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Abstract. In this paper we address two important topics in hyperel-
liptic cryptography. The first is how to construct in a verifiably random
manner hyperelliptic curves for use in cryptography in generas two and
three. The second topic is how to perform divisor compression in the
hyperelliptic case. Hence, in both cases we generalise concepts used in
the more familiar elliptic curve case to the hyperelliptic context.

1 Introduction

Elliptic curve cryptography was co-invented in 1985 by V. Miller [13] and N.
Koblitz [11]. Cryptography based on elliptic curves is especially attractive due
to the supposed difficulty of the discrete logarithm problem in the group of
rational points on an elliptic curve. In 1989 Koblitz generalised this concept
to hyperelliptic curves [12]. In hyperelliptic cryptography the hard problem on
which the security is based is the discrete logarithm problem in the divisor class
group of the curve.

Whilst elliptic curve cryptography is starting to become commercially de-
ployed, hyperelliptic cryptography is still at the stage of academic interest. This
is mainly due to the greater complexity of the underlying arithmetic and the
fact that the protocols have been less standardised. One main problem in the
hyperelliptic case, as argued in [16], is that it is currently very hard to generate
hyperelliptic curves for use in cryptography which do not have any added extra
structure. 1 Another problem is that the supporting algorithms which exist in
the elliptic curve case have not been fully developed in the hyperelliptic case. In

1 There is a new general point counting algorithm by Kedlaya [10] for hyperelliptic
curves in small odd characteristic. However, it is believed that this algorithm can be
extended to the even characteristic case. At present the authors know of no imple-
mentation of this algorithm and so cannot we comment on its practical efficiency.



this paper we generalise two such techniques from the setting of elliptic curve
cryptography to the setting of hyperelliptic curves.

In the first we give a method to produce hyperelliptic curves in genus two
and three which are generated in a verifiably random manner. In the second we
give a method to perform divisor compression.

The first contribution is needed to produce suitable curves in a trusted man-
ner. In elliptic curve cryptography, one way to choose a curve is to generate
curves at random until one satisfies the correct security requirements. However,
someone else then using the system needs to trust that you did not construct a
special curve which has some weakness that only you know about. To overcome
this problem various standards bodies, e.g. [1], have proposed that the curve is
generated in the following manner:

1. Generate in any manner a 160 bit string, S.
2. Using SHA-1 on this string generate some elliptic curve E in a known de-

terministic manner.
3. Compute the group order N using either the Schoof-Elkies-Atkin algorithm

or one of the extensions to Satoh’s algorithm, see [3], [14], [15] and [18].
4. If the curve passes the known security checks then publish the triple

(S,E,N),

otherwise return to the first step.

Under the assumption that SHA-1 is a one-way function the above method
of curve generation prevents the choice of special elliptic curves with secret
weaknesses. An elliptic curve chosen in the above way is said to have been
chosen “verifiably at random” since any third party given the triple (S,E,N)
can check very quickly that not only is the group order N correct but that the
curve could not have been created with a known weakness since it would have
been computationally impossible to reverse engineer the value of S which gave
E using the above algorithm.

We show how the above algorithm can be used to generate verifiably random
hyperelliptic curves in characteristic two for use in cryptography. Our method
does not produce random hyperelliptic curves taken from the totality of all hy-
perelliptic curves but produces hyperelliptic curves which have verifiably been
constructed in a random manner from a certain well defined subset of all hy-
perelliptic curves. In other words it is computationally infeasible for us to have
created a special curve with some hidden weakness. However, we stress that
since our method produces random hyperelliptic curves from a special family it

Just before submitting the final version of this paper to the conference proceedings,
Pierrick Gaudry informed us that the AGM method presented at the rump session
of EUROCRYPT 2001 can now be used to compute the group order of a Jacobian of
a hyperelliptic curve in genus two over a field of characteristic two. Indeed the AGM
method is practical for cryptographically sized Jacobians. Hence, the AGM method
for genus two should therefore be preferred to ours since it allows a truly random
curve to be used rather than one from a special family.



is possible that the curves constructed by our method have a weakness which
we are not aware of. For further details of how special the families we construct
actually are the reader should consult the paper [6].

Previous attempts at generating cryptographically strong hyperelliptic curves
have been based on analogues from the elliptic case, namely generalisations of
the SEA algorithm or the CM method. In [8] a first attempt at an analogue of the
SEA algorithm for hyperelliptic curves of genus two is reported on. The authors
manage to compute the order of a random hyperelliptic curve of genus two of
group order roughly 2126. However, this takes them many days of computing
time. In practice one would need to repeat their method a large number of
times before a suitable curve for use in cryptography was determined. Whilst
the method in [8] is to be preferred over ours, it can only be used when (and if)
the algorithms become sufficiently fast. Our method on the other hand, as we
have already stated, is practical using today’s knowledge and technology.

A number of authors have looked at using an analogue of the CM method to
generate hyperelliptic curves for use in cryptography, [17], [19] and [5]. However,
this has a number of draw backs compared to our method above. Firstly, the
existing literature on applying the CM method to hyperelliptic curves only ap-
plies to large odd characteristic and not characteristic two as our method does.
Secondly, the set of curves produced by the CM method in practice, if one could
implement it in characteristic two, would be from a far more restricted set than
the set of curves generated by our method.

Our second contribution is to give a method in all characteristics to perform
divisor compression. In the elliptic curve case it is common practice to use a
technique called point compression to reduce the sizes of the public keys being
transported by fifty percent. This is done by noticing that an elliptic curve point
(x, y) can be represented by x and a bit to decide which value of y to use. This is
particularly important when deploying ECC in an environment where bandwidth
is constrained. We will show that the elliptic curve point compression techniques
can be naturally generalised to the hyperelliptic setting.

The first author would like to thank J. Cannon for his support while this
work was in preparation.

2 Producing Hyperelliptic Curves

Our technique of producing hyperelliptic curves verifiably at random is based
on the method of Weil restriction of scalars as outlined in [9]. In this technique
one takes an elliptic curve E over the field K = Fqn , where q is a power of two
and then one constructs a hyperelliptic curve H over the subfield k = Fq. Since
the groups E(K) and Jack(H) are related by a group homomorphism one can
easily compute, in certain cases, the group order of Jack(H).

To fix notation we are trying to generate a hyperelliptic curve H over the
field Fq, of genus g and of group order N = 2lp, where p is a prime. Before giving
our technique for the generation of hyperelliptic curves we need to summarise
the main security requirements for our curve.



– p > 2160. This is to protect against Pohlig-Hellman, Pollard-rho and Baby-
Step/Giant-Step attacks.

– g < 4. This is to protect against the method of Gaudry [7].
– q = 2r, where r is prime. This is to protect against using Weil descent on

JacFq
(H).

– The smallest s ≥ 1 such that qs ≡ 1 (mod p) should be greater than 20g.
This is to protect against the Tate-pairing attack [4].

Note, there are no other conditions which give curves with a known weakness
and all the above conditions can be easily checked given the curve and its group
order.

In [9] a method is given for finding a group homomorphism from an elliptic
curve defined over Fqn to a hyperelliptic curve H defined over Fq. The technique
given is completely deterministic, although the resulting model for H is not in
the standard form, an issue which we shall return to below. The method of [9]
uses a set of Artin-Schreier extensions, the number of distinct extensions being
given by an integer m, which satisfies 1 ≤ m ≤ n. For the exact definition of m
see [9], all that we shall require is that m = n and that the genus of the resulting
hyperelliptic curve is either 2m−1 or 2m−1 − 1. In our applications we are able
to control precisely when we obtain genus 2m−1 or genus 2m−1 − 1.

Since we wish to produce hyperelliptic curves with Jacobians of the same
group order as E(K) we need to choose elliptic curves so that

n = 2m−1 or n = 2m−1 − 1.

Since one of our security requirements on g is that it should be less than four,
these conditions are easy to satisfy.

For cryptographic purposes it is advantageous to produce a model for the
hyperelliptic curve of the form

H : Y 2 +H(X)Y = F (X)

where degH(X) ≤ g and degF (X) = 2g + 1. Such a model will be called
“reduced” and we shall now describe a deterministic method to turn the hy-
perelliptic model, produced by the method of [9], into a reduced model. This
is important, and was not addressed in [9]. If we wish to generate hyperelliptic
curves verifiably at random we require a deterministic mapping from the elliptic
curve to a reduced model of a hyperelliptic curve.

Assume that a fixed representation has been chosen for the finite fields of
size qn and q. Using this fixed representations we can define (lexicographical)
orders in the finite fields, hence orders on polynomials, matrices etc. Utilising
normalisation of polynomials, polynomial division, Hermite normal forms and
other such reduction techniques we are then able to always consider the smallest
(or the same) object having a desired property.

Taking the model for H produced by the method in [9] we then move the
smallest rational point to infinity. A reduced hyperelliptic equation is then ob-
tained by computing the minimal polynomial over the rational subfield of a
function of smallest odd pole order at infinity and with no other poles.



Since the algorithm, outlined above, to proceed from an elliptic curve to a
reduced model for a hyperelliptic curve is completely deterministic, all we need
do to produce a verifiably “random” hyperelliptic curve is to find an elliptic
curve verifiably at “random” with the required properties.

2.1 Genus Two

Take a finite field of the form K = Fq2 where q is 2 raised to a prime exponent.
We construct, using the technique from [1] a verifiably random elliptic curve of
the form

Y 2 +XY = X3 + aX2 + b

where a, b ∈ K, with group order equal to 2p where p is a prime number. Note
that since p is a prime number and q is ‘large’, in the Weil descent we almost
always obtain m = 2 and so the resulting hyperelliptic curve will have genus
two. Then using the technique of Weil descent we can construct a hyperelliptic
curve over the field k = Fq which has group order divisible by p. Since the
Weil restriction of E and Jack(H) have the same dimension, they are therefore
isogenous. But they then have the same number of points over k and so Jack(H)
will have group order exactly 2p.

2.2 Genus Three

For genus three we need to proceed in a slightly different way. First we choose a
finite field of the form K = Fq3 where again q is 2 raised to a prime exponent.
Then we take an random 160-bit string and pass it through SHA-1 to obtain a
field element v ∈ Fq3 using the methods of [1]. Setting b = v + vq we see that

TrK/k(b) = 0.

We then compute the elliptic curve

Y 2 +XY = X3 +X2 + b

and its group order. This is repeated until we find a group order equal to 2p
where p is a prime. Then using the arguments of [9] we will obtain a hyperelliptic
curve of genus three. Although we are not choosing elliptic curves completely at
random from all elliptic curves defined over K, we are choosing them uniformly
at random from a subset of size q2. Just as before, we will have that Jack(H)
has group order exactly 2p.

Our technique for constructing hyperelliptic curves for use in cryptography is
dominated by the time needed to apply the Schoof-Elkies-Atkin (SEA) algorithm
or the algorithm of Satoh to a set of elliptic curves, until one with the correct
cryptographic properties is determined. The step of transforming the elliptic
curve into a hyperelliptic curve only takes a few seconds. Hence, to compute a



single hyperelliptic curve of genus two with the correct cryptographic properties
takes, for a Jacobian of size roughly 2190, on the order of a couple of minutes.
The main computational task is to repeatedly apply the SEA/Satoh algorithm
until a suitable elliptic curve is found. Of course, exact times depend strongly
on the details of the SEA/Satoh implementation

Finally to end this section we give a typical example:
n=166
Elliptic Curve : K is defined by w166 + w37 + 1 = 0

S = E4D1C989A8999ED0EF8AC7D691E5D8ADDAD481F5,

a = 3951AD54028E7E3CF2D437A4186CCB53BF5DD39196,

b = 140463F3747C98BAE9D9D31EAF3FCE65ADF80AEA26,

N = 3FFFFFFFFFFFFFFFFFFFF730032E01F3184452AA1A.

Hyperelliptic Curve : k is defined by t83 + t7 + t4 + t2 + 1 = 0.

H(X) = 6C935CFDD963AD086B738X2 + 103FEA81D67CBF0210A96X

+ 47242588808C36BFBE701,

F (X) = 660212F23F5C16AE899A9X5 + 6CAEC90C545CF269FE5B1X4

+ 5A55B3786562759A427E0X3 + 32C4479705A4CEBF1FEA3X2

+ 7F018AAEC622917758194X + 2BDCB9CD696E5142054C8.

3 Divisor Compression

As noted previously point compression in the elliptic curve case is an important
tool used to save around fifty percent of the bandwidth in transferring/storing
public keys and in Diffie-Hellman key exchange. Before describing our analogous
method in the hyperelliptic setting we shall describe the exact data format nor-
mally used for divisors on hyperelliptic curves. For more details on what follows
the reader should consult the papers by Cantor [2] and Koblitz [12]. In this
section we shall work with arbitrary characteristic fields.

A hyperelliptic curve of genus g, over a field k of characteristic p, we will
assume is given by an equation of the form

Y 2 +H(X)Y = F (X),

where H(X), F (X) ∈ k[X], degH(X) ≤ g and degF (X) = 2g + 1. For appli-
cations it is common to assume that either p is very large or equal to two. If
p is large we usually assume that H(X) = 0. Notice that in characteristic two
the ramified places lying above p(X) ∈ k[X] are exactly those for which p(X)
divides H(X).

The group elements, upon which our cryptographic protocols operate, are
effective reduced divisors of degree less than or equal to g. Such a divisor can be
represented by the pair

D = (a(X), b(X)),



where a(X), b(X) ∈ k[X], deg b(X) < deg a(X) ≤ g, a(X) is monic and

b(X)2 +H(X)b(X)− F (X) ≡ 0 (mod a(X)).

The zero in the group is represented by the pair (1, 0). That the divisor is reduced
means that no ramified place occurs in the support of D with multiplicity greater
than one, and that if a place p occurs in the support of D then the image of
p under the hyperelliptic involution does not. In many protocols one needs to
transmit divisors, naively this requires at most g elements of k to represent a(X)
and at most g elements of k to represent b(X).

However, given a(X) there are only a small number of possible values for
b(X) which could correspond to a(X). We shall show how one can recover the
correct b(X) from only a(X), and at most an additional g bits of information.

Our first task is to decide a canonical order on the irreducible polynomials of
degree less than or equal to g, which are defined over k. This is done by fixing a
field representation and using the lexicographic order used for a similar purpose
in Section 2.

When we are either compressing or decompressing we first factorize a(X)
into its irreducible factors and order them. Since factorisation of polynomials
can be performed in random polynomial time, and in applications the degree of
a(X) will be quite small (usually less than four) this factorisation stage is no
barrier to our method.

For example when g = 2 we need to factorize a degree two polynomial.
This factors either when a certain trace is zero, for the even characteristic case,
or when the discriminant is a square, for the odd characteristic case. In either
characteristic we can easily deduce the factorisation when the polynomial is
reducible using standard techniques for solving quadratic equations over finite
fields. Similar considerations apply when g = 3.

Each irreducible factor p(X) of a(X) will correspond to at most two prime
divisors on H:

Dp = (p(X), q(X)) and D′p = (p(X),−q(X)−H(X) (mod p(X))),

where q(X) is the polynomial of least degree such that

q(X)2 +H(X)q(X)− F (X)

is divisible by p. Since the divisor we are compressing or decompressing is reduced
we know that only one of these two possibilities is in the support of D. Hence,
for each prime divisor of a(X) we need only specify one bit of information to
determine whetherDp orD′p is in the support ofD. The only questions remaining
are how to produce this bit and how to recover the correct value of b(X), given
a(X) and the resulting bits.

3.1 Compression

The basic idea is to execute the following steps for every distinct irreducible
factor p(X) of a(X), this gives the bits βp.



1. If p(X) is ramified in k(H) set βp = 0.
2. If the characteristic of k is odd, and so H(X) = 0, then let βp denote the

parity of the smallest non-zero coefficient of b(X) (mod p(X)).
3. If the characteristic of k is even then we set

t(X) = b(X)/H(X) (mod p(X)),

notice that the inversion of H(X) modulo p(X) can be accomplished since
p(X) is unramified and so gcd(p(X), H(X)) = 1, We then let βp denote the
least significant bit of the constant term of t(X).

Hence, the compressed form of the divisor D is {a(X), s} where s is the bit string
containing the βp for each irreducible factor of a(X). The bit string is ordered
with respect to the ordering on the distinct irreducible factors of a(X).

3.2 Decompression

Suppose p(X)k exactly divides a(X), then if we can recover b(X) modulo p(X)k

for all irreducible factors p(X) of a(X) we can then recover b(X) either via the
Chinese Remainder Theorem or by adding together the local components for
each prime p(X).

Since (a(X), b(X)) is a reduced divisor, we know that if p(X) is ramified then
the value of k above is one, and recovering b(X) modulo p(X) is trivial, since it
will be equal to zero modulo p(X).

We now turn to the case where p(X) is not ramified. Then recovering b(X)
modulo p(X)k, is trivially done once we know b(X) (mod p(X)). This recovery
of b(X) modulo p(X)k from b(X) (mod p(X)) can be accomplished in one of
two ways:

1. Using Hensel’s Lemma.
2. By multiplying the divisor (p(X), b(X) (mod p(X))) by k.

So we have reduced the decompression problem to determining the value of

b(X) (mod p(X))

given p(X) and the bit βp.
Since p(X) is irreducible, the algebra k[X]/p(X) is a field and we can apply

well known techniques to solve quadratic equations in a field to determine a can-
didate value b(X) for b(X) (mod p(X)). To check whether b(X) is the correct
value we compute the value of the bit βp, as in the compression algorithm, as-
suming that b(X) is correct. If this value agrees with the supplied value then we
know that b(X) = b(X) (mod p(X)), otherwise we set b(X) = −b(X)−H(X)
(mod a(X)).

Finally, note that the above algorithms for divisor compression and decom-
pression are only slightly more complicated than those used in the elliptic curve
case.
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