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Abstract. This paper is the first of two papers dealing with analytical investigation of resonant 

multi-modal dynamics due to 2:1 internal resonances in the finite-amplitude free vibrations of 

horizontal/inclined cables. Part I is concerned with theoretical formulation and validation of the 

general cable model. Approximate non-linear partial differential equations of 3-D coupled 

motion of small sagged cables � which account for both spatio-temporal variation of non-linear 

dynamic tension and system asymmetry due to inclined sagged configurations � are presented. A 

multi-dimensional Galerkin expansion of the solution of non-planar/planar motion is performed, 

yielding a complete set of system quadratic/cubic coefficients. With the aim of parametrically 

studying the behavior of horizontal/inclined cables in Part II [1], a second-order asymptotic 

analysis under planar 2:1 resonance is accomplished by the method of multiple scales. On 

accounting for higher-order effects of quadratic/cubic nonlinearities, approximate closed-form 

solutions of non-linear amplitudes, frequencies and dynamic configurations of resonant non-

linear normal modes reveal the dependence of cable response on resonant/non-resonant modal 

contributions. Depending on simplifying kinematic modeling and assigned system parameters, 

approximate horizontal/inclined cable models are thoroughly validated by numerically 

evaluating statics and non-planar/planar linear/non-linear dynamics against those of the exact 

model. Moreover, the modal coupling role and contribution of system longitudinal dynamics are 

discussed for horizontal cables, showing some meaningful effects due to kinematic condensation. 

Key words: horizontal/inclined sagged cable, exact/approximate model, internal resonance, 

higher-order effects, non-linear free vibration, longitudinal dynamics 
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1. Introduction  

 Internally resonant non-linear dynamics due to finite vibration amplitudes of elastic 

suspended cables have received a considerable amount of attention over the years as they exhibit 

a variety of extraordinarily rich phenomena induced by the overall structural high-flexibility and 

low-damping characteristics. Depending on the values of some geometrical/mechanical control 

parameters and on system frequencies, the activated internal resonances enhance modal coupling 

capacity, even in the absence of external excitations. A comprehensive account of internal 

resonance mechanisms in suspended cables can be found in a recent updated review on cable 

non-linear dynamics [2, 3].  

 Suspended cables exhibit various planar (e.g., 2:1, 3:1, 1:1) and non-planar (e.g., 2:1, 1:1) 

internal resonance conditions due to the inherent combination of system quadratic and cubic 

nonlinearities [4]. Involving different interacting planar/non-planar modes in the response, the 

system may, in turn, experience a multiple internal resonance [3, 5]. The richness of cable non-

linear dynamics due to single [6-8] or multiple [9-13] internal resonances has been highlighted 

by a large number of theoretical, numerical and/or experimental studies based upon low- or 

multi-dimensional models. While most of them deal with resonant horizontal cables, usually at 

the so-called first crossover in the natural frequency spectrum [14], few works have been 

devoted to resonant inclined cables exhibiting the system asymmetry due to actual inclined 

configurations [15]. Some studies involving other non-crossover resonant horizontal cables have 

also been carried out [4, 16]. As to the theoretical modeling, the following main situations � 

particularly worth easing the analytical computations � have been addressed:  

(i) Parabolic (i.e., shallow) horizontal or nearly taut inclined [17-19] cables exhibiting either 

symmetric or anti-symmetric modal shapes.  

(ii) Kinematically condensed cable model exhibiting space-independent dynamic tension, in 

which the governing integro-partial differential equations of motion ensue from neglecting the 
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longitudinal inertia according to a quasi-static stretching assumption of cable in motion and 

linking the longitudinal displacement field to the transversal ones.  

(iii) Low finite-dimensional models of system ordinary differential equations (ODEs) obtained 

by expanding the dynamic displacement fields in terms of some eigenfunctions, e.g., usually, of 

the solely resonant modes, via a Galerkin-based approximation.  

 To overcome some of the aforementioned issues, either analytical/numerical [20] or purely 

numerical [21, 22] approaches have been used for investigating some important aspects of the 

response of non-condensed, multi-dimensional, arbitrarily sagged or inclined cables whose 

theoretical formulation relies on exact kinematic modeling. Alternatively, refined analytical 

techniques � still applied to the parabolic condensed horizontal cable � have been proposed to 

improve the (iii) issue. They consist in applying the method of multiple scales (MMS) either 

directly to the original PDEs without a priori assumptions of the displacement solution form [12, 

13, 23, 24], or to the discretized model accounting for the full-basis eigenspectrum of linear 

modes in the Galerkin projection of the PDEs [24]. As a matter of fact, the outcomes of the latter 

technique are substantially equivalent to those provided by the former, if enough modes are 

retained in the discretization [25].  

 The present work in two parts still fits in an analytical framework, which is deemed capable 

of enlightening the fundamental features of system non-linear dynamics, while also establishing 

a link between analytical and numerical treatments, the prediction of the former being observed 

against some outcomes of the latter. Accordingly, this Part I presents and compares exact and 

approximate models of a general, non-condensed, arbitrarily inclined cable, as well as the 

discretization-type perturbation analysis of the approximate model, to be subsequently used in 

Part II [1] for investigating the non-linear free vibrations of horizontal/inclined cables due to 2:1 

internal resonances. Non-linear free vibrations have mostly been studied by considering a 

condensed horizontal cable, with only one or two degrees-of-freedom (DOF) [26-29]. The non-

condensed horizontal/inclined cable model with three DOF has been considered in [30]. Yet, the 
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significant role played by internal resonances has been overlooked in all of these studies. 

Recently, the basic (i.e., 2:1, 3:1, 1:1) internal resonances of a still condensed horizontal cable 

have been addressed [4] based on a general analytical formulation [24]. Herein, attention is 

focused on 2:1 resonances because, besides discriminating a typical dynamic scenario between 

horizontal and inclined cables, it is the solely resonance where it makes sense to develop a 

higher-order asymptotic analysis accounting for contributions from all of resonant/non-resonant 

modes due to system quadratic nonlinearities. 

 The paper is organized as follows. In Section 2, the non-linear PDEs of three-dimensional 

motion accounting for both dynamic tension space-time variation and system asymmetry due to 

inclined sagged configurations are presented for exact/approximate cable models. Closed-form 

static and linear dynamic solutions of small-sagged cables are summarized. An infinite-

dimensional Galerkin expansion of the solution of approximate PDEs is presented in Section 3, 

wherein the effects of neglecting the system longitudinal inertia are also evidenced. For planar 

2:1 internal resonances, a second-order asymptotic analysis is accomplished through the MMS in 

Section 4, accounting for higher-order effects of quadratic/cubic nonlinearities. Approximate 

non-linear solutions of resonant amplitudes, frequencies, space-time displacement and velocity 

fields associated with the non-linear normal modes are determined, highlighting the dependence 

of cable response on different resonant/non-resonant modes. In Section 5, the approximate static, 

non-planar/planar linear and non-linear dynamic results of horizontal/inclined cables are 

thoroughly validated against those of the exact model, and the role played by the system 

longitudinal dynamics is discussed, along with some observed effects due to kinematic 

condensation. The outcomes allow for a proper approximate model selection. The concluding 

remarks are drawn in Section 6. 
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2. Cable Model and Governing Equations 

 Figure 1 displays a suspended cable with arbitrary inclination angle θ in a fixed Cartesian co-

ordinate (X, Y, Z) system. Three different configurations of the infinitesimal cable element in the 

natural (dsn), static (ds) and dynamic (final, dsf) states are considered for the exact model, 

whereas for the approximate model it is usually assumed ds ≈ dsn. The function y = y(x) 

describes the cable planar static equilibrium under gravity g. While keeping the horizontal span 

XH fixed, the vertical span YH is varied to attain specified θ values. The relevant in-plane (out-of-

plane) dynamics is described by the longitudinal or horizontal u and vertical v (w) displacements 

measured from the static configuration. Here, x is the spatially independent variable, and t 

denotes time. A prime (overdot) denotes differentiation with respect to x (t).  

 

2.1 Exact Equations of Motion 

In the absence of damping and external loading, a perfectly flexible, linear elastic cable with 

negligible torsional, bending and shear rigidities is considered, with the strain energy being only 

due to cable axial stretching. Based on the so-called engineering strain measure, the exact 

kinematic modeling of the total strain of cable element is given by  

                                   ( ) ( )2 2 2

2

1
1 1 1,

1

f

f

n

ds e
e u y v w

ds y

+ ′ ′ ′ ′= − = + + + + −
′+

                         (1) 

where ( ) /n ne ds ds ds= −  is the initial static strain. By means of the variational formulation, the 

governing exact PDEs of 3-D coupled undamped unforced motion of the cable about its static 

equilibrium read [21, 22, 31]: 

      
( ) ( )

( ) ( ) ( )
2

2 2 2 2

1 1 1

11 1

C
EA EA e u EA u w y

u
g ey u y v w

′
 ′ ′ ′+ + + + − =
  +′+ ′ ′ ′ ′+ + + + 

&&,           (2) 

    
( ) ( )

( ) ( ) ( )
2

2 2 2 2

1 1
,

11 1

C
EAy EA e v EA y v w y

v
g ey u y v w

′
 ′ ′ ′ ′ ′+ + + + − =
  +′+ ′ ′ ′ ′+ + + + 

&&          (3) 
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( )
( ) ( ) ( )

2

2 2 2 2

1 1
,

11 1

C
EA e w w yEAw

w
g ey u y v w

′
 ′ ′+ ′ + − =
  +′+ ′ ′ ′ ′+ + + + 

&&                  (4) 

in which zero values of static and dynamic displacements of the boundaries are considered. E is 

the Young�s modulus, wC the cable self-weight per unit unstretched length, and A its uniform 

cross-sectional area. This system is highly non-linear and its closed-form analytical solution 

cannot be sought. Hence, either a direct numerical [15, 22] or an approximate analytical solution 

based on some assumptions has to be pursued.   

 

2.2 Approximate Equations of Motion 

 In conditions of moderately large vibration amplitudes, the radical term in Equation (1) is 

expanded through the binomial series by discarding the higher-order effects. Along with the 

assumption of small initial strain (ds ≈ dsn), i.e., 1+e ≈ 1, Equation (1) becomes   

                                 ( )2 2 2

2

1 1
,

1 2
f de e e e u y v u v w

y

 ′ ′ ′ ′ ′ ′= + = + + + + + ′+  
                             (5) 

where ed is the extensional dynamic strain expressed through its Lagrangian measure. For 

convenience in the parametric analysis, the dimensionless variables,  

                 , , , , , , ,
H H H H H H C

x y u v w EA t gH
x y u v w t

X X X X X H X w
α= = = = = = =%% % % % %                (6) 

are introduced, in which H is the horizontal component of cable static tension. The approximate, 

third-order, non-linear PDEs, valid for both horizontal and arbitrarily inclined cables, are given, 

in non-dimensional form, by 

( ) ( ) ( )2 2 2 2 3 2 2

3 3 3

1
,

2 2
u u u y v u y u v u v w u u v u w

α α αρ
ρ ρ ρ

′  ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= + + + + + + + + + +  
  

&&       (7)   

( ) ( ) ( )2 2 2 2 2 2 3 2

3 3 3
,

2 2

y
v v y u y v u v y v u v w u v v v w

α α αρ
ρ ρ ρ

′′  ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= + + + + + + + + + +  
  

&&   (8) 

( ) ( )2 2 3

3 3
,

2
w w u w y v w w u w v w

α αρ
ρ ρ

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= + + + + + 
 

&&                                                          (9) 
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where 21 .yρ ′= + The ( ) %  notation has been dropped for brevity, and the corresponding 

homogeneous boundary conditions (b.c.) are  ( ) ( ) ( ) ( ) ( ) ( )0, 1, 0, 1, 0, 1,u t u t v t v t w t w t= = = = =  

= 0. Apart from damping and external forces, sets of equations similar to (7)-(9), based on the 

Lagrangian strain measure, have been previously reported in the literature [e.g., 28, 30, 32-34] 

yet with few (typo) errors found in some references. However, in contrast with the so-called 

kinematically condensed model (see Appendix A), herein (i) the second-order term of the 

longitudinal displacement gradient 2u′ and (ii) the corresponding inertia u&&  are kept in the 

formulation. Moreover, (iii) Equations (7-9) exhibit both quadratic and cubic non-linear effects 

due to cable stretching, the former occurring even in the absence of initial sag or curvature (taut 

string case). Thus, the dynamic strain in Equation (5) turns out to be spatially non-uniform.  

 

2.3 General Closed-Form Static Solution 

 Based on Figure 1, wherein y = xtanθ + z, and Equation (6), with z%  = z/XH, the approximate 

non-linear equation governing the vertical static equilibrium of the inclined cable, with the 

omitted (  % ), is given by [15] 

                             ( )( )
1

2 2
1 tan .H CHz X w zθ′′ ′= − + +                                        (10) 

 Following [14], in which z′  is considered sufficiently small for its square to be neglected 

according to the small sag assumption, the approximate static solution can be expressed, up to 

cubic order of x, as  

             ( ) ( ) ( )21 *
1 1 1 2 * ,

2 6
Z x x x O

ε ε ≈ − + − + 
 

                                (11) 

with ( )secC HZ z w X Hθ=  and * sinC Hw X Hε θ=  being non-dimensional parameters. 

Equation (11) is valid as *ε  is small when the inclined cable has a small sag-to-span ratio. It is 

also valid for horizontal cables, where *ε  = 0 as θ = 0. Because one may assume ds ≈ dx for 

shallow cables, being ρ ≈ 1 in the static analysis entails H ≈ wCXH/8d, in which d is the cable 
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sag-to-span ratio (being 1:8 or less, [14]). Accordingly, Equation (11) renders y = z ≈ 4dx(1-x), 

which is the parabolic configuration. In contrast, by accounting for the asymmetry effect to the 

first order of *ε , the inclined profile is no longer parabolic (symmetric) [35] as typically 

considered in the literature on non-linear dynamics of inclined cables, e.g., [17-19, 34].  

 

2.4 Natural Frequencies and Mode Shapes 

The in-plane and out-of-plane displacements are postulated in the form: 

            ( ) ( ) ( )
1

, ,
N

J J

n n

n

U x t D t x
=

= Φ∑             (12) 

where, for J = 1 to 3, U
1
= u,U

2
 = v and U

3
 = w, ( ) ( )sinn x n xπΦ = , N being the number of 

retained terms in the sine series. Substituting Equation (12) into Equations (7)-(9), neglecting 

non-linear terms and applying the Galerkin method with b.c., a set of 3N coupled ODEs for the 

generalized time co-ordinates J

nD  is obtained in the following general matrix form:  

      { } { } 0,M D K D   + =   
&&  

 { }

T
1 1 1

1 2

T
2 2 2

1 2

T
3 3 3

1 2

, ,...

, ,... ,

, ,...

N

N

N

D D D

D D D D

D D D

    
  =   
 

    

0 0 0

0 0 ,  0 .

0 0 0 0

uu uu uv

vv uv vv

ww ww

M K K

M M K K K

M K

                
            = =            

            

  

(13) 

 The components in the NxN sub-mass and sub-stiffness matrices of [ M ] and [ K ] which 

depend on the static solution variables are: 

( ) ( ) ( )
1

0

, , , ,uu vv ww n mm n m m n m m n m dxρ= = = Φ Φ∫   

                        ( )
1

3

0

, 1 ,uu n mk n m dx
α
ρ

 ′ ′= Φ + Φ 
 

∫    ( ) ( )
1

3

0

, , ,uv n m vu

y
k n m dx k n m

α
ρ

′ ′ ′= Φ Φ = 
 

∫   

                        ( )
1 2

3

0

, 1 ,vv n m

y
k n m dx

α
ρ

′ 
′ ′= Φ + Φ 

 
∫  

1

0

( , ) ,ww n mk n m dx′ ′= Φ Φ∫                                  (14) 

 

 

for n, m = 1, 2, �N. For horizontal cables, consistent with the static parabolic assumption, ρ ≈ 1 

in Equation (14); otherwise, ρ ≠ 1 for inclined cables. The dimensionless frequency is 
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,H CX w gHω ω= and the corresponding modal shapes are obtained through Equation (12), 

upon numerical integration of (13). In turn, linear dynamic solutions of vertical and out-of-plane 

motion of the condensed horizontal cable are known in closed form (see Appendix A). 

 

3. Multi-Mode Discretization for Non-Linear Dynamics 

 To deal with the non-linear dynamic problem, Equations (7)-(9) are first cast in state-space 

(first-order) form. Accounting for the orthonormality properties of linear eigenmodes, these 

equations are projected onto the system full eigenbasis by letting 

   ( ) ( ) ( ) ( ) ( ) ( )
1 1

, ,     , ,J J J J
m m m m

m m

U x t f t x V x t p t xζ ζ
∞ ∞

= =

= =∑ ∑                          (15) 

( ) ( ) ( ) ( ) ( ) ( )
1 1

, ,    , ,n n n n

n n

w x t h t x w x t q t xξ ξ
∞ ∞

= =

= =∑ ∑&                                     (16) 

where now J = 1 to 2, U
1
= u,U

2
 = v, V

1
 = u& , V2

 = v& , 1
m mζ φ= , 2

m mζ ϕ= , fm and pm (hn and qn) 

being the displacement and velocity modal coordinates associated with both the longitudinal φm 

and vertical ϕm (out-of-plane nξ ) shape functions of the m
 
in-plane (n out-of-plane) mode. Then, 

the Galerkin method is applied to the first-order equations, using (15), (16) and the b.c., thereby 

yielding the infinite set of coupled ODEs of in-plane and out-of-plane co-ordinates as: 

    0,m mf p− =&                              

   2

1 1 1 1 1 1 1 1 1 1

,m m m mij i j mij i j mijk i j k mijk i j k

i j i j i j k i j k

p f f f h h f f f f h hω ϑ
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

= = = = = = = = = =

+ = Λ + + Γ + ϒ∑∑ ∑∑ ∑∑∑ ∑∑∑&  (17a-b) 

    0,n nh q− =&                                                                                                                               

    2

1 1 1 1 1 1 1 1

,n n n nij i j nijk i j k nijk i j k

i j i j k i j k

q h h f h h h h f fω
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

= = = = = = = =

+ = Ψ + Θ + ∆∑∑ ∑∑∑ ∑∑∑&                     (18a-b) 

 

for ∀m, n = 1,�, + ∞ , where ωm (ωn) are the in-plane (out-of-plane) natural frequencies. This 

general system describes the non-linear temporal problem for a non-condensed or condensed 

cable model. Depending on the element kinematic modeling, the pertinent quadratic and cubic 

non-linear coefficients are different, as comparatively given in the following: 
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 (i) For non-condensed model of horizontal/inclined cables, 

    

1

3

0

3 1 3

2 2 2 2
mij m i j i j i j m i j i j i j

y
y y dx

α φ φ φ φ ϕ ϕ ϕ ϕ φ φ φ ϕ ϕ ϕ
ρ

′    ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′Λ = − + + + + +    
    

∫ ,    

      ( )
1

3

0
2

mij m i j m i jy dx
αϑ φ ξ ξ ϕ ξ ξ
ρ

′ ′ ′ ′ ′ ′ ′= − +∫ ,      

     ( )
1

3

0

nij n i j i jy dx
α ξ ξ φ ξ ϕ
ρ

′ ′ ′ ′ ′ ′Ψ = − +∫ ,        

     ( ) ( ){ }
1

3

0
2

mijk m i j k i j k m i j k i j k dx
α φ φ φ φ φ ϕ ϕ ϕ φ φ ϕ ϕ ϕ ϕ
ρ

′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′Γ = − + + +∫ ,  

     ( )
1

3

0
2

mijk m i j k m i j k dx
α φ φ ξ ξ ϕ ϕ ξ ξ
ρ

′ ′ ′ ′ ′ ′ ′ ′ϒ = − +∫ ,        

      

1

3

0
2

nijk n i j k dx
α ξ ξ ξ ξ
ρ

′ ′ ′ ′Θ = −∫ ,         

                ( )
1

3

0
2

nijk n i j k i j k dx
α ξ ξ φ φ ξ ϕ ϕ
ρ

′ ′ ′ ′ ′ ′ ′∆ = − +∫ .                             (19a-g) 

 

 (ii) For condensed model of horizontal cables, 

 

        

1 1 1 1

0 0 0 0

1

2
mij m i j m i jdx y dx y dx dxα ϕ ϕ ϕ ϕ ϕ ϕ

 
′′ ′ ′ ′′ ′ ′Λ = + 

 
∫ ∫ ∫ ∫ ,    

         

1 1

0 0
2

mij m i jy dx dx
αϑ ϕ ξ ξ

 
′′ ′ ′=  

 
∫ ∫ ,       

       

1 1

0 0

nij n i jdx y dxα ξ ξ ϕ
 

′′ ′ ′Ψ =  
 
∫ ∫ ,       

       

1 1

0 0
2

mijk m i j kdx dx
α ϕ ϕ ϕ ϕ

 
′′ ′ ′Γ =  

 
∫ ∫ ,                 

      

1 1

0 0
2

mijk m i j kdx dx
α ϕ ϕ ξ ξ

 
′′ ′ ′ϒ =  

 
∫ ∫ ,                 

      

1 1

0 0
2

nijk n i j kdx dx
α ξ ξ ξ ξ

 
′′ ′ ′Θ =  

 
∫ ∫ ,                 

           

1 1

0 0
2

nijk n i j kdx dx
α ξ ξ ϕ ϕ

 
′′ ′ ′∆ =  

 
∫ ∫ .                  (20a-g)                  

 Contrary to Equation (20), where the longitudinal displacement effects are solely accounted 

for through the independent vertical eigenfunctions ϕ (for horizontal cables), they are explicitly 

captured in Equation (19), which, in addition, accounts for also the geometrical effects of the ρ3
-

term. Generally speaking, the kinematic condensation entails approximate products of integrals 
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of the shape functions, in lieu of the exact integrals of their products provided by the non-

condensed model. Depending on cable static solutions and eigenfunctions, the effects of 

disregarding the ρ3
-term (i.e., by setting ρ ≈ 1) on non-linear dynamics and the contributions of 

longitudinal displacement to the non-condensed coefficients will be discussed in Section 5.3 and 

5.4, respectively, along with some points on kinematic condensation effects.  

 

4. Multiple Scales Analysis 

 Emphasis is placed on the theoretical treatment of a planar 2:1 resonance. The motivation is 

twofold. (i) The main differences between the non-linear dynamics of horizontal/inclined cables 

are concerned with planar dynamics [21]. (ii) The 2:1 resonance is the only one which allows for 

highlighting higher-order effects of the quadratic nonlinearities on system dynamics, to be 

captured within a MMS analysis through a second-order uniform expansion [24] of the 

asymptotic solution of Equation (17), with no out-of-plane terms.  

 

4.1 Second-Order Asymptotic Solution  

 With ε denoting a small, non-dimensional, bookkeeping parameter of the order of amplitude 

of the solution, the generalized co-ordinates of displacement and velocity are sought as 

   ( ) ( ) ( ) ( )
3 3

0 1 2 0 1 2

1 1

; , , ,      ; , ,k k

m mk m mk

k k

f t f T T T p t p T T Tε ε ε ε
= =

≈ ≈∑ ∑              (21) 

where T0 = t, T1 = εt and T2 = ε2
t, the latter two time scales characterizing the slow modulation in 

amplitudes and phases due to non-linearity and modal coupling effects. The first derivative with 

respect to t is given by 2

0 1 2 ...t D D Dε ε∂ ∂ = + + + , where n nD T= ∂ ∂ . Substituting Equation (21) 

into (17), using the independence property of the time scales and equating coefficients of like 

powers of ε  leads to 

 ε :   0 1 1 0,m mD f p− =  2

0 1 1 0.m m mD p fω+ =           (22) 

 2ε :   0 2 2 1 1,m m mD f p D f− = − 2

0 2 2 1 1 1 1

1 1

.m m m m mij i j

i j

D p f D p f fω
∞ ∞

= =

+ = − + Λ∑∑        (23)                  
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 3ε :   0 3 3 1 2 2 1,m m m mD f p D f D f− = − −                               

   ( )

2

0 3 3 1 2 2 1

1 2 2 1 1 1 1

1 1 1 1 1

                          .

m m m m m

mij i j i j mijk i j k

i j i j k

D p f D p D p

f f f f f f f

ω
∞ ∞ ∞ ∞ ∞

= = = = =

+ = − −

+ Λ + + Γ∑∑ ∑∑∑
          (24) 

 

for ∀m = 1, 2, �, + ∞ . The nearness of the two (r, s) in-plane frequencies involved in a 2:1 

internal resonance is described by introducing an internal detuning parameter σ  such that ωs = 

2ωr + εσ . Because the governing equations at orders ε, ε2
 and ε3

 are identical to those given in 

[24], with the differences being only in the condensed/non-condensed coefficients, the same line 

of MMS analysis is herein pursued and summarized. By accounting for the interaction of two 

coupled modes, the ε-order solutions of Equation (22) are taken as  

          ( ) ( )0i

1 1 2, ,mT

m m mr msf A T T e cc
ω δ δ= + +   ( ) ( )0i

1 1 2i , ,mT

m m m mr msp A T T e cc
ωω δ δ= + +      (25a, b) 

where Am are complex amplitudes, i = 1− , cc denotes the complex conjugate of the preceding 

terms and δms, δns are Kronecker deltas. Substituting Equation (25) into (23) leads to 

    ( ) ( )0i

0 2 2 1 ,mT

m m m mr msD f p D A e cc
ω δ δ− = − + +                                               (26) 

   
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

0 0 0

0 0

i 2i 2i2 2 2

0 2 2 1

i i

i

                          ,                   (27)

m r s

r s s r

T T T

m m m m m mr ms mrr r r r mss s s s

T T

mrs msr r s mrs msr s r

D p f D A e A e A A A e A A

A A e A A e cc

ω ω ω

ω ω ω ω

ω ω δ δ
+ −

+ = − + + Λ + + Λ +

+ Λ + Λ + Λ + Λ +
         

where A m denotes the complex conjugate of Am. When m = r or m = s, the particular solutions of 

Equations (26) and (27) contain secular effects generated by the first term on the relevant right-

hand sides and by the internally resonant small-divisor terms. These effects are eliminated by 

enforcing the solvability conditions  

                  ( ) ( ) 1i

12i ,
T

r r rrs rsr s rD A A A e
σω = Λ + Λ   ( ) 1i2

12i .
T

s s srr rD A A e
σω −= Λ             (28a, b) 

 Solving these equations � which are the normal forms of a 2:1 internal resonance between the 

two interacting modes � for D1Ar and D1As, substituting the results into Equations (26) and (27) 

and determining the particular solutions of the latter, the ε2
�order solutions are given by [24] 
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 Substituting Equations (25), (29) and (30) into the ε3
-order problem, Equation (24), imposing 

the solvability conditions, and using the reconstitution method, 2

1 2 ...,m m mA D A D Aε ε= + +&  m = 

r, s, the complex-valued modulation equations when m = r and s are expressed, respectively, as 

                                            i 22i ,t

r r r s r rr r r rs r s sA A A e A A A A A= ℜ + Κ + Κ& σω                               (31) 

  2 i 22i ,t

s s s r ss s s sr s r rA A e A A A A A−= ℜ + Κ + Κ& σω              (32) 

where the first-order interaction coefficients r rrs rsrℜ = Λ + Λ  and s srrℜ = Λ . Because of the 

state-space form of the PDEs of motion, the Euler-Lagrange formula of system kinetic and 

elastic potential energies, preserving the conservative character through Equations (31) and (32) 

[24], entails 2 ,r sℜ = ℜ = ℜ which governs the actual activation (non-activation) of 2:1 internal 

resonance when it is different from (equal to) zero [4]. Besides, it provides the intrinsic 

symmetry rs srΚ = Κ . In turn, the second-order interaction coefficients governing the infinite-

dimensional modal series read: 
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                              (33-35) 

where Krs = Ksr. Evidently, each of these equations consists of two major parts, highlighting the 

dependence of cable response on different modal participating capacity. The first part accounts 

for solely the two resonant modes, consisting of both the quadratic and cubic non-linear effects 

and characterizing the minimal reduced-order model. The second part, associated with quadratic 

nonlinearities only, corresponds substantially to the contributions from all of the non-resonant 

modes. The two parts are distinguished with the aim of investigating the convergence of second-

order solutions, namely whether one may sufficiently account for only the two resonant (i.e., 

modeled) modes, or one has to consider also non-resonant (i.e., non-modeled) modes. 

Accordingly, in Part II [1], the first part will be kept constant for a given cable, whereas the 

second part will be varied according to the finite number of non-resonant modes retained up to 

achieving convergence. 

 

4.2 Steady-State Resonantly Coupled Motions   

 Inserting the polar form Am(t) = (1/2)am(t)
( )i m t

e
β

, where m = r and s, into Equations (31) and 

(32), and then separating real and imaginary parts, the real-valued modulation equations are 
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      sin ,
4
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=&                                       (36) 

                           3 2cos ,
4 8 8

rsrr
r r r s r r s

r r r

a a a a a aβ γ
ω ω ω
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= − − −&                                  (37) 

              2 sin ,
8

s r

s

a a γ
ω
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= −&                                                 (38) 

                            2 3 2cos ,
8 8 8

ss rs
s s r s s r

s s s

a a a a aβ γ
ω ω ω

Κ Κℜ
= − − −&                                    (39) 

 

and describe the slow variation of amplitudes (ar, as) and phases (βr, βs). The relative phase is 

given by 2 r stγ σ β β= − + . By accounting for the non-trivial contributions from the two resonant 

modes in Equations (37) and (39), the evolution of γ  reads  

               ( ) ( )
2

2 2

2

1
cos 8 4 4 .

16

r
s rs ss s rr rs r

r s

a
a a a

a
γ σ γ

ω
  

= + ℜ − + Κ − Κ + Κ − Κ     
&              (40) 

 Because the periodic motion of the original system is of primary interest, the fixed points are 

determined by setting 0r sa a γ= = =&& & . As a result, ,nγ π=  0, 1, 2,...n = ± ± . On accounting for 

second-order effects, the relationship between the amplitudes ar and as reads 

                          
( ) ( )

( )

1
2 3 216 8 cos 4

,   
cos 4

s r s rs ss s
r

rr rs s

a a a
a

a

ω σ γ
γ

 + ℜ + Κ − Κ
= ±  ℜ − Κ − Κ 

                     (41) 

in which ℜ , Krr, Kss and Krs are known, whereas γ  and σ  are specified, for a resonant cable. For 

a given value of as, there are two real positive and negative solutions for ar only when the 

argument in the bracket is positive. Thus, depending on the system parameters and 

quadratic/cubic coefficients, Equation (41) may have real solutions only in a certain amplitude 

range. The stability of the resonant non-linear modes is evaluated by calculating the eigenvalues 

of the Jacobian matrix of the right-hand side of Equations (36), (38) and (40) at the fixed point. 

For any value of σ, the condition of marginal stability is  

                  ( ) ( )2 2 2 316 2 cos 8 16 0.s r s rs rr ssa a aγℜ + + ℜ Κ − Κ − Κ >                             (42) 
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 When keeping in Equation (42) only the first non-linear order terms, it is found that the 

coupled modes are always stable [24], whereas this has to be assessed when accounting for also 

the second-order effects. Subsequently, based on Equations (15), (21) with k = 2, (25a) and (29), 

the polar form for Am, the relationship ωs = 2ωr + εσ and the solutions of βr and βs from 

Equations (37) and (39), the second-order coupled longitudinal and vertical (J = 1 and 2) 

dynamic displacements of an internally resonant horizontal/inclined cable are expressed as 

   

( ) ( )( ) ( ) ( )( ) ( )
( )( ) ( ) ( )
( )( ) ( ) ( )

( )( ) ( ) ( )( ) ( )

0 0

2

0

2

0

0 0

, cos cos 2 2

cos 4 4 2

1
               cos 2 2

2

cos 3 3 cos

N NJ J J

r r r r s r r s

N J J

s r r ss ss

N J J

r r r rr rr
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s r r r rs r r rs

U x t a t x a t x

a t x x

a t x x

a a t x t x

ω β ζ ω β γ ζ

ω β γ ψ κ

ω β ψ κ

ω β γ ψ ω β γ κ

≈ + + + +

  + + + +   
  + + + +   

  + + + + + 

,    (43) 

whereas the corresponding velocity fields, based on Equations (25b) and (30), are given by 

  

( ) ( )( ) ( ) ( )( ) ( )
( )( ) ( )
( )( ) ( )

( )( ) ( ) ( )( ) ( )

0 0

2

0

2

0

0 0

, sin sin 2 2

�sin 4 4 2

1
�               sin 2 2

2

� �sin 3 3 sin
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r r r r r s s r r s

N J

s r r ss
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r r r rr
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s r r r rs r r rs

V x t a t x a t x

a t x

a t x

a a t x t x

ω ω β ζ ω ω β γ ζ

ω β γ ψ

ω β ψ

ω β γ ψ ω β γ κ

≈ − + − + +

  + + +   
  + + +   

  + + + + + 

.     (44) 

 The parameter ε was reabsorbed in the amplitude expressions, βr0 is a constant depending on 

the initial conditions, and J

ssκ  and J

rrκ , which appear only in Equation (43), are static drift effects 

due to quadratic nonlinearities. The second-order shape functions of displacement ( ,J J

ij ijψ κ ) and 

velocity ( � �,J J

ij ijψ κ ) are given in Appendix B, showing how the longitudinal/vertical displacements 

(velocities) are spatially influenced by the quadratic contributions from all of the eigenmodes. 

Likewise in Equations (33)-(35), the higher-order non-resonant modal contributions become 

progressively less significant because, in the denominators of Equations (51)-(52), either the 

associated frequencies appear squared or their differences with respect to the resonant 
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frequencies in square do appear. Equations (43) and (44) are written in terms of the non-linear 

frequency of the low-frequency r mode, which is given by  

                    
( ) 2 2cos

4 8 8

N rsrr
r r s r s

r r r

a a aω ω γ
ω ω ω

   Κℜ Κ = − + +  
   

.                     (45) 

 It is seen that the cable response may exhibit softening or hardening non-linearity, depending 

on the specified γ and the contributions from first- and second-order non-linear coefficients 

multiplying the amplitudes (ar, as) in the bracket. On the other hand, when expressing the non-

linear frequency in terms of the high-frequency s mode, it can be proved that the non-linear 

resonance tunes the phases of the resonant modes so that 
( ) ( )

2
N N

s rω ω=  (see, e.g., [36]). Equations 

(43) and (44) show the ar-as amplitudes dependence of the dynamic configuration and velocity 

fields, and their second-order spatial corrections, whereas Equation (45) highlights the ar-as 

amplitudes dependence of the non-linear frequencies and their second-order corrections. 

 

4.3 Some Remarks  

Multiple Internal Resonances. Depending on cable parameters, Equations (33)-(35) reveal 

how the solutions may break down when other internal resonances come into play, 

corresponding to the involvement of other non-modeled, usually higher-frequency m planar 

modes, and a multiple resonance activation. Indeed, the latter occurs in horizontal cables, 

typically at crossovers, when considering also out-of-plane modes [9-13]. However, depending 

on the frequency tuning, a multiple planar resonance is more likely to occur in inclined cables 

because of the vanishing of non-linear orthogonality of coupled modes ensuing from the 

incompletely symmetric or anti-symmetric spatial character of inclined configurations, as will be 

discussed in Part II [1]. For instance, a further 2:1 resonance may occur near second (ωm≈2ωr) or 

third (ωm≈2ωs) avoidance in the relevant frequency spectrum, leading to a multiple 2:2:1 or 4:2:1 

resonance, respectively. A further 1:1 resonance (ωm≈ωr) may occur near avoidance, involving 

the two coexisting hybrid modes [21] and giving rise to a multiple 2:1:1 resonance. Moreover, a 
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further 3:1 resonance (ωm≈3ωr) may occur and entail a multiple 3:2:1 resonance. The activation 

of multiple planar resonances has numerically been observed in Srinil et al. [21] and [37] for the 

4:2:1 or 3:2:1 resonance occurring in a low-extensible inclined or high-extensible horizontal 

cable, respectively. Yet, such conditions are beyond the scope of the present study. 

Non-linear Coefficients. Though being not explicit, in Equation (19) or (20), the single 

quadratic or cubic coefficients may have either positive or negative values, depending on the 

relative contributions from the static equilibrium (parabolic or cubic-order) solutions, the modal 

eigenfunctions and their relative phases. Accordingly, for a different number of retained modes, 

there is a possibility of sign difference in the resulting second-order quadratic coefficients in 

Equations (33)-(35) or (51)-(52), depending on the outcome of each component quadratic 

coefficient, on their combination, and on the system frequency commensurability. In evaluating 

the latter, we disregard the higher-order effects of the 2:1 resonance detuning in Equations (33)-

(35) and (51)-(52). 

Dynamic Displacement Solutions. With M being the order of modal truncation, the second-

order dynamic displacements, Equation (43), account for the second-order effects of quadratic 

nonlinearities in both the amplitudes, Equation (41), and frequencies, Equation (45). When 

truncating Equation (43) after the first-order terms, the associated solutions may be considered as 

first-order (improved first-order) displacements when accounting for the first-order (first- and 

second-order) amplitudes/frequencies [2]. Thus, it is remarked that the improved first-order 

displacements account for solely the shapes of resonant modes, whose time-dependence is, 

however, governed by the second-order frequencies/amplitudes, whereas the second-order 

displacements account for also the spatial corrections from all retained modes. 

Non-Planar 2:1 Resonance. The same line of MMS analysis as in the planar 2:1 resonance 

can be pursued to address a non-planar 2:1 resonance involving in-plane/out-of-plane (s, r) 

modes by considering the complete set of Equations (17)-(18) with the relevant coefficients in 

(19)-(20). To this end, the structure of modulation equations (31)-(32), the resonant amplitudes 
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(41) and frequency-amplitudes (45) relationships, and even the stability criterion (42) are the 

same for planar and non-planar interactions. Though being the first- and second-order interaction 

coefficients different [15], activation of a non-planar 2:1 resonance is still governed by the 

condition 2 0,r sℜ = ℜ = ℜ ≠  in which, however, r rrsℜ = Ψ  and s srrϑℜ =  for the non-planar 

interaction. 

 

5. Approximate Model Validation 

 Prior to parametrically studying the non-linear dynamics of the approximate model through 

the MMS solution in Part II [1], the analytical solutions obtained for cable statics and linear 

dynamics, as well as the non-linear dynamic solutions of the approximate PDEs, are validated 

through various numerical solutions of the exact model. To gain insight into the significance of 

system longitudinal dynamics and their effects on the non-linear response, the 2:1 resonant 

interaction coefficients of the approximate non-condensed/condensed horizontal cable models 

are also examined. A low-extensible cable with a fixed non-dimensional parameter EA/wCXH ≈ 

2580.35 is analyzed, which has XH = 850 m, A = 0.1159 m
2
, wC ≈ 9.48 kN/m and E = 1.794x10

8
 

kN/m
2
 [21]. Reference is also made to the parameter λ/π that governs the horizontal/inclined 

cable dynamics and the corresponding crossover/avoidance phenomena, see Part II [1]. 

 

5.1 Horizontal/Inclined Static Configurations 

 The equation governing the static configuration of the exact model is the same as Equation 

(10), when multiplying the denominator in its right-hand side by (1+e) [22]. To obtain numerical 

solutions of arbitrarily sagged and inclined cables, both the hybrid fourth-order Runge-

Kutta/Shooting method (RKS) and the finite element method (FEM, 50 elements) with a cubic 

polynomial function in x are considered, for a specified end tension problem [15]. In each 

considered case, the associated tension H is evaluated and used in Equation (11) to obtain the 

closed-form Irvine�s solution (IRV) for the vertical configuration. Results of small and quite 
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large values of the sag-to-span ratio d for horizontal (HC1 and HC2) and inclined (θ = 60
o
, IC1 

and IC2) cables, and the associated parameters g, are comparatively reported in Tables 1a and 

1b, the latter also reporting the parameter ε* of inclined cables. The corresponding 

configurations are displayed in Figures 2 and 3.  

 The numerical and analytical results in Table 1 are in good agreement for the shallow (d < 

1:8) horizontal cable (HC1, Figure 2a) and even for the intermediate-sagged (d > 1:8, ε* < 1) 

inclined cable (IC1, Figure 3a). For larger-sagged cables, the RKS and FEM results remain in 

excellent agreement, but they differ from the IRV ones owing to the invalidity of the latter in 

describing the large-sagged cable (d >> 1:8, ε* > 1). The IRV solution predicts underestimated 

(overestimated) d values for HC2 (IC2). However, its deviation from numerical solutions is 

clearly seen in Figure 2b for HC2, as expected due to the completely invalid parabolic 

approximation, whereas a smaller difference occurs regarding the inclined configurations in 

Figure 3b. Depending on the cable parameter, Figure 3b highlights that, even if the inclination 

angle is high (θ = 60
o
) and the associated d (ε*) value is large, the results given by Equation (11) 

accounting for also the asymmetry effects remain satisfactorily valid when compared with RKS 

and FEM results. This allows the parametric studies in [1] to include not only small-sagged 

horizontal/inclined cables but also possibly moderately large-sagged inclined cables.    

 

5.2 Linear Planar/Non-Planar Dynamics 

 The equations of motion governing the cable linear vibration of the exact and approximate 

models are the same [15], apart from the term (1+e) also appearing in the former, see Equations 

(2)-(4). The natural frequencies and mode shapes of the approximate model obtained by the 

Galerkin method with a sine-based series (GMS) are validated by the FEM results of the exact 

model. By properly varying the number N of retained terms in the series, the convergence of the 

GMS solution must be first fulfilled. Then, with a guaranteed N, the agreement between GMS 
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and FEM out-of-plane/in-plane frequencies must be achieved for various small-sagged 

horizontal and inclined cables in the first three crossover/avoidance regions [15]. 

 Here, a comparison of the normalized first two out-of-plane (O1-O2) and first four in-plane 

(I1-I4) mode shapes (τ) of the two solutions is exemplified in Figure 4 for the second avoidance 

(λ/π ≈ 4) inclined cable (α ≈ 1436.9) with θ = 45
o
. Apart from justifying both the parabolic static 

profile and ρ ≈ 1 assumptions in the linear dynamics of the approximate horizontal cables [15], 

the excellent agreement between GMS and FEM mode shapes of the inclined cable is 

highlighted. Essentially, the properly truncated sine-based series (N = 15) is seen capable of 

describing � besides the symmetric/anti-symmetric non-planar w (O1/O2) modes, and the nearly 

anti-symmetric (I1) and symmetric (I2) u/v planar modes � also the hybrid u/v planar modes 

coexisting at second avoidance (I3, I4).  

 

5.3 Non-Linear Planar/Non-Planar Dynamics 

 Numerical time histories of the exact, (2)-(4), and approximate, (7)-(9), PDEs of cable 

motion are now analyzed and compared by the finite difference method with central 

approximation of both spatial (50 elements) and temporal (time step = .0001 sec.) derivatives 

[15]. The differentiated PDEs of the approximate model are given, in dimensional form, in 

Appendix C, whereas those of the exact model have been reported in [22]. It is worth remarking 

that, for the approximate horizontal cable, two cases are considered for a better model selection, 

namely (i) 1ρ ≈  which is consistent with the parabolic assumption employed in both statics and 

linear dynamics, and (ii) the spatially varying ρ  terms as they actually appear in Equations (7)-

(9). Accordingly, the terms divided by 6ρ  are absent in Equations (53)-(55) for the (i) case, 

whereas the full system equations hold for the (ii) case and for inclined cables. In the following, 

non-planar (planar) non-linear free responses initiated by a single-mode out-of-plane (in-plane) 

spatial displacement with prescribed vibration amplitude (ap) and zero velocity are displayed for 

some resonant horizontal/inclined cables. 
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 The v and w responses at mid-span, initiated by the first symmetric out-of-plane mode with 

ap = 2.5 m, are shown in Figure 5, for the first-crossover horizontal cable (α ≈ 639.4). The 

responses of the exact model (solid lines) and of the approximate model with varying ρ -terms 

(circles) are seen to be in close agreement, whereas those of the approximate model with 

1ρ ≈ (dotted lines) exhibit meaningful differences. Such discrepancies are more evident in the 

planar (v) than in the non-planar (w) responses because the neglected ρ -terms are associated 

with planar statics, and occur even though overall qualitative agreement is found, i.e., a beating-

type phenomenon due to activation of the non-planar 2:1 resonance involving the driven (v) and 

exciting (w) first-symmetric modes [22]. Thus, accounting for the varying ρ -terms in the 

approximate non-planar model of horizontal cables looks preferable. 

 When considering the second-avoidance inclined (θ = 60
o
) cable (α ≈ 2016.5) initiated by the 

first anti-symmetric out-of-plane mode with ap = 2.5 m, a small difference occurs between the 

results obtained with the exact and approximate (varying ρ -terms) models, as shown in Figure 

6, which plots the relevant u, v and w responses at quarter span from left support. Again, all non-

linear responses highlight a modal interaction due to the non-planar 2:1 resonance involving the 

driven high-frequency (third or fourth) planar mode and the initiated non-planar mode [21]. 

Therefore, the results also justify using the approximate non-planar model for inclined cables. 

 As regards planar vibrations, a remarkable quantitative difference in the responses obtained 

with the three models occurs for the considered non-crossover horizontal cable with λ π ≈ 2.95, 

as visualized in Figure 7, which plots the u/v responses at 1/8 span initiated by the second in-

plane mode with ap = 1 m. It can be seen that, with respect to the exact model responses, those of 

the approximate model with 1ρ ≈  exhibit greater errors (see also the more hardening non-

linearity) than those of the approximate model with varying ρ -terms, as clearly shown by the 

enlarged view of v response in the resonant interaction t-range. This occurs because of the 

definitely major influence of the ρ -terms in the purely planar dynamics. Thus, depending on 
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also the vibration amplitudes, there are clear hints about the need to consider the actual varying 

ρ -terms in the approximate planar model of horizontal cables and in the subsequent MMS-

based parametric study [1], contrary to what is currently done in the relevant literature [2]. With 

the same λ π  and ap values, the difference between approximate and exact model responses 

decreases for the inclined cable with θ = 45
o
 shown in Figure 8. This thoroughly validates using 

the approximate planar model also for inclined cables.  

 Overall, the amplitude-modulated features of all models in Figures 7 and 8 exhibit qualitative 

agreement, as confirmed by the associated Fourier amplitude densities in Figures 9 (v) and 10 

(u), respectively. In particular, they substantially highlight two major frequencies corresponding 

to the fifth and second planar modes, the formers being periodically dragged in the response due 

to their involvement in the nearly tuned 2:1 resonance for the λ π ≈ 2.95 horizontal (non-

crossover) or inclined (non-avoidance) cable (see [1]). The approximate horizontal cable model 

with 1ρ ≈  still exhibits a major discrepancy versus the others as regards the amplitudes of the 

two resonant peaks in Figure 9.  

 

5.4 Longitudinal Displacement Contributions and Kinematic Condensation Effects  

Depending on the cable sag and/or extensibility, the contributions of longitudinal 

displacement are now examined in a horizontal cable through the 2:1 resonant coefficients of the 

MMS solution. Attention is first focused on the cubic coefficients which, based on the outcomes 

in Section 5.3, are evaluated for the non-crossover (λ/π  ≈ 2.95, r = 2, s = 5, N = 20) and second-

crossover (λ/π  ≈ 4.03, r = 1, s = 4, N = 40) cables �  both having low extensibility (E = O(10
8
) 

or E = O(10
7
)) � by using the approximate non-condensed model which accounts for the ρ-term 

effects. Remark also that the cable with λ/π  ≈ 2.95 (4.03) involves anti-symmetric/anti-

symmetric (symmetric/anti-symmetric) longitudinal resonant r/s components. As given by 

Equation (19d), the generic cubic coefficient mijkΓ , solely depending on the two resonant modes 
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in Equations (33)-(35), consists of four additive terms: the first three terms (labeled U-V) 

account for both longitudinal (φ) and coupled longitudinal-vertical (φ-ϕ) displacement 

contributions, whereas the last term (labeled V) exhibits the solely vertical ϕ displacement 

dependence. The separate percent contributions of U-V and V terms to each of the coefficients 

, , , , ,rrrr ssss rssr rsrs rrssΓ Γ Γ Γ Γ entering Krr, Kss and Krs (Equations 33-35), are reported in Table 2.   

For the smaller-sagged cable with λ/π  ≈ 2.95, contributions from U-V are seen to be very 

small with respect to those from V, as expected from a physical standpoint. This validates, for 

low-sagged (and low-extensible) cables, the common use of indirectly accounting for the 

longitudinal contribution to cubic coefficients, as well as to quadratic ones, through its solely 

condensed effect in the unique vertical ϕ displacement term in Equation (20d). However, the 

effect of U-V terms somehow increases as the cable sag is increased to λ/π  ≈ 4.03 (with the 

fixed EA parameter), and it becomes as more apparent as cable extensibility is higher (lower E), 

for a given λ/π. Of course, the overall discrepancy between different models has to be evaluated 

in the second-order interaction coefficients, which are influenced � depending on the modal 

(longitudinal/vertical) shape character and magnitude � by their additive cubic-based, as well as 

multiple quadratic-based, expressions having variable resonant/non-resonant modal participating 

capacity, see Equations (33)-(35). 

Thus, it is worth examining and comparing the second-order quadratic/cubic coefficients 

obtained with the non-condensed/condensed modeling. A larger-sagged horizontal cable (λ/π  ≈ 

5.48, E = O(10
8
)) exhibiting symmetric/symmetric modal interaction (r = 2, s = 5) is considered 

(Table 3), by accounting for the first 15 modes. Their percent differences (P) with respect to the 

non-condensed (N = 30) coefficients are also given. The superscript q (c) denotes the quadratic 

(cubic) contribution to Kii. Overall, the two models provide qualitative agreement as regards the 

sign (softening- or hardening-type non-linearity) of quadratic and cubic coefficients. Nonetheless, 
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there are remarkable quantitative differences in all coefficients, the percent values being 

outstandingly greater for the cubic coefficients, especially for Krs (P ≈ 62.38 %).  

From a computational point of view, such meaningful differences seem to be reasonable, 

because only the non-condensed coefficients are influenced by also the U-V terms, which are 

significant (Table 2) for the considered larger-sagged cable. Recall also that the non-condensed 

(condensed) cubic coefficients are (are not) influenced by the ρ3
-dependent terms. As regards the 

differences between the quadratic/cubic contributions or the pure (Khh, h = r or s)/mixed (Krs) 

coefficients, consider (i) that each term in the cubic (quadratic) coefficients ensues from a 

multiplication of four (three) modal shapes, see Equations 19d (19a) and 20d (20a), and (ii) that 

there are totally six additive components in the cubic component of Krs (2Γrssr+2Γrsrs+2Γrrss) 

instead of three additive components in that of Khh (3Γhhhh). As a result, the condensed model 

exhibits smaller (larger) absolute values of cubic (quadratic) coefficients. The underlying 

mechanical meaning is that the condensed model reduces (strengthens) the degree of hardening 

(softening) nonlinearities through Equation (45), since the higher-order effects of longitudinal 

dynamic deformation due to cable non-linear stretching are neglected through the kinematic 

condensation. Consequently, there is a possibility of different contributions, simply evaluated by 

the summation of quadratic and cubic coefficients, to the overall response nonlinearities. In 

Table 3, the summation of Krs provides a negative value (-23,048,035.180) for the non-

condensed model against a positive value (222,763.233) for the condensed model. Such 

considerable differences in the values and/or in the sign of some effective coefficients are 

capable of influencing the resulting coupled dynamics of the two distinctive models. 

 

6. Concluding Remarks 

 Based on a general kinematically non-condensed model valid for horizontal/inclined cables, 

the approximate equations of geometrically non-linear undamped unforced 3-D coupled motion 

accounting for dynamic extensibility (i.e., space-time dynamic strain variation) and system 
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asymmetry due to inclined sagged configurations have been presented. With the aim of 

analytically investigating the planar 2:1 resonant, multi-modal, free dynamics of 

horizontal/inclined cables, approximate closed-form solutions for small sagged cables have been 

accomplished by means of a multi-dimensional Galerkin discretization and a second-order 

multiple scales approach. The analytical outcomes highlight the higher-order effects due to 

system quadratic nonlinearities on the resonantly coupled amplitudes, frequencies, dynamic 

configurations and velocities associated with the resonant non-linear normal modes. The 

dependence of cable response on different resonant/non-resonant (modeled/non-modeled) modal 

contributions has been emphasized. Accuracy of approximate horizontal/inclined cable models 

has thoroughly been validated by numerically evaluating the associated static as well as non-

planar/planar linear and non-linear dynamic results against those of the exact model. Overall 

qualitative agreement of approximate and exact model results has been found, apart from some 

quantitative differences, depending on the element kinematics description, system parameters 

and consideration of planar or non-planar dynamics. Finally, significant insights into the modal 

coupling role played by system longitudinal dynamics and the effects of disregarding their 

contributions on non-linear coefficients through kinematic condensation have been obtained for 

horizontal cables, by also highlighting the influence of cable sag and/or extensibility. 

 The overall model verifications and the exhibited strain condensation effects entitle us to use 

the accomplished MMS solution of the approximate non-condensed horizontal/inclined cable 

model to ascertain the main spatio-temporal features of the non-linear dynamics due to planar 

2:1 resonances. This will be conducted in Part II [1]. 
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Appendix A 

 For the condensed model of shallow horizontal cables, the integro-partial differential 

equations of motion describing the vertical and out-of-plane displacements read [10] 

                   ( ) ( )
1

2 2

0

1
,

2
v v y v y v v w dxα  ′′ ′′ ′′ ′ ′ ′ ′= + + + + 

 ∫&&                              (46) 

    ( )
1

2 2

0

1
.

2
w w w y v v w dxα  ′′ ′′ ′ ′ ′ ′= + + + 

 ∫&&          (47) 

where y ≈ 4dx(1-x). For vertical anti-symmetric (out-of-plane) modes, the frequencies are 

,n nω π=  n = 2, 4,�(1, 2, 3,�), where the associated mode shapes read          

  ( ) ( ) ( )2 sin .n nx x n xϕ ξ π= =             (48) 

For vertical symmetric modes (n = 1, 3,�), the frequencies are the roots of 

                                              ( )3

2

1 1 1
tan 0

2 2 2
n n n

C

ω ω ω
λ

 − − = 
 

,           (49) 

where 2 264C dλ α=  [14], with 8C Hd w X H≈  and .EA Hα =  The relevant symmetric vertical 

mode shapes are given by 

  ( ) ( ) ( )1
1 tan sin cos ,  

2
n n n n nx C x xϕ ω ω ω  = − −    

         (50) 

where Cn is arbitrary. Equations (48) and (50) are determined such that 

1 1

2 2

0 0

1.n ndx dxϕ ξ= =∫ ∫  

 

Appendix B 

 The pertinent second-order shape functions showing the contributions from resonant and 

non-resonant modes to the displacements in Equation (43) are given by 

( ) ( ) ( ) ( )2 2 2 2
1,

,
3 4 4

J J J Jsrr mrrrrr
rr r s m

mr s m r
m r s

x x x xψ ζ ζ ζ
ω ω ω ω

∞

=
≠ ≠

 Λ ΛΛ
= − + +  − 

∑  

( ) ( ) ( ) ( )2 2 2 2
1,

,
15 3 4

J J J Jrss sss mss
ss r s m

mr s m s
m r s

x x x xψ ζ ζ ζ
ω ω ω ω

∞

=
≠ ≠

 Λ Λ Λ
= − − +  − 

∑  

                            ( ) ( ) ( ) ( )2 2 2 2
1,

,
8 5 9

J J J Jrrs rsr srs ssr mrs msr
rs r s m

mr r m r
m r s

x x x xψ ζ ζ ζ
ω ω ω ω

∞

=
≠ ≠

 Λ + Λ Λ + Λ Λ + Λ
= − − +  − 

∑            
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   ( ) ( ) ( ) ( )2 2 2 2
1,

,
4 3

J J J Jrrs rsr srs ssr mrs msr
rs r s m

mr r m r
m r s

x x x xκ ζ ζ ζ
ω ω ω ω

∞

=
≠ ≠

 Λ + Λ Λ + Λ Λ + Λ
= + +  − 

∑          

                            ( ) ( ) ( ) ( )2 2 2
1,
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rr r s m

mr s m
m r s

x x x xκ ζ ζ ζ
ω ω ω

∞

=
≠ ≠

Λ ΛΛ
= + + ∑                         

                             ( ) ( ) ( ) ( )2 2 2
1,

,J J J Jrss sss mss
ss r s m

mr s m
m r s

x x x xκ ζ ζ ζ
ω ω ω

∞

=
≠ ≠

Λ Λ Λ
= + + ∑                          (51a-f) 

whereas those to the associated velocities in Equation (44) are given by  

          ( ) ( ) ( ) ( )2 2
1,

22
� ,

3 4 4

J J J Jsrr r mrrrrr
rr r s m

mr s m r
m r s

x x x x
ωψ ζ ζ ζ

ω ω ω ω

∞

=
≠ ≠

 Λ − ΛΛ
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4 2 2
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15 3 4

J J J Jrss sss s mss
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x x x x
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ω ω ω ω
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 Λ Λ − Λ
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3 3 3
� ,

8 5 9
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rs r s m

mr r m r
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x x x x
ω
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ω ω ω ω
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=
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ω ω ω ω
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=
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Appendix C 

 The differentiated dimensional equations of motion for the approximate horizontal/inclined 

cable model with varying ρ -terms are rewritten as 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

1 2 2

4 6

1 2 2

4 6

1 2 2

4 6

1 3 1
,

3
,

3
,

C C

C C

C C

u N u N u y y N
u gH w u EAg w

y v N y v N y v y y N
v gH w v EAg w

w N w N w y y N
w gH w w EAg w

ρ
ρ ρ

ρ
ρ ρ

ρ
ρ ρ

′ ′′ ′ ′ ′′+ + + 
′′= + − 

 
′ ′ ′′ ′′ ′ ′ ′ ′′+ + + + 

′′= + − 
 

′ ′′ ′ ′ ′′ +′′= + − 
 

&&

&&

&&

 (53-55)    

where 

             1 ,N u y v y v u u v v w w′′ ′ ′′ ′′ ′ ′ ′′ ′ ′′ ′ ′′= + + + + +  ( )2 2 2

2

1
.

2
N u y v u v w′ ′ ′ ′ ′ ′= + + + +       (56) 
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Table 1 

                     (a) 

d 
Cable α 

RKS FEM IRV 

HC1 2286.6 0.112 0.112 0.111 

HC2 4482.1 0.231 0.231 0.217 

                     (b) 

d 
Cable α ε* 

RKS FEM IRV 

IC1 2286.9 0.768 0.220 0.220 0.222 

IC2 4431.5 1.487 0.423 0.423 0.436 

 

 

 

 

 

Table 2 

 

E = O(10
8
) E = O(10

7
) λ/π K Γ  

U-V (%) V (%) U-V (%) V (%) 

2.95 Krr  Γrrrr 0.651 99.349 2.489 97.511 

 Kss  Γssss 1.742 98.258 7.046 92.954 

 Krs Γrssr 1.362 98.638 5.373 94.627 

  Γrsrs 1.278 98.722 4.923 95.077 

   Γrrss 1.290 98.710 4.916 95.084 

4.03 Krr  Γrrrr 3.025 96.975 11.845 88.155 

 Kss  Γssss 2.014 97.986 9.138 90.862 

 Krs Γrssr 2.101 97.899 9.595 90.405 

  Γrsrs 2.141 97.859 9.709 90.291 

   Γrrss 2.379 97.621 10.737 89.263 

 

 

 

 

 

 

Table 3 

 

   K
 

Non-condensed model Condensed model P (%) 

Kq

rr  6305837.166 6783535.666 7.58 

Kc

rr  -15419441.480 -10229946.306 33.66 

Kq

ss  102345334.304 111981072.099 9.41 

Kc

ss  -41994120.481 -31180837.908 25.75 

Kq

rs  13095299.468 13821561.521 5.55 

Kc

rs  -36143334.648 -13598798.289 62.38 

 


