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Abstract 

This paper compares a variety of two treatment crossover designs 

under a uniform notation and covariance structure with respect to their 

ability to provide efficient estimators of contrasts among direct treat-

ment effects when residual effects might be present. The designs are 

also compared on the basis of their ability to provide additional infor-

mation on the nature of treatment effects such as estimating second 

order residual effects and direct by period and direct by first order 

residual effect interaction. Many of these designs are uniformly more 

efficient, with respect to estimating direct treatment effects, than 

either the conventional two period design or the completely randomized 

design with repeated measurements. Two efficient and effective four 

sequence designs are discussed in some detail. 
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1. INTRODUCTION 

The literature on two treatment crossover designs is underdeveloped. This 

situation is particularly awkward in view of the popularity enjoyed by an 

essentially simple design such as the two treatment two period crossover. Prac

titioners might be aware of the problems regarding estimation of residual treat

ment effects with this design (e.g., Grizzle 1965) and the current controversy 

surrounding the appropriateness of its use in clinical trials (Brown 1978); how

ever, they often do not have the time to exhaustively search the literature and 

may not be aware of some three period (Brandt 1938; Lucas 1957) or four period 

(Quenouille 1953) alternatives. 

This paper brings together these published designs and presents some new two 

treatment crossover designs in a unified setting. The designs are compared under 

a uniform notation and covariance structure with respect to their ability to pro

vide efficient estimators of contrasts among direct treatment effects when re

sidual effects might be present. The designs are also compared on the basis of 

their ability to provide additional information on the nature of the treatment 

effects such as estimating second order residual effects and direct by period and 

direct by first order residual effect interactions. 

Following Hedayat and Afsarinejad (1975), we denote by RM(v,s,p) a repeated 

measurements (RM) design characterized by the administration of v treatments in 

s distinct sequences, or orderings, over p periods of time; i.e., each sampling 

unit receives p treatment applications. In this paper we will be considering two 

classes of RM designs; e.g., two treatment crossover designs and completely 

randomized designs with repeated measurements. We denote by CO(v,s,p) a crossover 

design consisting of v treatments administered in s distinct sequences over p 

periods of time. A completely randomized design with repeated measurements is 

characterized by having v = s and is denoted by CR(v,v,p). For p = 1 we have the 

familiar CR design. 
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Under our definition, a crossover design is any RM design having the property 

that at least one sampling unit receives at least two distinct treatments in at 

least two distinct periods. In CR(v,v,p) designs, sampling units receive p appli

cations of the same treatment. 

2. DEFINITIONS 

RM designs differ from many of the conventional experimental designs in two 

major respects: the nature of the correlation structure of the errors and the 

nature of the treatment effects. In RM designs, treatments are applied in a serial 

sequence to a single sampling unit (e.g., a human, an animal, a plot of land, etc.). 

The repeated use of sampling units in this way introduces a variety of new concepts. 

These designs are used, for example, in growth and wear studies, clinical trials, 

educational and psychological studies, nutrition experiments, and long term agri

cultural experimentation. It was in this latter context that Cochran (1939) dis

cussed the possibility that not only could treatments exert an effect in the period 

in which they were applied but also that the effects might carry over into succeed

ing periods; he called these the direct and residual treatment effects, respec

tively. Indeed, there can exist a variety of different treatment effects as des

cribed below. 

2.1. Definitions 

A direct treatment effect is the effect that a treatment has on the response 

of an experimental unit during the period of application. This is the type of 

effect commonly implied when analyzing designs such as the completely randomized, 

randomized complete block, latin square, etc. where the sampling unit receives 

only one treatment. A residual treatment effect is that effect of the treatment 

which lasts beyond the period of application. Residual effects are important in 

RM designs since they can bias the estimators of direct treatment effects. One 

must exercise care in choosing a design so as to enable residual effects to be 
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eliminated efficiently from comparisons of direct treatment effects. 

There are several types of residual effects. First order residual effects 

are effects which last only one period beyond application. In a like manner, 

second, third, ···, kth order residual effects last for two, three, and k periods, 

respectively, beyond the period of application. The magnitude of these residual 

effects is often a function of the length of the treatment period. Undiminished 

residual effects persist at a constant level after administration of treatment. 

When a uniform treatment is applied prior to experimentation, the sampling units 

may experience a common residual effect in period 1. These residual effects are 

called constant residual effects. In a similar fashion, first, second, ···, kth 

order constant residual effects could uniformly affect the responses for all 

sampling units in the first, second, kth . d , - per~o s. These effects from a uni-

form pre-experimental treatment will be completely confounded with the period 

effects and therefore will not be estimable in models where period effects are 

present. 

Continuing treatment effects last an indefinite time after administration of 

treatment. These effects may remain constant over time or they may gradually 

dampen out. Continuing treatment effects could be viewed as treatment cures in 

the context of clinical trials, for example. Once a patient is cured, further 

treatments will have no effect since a patient can only be cured once. 

The arithmetic sum of the direct treatment effect and the first, second, 

kth order residual effects of that treatment was defined by Yates (1953) as the 

cumulative treatment effect. The effect so defined requires that there is no 

interaction between the various treatment effects. This effect has also been 

' 

referred to as total treatment effect, or as permanent treatment effect by various 

authors; however, the term "cumulative" appears to be more descriptive of the 

exact nature of the mechanism of treatment effect. The limiting value of the 

cumulative effects was also defined by Yates (1953) as the stable value to which 
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the cumulative effect will tend if the experiment is carried on indefinitely. 

Given an exponential treatment response curve, the limiting value would be the 

asymptote. 

The importance of these various treatment effects relative to one another 

is primarily a function of the purpose of the experiment. The effects of a given 

treatment on previous treatments are important in crop rotation experiments, e.g., 

where the object is to determine a succession of treatments over a series of years 

which give the best overall results. In contrast, the effects of previous treat

ments are usually of secondary importance in clinical trials where the prime 

interest is in measuring direct treatment effects and residual effects become un

wanted effects to be eliminated from the direct treatment effects. Cumulative 

treatment effects are sometimes of more interest than either direct or residual 

effects separately. Lucas (1957) gives the example that, with dairy cows, fixed 

diets are given for longer periods of time than would be the case in crossover 

experiments, and he argued that the cumulative effects would offer better esti

mates of treatment effects than direct effects. Undiminished residual effects 

are important in the design of survey questionnaires which contain sensitive 

questions (e.g., questions relating to sex, income, drug use, etc.) since the 

cooperativeness of the respondent may tend to decrease after being asked such 

questions. 

3. A LINEAR MODEL 

We wish to initially adopt a model with sufficient generality to cover the 

broadest class of RM designs. For RM(v,s,p) a general linear model can be repre

sented as 

yijktru = Tlijktru{i-l + 11 i + i3j + Tt + S j(k) + (l- 0li)pr 

+ ~ti + (l - 0li)Tptr + (l - 0li)prrri 

+ (l- 0li)(l- 0 2i)p~ + Eijk} (3.1) 



where 

Y. "kt lJ ru 

jJ. 

TT. 
l 

t3j 

s j (k) 

= 

- 5 -

observed response for sampling unit k at period i in sequence j, 

i = l, . . . p, j = l, ... s, k = l, n . 
' ' 

, 
s' 

effect due to an overall mean; 

effect due to period i, i = l, , p; 

effect due to treatment sequence j, j = l, 
' 

s· 
' 

random effect due to sampling unit k which is nested within 

sequence j, j = l, · • •, s, k = l, •. • n • 
' s' 

~t = direct effect due to treatment t, t = l, · · ·, v; 

pr =first order residual effect due to treatment r, r = l, ···, v; 

second order residual effect due to treatment u, u = l, .•. ' v; 

eli = the usual Kronecker delta such that eli = {; 
i = 1 
otherwise ; 

P"'!ri 

= interaction effect due to tth direct treatment effect and ~ 

first order residual effect; 

= interaction effect due to tth direct treatment effect and ith 

period effect; 

= interaction effect due to ~ first order residual effect and the 

.th . d ff t 1--- per1o e ec ; 

= random effect associated with experimental error corresponding to 

the ith serial observation on sampling unit k in sequence j. 

Note that (3.1) is sufficiently general so that many models of particular interest 

will arise as special cases of (3.1). Several variations on (3.1) are given in 

Table l. 

INSERT TABLE 1 HERE 
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Understanding the nature of the covariance structure in RM designs is im-

portant in the context of constructing proper error terms for testing main effects 

and interactions and in the discussion of the efficiency of crossover designs 

relative to completely randomized designs. There appears to have been some con-

fusion in the literature regarding the interplay between random effects due to 

the sampling units and correlation among repeated measurements on the same sampling 

unit (e.g., Grizzle 1965 and Winer 1971). 

The random components in (3.1) are the effects due to the sampling units, 

the Sj(k)' and the effects due to error, the Eijk• We will initially assume that 

the sampling units represent a random sample from an infinite population and that 

they have zero mean and share a common variance. We view the sj(k) as representing 

an overall population mean level for the jkth sampling unit while the E. "k are 
lJ 

viewed as observations within these means. By virtue of this and as a direct 

consequence of the parameterization in (3.1), the sj(k) are not time dependent. 

The dependency across time is carried by the Eijk. The distributional assumptions 

we impose on the random effects in (3.1) are that the 

Sj(k) are i.i.d. N(O, cr~) 

and, independently, 

are i. d. 

where 

cov(E. "k' E .. k) = p cr2 • 
lJ lJ e e 

Thus in terms of the original observations we have that 

a2 + a2 i = 
• I j = 

•I k = kl 
s e l ' J ' 

Cov(Y. "kt , Y. I "lklt ) a2 + p a2 i =1-
• I j = jl, k = kl (3. 9) 

lJ r l J r s e e l ' 

0 j =1-
•I k -f kl 
J ' 

. 
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On defining 

a2 a2 +a2 
s e 

and (3.10) 
a2 + P a2 

s e e 
p = 

' a2 

(3.9) can be rewritten as 

f~ i • I j = j I' k = kl 
l ' 

Cov(Y. "kt , yi 1 j 1 k 1 tr) = pa2 i f • I j = • I k = kl 
l ' J ' lJ r 

I 
I o j I j I' k f kl . 
\ 

It is further assumed that the gj(k) and Eijktr are uncorrelated with all of the 

fixed effects in (3.1). 

Rather than defining p as in (3.10), other authors (e.g., Grizzle 1965 and 

Winer 1971) have adopted a parameterization as 

(3.11) 

The covariance structure which gives rise to (3.11) carries the assumption that 

Cov(E .. k, E. 1 .k) = 0. 
lJ l J 

A parameterization such as (3.11) arises naturally in mixed models, but it does 

not permit correlation among individual error terms within a sampling unit. In 

comparing the efficiency of CO designs relative to their CR counterparts, one 

should consider not only the magnitude of cr2 relative to cr2 but also the magnitude 
s e 

of p . 
e 

4. THE p-PERIOD COMPLETELY RANDOMIZED DESIGN UNDER A RESIDUAL EFFECTS MODEL 

Since its introduction by Cochran, Autrey and Cannon (1941), the concept of 

residual effects seems to have remained within the domain of crossover designs 
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and rotation experiments. Here we investigate the properties of CR(2,2,p) under 

a model with first order residual effects. CR(2,2,p) is schematically shown in 

Table 2. 

INSERT TABLE 2 HERE 

On adopting (3. 3) in Table 1, together with the error assumptions in (3.9), 

solution of the normal equations leads to 

~ 
'L - 'L2 = yll· - yl2· 1 

(4.1) 

and 

p 

~ 1 I (Y-il· - y.2 ) 
- -

pl - p2 =-- - yll· + yl2· p-1 l • 
(4. 2) 

i=2 

with 

(4. 3) 

and 

(4.4) 

We note that residual effects models are seldom used in designs such as 

CR(2,2,p). The complete confounding of direct treatment effects with first order 

residual effects for p ~ 2 restricts estimators of direct effects to functions of 

observations from the first period. Under residual effects models, CR(v,s,p) 

designs are inefficient since there is a substantial loss of information on direct 

treatment effects. The precision of estimators of direct effects does not depend 

upon the number of periods. However, the variance of the estimators of residual 

treatment effects does improve with increasing p, as is evident from (4.4). 
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5. TWO TREATMENT CROSSOVER DESIGNS 

The two treatment two period crossover design is often the focus of criticism 

for its inability to provide efficient estimation of direct treatment effects when 

residual effects are present. Brown (1978) and unpublished reports from the Food 

and Drug Administration provide discussions of some of the problems with this 

design in more complex settings. In light of section 4, abandoning the crossover 

concept in favor of completely randomized designs does not appear to be an effective 

or efficient solution. Rather, one might consider extending the two treatment 

crossover designs for extra periods or using designs where observations are taken 

between periods of treatment application. 

Fourteen two treatment crossover designs are schematically represented in 

Table 3. The schematics depict the placement of treatments with respect to the 

periods (rows) and sequences (columns) of the designs. As part of the randomi-

zation we note that sampling units are randomly assigned to the sequences of the 

design. CR(2,2,2) is included for the sake of completeness, but it should not 

be considered a viable design under the types of models we are considering here. 

INSERT TABLE 3 HERE 

Best linear unbiased estimators (b.l.u.e. 's) of estimable functions such as 

~ ------......... 
~A- ~Band pA- pB are denoted by ~A- ~Band pA- pB' respectively. The b.l.u.e. 's 

can be uniquely expressed as linear combinations of the period by sequence means. 

The forms of ~and~ for all designs are shown in Table 4 as coefficient 

matrices which give the weights of the period by sequence means. Estimation is 

carried out under model (3.3) in Table l for all designs, with the exception of 

CR(2,2,2) which requires a reduced model such as (3.6). 

INSERT TABLE 4 HERE 
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The variances of ~and~ are computed using Table 4 and the co-

variance structure (3.9). 
s 

These variances(multiplied by N/cr2 ) are shown in Table 
e 

5, where N = En. . In computing the variances for each design, we have 
i=l J• 

assumed that a total of N sampling units are available so that the variances are 

standardized for the total sample size and so are directly comparable between and 

within classes and subclasses. Also given in Table 5 are the ratios V(~/ 
A B 

V(~) which show the precision of ~relative to ~· The variances 

are ranked within classes and overall designs. C0(2,2,2) is unranked in view of 

the dependency of V(~ and V(~ on ~· Note that when cr~ ~ 2cr~ the 

~ ....---..........._ 
variances of ~A - ~B and pA - pB from C0(2,2,2) will be the largest of any of the 

designs in Table 6. 

INSERT TABLE 5 HERE 

INSERT TABLE 6 HERE 

Recall that C0(2,2,2) provides information on direct and residual effects 

only (see, for example, Grizzle 1965). The use of four sequences rather than two 

in a two period design, i.e., D2.2, permits estimation of residual effects without 

having to assume a reduced model such as (3.6). While the estimability problem 

is resolved, V(~) = 8~(1 - pe)/N which is ranked thirteenth with respect 

to the alternative designs. 

Using the rest period designs D3.1R or D3.2R might be reasonable alternatives 

to C0(2,2,2) in some situations. Because only two treatments are given over the 

three periods, use of these designs might be defendable on ethical grounds, but 

more information can be recovered if the individual sampling units can be treated 

more than twice. 

With respect to minimizing V(~), D4.2 is clearly the design of choice. 

A possible undesirable feature of this design is that each sampling unit is exposed 
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to each treatment twice and thus its use might not be defendable on ethical or 

purely practical grounds. D3.2 and D3.4 are ranked second and third overall. 

With respect to D4.2, their efficiency for measuring direct effects is 0.67 and 

0.65, respectively. With respect to D3.2, the efficiency of D3.4 is 0.97. With 

respect to CR designs the efficiencies of D3.2, D3.4 and D4.2 will be greater 

than one in general since V(~) from these designs does not depend on cr~. 

6. ESTIMABILITY PROPERTIES 

Table 6 summarizes the estimability properties of the designs in Table 3 

with respect to estimating a variety of treatment effects. 

Within the two period class, D2.2 is an improvement over D2.1 since it allows 

estimation of first order residual effects and direct by period interaction under 

less restrictive models, but the b.l.u.e. of ~A - ~B from D2.2 is not efficient 

with respect to other designs in Table 3. 

The C0(2, 2, 3) designs, D3.1- D3. 3, allow partial recovery of treatment by 

period interaction but they do not permit estimation of second order residual 

effects or direct by first residual interaction. Thus their use might be re-

stricted to situations where these effects might not be present. With respect 

to estimating a variety of treatment effects, the three period designs D3. 4 - D3. 7 

and the four period design D4.2 allow recovery not only of first order residual 

effects but also second order residual effects and direct by period and direct by 

first order residual interaction. 

7. PRECISION OF ESTIMATORS FOR DIRECT TREATMENT EFFECTS 

One might question under what conditions C0(2,s,p) designs- in particular 

designs such as D2.l, D3.2, D3.4 and D4.2- provide more precise estimators of 

~A - ~B than their completely randomized counterparts, e.g., CR(2,s,p). Grizzle 

(1965) addressed this question in a more restricted sense than we do here. For 
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reference sake, V(~~) are shown for D2.l, D3.2, D3.4 and D4.2 and the com

parable CR designs in Table 7· The variances were computed with and without re-

sidual effects present in the model, e.g., under (3.2) and (3.3). Note that for 

the model (3.2) crossover designs perform much better than CR unless p < 0 and 
e 

cr2 is some small fraction of cr2 • Under the extreme conditions p ~ -land cr2 ~ a2, 
s e e s e 

~ ~ 
For pe ~ O, Vc 0(-rA - -rB) s: VCR(-rA - -rB) with the variances being equal for D3. 2 

and D3. 4 when p = 0 and cr2 = cr2 /24. 
e s e 

In many applications, cr2 > cr2 • When this is the case, CO designs perform 
s e 

uniformly better than CR. 

For residual effects models like (3.8), C0(2,2,2) and CR(2,2,p) provide 

identical estimators and identical variances of these estimators of direct treat-

ment effects. In models having residual effects, D3.2, D3.4 and D4.2 perform 

uniformly better than the CR designs regardless of the true value of p • 
e 

8. DISCUSSION 

We have attempted to unify some concepts on two treatment crossover designs 

and provide some efficient alternatives to the two treatment two period design 

and completely randomized designs. It is hoped that rather than abandon the 

crossover concept, experimenters might be able to use designs such as D3.2, D3.4 

or D4.2 or the p-period analogs in experimental situations when residual effects 

might be present. These designs avoid the estimability problems in C0(2,2,2) as 

noted by Grizzle (1965) and provide estimators of contrasts of direct treatment 

effects which are uniformly better than the CR designs in a variety of settings. 

If residual effects are of primary importance in an experiment, then the p-period 

CR design will be an optimal design for this purpose. 



l. Some Models f'or Two Treatment RM Designs Adapted f'rom (3.1) 

Model Parameters 
E(Y. "kt ) Comment 

No. Supressed lJ ru 

(3. 2) p ' 
p2, m, -rp, pTT 1-1 + 1T. + t3. + '[t Additive model. No - -- l J residual ef'f'ects. 

(3. 3) e.2' m, 
~' 

prr 1-1 + 1T. + t3. + '[t + p Additive model with -- l J r f'irst order re-
sidual ef'f'ects. 

(3. 4) 
~' 

-rp, prr 1-1 + 1T. + t3. + '[t + p + p2 Additive model. -- l J r u 
First and second 
order residual 
effects. 

(3. 5) p, p2, -rp, prr 1-1 + TT. + t3j + '[t + 1'!Tti No residual ef'f'ect 
,.. ,.. l 

model with direct 
by period inter-
action. Used for 
CO(v,~,p) by 
Balaam (1965 ). 

(3. 6) t3, n, p2, m, -rp, prr 1-1 + Tt + Pr Direct and residual 
,.. - - - -- -- ef'f'ects only 

(e. g.' Grizzle 
1965). 

(3.7) f/' m, PTT 1-1 + 1T. + t3. + 'ft + p + Tpt -- l J r r 

(3. 8) t3, p2' 1'IT' Tp' prr 1-1 + TI i + Tt + pr 



2. A p-Period Completely Randomized Design for Two Treatments 

Treatment Group 

1 2 

Period 
Sampling Units Sampling Units 

1 2 nl 1 2 n2 

1 A A A B B B 

2 A A A B B B 

3 A A A B B B 

p A A A B B B 



3. Schematic Representation of Some Two Treatment Crossover Designs 

Subclass Design 
Class C0(2,s,p) No. Design Origin 

2 C0(2, 2, 2) D2.1 A B 
B A 

C0(2,4, 2) D2.2 ABAB Balaam ( 1965) 
BAAB 

3 C0(2,2,3) D3.1R A B 

BA 

D3. 2R AB 
BA 

D3.1 A B 
A B 
BA 

D3.2 A B Lucas (1957) 
B A 
BA 

D3.3 A B Brandt (1938) 
BA 
AB 

C0(2,4, 3) D3.4 ABAB 
ABBA 
BABA 

D3.5 ABAB 
ABBA 
BAAB 

D3.6 ABAB 
BABA 
BAAB 

C0(2,6,3) D3. 7 ABABAB 
ABBABA 
BABAAB 

4 C0(2,2,4) D4.1R A B 

B A 

D4.1 A B Brandt (1938) 
B A 
A B 
BA 

C0(2,4,4) D4.2 ABA B Quenouille (1953) 
ABBA 
BABA 
BAAB 



Class 

2 

3 

4 

4. B.l.u.e. 's for ~A- ~Band pA - pB Expressed as Linear Combinations of Cell Means 

Subclass 

C0(2, 2, 2) 

C0(2,4, 2) 

C0(2, 2, 3) 

C0(2,4, 3) 

C0(2,6,3) 

C0(2, 2,4) 

C0(2,4,4) 

Design 
No. 

D2.1 

D2.2 

D3.1R 

D3.2R 

D3.1 

D3.2 

D3. 3 

D3.4 

D3.5 

D3.6 

D3.7 

D4.1.R 

D4.1 

D4.2 

Design 

A B 

BA 

ABAB 
BAAB 

A B 

BA 

AB 
BA 

A B 

A B 

BA 

A B 

BA 
BA 

A B 
BA 
A B 

ABAB 
ABBA 
BABA 

ABAB 
ABBA 
BAAB 

ABAB 
BABA 
BAAB 

ABABAB 
ABBABA 
BABAAB 

A B 

BA 

A B 
BA 
A B 
B A 

ABAB 
ABBA 
BABA 
BAAB 

Coefficient Matrix 

for~ 
A B 

[ ~ -~] 

1[ 1 
2 -1 

- 0 1[ 1 
2 -1 

.![-i 
3 -1 

- 1 1[ 0 
2 -1 

1[ 2 4 -1 
-1 

-1 -1 
1 1 

-~] 

-n 

-t] 

-t] 

~ -1 1 [ 2 -2] 
2 -1 1 

~ 6 -6 16 -165] 
9 -9 -5 

-15 15 -11 11 

~[ 
0 0 2 

3 -3 -1 
-3 3 -1 

~ 
8 -8 4 

21 -1 1 -5 
-7 7 1 

-n 

-~] 
-1 

~ 3 -3 14 -14 7 -78] 
9 -9 -1 1 -8 

-12 12 -13 13 1 -1 

[ 

1 

1 0 

2 -~ 

1[-i 4 -2 

1 

[ 

1 

1 1 

E -1 

-1 

=~ =~ -~] 
1 1 -1 

Coefficient Matrix 

for~ 
A B 

r 1 -1] 
1 -1 

[ g g -1 . 1] 
1 -1 

[ ~ -~] 
~[ -~ =~] 

n -~l 
~[-~ -n 

[ ~ -~] 
-1 1 

1 [-~ -~ i 
4 -1 1 -2 

~J 
-2 1 
-3 2 

5 -3 

-1] -1 

2 

-1] -2 

3 

_J-~ 
341.-1 

4 4 -4 
-5 7 -7 
1 -11 11 

~[ ~ 2 0 
-1 

[ ~ -~] 
-1 1 

0 0 

-~ ~ =~] 
-3 -3 3 
5 -3 3 

~ =~] 
-7 7 



5. Variances for ~ and A for Designs in Table 3 

and for a Fixed Total Number of Observations N 

Class Subclass 
Design 

No. 
Class 

Rankg/ 

2 C0(2, 2, 2) D2.1 

C0(2,4, 2) D2. 2 8(1 - p ) 
e 

16 (1 - p ) 
e 

2 

3 C0(2,2,3) D3.1R 2(1 - p ) 
e 5-5 

D3. 2R 
8 
-(1 - p ) 
3 e 

8 
-(1 - p ) 
3 e 

1 7 

D3.1 2(1 - p ) 
e 

8(1 - p ) 
e 

4 5-5 

D3.2 3 (1 - p )/2 
e 

2(1 - p ) 
e 

l. 33 1 

D3.3 6 (1 - p ) 
e 

8(1 - p ) 
e 

1.33 9 

2 2 

D3.5 3 (1 - p ) 
e 

6 (1 - p ) 
e 

2 8 

D3.6 24 (1- p )/13 32(1- p )/13 
e e 

1.33 3-5 

C0(2,6,3) D3.7 63 (1- Pe )/34 54 (1- Pe )/17 3-5 

4 C0(2,2,4) D4.1R 2(1 - p ) 
e 

2(1 - p ) 
e 

1 2 

D4.1 11(1 - p )/2 8(1 - p ) 
e e 

1.45 3 

C0(2,4,4) D4. 2 (1- p) 16(1-p )/11 
e e 

1.45 1 

Overall 

Rankg/ 

13 

7 

9 

7 

2 

12 

3 

10 

4.5 

7 

11 

1 

y Variances are multiplied by ~ • All variances are computed using a fixed 
ae 

total sample size of N. 

g1 Ranks are computed with respect to the precision of the estimators of ~A - ~B. 



6. Estimability Properties of Some Two Treatment Crossover 

Designs Under a Variety of Models 

(Model) 
Parametric Function 

(3. 3) (3.4) (3. 5) (3.7) 
Design First order Second order Direct by Direct by 

residual residual period first order 
residual 

D2.l a NE NE NE 

D2.2 E NE E NE 

D3.lR E NE NE NE 

D3.2R E NE NE NE 

D3.l E NE b NE 

D3.2 E NE b NE 

D3.3 E NE b NE 

D3.4 E E E E 

D3. 5 E E E E 

D3.6 E E E E 

D3.7 E E E E 

D4.lR E NE NE NE 

D4.l E E c NE 

D4.2 E E E E 

E = estimable 

NE = not estimable 

a= re~uires reduced model, e.g. (3.6) 

b = only l of the 2 linearly independent interaction contrasts are 
estimable. 

c = only 2 of the 3 linearly independent interaction contrasts are 
estimable. 



7. Variances for Estimators of Direct Treatment Effects for Some 

Two Treatment Crossover and Completely Randomized Designs 

Design No Residual Effects Present Residual Effects Present 

C0(2, 2, 2) [D2.l] 2cr2 (l - p ) 
e e 

4(cr2 
s 

+ a2) 
e 

CR(2, 2, 2) 4cr2 + 2cr2 (l + p ) 
s e e 

4 (cr2 
s 

+ a2) 
e 

C0(2, 2, 3) [D3.2] 3cr2 (l - p )/2 
e e 3cr2 (l- p )/2 

e e 

CR(2, 2, 3) ~ [ l8a2 + 6cr2 + l2p cr2 } 
s e e e 

4(a2 + cr2 ) 
s e 

C0(2, 2, 3) [D3.4] 3cr2 (l- p )/2 
e e 

48cr2 (l- p )/31 
e e 

CR(2,2,4) 4cr2 + a2 + 3p a2 
s e e e 

4(a2 + cr2 ) 
s e 

C0(2,4,4) [D4. 2] cr2 (l - p ) 
e e 

a2 (l - p ) 
e e 
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