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Abstract— This paper is concerned with a two-time-scale
approximation of Wonham filters. A main feature is that
the underlying hidden Markov chain has a large state
space. To reduce computational complexity, we develop
two-time-scale approach. Under time scale separation,
we divide the state space of the Markov chain into a
number of groups such that the chain jumps rapidly
within each group and switches occasionally from one
group to another. Such structure yields a limit Wonham
filter preserving the main features of the filtering process,
but has a much smaller dimension and therefore is easier
to compute. Using the limit filter enables us to develop
efficient approximations for the filters for hidden Markov
chains. One of the main advantages of our approach is the
substantial reduction of dimensionality.

Index Terms— Wonham filter, hidden Markov chain,
two-time-scale Markov process

I. INTRODUCTION

There has been a growing interest in using switching

diffusion systems for emerging applications in wireless

communication, signal processing, and financial engi-

neering. Different from the usual diffusion models used

in the traditional setup, both continuous dynamics and

discrete events coexist in the regime-switching models.

The hybrid formulation makes the models more versa-

tile, but the analysis becomes more challenging.

In this work, we focus on hybrid diffusions or switch-

ing diffusions, which uses a continuous-time Markov

chain to capture the discrete event features resulting

in a set of diffusions modulated by the Markov chain.

To carry out control and optimization tasks for regime-

switching diffusions under partial observations, it is

desirable to extract characteristics or features of the

systems based on the limited information available,

which brings us to the framework of hybrid filtering.

Optimal filtering of hybrid systems typically yields

infinite dimensional stochastic differential equations. Ef-

forts have been made to find finite dimensional approx-

imations. Some of these approximation schemes can be
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simplified if the conditional probability of the Markov

chain given observation over time is available. In this

paper, we consider the model in which a function of the

Markov chain is observed in additive white noise. We

focus on the conditional probability of the chain given

the observation. The corresponding filter, developed in

[25], is known as the Wonham filter and is given by the

solution of a system of stochastic differential equations.

A. Wonham Filter

In the literature, after the Kalman filter was developed

in the 1960’s, the first rigorous development of nonlinear

filters for diffusion-type processes came into being; see

Kushner [18]. Nonlinear filter problems soon attracted

growing and continued attention. In contrast to the

Kalman filter which is finite dimensional, it is well

known that nonlinear filters are generally infinite dimen-

sional. There are only a handful of finite dimensional

nonlinear filters known to exist to date. The first of such

finite-dimensional filters was developed by Wonham

[25]. Owing to its importance, it has received much

attention. In the new era, because of the use of hidden

Markov models, filters involving jump processes have

drawn resurgent attention. For example, to characterize

stock price movements, one may use α(t), a continuous-

time Markov chain, to represent the stock trends and

stochastic volatility. Suppose that we can observe y(t),
the percentage change of the stock price represented by

f(α(t)) plus white noise, where f(·) is an appropriate

function. For simplicity, suppose α(t) ∈ M = {1, 2}.

For example, use α(t) = 2 to represent an up trend

with f(2) > 0 and α(t) = 1 a down trend with f(1) <
0); see [33] for more details and related literature. In

manufacturing applications, one may take f(α(t)) as

the discrete demand for a product that is corrupted with

Gaussian white noise. In a recent work [24], Wang,

Zhang, and Yin considered Kalman-type filters for the

partially observed system
{

dx(t) = A(α(t))x(t)dt + σ(α(t))dw(t), x(0) = x0,

dy(t) = H(α(t))x(t)dt + δdv(t), y(0) = 0,

where x(t) is the continuous state variable, α(t) is a

finite state Markov chain (a discrete-event state), and

y(t) is the observation process; a quadratic variation test

was developed and near-optimal filters were obtained by

examining the associated system of Riccati equations.

In this paper, we concentrate on Wonham filters, in
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which only noisy corrupted observations of a Markov

chain are available. So there are no Riccati equations

we can utilize, and the methods developed in [24] are

not applicable.

To proceed, we first summarize results about the

Wonham filter. Let α(t) be a continuous-time Markov

chain having a finite state space M = {1, . . . ,m}
and generator Q = (qij) ∈ R

m×m. A function of the

Markov chain α(t) together with additive Gaussian noise

is observed. Let y(t) denote the observation given by

dy(t) = f(α(t))dt + σdw(t), y(0) = 0, (1)

where σ is a positive constant and w(·) is a standard

Brownian motion independent of α(·).
Let pi(t) be the conditional probability of {α(t) = i}

given the observations up to time t, i.e.,

pi(t) = P (α(t) = i|y(s) : s ≤ t),

for i = 1, . . . ,m. Let p(t) = (p1(t), . . . , pm(t)) ∈
R

1×m. Then the Wonham filter is given by

dp(t) = p(t)Qdt −
1

σ2

(
m∑

i=1

f(i)pi(t)

)
p(t)A(t)dt

+
1

σ2
p(t)A(t)dy(t),

p(0) = p0, initial probability vector,
(2)

where

A(t) = diag(f(1), . . . , f(m)) −
m∑

i=1

f(i)pi(t)I.

Here and from now on, we use I as an identity matrix of

appropriate dimension and use K as a generic constant

with the convention K + K = K and KK = K.

B. Brief Review of Literature

Because of its importance, filtering problems have

received much attention. For example, Caines and Chen

[4] derived an optimal filter when it involves a random

variable but with no switching; see also Hijab [12].

Haussmann and Zhang [11] used two statistical hypoth-

esis tests, the quadratic variation test and the likelihood

ratio test, to estimate the value of the random variable

and to choose among competing filters on successive

time intervals. These results are generalized in Zhang

[30] to incorporate unobservable Markov chains.

For related work on filtering, see Dey and Moore [6]

and Moore and Baras [21] for risk sensitive filtering;

Wang, Zhang, and Yin [24] and Yin and Dey [26] for

reduction of complexity of filtering problems involving

large-scale Markov chains; Zhang [32], [31] for the most

probable estimates in discrete-time and continuous-time

models, respectively; and Liu and Zhang [20] for nu-

merical experiments involving piecewise approximation

of nonlinear systems; and Yin, Zhang, and Liu [29] for

numerical methods of Wonham filters.

A survey of results on filtering can be found in the

books by Anderson and Moore [1] on classical linear

filtering. Results concerning hidden Markov models

and related filtering problems can be found in Elliott,

Aggoun, and Moore [8]. For general nonlinear filtering,

see Kallianpur [16] and Liptser and Shiryayev [15]; see

also the books by Bensoussan [2] and Kushner [19] for

related topics on partially observed systems.

The primary concern of this paper is on construct-

ing Wonham filters for Markov chains with a large

state space. Note that related results may be found

in Tweedie [23] for quasi-stationary distributions of

Markov processes for a general state space, Huisinga,

Meyn, and Schutte [13] for a spectral theory approach

to approximation of a complex Markov process with

a simpler one, and Jerrum [14] for further discussion.

When the state space of the Markov chain is large, the

number of the filter equations will be large comprising

a switching diffusion system with large dimension. We

focus on developing good approximations for large

dimensional filters. The main idea is to use time-scale

separation and hierarchy within the Markov chain to

reduce the computation complexity. In applications of

manufacturing (see [22, Section 5.9]) and in system

reliability (see [27, Section 3.2]), the state space of the

Markov chain can be partitioned to a number of groups

so that the Markov chain jumps rapidly within a group

of states and less frequently (or occasionally) among

different groups. Under such a setup, due to the fast

variation of the Markov chain, it is difficult to pinpoint

the exact location of the Markov chain. Nevertheless,

it is much easier to identify if the chain belongs to

certain groups. This leads to a formulation involving

states having weak and strong interactions.

In this paper, we present a two-time-scale filter, its

corresponding limit filter and related convergence. We

show that the original filter can be approximated in a

two stage procedure under different topologies. Before

proceeding further, we point out: First, the time-scale

separation in this paper is formulated by using a small

parameter ε > 0. The asymptotic results to follow

require that ε approaches zero. However, in applications,

ε can be a fixed constant. For example, given the

magnitude of other parameters being of order 1, ε can

take the value 0.01 or 0.1. Mainly, the small parameter

brings out the different scales of the jump rates in

different states of the Markov chain. Second, in the

formulation, the Markov chain has a particular structure.

Since any finite state Markov chain has at least one

recurrent state, conversion to such a “canonical form”

is always possible; see for example, [27, Section 3.6]

and references therein. Due to page limitations, proofs
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of results are omitted. A reader is referred to [34] for

the detailed development.

II. SINGULARLY PERTURBED MARKOV CHAINS

Suppose that α(t) is a continuous-time Markov chain

whose generator is Q. We say that the Markov chain or

the generator Q is weakly irreducible if the system of

equations

νQ = 0, and

m∑

i=1

νi = 1

has a unique solution satisfying νi ≥ 0 for i =
1, . . . ,m. The solution (row-vector-valued function) ν =
(ν1, . . . , νm) is termed a quasi-stationary distribution.

Note that the definitions were used in our work [17]

and [27]. They are different from the usual definitions

of irreducibility and stationary distribution in that we

do not require all the components νi > 0; they are also

different than that of [23].

A. Time-Scale Separation in Markov Chains

In this work, we focus on Markov chains that have

large state spaces with complex structures. Suppose that

the states of the underlying Markov chain are divisible

to a number of weakly irreducible classes such that

the Markov chain fluctuates rapidly among different

states within a weakly irreducible class, but jumps less

frequently from one weakly irreducible class to another.

To highlight the different rates of variation, introduce a

small parameter ε > 0 and assume the generator of the

Markov chain to be of the form

Qε =
1

ε
Q̃ + Q̂. (3)

Throughout the paper, we assume both Q̃ and Q̂ to be

generators. As a result, the Markov chain becomes an

ε-dependent singularly perturbed Markov chain. An av-

eraging approach requires aggregating the states in each

weakly irreducible class into a single state, and replacing

the original complex system by its limit, an average with

respect to the quasi-stationary distributions. In this and

the following three sections, we concentrate on the case

that the underlying Markov chain has weakly irreducible

classes with no transient states, which specifies the form

of Q̃ as

Q̃ = diag
(
Q̃1, . . . , Q̃l

)
. (4)

Here, for each k = 1, . . . , l, Q̃k is the weakly irre-

ducible generator corresponding to the states in Mk =
{sk1, . . . , skmk

}, for k = 1, . . . , l. The state space is

decomposed as

M = M1 ∪ · · · ∪Ml

= {s11, . . . , s1m1
} ∪ · · · ∪ {sl1, . . . , slml

}.
(5)

Note that Q̃ governs the rapidly changing part and Q̂
describes the slowly varying components. Lumping the

states in Mk into a single “state,” an aggregated process,

containing l states, is obtained, in which these l states

interact through the matrix Q̂ resulting in transitions

from Mk to Mj . Thus by aggregation, we obtain a

process with considerably smaller state space. To be

more specific, the aggregated process {αε(·)} is defined

by

αε(t) = k when αε(t) ∈ Mk. (6)

Note that αε(·) is not necessarily Markovian. However,

using certain probabilistic arguments and assuming Q̃k

to be weakly irreducible, we have shown in [27, Section

7.5] that

(a) αε(·) converges weakly to α(·), which is a

continuous-time Markov chain generated by

Q = νQ̂1̃1,

ν = diag(ν1, . . . , νl), 1̃1 = diag(11m1
, . . . , 11ml

),
(7)

where νk is the quasi-stationary distribution of Q̃k,

k = 1, . . . , l, 11ℓ = (1, . . . , 1)′ ∈ R
ℓ is an ℓ-

dimensional column vector with all components

being equal to 1, diag(D1, . . . ,Dr) is a block-

diagonal matrix with appropriate dimensions.

(b) For any bounded deterministic β(·), then

E

(∫ T

0

(
I{αε(t)=skj} − νk

j I{αε(t)=k}

)
β(t)dt

)2

= O(ε),
(8)

where IA is the indicator function of a set A.

(c) Let P (t) = 1̃1(expQt)ν ∈ R
m×m. Then

| exp(Qεt) − P (t)| = O(ε + e−
κt
ε ), (9)

for some κ > 0.

Note that for the process α(·), the state space is given

by M = {1, . . . , l}. For a complete treatment of two-

time-scale Markov chains in continuous time, see the

book by Yin and Zhang [27]. In addition, we would

like to point out that the aggregation process depends

on the decomposition of Q̃ in (4). Substantial reduction

of dimensionality can be achieved when l ≪ m.

B. Two-Time-Scale Wonham Filters

Let yε(t) be the observation given by

dyε(t) = f(αε(t))dt + σdw(t), yε(0) = 0, (10)

where σ is a positive constant and w(·) is a standard

Brownian motion. We assume that αε(·) and w(·) are

independent. Let pε
ij(t) denote the conditional probabil-

ity of {αε(t) = sij} given the observation up to time t,
i.e.,

pε
ij(t) = P (αε(t) = sij |y

ε(s) : s ≤ t),
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for i = 1, . . . , l and j = 1, . . . ,mi. Let pε(t) ∈ R
1×m

such that

pε(t) = (pε
11(t), . . . , p

ε
1m1

(t), . . . , pε
l1(t), . . . , p

ε
lml

(t)).

Let

α̂ε(t) =
l∑

i=1

mi∑

j=1

f(sij)p
ε
ij(t),

and

Aε(t) = diag(f(s11), . . . , f(s1m1
),

. . . , f(sl1), . . . , f(slml
)) − α̂ε(t)I.

(11)

Then the corresponding Wonham filter can be rewritten

as

dpε(t) = pε(t)Qεdt −
1

σ2
α̂ε(t)pε(t)Aε(t)dt

+
1

σ2
pε(t)Aε(t)dyε(t),

(12)

with given initial condition

pε(0) = p0 = (p0,11, . . . , p0,1m1
, . . . , p0,l1, . . . , p0,lml

).

III. LIMIT FILTER AND TWO-TIME-SCALE

APPROXIMATION

A. Limit Filter

Intuitively, similar to the probability distributions of

two-time-scale Markov chains, as ε → 0, the conditional

probability in Wonham filter for αε(t) should converge

to a limit filter. In this section, we first derive formally

the limit filter and then provide a verification theorem

that shows that the limit filter is indeed the limit of the

original filter as ε → 0 in an appropriate sense.

Write (12) in the its integral form and note that the

boundedness of pε(t) and Aε(t). It follows that

E

∣∣∣∣
∫ t

0

pε(u)Qεdu

∣∣∣∣
2

≤ K

for some finite K for all ε > 0. Therefore, we have

1

ε
E

∣∣∣∣
∫ t

0

pε(u)Q̃du

∣∣∣∣
2

≤ 2E

∣∣∣∣
∫ t

0

pε(u)Qεdu

∣∣∣∣
2

+ 2E

∣∣∣∣
∫ t

0

pε(u)Q̂du

∣∣∣∣
2

≤ K.

This implies that

E

∣∣∣∣
∫ t

0

pε(u)Q̃du

∣∣∣∣
2

≤ εK.

Moreover, note that pε
ij(t) are conditional probability

measures that are uniformly bounded between 0 and 1.

If pε(t) → p0(t) as ε → 0 for some p0(t) and t > 0,

then necessarily

E

∣∣∣∣
∫ t

0

p0(u)Q̃du

∣∣∣∣
2

= 0, for t > 0.

This implies p0(t)Q̃ = 0. In view of the block-diagonal

structure of Q̃, the vector p0(t) must have the following

form

p0(t) = (ν1p1(t), . . . , ν
lpl(t)) = p(t)ν,

where p(t) = (p1(t), . . . , pl(t)) ∈ R
1×l is to be

determined later. Recall the definition of 1̃1 in (7). It

follows that

pε(t)1̃1 → p0(t)1̃1 = p(t)(ν1̃1) = p(t).

We next derive the equation for p(t). First, recall (8)

and the convergence of αε(·) → α(·). Intuitively, we

have
∫ t

0

f(αε(s))ds =

∫ t

0

∑

i,j

f(sij)I{αε(s)=sij}ds

∼

∫ t

0

l∑

i=1

f(sij)ν
i
jI{αε(s)=i}ds

∼

∫ t

0

f(i)I{α(s)=i}ds

=

∫ t

0

f(α(s))ds.

Therefore, we expect the weak limit of yε(·) to have the

form

dy(t) = f(α(t))dt + σdw(t), y(0) = 0,

where

f(i) =

mi∑

j=1

f(sij)ν
i
j .

The proof of this can be found in Wang, Zhang, and Yin

[24].

Recall that Q̃1̃1 = 0. In (12), multiplying from the

right by 1̃1 and sending ε → 0, we obtain

p(t) = p(0) +

∫ t

0

p(u)Qdu −
1

σ2

∫ t

0

α̃(u)p(u)A(u)du

+
1

σ2

∫ t

0

p(u)A(u)dy(u),

(13)

with initial condition

p(0) = p01̃1 =

(p0,11 + · · · + p0,1m1
, . . . , p0,l1 + · · · + p0,lml

) ∈ R
1×l,

where

α̃(t) =
l∑

i=1

f(i)pi(t),

and

A(t) = diag(f(1), . . . , f(l)) − α̃(t)I. (14)

We will show in what follows that, for each t > 0, pε(t)
can be approximated by p0(t) = p(t)ν in a two stage

procedure as ε → 0.
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B. Two-Time-Scale Approximation

Note that the noise driving the limit filter is the weak

limit of yε(·). In order to use the filter in real time

applications, one needs to feed the filter by the actual

observation yε(·) in (13). Let p̃ε(t) = pε(t)ν denote

such a filter with pε(t) given by

pε(t) = pε(0) +

∫ t

0

pε(u)Qdu

−
1

σ2

∫ t

0

α̃ε(u)pε(u)A
ε
(u)du

+
1

σ2

∫ t

0

pε(u)A
ε
(u)dyε(u),

(15)

and pε(0) = p01̃1, where

α̃ε(t) =
l∑

i=1

f(i)pε
i (t),

and

A
ε
(t) = diag(f(1), . . . , f(l)) − α̃ε(t)I.

Then we have the following theorem.

Theorem 3.1:. The following assertions hold.

(a) p̃ε(·) is an approximation to pε(·) for small ε.

More precisely,

E|pε(t) − p̃ε(t)|2 = O
(
ε + e−

κt
ε

)
,

for some constant κ > 0.

(b) pε(·) converges weakly to p(·) in C([0, T ]; Rm),
where C([0, T ]; Rm) denotes the space of R

m-valued

continuous functions defined on [0, T ].

Remark 3.2:. This theorem reveals that the two-stage

approximation of pε(t) ∈ R
m leads to the limit p0(t) =

p(t)ν with p(t) ∈ R
l. Stage 1 approximation provides a

practical way for computing pε(t) using pε(t)ν that is

governed by a system of SDEs of much smaller dimen-

sion. Stage 2 approximation leads to a theoretical weak

limit for completeness of the two-time-scale analysis.

Remark 3.3:. The conditional probability vector pε(t)
does not converge in a neighborhood (of size O(ε)) of

t = 0 due to an initial layer with thickness O(ε) near the

origin. Note that pε(0) need not be the same as p0(0)
and pε(t) approaches p0(t) for t > 0 away from the

initial layer. These observations are summarized in the

next corollary.

Corollary 3.4:. The following assertions hold:

(a) E

∫ T

0

|pε(t) − p̃ε(t)|2dt = O(ε).

(b) For any δ > 0, supt∈[δ,T ] E|pε(t) − p̃ε(t)|2 =
O(ε).

(c) For each t > 0, pε(t) → p0(t) in distribution.

ε 0.5 0.1 0.05 0.01 0.005

||pε − p̃
ε||2

T
0.0335 0.0090 0.005 0.00117 0.00063

TABLE I

DEMONSTRATION OF ERROR BOUNDS.

IV. A NUMERICAL EXAMPLE

In this section, we consider a simple example involv-

ing a four state Markov chain. Let

Qε=
1

ε




−1 1 0 0

1 −1 0 0

0 0 −1 1

0 0 1 −1


+




−1 0 1 0

0 −1 0 1

1 0 −1 0

0 1 0 −1


 .

The corresponding state space is M = M1 ∪ M2 =
{s11, s12} ∪ {s21, s22}. In this case, Q̃1 = Q̃2 =(

−1 1

1 −1

)
. The quasi-stationary distributions ν1

and ν2 (in fact, the stationary distributions) are given by

ν1 = ν2 = (1/2, 1/2) as solutions to ν1Q̃1 = ν2Q̃2 =
0. Note that the stationary distributions depend only on

the block matrices in Q̃.

Let (pε
11(t), p

ε
12(t), p

ε
21(t), p

ε
22(t)) denote the con-

ditional probability vector and its approximation by

(p̃ε
11(t), p̃

ε
12(t), p̃

ε
21(t), p̃

ε
22(t)). Define the norm

||pε(·) − p̃ε(·)||2T

=E

∫ T

0

(
|pε

11(t) − p̃ε
11(t)|

2 + |pε
12(t) − p̃ε

12(t)|
2

+|pε
21(t) − p̃ε

21(t)|
2 + |pε

22(t) − p̃ε
22(t)|

2

)
dt.

In this example, we take

f(s11) = 1, f(s12) = 1.5,

f(s21) = −1.5, f(s22) = −1,

σ = 0.5, T = 5 and the discretization step size δ =
0.0005. A sample path of αε(·) (with ε = 0.05) and

the corresponding conditional probabilities are given in

the first 5 rows in Figure 1. In Figure 1, the states are

labelled as 1 = s11, 2 = s12, 3 = s21, and 4 = s22. The

differences between pε(·) and p̃ε(·) are plotted in the last

4 rows. As can be seen in Figure 1, αε(·) stays in group

M1 from t = 0.2 to 1.5, jumps to group M2 at t = 1.5,

goes back to M1 at t = 3.4, then to M2, and finally

lands in M1 from t = 4.4 to 5. The approximation filter

p̃ε
ij(t) tracks the corresponding conditional probabilities

pε(t) pretty well on these time intervals.

In addition, we vary ε and run 1000 samples for each

ε. The results are recorded in Table I. As can be seen in

Table 1, the differences between the exact conditional

probabilities and their approximations p̃ε(·) are fairly
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Fig. 1. Sample paths of α
ε(t), p

ε(t), and p̃
ε(t) − p

ε(t) with
ε = 0.05.

small. This example validates the effectiveness of our

approach.
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