

Two types of glitches in a solid quark star model

Enping Zhou

Supervisor: Prof. Renxin Xu & Prof. Luciano Rezzolla

2015.01.13

Outline

Motivation

Challenges to the theories on pulsar glitches

The model

Bulk-variable starquake

• Bulk-invariable starquake

The result

 Two types of starquakes corresponds to two types of glitches in observation

D & C

- Discussion
- Conclusion

Pulsar = Neutron Star??

 Wiki tells us "Pulsar is highly magnetized rotating Neutron star". But not exactly!

Up: An imaginary model of magnetized rotator model for 'pulsar'

Twinkle, twinkle, little star How I wonder what you are

Down: An observed profile in the radio telescope, which is 'a pulsar'.

Pulsar ≠ Neutron star

Different EoS models for pulsars (Xu 2014)

Puzzling Pulsar Inside: EoS...

Nucleus and Quark-cluster star:

differences and similarities

neutron	Quark-cluster matter
Self-bound: by strong int.	Self-bound: by strong int.
<i>l</i> ~ fm: electrons outside	$l > \lambda_e$: electrons inside
2-flavour symmetry: isospin	3-flavour symmetry: strangeness
light clusters: p(uud), n(udd)	heavy clusters: 6(H), 9, 12, 18
quantum gas/liquid	solid condensed matter at low-T

Neutron Star .vs. Quark Star

- From observational point of views:
 - > The absence of spectrum lines in pulsar spectrums

Neutron Star: crust with mostly iron atoms. remark: 1E 1207.4-5209 😕

Quark Star: bare, no atomic structure

> The binding energy

Neutron Star: gravity/em bound on the surface

Quark Star: self bound on the surface

> The iron core collapse model of Type II supernova

Neutron Star: optically thick remark: arXiv:1501.01961

Quark Star: optically thin for neutrino

Glitches

to be discussed today...

Pulsar glitch

- An important phenomenon to help us understand the EoS of dense matter.
- Normal glitch / Slow glitch / Anti glitch ...
- The mechanism is still a matter of debate.

Glitch: sudden spin up of pulsars.

First observed on Vela pulsar (1969)

A 195ns decrease in the spin period was detected by Radhakrishnan & Manchester

Pulsar Glitch

The quadratic signature of the timing residuals during the glitch (glitch detectors)

Espinoza et al. 2012

Observational parameters of pulsar glitch

two types of glitches in a solid quark star model

Pulsar glitch

As the development of glitch observations, more and more challenges to the previous theories remain to be solved.

Challenge 1

Radiative quiet glitches of Vela pulsar $\delta v/v \sim 10^{-6}$ negligible energy release in observations (Helfand et al. 2001)

Challenge 2

Radiative loud glitches of AXP/SGRs $^{\sim}$ $^{\sim}$ $^{\sim}$ $^{\sim}$ $^{\sim}$ $^{\sim}$ X-ray bursts & radiative anomaly (Dip & Kaspi 2014)

Starquake models in Solid quark stars

Quakes in solid quark stars

Zhou A Z, et al. 2004 Astro-Particle Journal

Pulsar slow glitches in a solid quark star model

Peng & Xu 2008 MNRAS

Two types of glitches in a solid quark star model

Zhou E P, et al. 2014 MNRAS

The model – bulk variable starquake

The M-R relation for solid quark stars

Physical scenario Self-bound (low mass) $M^{\sim}R^3$

Gravity-bound(high mass) M↗ R↘

Exceeding the R_m by accretion will make a solid star accumulate elastic energy and induce a starquake which can be seen as a global reduce of the radius

Guo et al. 2014

Bulk variable starquake

Type II starquake can be treated as a global decrease in R.

The main parameter in a Type II starquake: δR

$$\delta E = (\frac{3GM^2}{5R} - \frac{L^2}{I})\frac{\delta R}{R}$$

- Gravitational energy of a spheroid + kinetic energy
- Conservation of the angular momentum

$$\delta v/v$$
 w.r.t δR

$$\frac{\delta\omega}{\delta v/v \ w.r.t \ \delta R} \qquad \frac{\delta\omega}{\omega} = -\frac{\delta I}{I} = -\frac{2\delta R}{R}.$$

• The moment of inertia of a spheroid

Result

$$|\delta E| = \frac{3GM^2}{10R} \frac{\delta \nu}{\nu} \sim 10^{47} \operatorname{erg}(\frac{M}{1.4 M_{\odot}})^2 (\frac{R}{10^6 \, \mathrm{cm}})^{-1} (\frac{\delta \nu}{\nu} / 10^{-6})$$

• The gravitational energy is much larger than the kinetic energy

The model – bulk invariable starquake

The stable shape of a rotating star will be ellipsoid instead of spheroid.

$$E_{total} = E_k + E_g + E_{el} = E_0 + \frac{L^2}{2I} + A\varepsilon^2 + B(\varepsilon - \varepsilon_0)^2$$

The key parameter in a Type I starquake: $\varepsilon = (I - I_0)/I_0$

For a rotating star with certain density ρ, the relation between ellipticity and angular velocity is

$$\Omega^2 = 2\pi G \rho \left[\frac{\sqrt{1 - e^2}}{e^3} (3 - 2e^2) \sin^{-1} e - \frac{3(1 - e^2)}{e^2} \right]$$

Remark: Jacobi ellipsoid for extremely fast spinning pulsars

The model – bulk invariable starquake

The evolution between two glitches

t=0 Solidification or the end of previous glitch

No elastic energy

$t=0 \sim t=t_1$ Normal spin down phase

- ullet The difference between arepsilon and $arepsilon_{mac}$
- Elastic energy accumulated

$t=t_1-0$ The glitch epoch

• Elastic energy reaches the critical value

$t=t_1+0$ Glitch

- The elastic energy is released and the pulsar can be treated as fluid
- The shape changes and a new equilibrium is set up at the end of the glitch

The model – bulk invariable starquake

$$\delta E$$
 w.r.t $\delta arepsilon$ $E_{
m ela} < rac{B}{2(A+B)} |\delta E_{
m k}| (arepsilon_0 - arepsilon_1)$

 The condition of quasi-equilibria during the normal spin down: $\frac{\partial E}{\partial s} = 0$

$$\delta v/v$$
 w.r.t $\delta \varepsilon$ $\frac{\delta \Omega}{\Omega} = -\frac{\delta I}{I} = -\frac{\delta \varepsilon}{1+\varepsilon}$

Conservation of angular momentum

$$\delta \varepsilon \ll \varepsilon \ll 1$$

• The evolution of
$$\varepsilon$$
 $\varepsilon_1 - \varepsilon_0 = -\frac{A}{B} \frac{\delta \Omega}{\Omega}$

result

$$\delta E \sim 4 \times 10^{36} \, {\rm erg}(\frac{t}{10^6 \, {\rm s}}) (\frac{\delta \nu}{\nu} / 10^{-6})$$

- Note that the spin down power and interval between two glitches also affect the energy released
- The observational data of Vela is applied

The result

EoS by Lai & Xu 2009

Parameters set to fit the observation of Vela

The result

fainter than the first). Thus, the 3 σ limit on any increase in the pulsar luminosity in response to energy input from the glitch is less than 1.2×10^{30} ergs s⁻¹ or $\Delta T \sim 0.2\%$, 35 days (3 × 10⁶ s) after the event.² The lower half of Figure 5

$$4 \times 10^{36}/(3 \times 10^6) = 1.3 \times 10^{30} \text{erg/s}$$

Zhou et al. 2014

Helfand et al. 2001

Discussion

 AXP/SGRs: observational hints of accretion (Wang et al. 2006) slow rotators (~10s)

fall back disc + quark star model (Tong & Xu 2011)

implies

Type II

Vela like pulsars: no hints for accretion

fast rotators (~<1s)

implies

Type I

Possible mechanism for Anti-glitches?

Discussion

 The neutron star crust cracking model (Baym & Pines 1976) failed to explain the glitch on Vela because of the short intervals (~1 month, for largest glitches ~1 year)

$$t_{\text{interval}} = \frac{2(A+B)\left(\frac{A}{B}\right)\left(\frac{\Delta\Omega}{\Omega}\right)}{I\Omega\dot{\Omega}}.$$

For quark stars it's no longer a problem because the entire star is in solid state, what matters is the initial ellipticity when the pulsar became solid.

Suggesting that the initial ellipticity for Vela is 0.01 (P~4ms), there could be 10^4 glitches with $\Delta\Omega/\Omega$ ~10^-6 during the lifetime of Vela, which is coincident with the observation.

Conclusion

- There should be two types of starquakes in a solid quark star model: Type I (bulk invariable) & Type II (bulk variable)
- We figure out the energy release of the two types of starquakes, and find out that Type II starquake is much more energetic than Type I.
- Considering other observational features, we think that the two types of glitches in a solid quark star model can account for the two types of glitches in observation.

• Thanks!