H

)1/p �T hθ .

Proof. Noting that (E| · |pH )1/p,p ∈ (1, α), is a norm, we get from (A1), (A2), and Priola and
Zabczyk [30], (4.12), that(

E
∣∣X(t)

∣∣p
H

)1/p

≤ |x|H +
∫ t

0

∥∥e(t−s)A
∥∥(
E

∣∣b(
X(s)

)∣∣p
H

)1/p ds +E

(∣∣∣∣∫ t

0
e(t−s)A dL(s)

∣∣∣∣p
H

)1/p

(2.7)

≤ |x|H +
n∑

i=1

νi

∫ t

0
e−λ1(t−s)

(
E

∣∣b(
X(s), i

)∣∣p
H

)1/p ds + c

( ∞∑
k=1

βα
k (1 − e−αλkt )

λk

)1/α

≤ |x|H +
n∑

i=1

νi

∫ t

0
e−λ1(t−s)

{
Ki

(
E

∣∣X(s)
∣∣p
H

)1/p + (
E

∣∣b(0, i)
∣∣p
H

)1/p}
ds + cτ,

where τ := (
∑ βα

k

λk
)1/α < ∞ according to (A3). Multiplying eλ1t on both sides of (2.7) gives

eλ1t
(
E

∣∣X(t)
∣∣p
H

)1/p ≤ c
(
1 + eλ1t

) +
n∑

i=1

νiKi

∫ t

0
eλ1s

(
E

∣∣X(s)
∣∣p
H

)1/p ds.

This, together with the Gronwall inequality, yields that

sup
0≤t≤T

E
∣∣X(t)

∣∣p
H

< ∞. (2.8)
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From (2.6), one has(
E

∣∣X(t + h) − X(t)
∣∣p
H

)1/p

≤ ∣∣(ehA − 1
)
etAx

∣∣
H

+
n∑

i=1

νi

∫ t

0

(
E

∣∣(ehA − 1
)
e(t−s)Ab

(
X(s), i

)∣∣p
H

)1/p ds

+
n∑

i=1

νi

∫ t+h

t

(
E

∣∣e(t+h−s)Ab
(
X(s), i

)∣∣p
H

)1/p ds

(2.9)

+
(
E

∣∣∣∣∫ t

0

(
ehA − 1

)
e(t−s)A dL(s)

∣∣∣∣p
H

)1/p

+
(
E

∣∣∣∣∫ t+h

t

e(t+h−s)A dL(s)

∣∣∣∣p
H

)1/p

=:
5∑

j=1

�j(t),

where 1 is the identity operator on H . By the spectral properties of operator A, observe that∥∥(−A)δetA
∥∥ ≤ e−δδδt−δ, t > 0, δ ∈ (0,1) (2.10)

and that ∥∥(−A)−δ
(
1 − etA

)∥∥ ≤ cδt
δ, t > 0, δ ∈ (0,1) (2.11)

for some cδ > 0. Due to x ∈ D((−A)θ ), taking (A1), (A2), (2.8), (2.10), and (2.11) into account
yields that

�1(t) + �2(t) ≤ ∥∥(
ehA − 1

)
(−A)−θ

∥∥ · ∥∥etA
∥∥ · ∣∣(−A)θx

∣∣
H

+
n∑

i=1

νi

∫ t

0

∥∥(
ehA − 1

)
(−A)−θ

∥∥ · ∥∥e(t−s)A/2
∥∥

× ∥∥e(t−s)A/2(−A)θ
∥∥(
E

∣∣b(
X(s), i

)∣∣p
H

)1/p ds (2.12)

�T

(
1 +

∫ t

0
e−λ1(t−s)/2

(
t − s

2

)−θ

ds

)
hθ

�T

(
1 + �(1 − θ)

)
hθ ,

where �(·) is the Gamma function. Also, by (A1), (A2), and (2.8), we arrive at

�3(t) �T h. (2.13)
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Note that ∫ t

0
(−A)θ e(t−s)A dL(s) =

∞∑
k=1

(
βkλ

θ
k

∫ t

0
e−(t−s)λk dLk(s)

)
ek.

Upon using an argument similar to that of Priola and Zabczyk [30], Theorem 4.5, we obtain
from (A3) that

(
E

∣∣∣∣∫ t

0
(−A)θ e(t−s)A dL(s)

∣∣∣∣p
H

)1/p

�
( ∞∑

k=1

βα
k

1

αλ1−αθ
k

(
1 − e−αλkt

))1/α

� δ1/α, (2.14)

and that

�5(t) �
( ∞∑

k=1

βα
k

λk

(
1 − e−λkh

))1/α

�
( ∞∑

k=1

βα
k

λk

(λkh)αθ

)1/α

� δ1/αhθ , (2.15)

where we have used the fundamental inequality: for any γ ∈ (0,1], there exists cγ > 0 such that∣∣e−x − e−y
∣∣ ≤ cγ |x − y|γ , x, y ≥ 0.

Thus we deduce from (2.11), (2.14), and (2.15) that

�4(t) + �5(t)�T hθ . (2.16)

As a result, the desired assertion follows by substituting (2.12), (2.13), and (2.16) into (2.9). �

With the aid of Lemma 2.2, we complete the proof Theorem 2.1 in what follows.

Proof of Theorem 2.1. It follows from (2.3) and (2.6) that

(
E

∣∣Xε(t) − X(t)
∣∣p
H

)1/p ≤
n∑

i=1

∫ t

0

(
E

∣∣e(t−s)A
{
b
(
Xε(s), i

) − b
(
X(s), i

)}∣∣p
H

)1/p ds

+
n∑

i=1

(
E

∣∣∣∣∫ t

0
e(t−s)Ab

(
X(s), i

){1{rε(s)=i} − νi}ds

∣∣∣∣p
H

)1/p

=: �1(t) +
n∑

i=1

�2i (t),

where 1� is the indicator function of a set �. Taking (A1) and (A2) into account, we have

�1(t) ≤
n∑

i=1

Ki

∫ t

0
e−λ1(t−s)

(
E

∣∣Xε(s) − X(s)
∣∣p
H

)1/p ds.
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Next, note that from the boundedness of |1{rε(s)=i} − νi |,

�2i (t) ≤
∫ t

0

∥∥e(t−s)A
(
1 − e(s−�s�)A)∥∥(

E
∣∣b(

X(s), i
)∣∣p

H

)1/p ds

+
∫ t

0

∥∥e(t−�s�)A∥∥(
E

∣∣b(
X(s), i

) − b
(
X

(�s�), i)∣∣p
H

)1/p ds

+
(
E

∣∣∣∣∫ t

0
e(t−�s�)Ab

(
X

(�s�), i){1{rε(s)=i} − νi}ds

∣∣∣∣p
H

)1/p

=: ϒ1i (t) + ϒ2i (t) + ϒ3i (t),

where �s� := [s/ερ]ερ with [s/ερ] denoting the integer part of s/ερ for ρ < (α − p)/(α − p +
pθα). By a similar calculation as in (2.12), one has

ϒ1i (t) �T ερθ . (2.17)

By virtue of (A1), (A2), and Lemma 2.2, it follows that

ϒ2i (t) �
∫ t

0
e−λ1(t−�s�)(E∣∣X(s) − X

(�s�)∣∣p
H

)1/p ds �T ερθ . (2.18)

Let tj := jερ, j = 0, . . . , [t/ερ], and t[t/εp]+1 := t . Then, an application of the Hölder inequality
gives that

ϒ3i (t) ≤
�t/ερ�∑
j=0

{
E

∣∣e(t−tj )Ab
(
X(tj ), i

)∣∣p
H

∣∣∣∣∫ tj+1

tj

{1{rε(s)=i} − νi}ds

∣∣∣∣p}1/p

≤
�t/ερ�∑
j=0

(
E

∣∣e(t−tj )Ab
(
X(tj ), i

)∣∣p(1+δ)

H

)1/(p(1+δ)) (2.19)

×
(
E

∣∣∣∣∫ tj+1

tj

{1{rε(s)=i} − νi}ds

∣∣∣∣(p(1+δ))/δ)δ/(p(1+δ))

for arbitrary 0 < δ < (α − p)/p. Thanks to α ∈ (1,2) and p ∈ (1, α), one has p > (2α)/(2 + α),
which further gives that (α − p)/p < p/(2 − p). Then, for 0 < δ < (α − p)/p, we have

p(1 + δ) < α and
(
p(1 + δ)

)
/δ > 2. (2.20)

Hence, (A1), (2.8), and (2.20) yield that(
E

∣∣e(t−tj )Ab
(
X(tj ), i

)∣∣p(1+δ)

H

)1/(p(1+δ)) �T e−λ1(t−tj ). (2.21)

We claim that(
E

∣∣∣∣∫ tj+1

tj

{1{rε(s)=i} − νi}ds

∣∣∣∣(p(1+δ))/δ)δ/(p(1+δ))

� ερ+((β−ρ)δ)/(p(1+δ)), (2.22)
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for sufficiently small ε ∈ (0,1), where β ∈ (ρ,1) is some constant. To show (2.22), we adopt an
argument similar to that of Yin and Zhang [34], Theorem 7.2, page 170. Let

ηε(u) := 1

2
E

∣∣∣∣∫ u

tj

{1{rε(s)=i} − νi}ds

∣∣∣∣2

, u ∈ [tj , tj+1].

Then, it is easy to see from the chain rule that

dηε(u)

du
= E

∫ u

tj

{
(1{rε(u)=i} − νi)(1{rε(s)=i} − νi)

}
ds, u ∈ [tj , tj+1].

Let tk := kεβ, k = 0,1, . . . , [(u − tj )/ε
β ] + 1, where t0 := tj and t�(u−tj )/εβ�+1 := u. Thus, by

the boundedness of |1{rε(s)=i} − νi |, we obtain that

dηε(u)

du
= E

∫ t̃j

t0

{
(1{rε(u)=i} − νi)(1{rε(s)=i} − νi)

}
ds

+E

∫ t

t̃j

{
(1{rε(u)=i} − νi)(1{rε(s)=i} − νi)

}
ds

� εβ +E

∫ t̃j

t0

{
(1{rε(u)=i} − νi)(1{rε(s)=i} − νi)

}
ds,

where t̃j := t [(t−tj )/εβ ]−1. Recall from Yin and Zhang [34], Lemma 7.1, page 169, that

∣∣Pε(u, s) − ν
∣∣� (

ε + exp

(
−κ(u − s)

ε

))
, u ≥ s ≥ 0, (2.23)

where Pε(t, s) := (pε
ij (u, s))1≤i,j≤n = (P(rε(u) = j)|rε(s) = i)1≤i,j≤n, and κ > 0 is determined

by the eigenvalues of Q̃. Thus, for Ft̃j := σ {rε(s): 0 ≤ s ≤ t̃j }, using the basic property of
conditional expectation, we deduce that∣∣E{

(1{rε(u)=i} − νi)(1{rε(s)=i} − νi)
}∣∣ ≤ E

(∣∣1{rε(s)=i} − νi

∣∣ · ∣∣(E(1{rε(u)=i} − νi)|Ft̃j

)∣∣)
� E

(∣∣(E(1{rε(u)=i} − νi)|Ft̃j

)∣∣)
�

(
ε + exp

(
−κ(u − t̃j )

ε

))
�

(
ε + exp

(
− κ

ε1−β

))
� ε,

where in the last third step we used the fact (2.23), the last two step is due to u > t [(t−tj )/εβ ],
while the last one owes to exp(− κ

ε1−β ) � ε for sufficiently small ε ∈ (0,1). Hence,

ηε(t) � εβ+ρ. (2.24)
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Note that from (2.20) and the uniform boundedness of |1{rε(s)=i} − νi | ≤ 1,(
E

∣∣∣∣∫ tj+1

tj

{1{rε(s)=i} − νi}ds

∣∣∣∣(p(1+δ))/δ)δ/(p(1+δ))

≤ ερ−(2δρ)/(p(1+δ))

(
E

∣∣∣∣∫ tj+1

tj

{1{rε(s)=i} − νi}ds

∣∣∣∣2)δ/(p(1+δ))

.

Then claim (2.21) follows from (2.24). Putting (2.21) and (2.22) into (2.19), we arrive at

ϒ3i (t) �T

�t/ερ�∑
j=0

e−λ1(t−tj )ερ+(βδ−2δρ)/(p(1+δ)) �T

(
eλ1ε

ρ − 1
)−1

ερ+((β−ρ)δ)/(p(1+δ))

�T ε((β−ρ)δ)/(p(1+δ))

due to the fact that eλ1ε
ρ − 1 = O(λ1ε

ρ) for sufficiently small ε ∈ (0,1). So, we get(
E

∣∣Xε(t) − X(t)
∣∣p
H

)1/p ≤ CT

(
ερθ + ε((β−ρ)δ)/(p(1+δ))

)
+

n∑
i=1

Ki

∫ t

0
e−λ1(t−s)

(
E

∣∣Xε(s) − X(s)
∣∣p
H

)1/p ds.

It follows from the Gronwall inequality that(
E

∥∥Xε(s) − X(s)
∥∥p

H

)1/p �T

(
ερθ + ε((β−ρ)δ)/(p(1+δ))

)
.

Then the desired assertion holds by noting that ρ < (α −ρ)/(α −ρ +pθα) and choosing appro-
priate β ∈ (ρ,1). �

Remark 2.1. By a close inspection of argument of Theorem 2.1, if
∑n

i=1 Ki < λ1, we can also
derive a long-term error bound below

sup
t≥0

(
E

∣∣Xε(t) − X(t)
∣∣p
H

)1/p � ερθ , p ∈ (1, α),

for any α ∈ (1,2) and sufficiently small ε ∈ (0,1), where θ ∈ (0,1) is the constant such that (A3)
holds and ρ < (α − p)/(α − p + pθα).

Remark 2.2. By means of the martingale problem formulation, the weak convergence of
(Xε(t), rε(t)) for hybrid finite-dimensional systems were obtained in Yin and Zhang [34], The-
orem 7.20, page 204. In the current framework, it only admits a unique mild solution rather than
strong solution so that the martingale-problem method seems not to be available. However, in
this subsection, we investigate the strong convergence (in moment-sense) of {Xε(t)}t≥0 to the
averaging process {X(t)}t≥0 defined by (2.6) by the semigroup approach. We also provide a con-
vergence rate in terms of error bounds. Moreover, even for α = 2, that is, the Wiener noise case,
our result still seems to be new for infinite-dimensional stochastic dynamical systems.
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2.2. Two-time-scale Markov switching with multiple weakly irreducible
classes

In this subsection, we proceed to investigate the averaging principle associated with (2.3), where
the Markov chain rε(t) has a large state space

S := S1 ∪ S2 ∪ · · · ∪ Sl

with Si := {si1, . . . , sini
} and n := n1 + n2 + · · · + nl . Assume that the generator Qε := (qε

ij )n×n

of rε(t) admits the form

Qε := 1

ε
Q̃+ Q̂,

where Q̃ := (̃qij )n×n = diag(Q̃1, . . . , Q̃l ) such that, for each k ∈ {1, . . . , l}, Q̃k is irreducible
and the generator of some Markov chain taking values in Sk with the corresponding stationary
distribution μk := (μk1, . . . ,μknk

) ∈R1×nk , and Q̂ := (̂qij )n×n. Since the transitions within each
group take place at a fast pace, whereas the interactions from one group to another are relatively
infrequently, following the basic idea in Yin and Zhang [34], we lump the states in each Sk into
a single state and then define an aggregated process rε(·) by

rε(t) = k for rε(t) ∈ Sk

with the associated state space S := {1, . . . , l}. Let

Q := (qij )l×l = μ̃Q̂I,

where μ̃ := diag(μ1, . . . ,μl) ∈ Rl×n and I := diag(In1 , . . . , Inl
) with Ink

:= (1, . . . ,1)T ∈
Rnk×1, k = 1, . . . , l. Recall from Yin and Zhang [34], Theorem 7.4, page 172, that rε(·) con-
verges weakly to the continuous-time Markov chain r(·) with the state space S and the generator
Q as ε → 0, although generally rε(t) need not be a Markov chain. Our main result in this sub-
section is stated as follows.

Theorem 2.3. Let (A1)–(A3) hold and suppose further that x ∈ D((−A)θ ). Then

lim
ε→0

E
∣∣Xε(t) − X(t)

∣∣p
H

= 0, t ∈ [0, T ] and p ∈ (1, α), (2.25)

where X(t) satisfies in the mild sense the following averaging equation

dX(t) = {
AX(t) + b

(
X(t), r(t)

)}
dt + dL(t), X(0) = x, r(0) = r0 (2.26)

with b(y, i) := ∑ni

j=1 μijb(y, sij ).

Proof. We only give an outline of the proof since it is very similar to that of Theorem 2.1. By
(A1)–(A3), for any p ∈ (1, α), we deduce that

sup
0≤t≤T

E
∣∣X(t)

∣∣p
H

< ∞. (2.27)



Two-time-scale SPDEs with α-stable noises 657

It is easy to see from (A1) and (A2) that(
E

∣∣Xε(t) − X(t)
∣∣p
H

)1/p

≤
l∑

i=1

ni∑
j=1

Ksij

∫ t

0
e−λ1(t−s)

(
E

∣∣Xε(s) − X(s)
∣∣p
H

)1/p
ds

+
l∑

i=1

ni∑
j=1

(
E

∣∣∣∣∫ t

0
e(t−s)Ab

(
X(s), sij

){1{rε(s)=sij } − μij1{rε(s)=i}}ds

∣∣∣∣p
H

)1/p

+
l∑

i=1

ni∑
j=1

μij

(
E

∣∣∣∣∫ t

0
e(t−s)Ab

(
X(s), sij

){1{rε(s)=i} − 1{r(s)=i}}ds

∣∣∣∣p
H

)1/p

=: �1(t) + �2(t) + �3(t).

By the definition of rε(·), one has {
rε(t) = i

} = {
rε(t) ∈ Si

}
.

Then, in the same way as the proof of (2.22), we deduce from (2.27) and Yin and Zhang [34],
Theorem 7.2, page 170, that

�2(t) → 0 as ε → 0. (2.28)

Next, applying the Hölder inequality, we find that

�3(t) ≤
l∑

i=1

ni∑
j=1

μij

∫ t

0

∥∥e(t−s)A
(
1 − e(s−�s�)A)∥∥(

E
∣∣b(

X(s), sij
)∣∣p

H

)1/p ds

+
l∑

i=1

ni∑
j=1

μij

∫ t

0

∥∥e(t−�s�)A∥∥(
E

∣∣b(
X(s), sij

) − b
(
X

(�s�), sij )∣∣pH )1/p
ds

+
l∑

i=1

ni∑
j=1

μij

�t/ερ�∑
k=0

(
E

∣∣e(t−tk)Ab
(
X(tk), sij

)∣∣p(1+δ)

H

)1/(p(1+δ))

×
(
E

∣∣∣∣∫ tj+1

tj

{1{rε(s)=i} − 1{r(s)=i}}ds

∣∣∣∣(p(1+δ))/δ)δ/(p(1+δ))

=: �1(t) + �2(t) + �3(t),

where �s� := [s/ερ]ερ for ρ ∈ (0,1), and tj := jερ, j = 0, . . . , [t/ερ], and t[t/εp]+1 := t . More-
over, carrying out similar arguments to those of (2.17) and (2.18) and utilizing (2.27) and
Lemma 2.2 yields that

�1(t) + �2(t) � ερθ . (2.29)
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From (A1) and (2.27), for sufficiently small ε ∈ (0,1), it is seen that

�t/ερ�∑
k=0

(
E

∣∣e(t−tk)Ab
(
X(tk), sij

)∣∣p(1+δ)

H

)1/(p(1+δ)) � ε−ρ.

On the other hand, by the weak convergence of rε(·) to r(·) (Yin and Zhang [34], Theorem 7.4,
page 172), the Skorohod representation theorem (Yin and Zhang [34], Theorem 14.5, page 318),
and the dominated convergence theorem, we have(

E

∣∣∣∣∫ tj+1

tj

{1{rε(s)=i} − 1{r(s)=i}}ds

∣∣∣∣(p(1+δ))/δ)δ/(p(1+δ))

� ερg(ε),

where the positive function g(·) such that g(ε) → 0 as ε → 0. Then we obtain that

�3(t) � g(ε).

Henceforth the desired assertion follows from the Gronwall inequality. �

Remark 2.3. Unlike the case discussed in the previous subsection, it seems hard to give a strong
convergence rate bound since the details on r(·) are not enough, however the averaging equa-
tion (2.26) is explicitly dependent on the Markov chain r(·), which is quite different from the
case investigated in the last subsection.

3. SPDEs with an additional fast-varying process driven by
another cylindrical stable process

In this section, we work on another two-time-scale system, in which there is an additional random
process that has a fast-varying component driven by another cylindrical stable process.

For a small parameter ε > 0, we consider the following stochastic fast–slow system

dXε(t) = {
AXε(t) + b

(
Xε(t), Y ε(t)

)}
dt + dL(t), Xε(0) = x ∈ D

(
(−A)1/2) (3.1)

and

dY ε(t) = 1

ε

{
BYε(t) + f

(
Xε(t), Y ε(t)

)}
dt + 1

ε1/β
dZ(t), Y ε(0) = y ∈ H. (3.2)

Throughout this section, we shall assume that:

(B1) A :D(A) ⊂ H �→ H is a linear unbounded operator such that (A1) and B :D(B) ⊂ H �→
H is a self-adjoint compact operator on H such that −B has discrete spectrum 0 < μ1 < μ2 <

· · · < μk < · · · and limk→∞ μk = ∞.
(B2) b is uniformly bounded and Lipschitzian, that is, there exist M,K1 > 0 such that

sup
x,y∈H

∣∣b(x, y)
∣∣ ≤ M,
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and, for x1, x2, y1, y2 ∈ H ,∣∣b(x1, y1) − b(x2, y2)
∣∣2 ≤ K1

(|x1 − y1|2H + |x2 − y2|2H
)
.

(B3) For any x, y ∈ H and h ∈ H , there exist K2,K3 > 0 such that |∇(1)f (x, y) · h| ≤ K2|h|
and |∇(2)f (x, y) · h| ≤ K3|h|, where ∇(1)f and ∇(2)f denote the Gâteaux derivative w.r.t. the
first variable and the second variable, respectively.

(B4) There exists θ ∈ (0,1) such that αθ ∈ (0,1),

κ1 :=
∞∑

k=1

βα
k

λ1−αθ
k

< ∞ and κ2 :=
∞∑

k=1

q
β
k

μk

< ∞.

Under (B1)–(B4), both (3.1) and (3.2) are well-posed in the mild sense. Consider an SPDE
associated with the fast variable, where the slow variable is fixed and equal to z ∈ H ,

dY z(t;y) = {
BYz(t;y) + f

(
z,Y z(t;y)

)}
dt + dZ(t), Y z(0;y) = y ∈ H. (3.3)

Under (B1), (B3) and (B4), (3.3) has a unique mild solution {Y z(t;y)}t≥0. Moreover, as
Lemma 3.3 below states, (3.3) admits a unique ergodic invariant measure πz(·) ∈ P(H), the
family of all probability measures on H . Our main result in this section is as follows:

Theorem 3.1. Let (A1) and (B1)–(B4) hold and assume further that K3 < μ1. Then,

lim
ε→0

E
∣∣Xε(t) − X(t)

∣∣p
H

= 0, t ∈ [0, T ],p ∈ (1, α), (3.4)

where X(t) is the mild solution of the averaging equation

dX(t) = {
AX(t) + b

(
X(t)

)}
dt + dL(t), X(0) = x ∈ H (3.5)

with

b(z) :=
∫

H

b(z,u)πz(du), z ∈ H. (3.6)

To facilitate the proof of Theorem 3.3, we shall present several technical lemmas in this regards
and then finish the corresponding argument.

Lemma 3.2. Under the assumptions of Theorem 3.1,

sup
t≥0

E
∣∣Y ε(t)

∣∣p
H

< ∞, p ∈ (1, α). (3.7)

Proof. It is easy to see from Priola and Zabczyk [30], (4.12), (A1), and (B1), that

sup
t≥0

E
∣∣Xε(t)

∣∣p
H

< ∞. (3.8)
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Let

Z
ε
(t) := 1

ε1/β

∫ t

0
e(t−s)B/ε dZ(s).

By Priola and Zabczyk [30], (4.12) and (B4), one has

E
∣∣Zε

(t)
∣∣p
H

≤ ε−p/β

( ∞∑
k=1

q
β
k

∫ t

0
e−βμk(t−s)/ε ds

)p/β

≤ (
β−1κ2

)p/β
. (3.9)

In view of (B1), (B3), (3.8), and (3.9), we then derive that

(
E

∣∣Y ε(t)
∣∣p
H

)1/p ≤ |y|H + ε−1
∫ t

0

∥∥e(t−s)B/ε
∥∥(
E

∣∣f (
Xε(s), Y ε(s)

)∣∣p
H

)1/p ds + (
E

∣∣Zε
(t)

∣∣p
H

)1/p

≤ |y|H + ε−1
∫ t

0
e−μ1(t−s)/ε

{
c
(
1 + |z|H

) + K3
(
E

∣∣Y ε(s)
∣∣p
H

)1/p}
ds

≤ c
(
1 + |y|H + |z|H

) + K3

μ1
sup
t≥0

(
E

∣∣Y ε(t)
∣∣p
H

)1/p
.

This therefore leads to (3.7) due to K3 < μ1. �

Lemma 3.3. Assume that the assumptions of Theorem 3.1 hold. Then (3.3) admits a unique
ergodic invariant measure πz(·) ∈ P(H) such that∣∣Eb

(
Y z(t;y)

) − b(z)
∣∣
H
� e−(μ1−K3)t

(
1 + |y|H + |z|H

)
. (3.10)

Proof. We adopt the remote start method to show existence of an invariant measure for (3.3). Let
Ẑ(t) := ∑∞

k=1 qkẐk(t)ek , where {Ẑk(t)}k≥1 is an independent copy of {Zk(t)}k≥1, and {Z̃(t)}t≥0
be a double-sided cylindrical β-stable process defined by

Z̃(t) :=
{

Z(t), t ≥ 0,

Ẑ(−t), t < 0

with the filtration

F t :=
⋂
s>t

F
0
s ,

where F
0
s := σ({Z̃(r2) − Z̃(r1): −∞ < r1 ≤ r2 ≤ s,�},N ) and N := {A ∈ F |P(A) = 0}.

Next, consider (3.3), for arbitrary s ∈ (−∞, t] with t ∈ R,

dY z(t; s, y) = {
BYz(t; s, y) + f

(
z,Y z(t; s, y)

)}
dt + dZ̃(t), Y z(s; s, y) = y ∈ H. (3.11)

Set �z(t;y) := Y z(t;−λ,y) − Y z(t;−γ, y) for −λ ∈ (−γ, t]. By (B1) and (B3), it follows that

(
E

∣∣�z(t;y)
∣∣p
H

)1/p ≤ e−μ1(t+λ)
(
E

∣∣�z(−λ;y)∣∣p
H

)1/p + K3

∫ t

−λ

e−μ1(t−s)
(
E

∣∣�z(s;y)
∣∣p
H

)1/p ds.
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Multiplying eμ1t on both sides leads to

eμ1t
(
E

∣∣�z(t;y)
∣∣p
H

)1/p ≤ e−μ1λ
(
E

∣∣�z(−λ;y)
∣∣p
H

)1/p + K3

∫ t

−λ

eμ1s
(
E

∣∣�z(s;y)
∣∣p
H

)1/p ds.

Thus we get from the Gronwall inequality that(
E

∣∣�z(t;y)
∣∣p
H

)1/p ≤ e−(μ1−K3)(t+λ)
(
E

∣∣�z(−λ;y)
∣∣p
H

)1/p
. (3.12)

Moreover, carrying out an argument of Lemma 3.2, we have

sup
t≥s

(
E

∣∣Y z(t; s, y)
∣∣p
H

)1/p � 1 + |y|H + |z|H , s ∈R. (3.13)

For t = 0 and −λ ∈ (−μ,0], we deduce from (3.12) and (3.13) that(
E

∣∣Y z(0;−λ,y) − Y z(0;−γ, y)
∣∣p
H

)1/p �
(
1 + |y|H + |z|H

)
e−(μ1−K3)λ.

From the estimate above, we conclude that {Y z(0;−t, y)}t≥0 is a Cauchy sequence in Lp(	;H),
and therefore it is convergent to a random variable ηz(y) ∈ Lp(	;H), which is independent of
y ∈ H , and denoted by ηz ∈ Lp(	;H). Then, following a standard procedure (see, e.g., Prévôt
and Röckner [29], pages 109–110), we deduce that L (ηz) =: πz(·) is an invariant measure
of (3.3).

Next, following an argument of (3.12), we obtain that(
E

∣∣Y z(t;y1) − Y z(t;y2)
∣∣p
H

)1/p ≤ e−(μ1−K3)t |y1 − y2|H . (3.14)

This, together with (3.13), implies that

E
∣∣Y z(t;y)

∣∣p
H

≤ e−p(μ1−K3)t |y|pH + c
(
1 + |z|pH

)
. (3.15)

Furthermore, by virtue of (3.15) and using a stationary solution Y z(t, y) with invariant law πz(·),
we obtain that

Ez|y|pH = Ez
∣∣Y z(t, y)

∣∣p
H

≤ e−p(μ1−K3)tEz|y|pH + c
(
1 + |z|pH

)
, t ≥ 0, (3.16)

where Ez is the mathematical expectation operator w.r.t. πz(·). (3.16) further gives that

πz
(| · |pH )

� 1 + |z|pH . (3.17)

Consequently, (3.14) and (3.17) yield the uniqueness of invariant measure. Indeed, if π̃ z(·) ∈
P(H) is also an invariant measure, for any ψ ∈ C2

b(H ;R), by the invariance of πz(·) and π̃ z(·),
we deduce from (3.14) and (3.17) that∣∣πz(ψ) − π̃ z(ψ)

∣∣ ≤ ce−(μ1−K3)t
{
πz

(| · |H ) + π̃
(| · |H )}

≤ ce−(μ1−K3)t
{
1 + |z|H

} → 0 as t ↑ ∞.
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That is, for any ψ ∈ C2
b(H ;R), πz(ψ) = π̃ z(ψ), which shows that π ≡ π̃ due to Ikeda and

Watanabe [18], Proposition 2.2, page 3.
Finally, (3.10) follows by noting from the invariance of πz(·), (3.17) and the Lipschitz property

of b. �

Applying the Lipschitzian property of b, the ergodic property of invariant measure πz(·) ∈
P(H) due to Lemma 3.3 and the uniform boundedness of the directional derivative ∇hY

z(t;y)

with respect to z ∈ H along the direction h ∈ H , and adopting a similar argument in Cerrai and
Freidlin [7], (5.4), we deduce that b is Lipschitzian, which is stated as the following corollary for
citation convenience.

Corollary 3.4. Under the assumptions of Theorem 3.1, b :H → H is Lipschitzian.

To reveal the error analysis between the slow component {Xε(t)}t≥0 and the averaging process
{X(t)}t≥0, determined by (3.5), we further need to define the following two auxiliary processes:

Ỹ ε(t) := etB/εy + 1

ε

∫ t

0
e(t−s)B/εf

(
Xε

(�s/δ�δ), Ỹ ε(s)
)

ds + 1

ε1/β

∫ t

0
e(t−s)B/ε dZ(s) (3.18)

and

X̃ε(t) := etAx +
∫ t

0
e(t−s)Ab

(
Xε

(�s/δ�δ), Ỹ ε(s)
)

ds +
∫ t

0
e(t−s)A dL(s), (3.19)

where δ ∈ (ε,1) is some constant to be chosen.

Lemma 3.5. Assume that the assumptions of Theorem 3.1 hold. Then, for any p ∈ (1, α),∫ T

0

(
E

∣∣Y ε(s) − Ỹ ε(s)
∣∣p
H

)1/p ds � ε

δ
+ εδ−(1−θ)eK3δ/ε (3.20)

and ∫ T

0

(
E

∣∣Xε(s) − X̃ε(s)
∣∣p
H

)1/p ds � δθ + ε

δ
+ εδ−(1−θ)eK3δ/ε, (3.21)

where θ ∈ (0,1) is the constant such that (B4).

Proof. For notation simplicity, we set �ε(t) := Y ε(t)− Ỹ ε(t). By Lemma 2.2, for any t ∈ [0, T ]
it follows from (B1) and (B2) that(

E
∣∣Xε(t) − X̃ε(t)

∣∣p
H

)1/p ≤
∫ t

0

(
E

∣∣b(
Xε(s), Y ε(s)

) − b
(
Xε

(�s/δ�δ), Ỹ ε(s)
)∣∣p

H

)1/p ds

�
∫ t

0

(
E

∣∣Xε(s) − Xε
(�s/δ�δ)∣∣p

H

)1/p ds +
∫ t

0

(
E

∣∣�ε(s)
∣∣p
H

)1/p ds

�T δθ +
∫ t

0

(
E

∣∣�ε(s)
∣∣p
H

)1/p ds.
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Therefore, to complete the proof of Lemma 3.5, it is sufficient to show (3.20). Carrying out
similar arguments to those of (3.7) and (3.8), we also deduce that

sup
t≥0

E
∣∣X̃ε(t)

∣∣p
H

∨ sup
t≥0

E
∣∣Ỹ ε(t)

∣∣p
H

< ∞. (3.22)

For any t ∈ [0, T ], there exists an integer k ≥ 0 such that t ∈ [kδ, (k + 1)δ). From (B3) and
Lemma 2.2, we derive that(

E
∣∣�ε(t)

∣∣p
H

)1/p

≤ e−μ1(t−kδ)/ε
(
E

∣∣�ε(kδ)
∣∣p
H

)1/p

+ 1

ε

∫ t

kδ

e−μ1(t−s)/ε
(
E

∣∣f (
Xε(s), Y ε(s)

) − f
(
Xε(kδ), Ỹ ε(s)

)∣∣p
H

)1/p ds

≤ e−μ1(t−kδ)/ε
(
E

∣∣�ε(kδ)
∣∣p
H

)1/p

+ 1

ε

∫ t

kδ

e−μ1(t−s)/ε
{
K2

(
E

∣∣Xε(s) − Xε(kδ)
∣∣p
H

)1/p + K3
(
E

∣∣�ε(s)
∣∣p
H

)1/p}
ds.

This, together with the combined use of (3.7) and (3.22), yields that

eμ1t/ε
(
E

∣∣�ε(t)
∣∣p
H

)1/p

≤ ceμ1kδ/ε + c

ε

∫ t

kδ

eμ1s/ε
(
E

∣∣Xε(s) − Xε(kδ)
∣∣p
H

)1/p + K3

ε

∫ t

kδ

eμ1s/ε
(
E

∣∣�ε(s)
∣∣p
H

)1/p ds.

Then, applying the Gronwall inequality and using Lemma 2.2, we obtain that(
E

∣∣�ε(t)
∣∣p
H

)1/p

≤ ce−(μ1−K3)(t−kδ)/ε

+ K3

ε

∫ t

kδ

e(−(μ1−K3)t−K3kδ+μ1s)/ε
(
E

∣∣Xε(s) − Xε(kδ)
∣∣p
H

)1/p ds

≤ ce−(μ1−K3)(t−kδ)/ε − cK3δ
θ

λ1
e−(μ1−K3)(t−kδ)/ε + cK3δ

θ

μ1
eK3(t−kδ)/ε

� e−(μ1−K3)(t−kδ)/ε + K3δ
θ

μ1
eK3(t−kδ)/ε.

Integrating from kδ to (k + 1)δ with respect to the variable t in the above leads to∫ (k+1)δ

kδ

(
E

∣∣�ε(t)
∣∣p
H

)1/p dt �
∫ (k+1)δ

kδ

{
e−(μ1−K3)(t−kδ)/ε + K3δ

1/2

λ1
eK3(t−kδ)/ε

}
dt

� ε + εδθ eK3δ/ε.
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Thus, (3.20) follows. �

Remark 3.1. Bréhier [5], Lemma 3.1, confined Lemma 3.5 on the case p = 1, which is not
sufficient for our purposes, and the techniques used there does not work for our model. On the
other hand, for finite-dimensional jump–diffusion processes, Givon [14], Lemma 2.4, gives a
similar estimate making use of the Itô formula, which is unavailable for our framework since the
noise process does not admits second moments.

With the previous lemmas at hand, we now can complete the proof of Theorem 3.1.

Proof of Theorem 3.1. The proof is inspired by Khasminskii [20]. According to (B2), Lem-
mas 2.2 and 3.5, it then follows that

(
E

∣∣Xε(t) − X(t)
∣∣p
H

)1/p �
(
E

∣∣X̃ε(t) − X(t)
∣∣p
H

)1/p +
∫ t

0

(
E

∣∣Xε(s) − Xε
(�s/δ�δ)∣∣p

H

)1/p ds

+
∫ t

0

(
E

∣∣Y ε(s) − Ỹ ε(s)
∣∣p
H

)1/p ds

� δθ + ε

δ
+ εδ−(1−θ)eK3δ/ε + (

E
∣∣X̃ε(t) − X(t)

∣∣p
H

)1/p
.

Therefore, to get the desired assertion, it is sufficient to show that

(
E

∣∣X̃ε(t) − X(t)
∣∣p
H

)1/p � δθ + ε

δ
+

√
ε

δ
+ εδ−(1−θ)eK3δ/ε. (3.23)

By the Lipschitz property of b due to Corollary 3.4, Lemmas 2.2 and 3.5, we deduce that

(
E

∣∣X̃ε(t) − X(t)
∣∣p
H

)1/p

≤
(
E

∣∣∣∣∫ t

0
e(t−s)A

{
b
(
Xε

(�s/δ�δ), Ỹ (s)
) − b

(
Xε

(�s/δ�δ))}ds

∣∣∣∣p
H

)1/p

+
∫ t

0

(
E

∣∣b(
Xε

(�s/δ�δ)) − b
(
Xε(s)

)∣∣p
H

)1/p ds

(3.24)

+
∫ t

0

(
E

∣∣b(
Xε(s)

) − b
(
X̃ε(s)

)∣∣p
H

)1/p ds +
∫ t

0

(
E

∣∣b(
X̃ε(s)

) − b
(
X(s)

)∣∣p
H

)1/p ds

� δθ + ε

δ
+ εδ−(1−θ)eK3δ/ε +

∫ t

0

(
E

∣∣X̃ε(s) − X(s)
∣∣p
H

)1/p ds

+
(
E

∣∣∣∣∫ t

0
e(t−s)A

{
b
(
Xε

(�s/δ�δ), Ỹ (s)
) − b

(
Xε

(�s/δ�δ))}ds

∣∣∣∣p
H

)1/p

.
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Furthermore, noting that ∣∣∣∣∫ t

0
h(s)ds

∣∣∣∣2

H

= 2
∫ t

0

∫ t

s

〈
h(r),h(s)

〉
H

dr ds

for a locally integrable function h : [0,∞) �→ H , we obtain from Jensen’s inequality that(
E

∣∣∣∣∫ t

0
e(t−s)A

{
b
(
Xε

(�s/δ�δ), Ỹ (s)
) − b

(
Xε

(�s/δ�δ))}ds

∣∣∣∣p
H

)1/p

≤
�t/δ�∑
k=0

(
E

∣∣∣∣∫ (k+1)δ

kδ

e(t−s)A
{
b
(
Xε(kδ), Ỹ (s)

) − b
(
Xε(kδ)

)}
ds

∣∣∣∣p
H

)1/p

(3.25)

� ε

�t/δ�∑
k=0

(∫ δ/ε

0

∫ δ/ε

s

Jk(r, s)dr ds

)1/2

,

where t := (�t/δ� + 1)δ and

Jk(r, s) := E
〈
e(t−(kδ+rε))A

(
b
(
Xε(kδ), Ỹ (rε + kδ)

) − b
(
Xε(kδ)

))
,

e(t−(kδ+sε))A
(
b
(
Xε(kδ), Ỹ (sε + kδ)

) − b
(
Xε(kδ)

))〉
H

.

For any s ∈ (0, δ), observe from (3.18) that

Ỹ ε(s + kδ) = esB/εỸ ε(kδ) + 1

ε

∫ s

0
e(s−u)B/εf

(
Xε(kδ), Ỹ ε(kδ + u)

)
du

(3.26)

+ 1

ε1/β

∫ s

0
e(s−u)B/ε dZ1(u),

where Z1(·) := Z(· + kδ) − Z(kδ) with filtration F·+kδ , which is again a cylindrical β-stable
process. Let

Z2(t) :=
∞∑

k=1

qkZk(t)ek,

where {Zk(t)}k≥1 is a sequence of i.i.d. R-valued symmetric β-stable Lévy processes defined on
the filtered probability space (	,F , {Ft }t≥0,P) such that {Z2(t)}t≥0 is independent of {L(t)}≥0
and {Z(t)}t≥0, respectively. For fixed Xε(kδ) and the starting point Ỹ ε(kδ), define the process

Y
Xε(kδ),Ỹ ε(kδ)
s by

Y
Xε(kδ),Ỹ ε(kδ)
s/ε := esB/εỸ ε(kδ) +

∫ s/ε

0
e(s/ε−u)Bf

(
Xε(kδ), YXε(kδ),Ỹ ε(kδ)

u

)
du

(3.27)

+
∫ s/ε

0
e(s/ε−u)B dZ2(u).
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A simple calculation gives that

Y
Xε(kδ),Ỹ ε(kδ)
s/ε = esB/εỸ ε(kδ) + 1

ε

∫ s

0
e(s−u)B/εf

(
Xε(kδ), Y

Xε(kδ),Ỹ ε(kδ)
u/ε

)
du

(3.28)

+ 1

ε1/β

∫ s

0
e(s−u)B/ε dZ3(u), s ∈ (0, δ),

where Z3(·) := ε1/βZ2(·/ε). By the self-similar property of stable Lévy processes (Apple-
baum [2], page 51), we conclude from (3.26) and (3.27) that

L
(
Ỹ ε(s + kδ)

) = L
(
Y

Xε(kδ),Ỹ ε(kδ)
s/ε

)
, s ∈ (0, δ). (3.29)

This further implies from (3.22) that

sup
s∈[0,δ]

E
∣∣YXε(kδ),Ỹ ε(kδ)

s

∣∣p
H

< ∞. (3.30)

Let

Fs := σ
{
YXε(kδ),Ỹ ε(kδ)

u , u ≤ s
}
.

Then Xε(kδ) ∈ Fs . By the property of conditional expectation (Applebaum [2], Lemma 1.1.9),
and the boundedness of b due to (B2), for r > s we obtain from (3.29) that

Jk(r, s) = E
〈
e(t−(kδ+sε))A

(
b
(
Xε(kδ), YXε(kδ),Ỹ ε(kδ)

s

) − b
(
Xε(kδ)

))
× e(t−(kδ+rε))A

(
E

(
b
(
Xε(kδ), YXε(kδ),Ỹ ε(kδ)

r

) − b
(
Xε(kδ)

))|Fs

)〉
H

= E
〈
e(t−(kδ+sε))A

(
b
(
Xε(kδ), YXε(kδ),Ỹ ε(kδ)

s

) − b
(
Xε(kδ)

))
× e(t−(kδ+rε))A

(
E

(
b
(
z1, Y

Xε(kδ),Ỹ ε(kδ)
r−s + z2

) − b(z1)
))|z1=Xε(kδ)

z2=Y
Xε(kδ),Ỹ ε (kδ)
s

〉
H

≤ (
E

∣∣b(
z1, Y

Xε(kδ),Ỹ ε(kδ)
s

) − b
(
z1(ξ)

)∣∣2
H

)1/2

× (
E

∣∣(E(
b
(
z1, Y

Xε(kδ),Ỹ ε(kδ)
r−s + z2

) − b
(
z1(ξ)

)))|z1(ξ)=Xε(kδ)

z2=Y
Xε(kδ),Ỹ ε(kδ)
s

∣∣2
H

)1/2

� E
(∣∣(E(

b
(
z1, Y

Xε(kδ),Ỹ ε(kδ)
r−s + z2

) − b(z1)
))|z1=Xε(kδ)

z2=Y
Xε(kδ),Ỹ ε(kδ)
s

∣∣
H

)
,

where in the last step we have used the boundedness of b due to (B2). The previous estimation,
combining Lemma 3.3 with (3.8) and (3.30), yields that

Jk(r, s) � e−(μ1−K3)(r−s)E
(
1 + ∣∣Xε(kδ)

∣∣
H

+ ∣∣YXε(kδ),Ỹ ε(kδ)
s

∣∣
H

)
(3.31)

� e−(μ1−K3)(r−s).
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Thus (3.23) follows by putting (3.31) into (3.25) and applying the Gronwall inequality in (3.24).
Hence, we obtain that

(
E

∣∣Xε(t) − X(t)
∣∣p
H

)1/p � δθ + ε

δ
+

√
ε

δ
+ εδ−(1−θ)eK3δ/ε.

Letting δ := ε(− ln ε)1/2 and then taking ε → 0 yields the desired assertion, as required. �

Remark 3.2. In this section, we show an averaging result for a class of two-time-scale SPDEs
driven by cylindrical stable noises in the abstract setting. Therefore, stochastic evolution equa-
tions of parabolic type with slow and fast time scales fit into our framework.

Remark 3.3. If α = 2 and β = 2 in Theorem 3.1, which corresponds to the cylindrical Wiener
noises, by reexamining the argument of Theorem 3.1, the boundedness of b can be removed by
imposing, for example, ∣∣f (x, y)

∣∣
H

≤ c1 + c2|y|, x, y ∈ H

for some appropriate constants c1, c2 > 0, that is, f is uniformly bounded w.r.t. the first variable.
Moreover, by a close inspection of argument of Theorem 3.1, the boundedness of second moment
of Xε plays an important role in error analysis. However, for the case α,β ∈ (1,2), Xε(·) only
has the pth moment with p ∈ (1, α). Therefore, for the technical reason, it seems hard to show
Theorem 3.1 without the uniform boundedness of the nonlinearity. However, for the weak con-
vergence (e.g., convergence in probability) of averaging principle for systems (3.1) and (3.2), the
boundedness of the nonlinearity can be removed. Such result will be reported in our forthcoming
paper.

Remark 3.4. In this section, we aim to obtaining averaging principles for a class of SPDEs driven
by α-stable noise with α ∈ (1,2]. However, for the case α ∈ (0,1) the method of this paper does
not work. For such a case, it is necessary to find new approaches for the investigation.
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