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Abstract. In this paper, following the methods of Connor [2], we extend the idea of
statistical convergence of a double sequence (studied by Muresaleen and Edely [12]) to µ-
statistical convergence and convergence in µ-density using a two valued measure µ. We also
apply the same methods to extend the ideas of divergence and Cauchy criteria for double
sequences. We then introduce a property of the measure µ called the (APO2) condition,
inspired by the (APO) condition of Connor [3]. We mainly investigate the interrelationships
between the two types of convergence, divergence and Cauchy criteria and ultimately show
that they become equivalent if and only if the measure µ has the condition (APO2).
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1. Introduction

The usual notion of convergence does not always capture in fine details the prop-

erties of the vast class of sequences that are not convergent. One way of including

more sequences under preview is to consider those sequences that are convergent

when restricted to some ‘big’ set of natural numbers. By a ‘big’ set one understands

a set K ⊂ N having asymptotic density equal to 1. Investigations in this line was

initiated by Fast [8] and independently by Schoenberg [17] who introduced the idea of

statistical convergence. Since then this concept was studied by Šalát [16], Fridy [9],

Connor ([2], [3]) and many others (see [5], [6], [10], [12], [13]) where more references

can be found about related works). In particular, in [2] and [3] Connor proposed two

very interesting extensions of the concept of statistical convergence using a complete
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{0, 1} valued measure µ defined on an algebra of subsets of N which form the basis

of many more recent works ([4] where more references can be found).

The notion of statistical convergence was introduced for double sequences by Mure-

saleen and Edely [12] (also by Móricz [11] who introduced it for multiple sequences).

More results on double sequences can be found in [1], [5], [6], [7]. In Section 3 of

the paper we introduce the notions of µ-statistical convergence and convergence in

µ-density (following the line of Connor [2]) using a two valued measure µ defined on

an algebra of subsets of N×N and mainly investigate the inter-relationship between

these two concepts.

In Section 4 of the paper we focus on the Cauchy criteria and introduce the Cauchy

conditions associated with the two types of convergence defined in Section 3. Though

one of them, namely the ‘µ-statistical Cauchy condition’ appeared in [3], the other

‘Cauchy condition in µ-density’ and in particular the relation between these two

concepts was never explored before. We do precisely this in this section and as the

underlying structure we take a metric space (X, ̺).

Finally, in Section 5 we explore another relatively unexplored concept, namely, the

divergence of double sequences of real numbers corresponding to the measure µ. We

also introduce a new property of the measure µ called (APO2) which plays the most

important role throughout the paper, and show by an example that this condition is

strictly weaker than the condition (APO) of Connor [3].

2. Definitions and notation

Throughout the paper N denotes the set of all natural numbers, χA represents

the characteristic function of A ⊆ N and R represents the set of all real num-

bers. Recall that a set A ⊆ N is said to have the asymptotic density d(A) if

d(A) = lim
n→∞

n−1
n
∑

j=1

χA(j).

Definition 1 ([8]). A sequence {xn}n∈N of real numbers is said to be statistically

convergent to ξ ∈ R if for any ε > 0 we have d(A(ε)) = 0, where A(ε) = {n ∈ N :

|xn − ξ| > ε}.

By the convergence of a double sequence we mean the convergence in Pringsheim’s

sense (see [14]):

A double sequence x = {xij}i,j∈N of real numbers is said to be convergent to ξ ∈ R

if for any ε > 0, there exists Nε ∈ N such that |xij − ξ| < ε whenever i, j > Nε. In

this case we write lim
i,j→∞

xij = ξ.
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A double sequence x = {xij}i,j∈N of real numbers is said to be bounded if there

exists a positive real number M such that |xij | < M for all i, j ∈ N. That is,

||x||(∞,2) = sup
i,j∈N

|xij | < ∞.

Let K ⊆ N × N and let K(i, j) = |{(m, n) ∈ K : m 6 i, n 6 j}|. If the sequence

{K(i, j)/(i · j)}i,j∈N has a limit in Pringsheim’s sense then we say that K has double

natural density and is denoted by d2(K) = lim
i,j→∞

K(i, j)/(i · j).

Definition 2 ([12]). A double sequence x = {xij}i,j∈N of real numbers is said

to be statistically convergent to ξ ∈ R if for any ε > 0 we have d2(A(ε)) = 0, where

A(ε) = {(i, j) ∈ N× N : |xij − ξ| > ε}.

A statistically convergent double sequence of elements of a metric space (X, ̺) is

defined essentially in the same way (with ̺(xij , ξ) > ε instead of |xij − ξ| > ε).

Throughout the paper µ will denote a complete {0, 1} valued finite additive mea-

sure defined on an algebra Γ of subsets of N × N that contains all subsets of N× N

that are contained in the union of a finite number of rows and columns of N×N and

µ(A) = 0 if A is contained in the union of a finite number of rows and columns of

N× N.

3. µ-statistical convergence and convergence in µ-density

We first introduce the following two definitions.

Definition 3. A double sequence x = {xij}i,j∈N of real numbers is said to

be µ-statistically convergent to L ∈ R if and only if for any ε > 0, µ({(i, j) ∈

N× N : |xij − L| > ε}) = 0.

Definition 4. A double sequence x = {xij}i,j∈N of real numbers is said to be

convergent to L ∈ R in µ-density if there exists an A ∈ Γ with µ(A) = 1 such that

{xij}(i,j)∈A is convergent to L.

If Cµ and C∗
µ denote respectively the sets of all double sequences which are µ-

statistically convergent and convergent in µ-density then as in [2] (see also [6]) it

is easy to prove that C∗
µ is a dense subset of Cµ which again is closed in l∞2 (the

set of all bounded double sequences of real numbers endowed with the sup metric).

Further, following the methods of [2] one can easily verify that there exists a measure

µ (the details of µ are given in the next section) such that it is always possible to

construct a double sequence x = {xij}i,j∈N which is µ-statistically convergent but

does not converge to any point in µ-density.

This brings us to the most important question: for which measure µ we have

Cµ = C∗
µ. In [3] it was proved that µ-statistical convergence and convergence in

1143



µ-density of ordinary sequences of real numbers are equivalent if and only if the

measure µ defined on an algebra of subsets of N satisfies the following condition

(APO):

A measure µ satisfies the condition (APO) if for every sequence {An}n∈N of mu-

tually disjoint µ-null sets there exists a countable family of µ-null sets {Bn}n∈N such

that An∆Bn is finite for all n ∈ N and B =
⋃

n∈N

Bn ∈ Γ with µ(B) = 0.

If a measure µ satisfies the condition (APO) (the definition of (APO) being the

same as in the case of ordinary sequences) then as in Theorem 1 [3] we can easily

prove that Cµ = C∗
µ. However, unlike single sequences, the condition (APO) is not

necessary in the case of double sequences. For example, consider the algebra Γ0

consisting of only those subsets of N× N that are contained in the union of a finite

number of rows and columns of N×N and their complements and the corresponding

measure µ0 (which corresponds to Pringsheim’s convergence). Obviously Cµ0
= C∗

µ0

for this measure µ0. However, note that the sets Ai = {i}×N ∈ Γ0 for all i ∈ N with

µ0(Ai) = 0 for all i ∈ N and Ai ∩Aj = ∅ if i 6= j. If we omit from N×N only finitely

many elements of each Ai (or some Ai’s), the resulting set cannot be a µ0-null set,

which shows that µ0 does not satisfy the condition (APO).

From the above we can come to the conclusion that the situation is different for

double sequences and we now introduce the following condition:

(APO2) (Additive property of null sets)

The measure µ is said to satisfy the condition (APO2) if for every sequence {Ai}i∈N

of mutually disjoint µ-null sets (i.e. µ(Ai) = 0 for all i ∈ N) there exists a countable

family of sets {Bi}i∈N such that Ai∆Bi is included in the union of a finite number

of rows and columns of N×N for every i ∈ N and µ(B) = 0 where B =
⋃

i∈N

Bi (hence

µ(Bi) = 0 for every i ∈ N).

Theorem 1. Cµ = C∗
µ if µ satisfies the condition (APO2).

P r o o f. Suppose µ satisfies the condition (APO2). We shall prove that Cµ = C∗
µ.

To prove this it is sufficient to show that Cµ ⊆ C∗
µ. Let x = {xij}i,j∈N ∈ Cµ and

let x be µ-statistically convergent to l. Then for any ε > 0, µ(A(ε)) = 0 where

A(ε) = {(i, j) ∈ N × N : |xij − l| > ε}. Put A1 = {(i, j) ∈ N × N : |xij − l| > 1}

and Ak = {(i, j) ∈ N × N : 1/k 6 |xij − l| < 1/(k − 1)} for k > 2. Thus we get a

collection {Ai}i∈N of subsets of N×N such that Ai ∩Aj = ∅ for i 6= j and µ(Ai) = 0

for each i ∈ N. By virtue of the condition (APO2) there exists a sequence {Bi}i∈N of

sets such that Ai∆Bi is included in the union of a finite number of rows and columns

of N× N for each i ∈ N, and µ(B) = 0 where B =
⋃

i∈N

Bi.
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Let ε > 0 be given. Choose k ∈ N such that 1/k < ε. Then {(i, j) ∈ N × N :

|xij − l| > ε} ⊆
k
⋃

i=1

Ai. As Ai∆Bi (i = 1, 2, . . . , k) are included in the union

of a finite number of rows and columns of N × N, there exists n0 ∈ N such that
( k

⋃

m=1
Bm

)

∩ {(i, j) ∈ N × N : i > n0 ∧ j > n0} =
( k

⋃

m=1
Am

)

∩ {(i, j) ∈ N × N : i >

n0 ∧ j > n0}.

If i, j > n0 and (i, j) /∈ B then (i, j) /∈
k
⋃

m=1
Bm and so (i, j) /∈

k
⋃

m=1
Am. This

implies that |xij − l| < 1/k < ε. Hence {xij}(i,j)∈N×N\B is convergent to l where

µ(N× N \ B) = 1. Therefore x ∈ C∗
µ, that is Cµ ⊆ C∗

µ. Hence Cµ = C∗
µ.

Theorem 2. If Cµ = C∗
µ for a measure µ, then µ has the condition (APO2).

P r o o f. Suppose Cµ = C∗
µ for a measure µ, and ξ ∈ R. Choose a monotonic

sequence {zn}n∈N of distinct elements of R such that zn 6= ξ for any n ∈ N and

lim
n→∞

zn = ξ. Then the sequence {|zn − ξ|}n∈N is a decreasing sequence converging

to zero. Let εn = |zn − ξ|, n ∈ N. Let {Aj}j∈N be a family of mutually disjoint

sets with µ(Aj) = 0 for each j ∈ N. Define a double sequence {xmn}m,n∈N in the

following way: xmn = zj if (m, n) ∈ Aj and xmn = ξ if (m, n) /∈ Aj for any j ∈ N.

Let η > 0 be given. Choose k ∈ N such that εk < η. Then A(η) = {(m, n) ∈

N×N : |xmn−ξ| > η} ⊆ A1∪A2∪. . .∪Ak. Since µ is finitely additive so µ(A(η)) = 0.

Hence x is µ-statistically convergent to ξ, i.e. x ∈ Cµ. Then by our assumption

x ∈ C∗
µ. So there exists M ⊆ N × N with µ(M) = 1 such that {xmn}(m,n)∈M is

convergent to ξ. Let B = N × N \ M . Then µ(B) = 0. Let Bj = Aj ∩ B. Then
∞
⋃

j=1

Bj =
∞
⋃

j=1

(Aj ∩ B) = B ∩
( ∞

⋃

j=1

Aj

)

⊆ B. Therefore µ
( ∞

⋃

j=1

Bj

)

= 0.

Now we claim that Aj ∩ M is included in the union of a finite number of rows

and columns of N×N. If not, then M must contain an infinite sequence of elements

{(mk, nk)}k∈N where both mk,nk → ∞ and xmknk
= zj 6= ξ for all k ∈ N, which

contradicts that {xmn}(m,n)∈M is convergent to ξ. Hence each Aj ∩ M must be

contained in the union of a finite number of rows and columns of N × N. Thus

Ai∆Bi = Ai \ Bi = Ai ∩ M is also included in the union of a finite number of

rows and columns of N× N. This proves that the measure µ satisfies the condition

(APO2). �

Remark 1. A similar condition like condition (APO2) was used in [6] recently

while studying the convergence of double sequences with respect to ideals. The

importance of the condition (APO2) will be more clear in the next sections when we

discuss the Cauchy criteria and then the divergence of double sequences with respect

to the measure µ.
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4. Cauchy criteria for the measure µ

Following the idea of classical Cauchy condition Fridy [9] formulated the statistical

Cauchy condition for sequences of real numbers which was further extended to µ-

statistical Cauchy condition by Connor [3] (extensions of Cauchy conditions with

respect to ideals were also studied by Dems [7]). We modify it to define a Cauchy

type condition associated with µ-statistical convergence of double sequences in a

metric space (X, ̺).

We first introduce the following definition.

Definition 5. A double sequence x = {xij}i,j∈N in a metric space (X, ̺) is said

to be a µ- statistically Cauchy sequence if and only if for every ε > 0 there exists an

A ⊂ N× N with µ(A) = 0 such that (i, j), (i1, j1) /∈ A implies that ̺(xij , xi1j1) < ε.

Theorem 3. If a double sequence x = {xij}i,j∈N is a µ-statistically convergent

then it is µ-statistically Cauchy sequence.

P r o o f. The proof is straightforward. �

Remark 2. The converse is not generally true as can be readily seen by taking

the double sequence {xij}i,j∈N in ℘[a, b] (the metric space of all polynomials on [a,b])

where x1j(t) = 1, j ∈ N, x2j(t) = 1 + t, j ∈ N, x3j(t) = 1 + t + t2/2!, j ∈ N, . . .,

xnj(t) = 1 + t + t2/2! + . . . + tn−1/(n − 1)!, j ∈ N, etc.

Then {xij}i,j∈N is a usual Cauchy double sequence and so it is µ-statistically

Cauchy for any measure µ. But {xij}i,j∈N is not µ-statistically convergent in ℘[a, b].

Theorem 4. In a metric space (X, ̺), for any double sequence x = {xij}i,j∈N the

following statements are equivalent.

(i) x is µ-statistically Cauchy;

(ii) for every ε > 0 there exists (m0, n0) ∈ N × N such that µ({(i, j) ∈ N × N :

̺(xij , xm0n0
) < ε}) = 1.

P r o o f. (i) ⇒ (ii)

Suppose that x = {xij}i,j∈N is a µ-statistically Cauchy sequence. Then for every

ε > 0 there exists an A ⊂ N× N with µ(A) = 0 such that (i, j), (i1, j1) /∈ A implies

that ̺(xij , xi1j1 ) < ε. This implies that if ̺(xij , xi1j1) > ε for (i, j), (i1, j1) ∈ N×N,

then at least one of (i, j), (i1, j1) must be in A. Since Ac 6= ∅, choose (m0, n0) ∈ Ac.

Then ̺(xij , xm0n0
) > ε implies that (i, j) ∈ A. Hence {(i, j) ∈ N×N : ̺(xij , xm0n0

) >

ε} ⊆ A, which implies that µ({(i, j) ∈ N × N : ̺(xij , xm0n0
) > ε}) = 0 and so

µ({(i, j) ∈ N× N : ̺(xij , xm0n0
) < ε}) = 1. Thus (ii) holds.
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(ii) ⇒ (i)

Let (ii) hold and ε > 0 be given. Then there exists (m0, n0) ∈ N × N such

that µ({(i, j) ∈ N × N : ̺(xij , xm0n0
) > 1

2ε}) = 0. Let A = {(i, j) ∈ N × N :

̺(xij , xm0n0
) > 1

2ε}. Then µ(A) = 0. Let (i, j), (i1, j1) /∈ A. Then ̺(xij , xm0n0
) <

1
2ε and ̺(xi1j1 , xm0n0

) < 1
2ε and consequently ̺(xij , xi1j1) < ε. Thus x is a µ-

statistically Cauchy sequence. Hence (i) holds.

Just as µ-statistical Cauchy criterion comes from the concept of µ-statistical con-

vergence, it seems natural to consider a Cauchy like condition associated with the

convergence in µ-density and examine its relationship with µ-statistical Cauchy con-

dition. It appears from literature that no such study has been done not only for

double sequences but not for sequences (viz. {xn}n∈N) either. We now intend to do

precisely this. The whole analysis is done for double sequences only in metric spaces.

One can easily extend the results to sequences by necessary modifications.

The following definition is now introduced.

Definition 6. A double sequence x = {xij}i,j∈N in a metric space (X, ̺) is said

to be a Cauchy double sequence in µ-density if and only if there exists a set A ⊆ N×N

with µ(A) = 1 such that {xij}(i,j)∈A is a usual Cauchy double sequence.

Theorem 5. If x = {xij}i,j∈N is convergent in µ-density then it is also a Cauchy

double sequence in µ-density.

P r o o f. The proof is straightforward. �

Remark 3. The converse is not generally true as can be seen by taking the

example mentioned in Remark 2.

Theorem 6. Every Cauchy double sequence in µ-density is also µ-statistically

Cauchy.

P r o o f. Let x = {xij}i,j∈N be a Cauchy double sequence in µ-density. Then

there exists A ⊆ N × N with µ(A) = 1 such that {xij}(i,j)∈A is a Cauchy double

sequence. Then for every ε > 0 there exists k ∈ N such that ̺(xij , xmn) < ε for

all i, j, m, n > k and (i, j), (m, n) ∈ A. Choose (m0, n0) ∈ A with m0, n0 > k.

Clearly ̺(xij , xm0n0
) < ε for all i, j > k and (i, j) ∈ A. Hence {(i, j) ∈ N × N :

̺(xij , xm0n0
) > ε} ⊆ Ac ∪ F where F is the union of the first k rows and first k

columns of N× N and so µ({(i, j) ∈ N× N : ̺(xij , xm0n0
) > ε}) = 0. Therefore x is

also µ-statistically Cauchy. �

The following example shows that the converse of the above theorem is not always

true.
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Example 1. Let (X, ̺) be a metric space which has at least one Cauchy sequence

{xn}n∈N (say) of distinct points, i.e. xi 6= xj for all i, j ∈ N with i 6= j. Let

N =
⋃

j∈N

∆j be a decomposition of N such that each ∆j is infinite and ∆i ∩ ∆j = ∅

for i 6= j. Let Bj = ∆j × N. Then N× N =
⋃

j∈N

Bj . Let Γ′ be the class of all those

sets A ⊂ N×N that intersect only a finite number of Bi’s. Let Γ = Γ′ ∪ (Γ′)c. Then

Γ is an algebra of subsets of N× N.

We define a measure µ on Γ by

µ(A) = 0 if A ∈ Γ′,

= 1 if A /∈ Γ′.

Let us now define a double sequence y = {yij}i,j∈N by yij = xn if (i, j) ∈ Bn. Let

η > 0 be given. Since {xn}n∈N is a Cauchy sequence, so there exists k ∈ N such that

̺(xn, xm) < η for all m, n > k. Now B = B1 ∪ B2 ∪ . . . ∪ Bk and so µ(A(1
2η)) = 0.

It is evident that (i, j), (i1, j1) /∈ A(1
2η) implies that ̺(yij , yi1j1) < η. Hence y is

µ-statistically Cauchy.

Next we shall show that y is not a Cauchy double sequence in µ-density. On the

contrary, assume that y is a Cauchy double sequence in µ-density. Then there exists

A ⊆ N×N with µ(A) = 1 such that {yij}(i,j)∈A is a Cauchy double sequence in the

usual sense. Then µ(N×N \A) = 0 and so N×N \A ∈ Γ′ and there exists an l ∈ N

such that N× N \ A ⊆ B1 ∪ B2 ∪ . . . ∪ Bl. But then Bi ⊆ A for i > l. In particular,

Bl+1, Bl+2 ⊆ A. From the construction of Bj ’s it clearly follows that given any

k ∈ N, there are (m1, n1) ∈ Bl+1 and (m2, n2) ∈ Bl+2 such that m1, n1 > k as

well as m2, n2 > k. Hence there is no k ∈ N such that whenever (i, j), (i1, j1) ∈ A

with i, j, i1, j1 > k, then ̺(xij , xi1j1) < ε0 where ε0 = 1
2̺(xl+1, xl+2) > 0. This

contradicts the fact that {yij}(i,j)∈A is Cauchy. Thus y is not a Cauchy double

sequence in µ-density.

In the following we will study the equivalence of the µ-statistically Cauchy condi-

tion and Cauchy condition in µ-density under the certain assumption (namely con-

dition (APO2)) which becomes necessary as well as sufficient on certain restrictions

of the space.

Theorem 7. Let (X, ̺) be an arbitrary metric space. Then a µ-statistically

Cauchy double sequence is a Cauchy double sequence in µ-density if µ satisfies the

condition (APO2).

P r o o f. Let x = {xij}i,j∈N be a µ-statistically Cauchy double sequence and

let µ satisfies the condition (APO2). Then for each n ∈ N, there exists an A′
n
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with µ(A′
n) = 0 such that (i, j), (i1, j1) /∈ A′

n implies that ̺(xij , xi1j1) < 1/n. Let

A1 = A′
1, A2 = A′

2 \ A1, A3 = A′
3 \ A1 ∪ A2, . . . , Aj = A′

j \ A1 ∪ A2 ∪ . . . ∪ Aj−1 and

so on. Then µ(Aj) = 0 for all j ∈ N and obviously Ai ∩Aj = ∅ if i 6= j. Then by the

condition (APO2) there exists a family {Bj}j∈N of sets such that Aj∆Bj is included

in the union of a finite number of rows and columns of N × N for each j ∈ N, and

µ(B) = 0 where B =
⋃

j∈N

Bj . Let M = N × N \ B. Then µ(M) = 1. We shall show

that {xij}(i,j)∈M is a Cauchy double sequence.

Let η > 0 be given. Choose l ∈ N such that 1/l < η. Now A′
l \B =

l
⋃

i=1

(Ai \ B) ⊆

l
⋃

i=1

(Ai \ Bi) ⊆
l
⋃

i=1

Fri
for some r1, r2, . . . , rl ∈ N (by the condition (APO2)) where

Fri
is the union of the first ri rows and first ri columns of N × N. Choose n0 ∈ N

such that n0 > r1, r2, . . . , rl. Then A′
l \ B ⊆

l
⋃

i=1

Fri
⊆ Fn0

. Clearly µ(Fn0
) = 0

and so µ(N × N \ Fn0
) = 1. Hence µ(M ∩ (N × N \ Fn0

)) = 1. This shows that

there is an infinite number of elements (i, j) in M with i, j > n0. It now easily

follows that if (i, j), (i1, j1) ∈ M with i, j, i1, j1 > n0 then (i, j), (i1, j1) /∈ A′
l and so

̺(xij , xi1j1) < 1/l < η. This completes the proof of the theorem. �

Theorem 8. If (X, ̺) is a metric space containing at least one limit point and

every µ-statistically Cauchy double sequence is a Cauchy double sequence in µ-

density, then µ satisfies the condition (APO2).

P r o o f. Let ξ be a limit point of X . Then there exists a sequence {xn}n∈N

of distinct points in X such that lim
n→∞

xn = ξ and xn 6= ξ for all n ∈ N. Suppose

{An}n∈N is a sequence of mutually disjoint non-empty sets with µ(An) = 0 for all

n ∈ N. Define a double sequence y = {yij}i,j∈N by yij = xn if (i, j) ∈ An and yij = ξ

if (i, j) /∈ An for any n ∈ N. Let η > 0 be given. Then there exists m ∈ N such

that ̺(xn, ξ) < 1
2η for all n > m. Then A(η) = {(i, j) ∈ N × N : ̺(yij , ξ) > 1

2η} ⊆

A1 ∪ A2 ∪ . . . ∪ Am and so µ(A(η)) = 0. Now clearly (i, j), (i1, j1) /∈ A(η) implies

that ̺(yij , ξ) < 1
2η and ̺(yi1j1 , ξ) < 1

2η. So ̺(yij , yi1j1) < η. This shows that y is

µ-statistically Cauchy. Therefore by our assumption y is also Cauchy in µ-density.

Then there exists M ⊆ N × N with µ(M) = 1 such that {yij}(i,j)∈M is a Cauchy

double sequence.

Let B = N × N \ M . Then µ(B) = 0. First put Bj = Aj ∩ B for j ∈ N. Then

µ(Bj) = 0 for all j. Further,
⋃

j∈N

Bj = B ∩
(

⋃

j∈N

Aj

)

⊂ B. Therefore µ
(

⋃

j∈N

Bj

)

= 0.

Now for the sets Ai ∩ M , i ∈ N the following three cases may arise:

C a s e I: Each Ai ∩ M is included in the union of a finite number of rows and

columns of N× N.
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C a s e I I: Only one of Ai ∩ M ’s, namely Ak ∩ M (say), is not included in the

union of a finite number of rows and columns of N× N.

C a s e I I I: More than one of Ai ∩ M ’s are not included in the union of a finite

number of rows and columns of N× N.

If (I) holds, then Aj∆Bj = Aj \ Bj = Aj \ B = Aj ∩ M is included in the union

of a finite number of rows and columns of N×N and this implies that µ satisfies the

(APO2) condition.

If (II) holds, then we redefine Bk = Ak and Bj = Aj ∩ B for j 6= k. Then

⋃

j∈N

Bj =

[

B ∩

(

⋃

j 6=k

Aj

)]

∪ Ak ⊂ B ∪ Ak

and so µ(
⋃

j∈N

Bj) = 0. Also, since Aj∆Bj = Aj ∩ M for j 6= k and Ak∆Bk = ∅, so

as in case I the criterion for (APO2) condition is satisfied.

If (III) holds, then there exist k, l ∈ N with k 6= l such that Ak ∩ M and Al ∩ M

are not included in the union of a finite number of rows and columns of N × N.

Let ε0 = 1
2̺(xk, xl) > 0. As {yij}(i,j)∈M is a Cauchy double sequence, so for the

above ε0 > 0 there exists k0 ∈ N such that ̺(yij , yi1j1) < ε0 for all i, j, i1, j1 > k0

and (i, j), (i1, j1) ∈ M . Now since Ak ∩ M, Al ∩ M are not included in the union

of a finite number of rows and columns of N × N, we can choose (i, j) ∈ Ak ∩ M

and (i1, j1) ∈ Al ∩ M with i, j, i1, j1 > k0. But then yij = xk and yi1j1 = xl

and so ̺(yij , yi1j1) = ̺(xk, xl) > ε0 (in fact there is an infinite number of indices

(i, j), (i1, j1) in M with this property). This contradicts the fact that {yij}(i,j)∈M

is Cauchy. Therefore Case III cannot arise. And in view of Case I and Case II µ

satisfies the (APO2) condition.

5. µ-statistical divergence and divergence in µ-density

Just as the notion of convergence of double sequences can be extended using a two

valued measure µ, it seems very natural to investigate whether this can also be done

for divergent double sequences of real numbers. It appears from literature that so far

no such study has been done, not only for double sequences, but not for sequences

either. In this section we do precisely this and introduce the ideas of µ-statistical

divergence and divergence in µ-density and mainly investigate their interrelationship

where again surprisingly the condition (APO2) plays a very prominent role. We first

introduce the following two definitions.

Definition 7. A double sequence x = {xij}i,j∈N of real numbers is said to be

µ-statistically divergent to +∞ if µ({(i, j) ∈ N× N : xij 6 G}) = 0 for any positive

real number G.
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Definition 8. A double sequence x = {xij}i,j∈N is said to be divergent in µ-

density to +∞ if there exists A ⊆ N × N with µ(A) = 1 such that {xij}(i,j)∈A is

divergent to +∞.

Throughout we shall denote by S2 the set of all double sequences of real numbers,

and by Dµ the set of all real double sequences which are µ-statistically divergent to

+∞ and by D∗
µ the set of all real double sequences which are divergent in µ-density

to +∞.

Theorem 9. D∗
µ ⊆ Dµ.

P r o o f. Let x = {xij}i,j∈N ∈ D∗
µ. Then there exists A ⊆ N× N with µ(A) = 1

such that {xij}(i,j)∈A is divergent to +∞. Therefore for any real number G > 0

there exists m0 ∈ N such that xij > G for all i > m0, j > m0 and (i, j) ∈ A.

Let A(G) = {(i, j) ∈ N × N : xij 6 G}. Then clearly A(G) ⊆ (N × N \ A) ∪

[({1, 2, 3, . . . , m0} × N) ∪ (N × {1, 2, 3, . . . , m0})] and so µ(A(G)) = 0. Thus x ∈ Dµ

and D∗
µ ⊆ Dµ.

The following example shows that the converse of the above theorem is not gen-

erally true.

Example 2. Let N =
⋃

j∈N

∆j be a decomposition of N such that each ∆j is infinite

and ∆i ∩ ∆j = ∅ for i 6= j. Let Bj = ∆j × N. Then N× N =
⋃

j∈N

Bj . Let Γ′ be the

class of all those sets A ⊂ N × N that intersect only a finite number of Bi’s. Let

Γ = Γ′ ∪ (Γ′)c. Then Γ is an algebra of subsets of N× N.

We define a measure µ on Γ by

µ(A) = 0 if A ∈ Γ′,

= 1 if A /∈ Γ′.

Construct a double sequence y = {yij}i,j∈N of real numbers by yij = n if (i, j) ∈ Bn

for all n ∈ N. Let G > 0 be a real number. Then there exists m ∈ N such that

G < m. Now A(G) = {(i, j) ∈ N×N : yij 6 G} ⊆ B1 ∪ B2 ∪ . . . ∪ Bm. Clearly then

µ(A(G)) = 0 and so y ∈ Dµ.

Now let y be divergent in µ-density to +∞. Then there exists H ∈ Γ′ (i.e.

µ(H) = 0) such that (yij)(i,j)∈M is divergent to +∞ where M = N× N \ H . Since

H ∈ Γ′, so there exists l ∈ N such that H ⊆ B1 ∪ B2 ∪ . . . ∪ Bl and Bi ⊆ M for

all i > l, and so in particular Bl+1 ⊆ M . But this implies that {yij}(i,j)∈Bl+1
is a

subsequence of {yij}(i,j)∈M which is convergent to l + 1. This contradicts the fact

that {yij}(i,j)∈M is divergent to +∞. Therefore y is not divergent in µ-density to

+∞, i.e. y /∈ D∗
µ.
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In the following we study the equivalence of the µ-statistical divergence and diver-

gence in the µ-density of double sequences of real numbers and show that just like

convergence also the condition (APO2) plays a very prominent role here.

Theorem 10. Dµ = D∗
µ if and only if µ satisfies the (APO2) condition.

P r o o f. First suppose that µ satisfies the (APO2) condition. To prove that

Dµ = D∗
µ it is sufficient to prove that Dµ ⊆ D∗

µ. Let x = {xij}i,j∈N ∈ Dµ. Then

for any real number G > 0, µ({(i, j) ∈ N × N : xij 6 G}) = 0. Now we put

A1 = {(i, j) ∈ N × N : xij 6 1}, A2 = {(i, j) ∈ N × N : 1 < xij 6 2}, . . . , Ak =

{(i, j) ∈ N × N : k − 1 < xij 6 k} for all k > 2. Thus we get a collection of

mutually disjoint sets {Ai}i∈N with µ(Ai) = 0 for all i ∈ N. By the (APO2) condition

there exists a family of sets {Bi}i∈N such that Ai∆Bi is included in the union of a

finite number of rows and columns of N × N and µ(B) = 0 where B =
⋃

i∈N

Bi. Let

M = N×N \ B. Then µ(M) = 1. Suppose G > 0 is any given real number. Choose

k ∈ N such that G < k. Then {(i, j) ∈ N× N : xij 6 G} ⊆ A1 ∪ A2 ∪ A3 ∪ . . . ∪ Ak.

Since Ai∆Bi is included in the union of a finite number of rows and columns of

N×N for all i = 1, 2, 3, . . . , k, we can choose an n0 ∈ N such that
( k

⋃

i=1

Bi

)

∩{(i, j) ∈

N× N : i > n0 ∧ j > n0} =
( k

⋃

i=1

Ai

)

∩ {(i, j) ∈ N× N : i > n0 ∧ j > n0}.

Clearly if i, j > n0 and (i, j) ∈ M then (i, j) /∈
k
⋃

i=1

Bi and so (i, j) /∈
k
⋃

i=1

Ai. There-

fore xij > k > G. Thus {xij}(i,j)∈M is divergent to +∞.

Conversely, assume that Dµ = D∗
µ. Let {Ai}i∈N be a family of mutually disjoint

sets with µ(Ai) = 0 for all i ∈ N. Define a double sequence x = {xmn} in the

following way:

xmn =

{

j if (m, n) ∈ Aj ,

m + n if (m, n) /∈ Aj , for all j ∈ N.

Let G > 0 be any real number. Choose k ∈ N such that G < k. Then A(G) =

{(m, n) ∈ N × N : xij 6 G} ⊆ A1 ∪ A2 ∪ . . . ∪ Ak ∪ F , where F is the union of the

first k rows and the first k columns of N × N. Then clearly µ(A(G)) = 0 and so

x ∈ Dµ. By our assumption x ∈ D∗
µ, so there exists M ⊆ N×N such that µ(M) = 1

and {xij}(i,j)∈M is divergent to +∞. Let B = N × N \ M . Then µ(B) = 0. Put

Bj = Aj ∩ B for all j ∈ N. Since
⋃

j∈N

Bj ⊆ B, so µ
(

⋃

j∈N

Bj

)

= 0.

Let j ∈ N. We claim that Aj ∩ M is included in the union of a finite number

of rows and columns of N × N. If not then M must contain an infinite sequence

of elements {(mk, nk)}k∈N where both mk, nk → ∞ and xmknk
= j for all k ∈ N.

1152



But this contradicts the fact that {xij}(i,j)∈M is divergent to +∞. Hence Aj∆Bj =

Aj \ Bj = Aj \ B = Aj ∩ M is included in the union of a finite number of rows and

columns of N × N. Since this is true for each j ∈ N, this proves that µ satisfies the

(APO2) condition.

Remark 4. One question that comes naturally is what is the relation between

the conditions (APO) [3] and (APO2). Obviously (APO) implies (APO2). But the

converse is not true. As an example we consider the algebra Γ = Γ′ ∪ (Γ′)c of N×N

where Γ′ = {A ⊂ N × N : d2(A) = 0} and the measure µ where µ(A) = 0 if A ∈ Γ′

and µ(A) = 1 if A ∈ (Γ′)c. In view of Theorem 2.1 [12], Cµ = C∗
µ and so µ satisfies

the condition (APO2). We can show that µ does not satisfy (APO) (see [6]). We

produce the proof below for the sake of completeness.

First let {Ep}p∈N be a sequence of subsets of N with density zero such that
∞
⋃

p=1
Ep = N. Put Ap = Ep × N for p ∈ N. Then d2(Ap) = 0 for p ∈ N. Let

{Bp}p∈N be an arbitrary sequence of subsets of N × N such that card (Ap∆Bp) is

finite. Then there exists a sequence of finite sets {Fp}p∈N such that Bp ⊇ Ap \ Fp.

We shall show that d2(
∞
⋃

p=1
Bp) 6= 0.

Let m ∈ N. We shall show that for each η > 0 there exists n ∈ N such that n > m

and
1

m · n
card

{

(j, k) : j 6 m ∧ k 6 n ∧ (j, k) ∈
∞
⋃

p=1

(Ap \ Fp)

}

> 1 − η.

To this end we first choose p0 ∈ N such that
p0
⋃

i=1

Ei ⊃ {1, 2, 3, . . . , m}, since

∞
⋃

p=1
Ep = N. So

p0
⋃

i=1

Ai ⊃ {1, 2, . . . , m} × N.

Hence
p
⋃

i=1

(Ai \ Fi) ⊃ ({1, 2, . . . , m} × N) \ F , where F is a finite set. So for each

n ∈ N we have ({1, 2, . . . , m} × {1, 2, . . . , n}) ∩
∞
⋃

i=1

(Ai \ Fi) ⊃ ({1, 2, . . . , m} ×

{1, 2, . . . , n}) ∩
p0
⋃

i=1

(Ai \ Fi) ⊃ ({1, 2, . . . , m} × {1, 2, . . . , n}) \ F (where F does not

depend on n) and for sufficiently big n ∈ N (n > m also) we have the inequal-

ity (m · n)−1 card
(

({1, 2, . . . , m} × {1, 2, . . . , n}) ∩
∞
⋃

i=1

(Ai \ Fi)
)

> 1 − η. This shows

that d̄2

( ∞
⋃

p=1
Bp

)

= 1 which implies that µ does not fulfil (APO).

For the next result we extend the class Dµ to include also those real double se-

quences which are µ-statistically divergent to −∞.
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Theorem 11. S2 = Cµ ∪Dµ if and only if µ is defined on the whole of ℘(N×N).

P r o o f. Suppose first that µ is defined on the whole of ℘(N × N). Let x =

{xij}i,j∈N ∈ S2 and let G > 0 be any real number. Consider the set A(G) = {(i, j) ∈

N × N : xij 6 G}. Then either µ(A(G)) = 0 or µ(A(G)) = 1 as µ is defined on

the whole of ℘(N × N). If µ(A(G)) = 0 for all G > 0, then x ∈ Dµ. Otherwise

µ(A(G)) 6= 0 for some G > 0. Let G′ > 0 be such that µ(A(G)) = 1. Now we have

two possibilities:

i) for any real number g > 0, µ({(i, j) ∈ N× N : xij < −g}) = 1.

ii) there exists a g′ > 0 such that µ({(i, j) ∈ N× N : −g′ 6 xij < G′}) = 1.

In the first case x is µ-statistically divergent to −∞ and so x ∈ Dµ. If (ii) holds

then let T = {(i, j) ∈ N × N : a 6 xij 6 b} where a = −g′, b = G′. Note that

µ(T ) = 1. Let us construct the sets A1 = {(i, j) ∈ T : a 6 xij 6 1
2 ((a + b)} and

B1 = {(i, j) ∈ T : 1
2 (a + b) 6 xij 6 b}. Since µ(T ) = 1, T = A1 ∪ B1 and it

is clear that both µ(A1) and µ(B1) cannot be 0 simultaneously (since µ is finitely

additive). Thus one of µ(A1) and µ(B1) is equal to 1. Denote it by D1 and the

interval corresponding to it by J1. Thus D1 = {(i, j) ∈ T : xij ∈ J1} and µ(D1) = 1.

Again dividing J1 into two equal parts and proceeding as above we can find a set

D2 and an interval J2 such that D2 = {(i, j) ∈ T : xij ∈ J2} and µ(D2) = 1.

Proceeding in this way we obtain a sequence of closed and bounded intervals {Jn}

such that J1 ⊇ J2 ⊇ . . . ⊇ Jn . . . , Jn = [an, bn] and lim
n→∞

(bn − an) = 0 and the sets

Dn = {(i, j) ∈ T : xij ∈ Jn} and µ(Dn) = 1 for all n ∈ N.

Then by the nested intervals theorem there exists ξ ∈
⋂

n∈N

Jn. Let ε > 0 be given.

Let M ′(ε) = {(i, j) ∈ N × N : |xij − ξ| < ε}. Now we have Jm ⊆ (ξ − ε, ξ + ε) for

sufficiently large m ∈ N. Therefore µ(M ′(ε)) = 1. Since {(i, j) ∈ N× N : |xij − ξ| >

ε} ⊆ (T \M ′(ε))∪ T c, so µ({(i, j) ∈ N×N : |xij − ξ| > ε}) = 0 and so x ∈ Cµ. This

proves that S2 = Cµ ∪ Dµ.

Conversely, suppose that S2 = Cµ ∪ Dµ. Let µ be not defined on the whole of

℘(N × N). Then there exists A ⊆ N × N such that µ(A) and µ(N × N \ A) are

not defined. Let us construct a sequence x = {xij}i,j∈N by xij = χA(i, j) for all

(i, j) ∈ N× N. Clearly x cannot belong to Dµ. Also, for every ξ ∈ R and 0 < ε < 1

the set {(i, j) ∈ N × N : |xij − ξ| > ε} is equal to A or N × N \ A or N × N and as

none of them have measure equal to zero, so x is not µ-statistically convergent and

so x /∈ Cµ. Thus x /∈ Dµ ∪ Cµ which contradicts that S2 = Cµ ∪ Dµ. Hence µ must

be defined on the whole of ℘(N× N). This completes the proof of the theorem. �

Remark 5. Just as we extended the idea of divergence to +∞ to µ-statistical

divergence to +∞ and divergence to +∞ in µ-density, the same can also be done for
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divergence to −∞. All the definitions and results proved so far can be obtained in a

similar fashion with necessary modifications which are very obvious.
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