
Two-Variable Logic on Words with Data∗

Mikołaj Bojańczyk
Warsaw University

Anca Muscholl
LIAFA, Paris VII

Thomas Schwentick
Dortmund University

Luc Segoufin
INRIA, Paris XI

Claire David
LIAFA, Paris VII

Abstract— In a data word each position carries a
label from a finite alphabet and a data value from
some infinite domain. These models have been already
considered in the realm of semistructured data, timed
automata and extended temporal logics.

It is shown that satisfiability for the two-variable
first-order logic FO2(∼,<,+1) is decidable over finite
and over infinite data words, where∼ is a binary
predicate testing the data value equality and+1,<
are the usual successor and order predicates. The
complexity of the problem is at least as hard as Petri
net reachability. Several extensions of the logic are
considered, some remain decidable while some are
undecidable.

I. I NTRODUCTION

Finding decidable logics for models that handle
data values is an important problem in several
areas that need algorithmic procedures for prop-
erty validation. Examples can be found in both
program verification and database management. In
this paper we reconsider a data model that was
investigated both in verification (related to timed
languages [1] and extended temporal logics [4])
and in XML reasoning [16]. As in these papers,
data values are modeled by an infinite alphabet,
consisting of a finite and an infinite part. The logic
can address the finite part directly, while the infinite
part can only be tested for equality. As a first step,
this paper considers simple models: words, both
finite and infinite.

Our main result is that the satisfiability prob-
lem for two variable first-order logic extended by
equality tests for data values –FO2(∼,<,+1) for
short – is decidable over word models. When more
variables are permitted, or when a linear order on
the data values is available, or when more than
two equivalence relations are present, the logic
becomes undecidable.

Following [1], a data word is a finite sequence
of positions having each a label over some finite
alphabet together with a data value over some
infinite alphabet. The logic admits the equality
test x ∼ y, which is satisfied if both positions
carry the same data value. Moreover, there are two

∗Work supported by the French-German cooperation pro-
gramme PROCOPE, the EU-TMR network GAMES and Polish
MNII grant 4 T11C 042 25

navigational predicates on strings: the linear order
< and the successor relation+1. (With only two
variables, the successor+1 cannot be defined in
terms of the order<.) As usual we also have a
unary predicate corresponding to each letter of the
finite alphabet.

Perhaps surprisingly, we show that the satisfia-
bility problem forFO2(∼,<,+1) is closely related
to the well known problem of reachability for
Petri nets. More precisely we show that languages
formed by the projection onto the finite alphabet
of word models definable by anFO2(∼,<,+1)
sentence are recognized by multicounter automata
(which are equivalent to Petri nets [7]). The con-
verse is also true, modulo an erasing inverse mor-
phism. Moreover, the correspondences are effec-
tive. We give a 2EXPTIME reduction of satisfia-
bility for FO2(∼,<,+1) to emptiness for multi-
counter automata which is known to be decidable
[11], [14]. For the opposite direction we provide a
PTIME reduction from emptiness for multicounter
automata to satisfiability forFO2(∼,<,+1). Since
there is no known elementary upper bound for
emptiness for multicounter automata (see e.g. [5]),
finding the exact complexity of satisfiability for
FO2(∼,<,+1) formulas is a hard question.

The decidability ofFO2(∼,<,+1) immediately
implies the decidability ofEMSO2(∼, <,+1).
HereEMSO2 stands for the closure ofFO2 under
existential quantification of sets of nodes. Without
data values,EMSO2(+1) has the same expressive
power as MSO. In this sense the decidability of
EMSO2(∼, <,+1) can be seen as an extension of
the classical decidability result of monadic second-
order logic over strings.

We also show that the satisfiability problem
for FO2(∼,<,+1) remains decidable over dataω-
words. In this case we no longer recognize the
string projection of definable languages but we
show that, again using emptiness of multicounter
automata, it is decidable whether anFO2(∼,<,+1)
formula is satisfied in a dataω-word whose string
projection is ultimately periodic.

We then show that our decision procedure works
even when the logic is extended by predicates�1
and +2, +3, ... Here �1 is a binary predicate,



which relates two positions if they have the same
data value, but all positions between them have a
different data value. The+k binary predicate, on
the other hand, generalizes the successor predicate
+1 to thekth successor.

The paper is organized as follows. The main
result – a decision procedure for satisfiability of
FO2(∼,<,+1)– is presented in Section III. In the
proof, a concept of data automaton is introduced.
There are two steps: first we show in Section IV
that each language definable inFO2(∼,<,+1) can
be recognized by a data automaton; then we show
in Section V how emptiness for data automata
can be decided using multicounter automata. The
reduction from reachability of multicounter au-
tomata to satisfiability ofFO2(∼,<,+1) is shown
in Section VI. In Section VII, we extend the main
decidability result: first by adding new predicates,
second by consideringω-words. In Section VIII,
we show that the logic becomes undecidable when:
a) three variables are allowed (even without the
order <); or b) a linear order on data values is
included. Finally, we conclude with a discussion
of the results. Because of space limitation some
proofs are missing and are available only in the
full version of this paper.

Related work.Automata on finite strings of
data values (without labels) were introduced in
[18], [9]. They used registers to store data values
and data values could be compared wrt. equality.
In [16] register automata and pebble automata
over such words were studied. Several versions
of these automata (one-way/two-way, determin-
istic/nondeterministic/alternating) were compared.
Most of the results were negative however, i.e.,
most models are undecidable. Register automata
have been also considered by Bouyer et al. [1] in
the context of timed languages. However, the au-
tomata considered therein have a limited expressive
power and cannot test data equality on arbitrary
two positions (they are one-way automata). In
particular the string projection of any language rec-
ognized by their automata is regular. As mentioned
above, this is not the case for the logic considered
in this paper.

In [4] an extension of LTL was given which
can manipulate data values using afreeze op-
erator. Their decidable fragment is incompara-
ble to FO2(∼,<,+1) as it can only process the
word left-to-right, but can express properties that
FO2(∼,<,+1) cannot.

Restricting first-order logic to its two-variable
fragment is a classical idea when looking for
decidability [8]. Over graphs or over any relational

structures, first-order logic is undecidable, while
its two-variable fragment is decidable [15]. This
does not imply anything on the decidability of
FO2(∼,<,+1), since the equivalence relation, the
successor relation and the order< cannot be ax-
iomatized with only two variables. A recent paper
generalized the result of [15] in the presence of
one or two equivalence relations [10]. Again this
does not apply to our context as we also have the
order and the successor relation. However [10] also
showed thatFO2 with threeequivalence relations,
without any other structure, is undecidable. This
implies immediately that we cannot extend the
decidability result to data words with more than
two data parts.

In the context of XML reasoning we considered
FO2(∼,+1) over unranked ordered data trees [2]
and showed the decidability of the satisfiability
question. In this context, the predicate+1 stands
for two successor predicates, one for the vertical
axis and one for the horizontal one. As data words
are special cases of data trees, this implies the
decidability ofFO2(∼,+1) over words. The com-
plexity for data trees is in 3NEXPTIME but it be-
comes 2NEXPTIME when restricted to data words.
This should be contrasted with the complexity of
satisfiability ofFO2(∼,<,+1) which is not known
to be elementary.

On strings over a finite alphabet (without data
values), theFO2(<,+1) fragment of first-order
logic is very well understood. A characterization in
terms of temporal logic says that it is equivalent to
LTL restricted to the unary operatorsF,G,X and
their past counterparts [6]. In terms of automata,
FO2(<) is equivalent to partially-ordered, two-
way deterministic finite automata [17], while in
terms of algebra the logic corresponds to the semi-
group variety DA [19]. The satisfiability question
is NEXPTIME-complete in [6] (using an arbitrary
number of unary predicates).

II. PRELIMINARIES

Let Σ be a finite alphabet oflabels andD an
infinite set of data values. A data word w =
w1 · · ·wn is a finite sequence overΣ × D, i.e.,
eachwi is of the form (ai, di) with ai ∈ Σ and
di ∈ D. A data languageis a set of data words, for
someΣ. The idea is that the alphabetΣ is accessed
directly, while data values can only be tested for
equality. This amounts to considering words overΣ
endowed with an equivalence relation on the set of
positions. The string str(w) = a1 · · · an is called
the string projection of A. The marked string
projection mstr(w) = (a1, b1) · · · (an, bn) ∈ (Σ×

2



{0, 1})∗ of w adds a new coordinate, wherebi = 1
on all positions i with the same data value as
i − 1. For a language of data wordsL, we write
str(L) for {str(w) | w ∈ L} and mstr(L) for
{mstr(w) | w ∈ L}.

A class is a maximal set of positions in a
data word with the same data value. For a class
with positions i1 < · · · < ik the class string
is ai1 · · · aik

and the marked class string is
(ai1 , bi1) · · · (aik

, bik
), with the bi as above.

Data words can be seen as models for first-order
logic, where the carrier of the model is the set of
positions in the word. LetFO(∼, <,+1) be first-
order logic with the following atomic predicates:
x ∼ y, x < y, x = y+ 1, and a predicatea(x) for
everya ∈ Σ. The interpretation ofa(x) is that the
label in positionx is a. The order< and successor
+1 are interpreted in the usual way. Two positions
satisfyx ∼ y if they have the same data value. We
write L(ϕ) for the set of data words that satisfy
the formulaϕ. A formula satisfied by some data
word is satisfiable.

We write FOk for formulas using at mostk
variables. Note that the following examples use 2
variables only.

Example: We present here a formulaϕ such that
str(L(ϕ)) is exactly the set of all words over{a, b}
that contain the same number ofa’s andb’s.

• The formulaϕa says alla’s are in different
classes:

ϕa = ∀x∀y(x 6= y ∧ a(x)∧ a(y)) → x 6∼ y .

Similarly we defineϕb.
• The formulaψa,b says each class with ana

also contains ab:

ψa,b = ∀x∃y
(
a(x) → (b(y) ∧ x ∼ y)

)
.

Similarly we defineψb,a.
• Hence, in a data word satisfyingϕ = ϕa ∧
ϕb∧ψa,b∧ψb,a the numbers ofa andb-labeled
positions are equal.

This can be easily extended to describe data words
with an equal number ofa’s, b’s and c’s, hence a
language with a non-context-free string projection.

Example: For a ∈ Σ the formula below is satisfied
precisely by the firsta which has ana in a different
class on its left, i.e., the firsta in the seconda-class.

a(x) ∧ ∃y (y < x ∧ a(y) ∧ x � y)∧
∀y (y < x ∧ a(y)) →

[x � y ∧ ∀x
(
(x < y ∧ a(x) ) → x ∼ y

)
]

Note how in this example the variablex is reused.

III. D ECIDABILITY OF FO2(∼,<,+1)

The main result of this paper is:

Theorem 1 Satisfiability of FO2(∼,<,+1) over
data word models is decidable.

The basic idea of the proof of Theorem 1 is to com-
pute for each formulaϕ a multicounter automaton
that recognizes str(L(ϕ)). As an intermediate step,
we use a new type of finite automaton that works
over data words, called a data automaton (these
will be defined in Section IV). Theorem 1 follows
immediately from the following three statements.

Proposition 2 Every language definable in
FO2(∼,<,+1) is recognized by an effectively
obtained data automaton.

Proposition 3 From each data automaton we can
compute a multicounter automaton recognizing the
string projection of its recognized language.

Theorem 4 [11], [14] Emptiness of multicounter
automata is decidable.

Proposition 2 is shown in Section IV, and Propo-
sition 3 is shown in Section V. Regarding com-
plexity, satisfiability of aFO2(∼,<,+1) formula
is reduced in 2EXPTIME to the emptiness of a
multicounter automaton of doubly exponential size.

IV. DATA AUTOMATA

In this section we definedata automata1, a
means to define data languages, and show that they
can recognize all languages of data words definable
in FO2(∼,<,+1).

A data automatonD = (A,B) consists of

• a nondeterministic letter-to-letter string trans-
ducer A (the base automaton) with input
alphabetΣ × {0, 1}, for someΣ and some
output alphabetΓ (letter-to-letter means that
each transition reads and writes exactly one
symbol), and

• a nondeterministic string automatonB (the
class automaton) with input alphabetΓ.

A data word w = w1 · · ·wn ∈ (Σ × D)∗ is
accepted byD if there is anacceptingrun of A
on the marked string projection ofw, yielding an
output stringb1 · · · bn, such that, foreach class
{x1, . . . , xk} ⊆ {1, . . . , n}, x1 < · · · < xk, the
class automaton acceptsbx1 , . . . , bxk

.

1Our data automata differ from what is called data automaton
in [1], which are essentially 1-way automata with one register.

3



As an example, consider the property: “w has
at least two classes with ana”. The data au-
tomaton for this property works as follows. The
base automaton nondeterministically chooses two
positions with ana and outputs 1 on each of them
and 0 everywhere else. If there are no such two
positions it rejects. The class automaton checks that
each class contains at most one1, thus verifying
that the two positions were chosen from different
classes. We call belowrenaminga letter-to-letter
morphism, that is a morphism defined ash : Σ →
Σ′, whereΣ,Σ′ are alphabets.

Lemma 5 Languages recognized by data automata
are closed under union, intersection, and renaming.

Proof. Closure under union and intersection is
obtained using the usual product construction. Clo-
sure under renaming is obtained using the non-
determinism of the base automaton. �

The same cannot be said about negation. Indeed,
if we were to have effective closure under negation,
then all data languages defined by monadic second-
order logic could be effectively translated into
data automata, as we show that data automata
recognize all ofEMSO2(∼, <,+1). This would be
a contradiction, since we show that emptiness of
data automata is decidable, while satisfiability is
undecidable for monadic second-order logic [16]
(even for first-order logic, see Proposition 20).

The following lemma presents a family of data
languages recognizable by data automata which
will be used later in the proof.

Lemma 6 For any given regular languageL ⊆
(Σ×{0, 1})∗, there is a data automaton accepting
all data stringsw, for which each marked class
string belongs toL.

Proof. The base automaton just copies its inputΣ×
{0, 1} and the class automaton checks membership
in L. �

One can also verify ifsomemarked class string
belongs toL: for each positioni, the base automa-
ton nondeterministically chooses to either output
the input symbolai or a special symbol⊥. It
accepts, if it outputs at least one non-⊥ symbol.
The class automaton accepts the languageL∪⊥∗.

A. Reduction to data automata

The goal of this section is to prove Proposition 2,
i.e. to transform a formula ofFO2(∼,<,+1) into
an equivalent data automaton of doubly exponential
size. The transformation is done in two steps, first

we rewrite the given formula into “intermediate
normal form”, and then we show that the normal
form can be recognized by data automata. Each
step gives an exponential blowup.

In the first step, we transformFO2(∼,<,+1)
formulas into an intermediate normal form (we
denote astype below any conjunction of unary
predicates or their negations):

Definition 7 A formula is said to be in in-
termediate normal form if it is of the form
∃R1 · · ·Rm (θ1 ∧ · · · ∧ θn), where ∃R1 · · ·Rm

quantifies over unary predicates (sets of positions)
and eachθi is of one of the following kinds:

(1) ∀x∀y
[
ρ(x, y) ∧ α(x) ∧ β(y) ∧ δ(x, y)

]
→

γ(x, y)
(2) ∀x∃y α(x) →

[
β(y) ∧ δ(x, y) ∧ ε(x, y)

]
(3) ∀x∀y ψ

where

• α andβ are types,
• ρ(x, y) = (x 6= y + 1 ∧ y 6= x+ 1 ∧ x 6= y),
• δ(x, y) is x ∼ y or x 6∼ y,
• γ(x, y) is x < y, x > y, or ff, and
• ε(x, y) is x + 1 < y, x + 1 = y, x = y,
x = y + 1 or x > y + 1,

• ψ is a quantifier free formula in DNF that
doesn’t use∼.

Here,x+1 < y is an abbreviation forx < y∧x+
1 6= y.

Formally speaking, a formula in intermediate
normal form is a normal form ofEMSO2(∼, <
,+1), the extension ofFO2(∼,<,+1) by existen-
tial monadic second-order predicates quantification
in front of FO2(∼,<,+1) formulas. Note that as
far as satisfiability is concernedFO2(∼,<,+1) and
EMSO2(∼, <,+1) are equivalent.

Lemma 8 Every formula ofFO2(∼,<,+1) can be
effectively transformed into an equivalent formula
in intermediate normal form of exponential size,
with exponentially many unary predicatesRi.

Proof. The overall idea is classical: we reduce the
quantifier depth to 2, then we add unary pred-
icates that color certain distinguished positions,
resp. classes containing distinguished positions.
These additional colors are then used to simplify
the formulas.

The formal proof proceeds in three steps.
Step 1: Scott normal form
The first step is classical for two variable logics
(see e.g. [8]). It says that eachFO2(∼,<,+1)

4



formulaϕ is equivalent with respect to satisfiability
to a (linear size) formulaϕ′ in Scott Normal Form,

∀x∀y χ ∧
∧
i

∀x∃y χi,

whereχ and eachχi are quantifier-free. The sig-
nature ofϕ′ is an extension of the signature ofϕ
by (linearly many) unary predicates. Furthermore,
a data word satisfiesϕ if and only if it can be
extended by additional predicates to a word satis-
fying ϕ′. The additional unary predicates are the
relationsRi which are existentially quantified by
the formula. The additional predicates state which
subformulas are satisfied at a given position.

Hence,ϕ is equivalent to a formula of the form

∃R1 · · · ∃Rm

(
∀x∀y χ ∧

∧
i

∀x∃y χi

)
.

Step 2: Dealing with∀x∀y χ.
In the second step we show that the formula
∀x∀y χ can be replaced by a formula

∃R1 · · · ∃Rm

∧
i

θi ∧
∧

i=1,2,3

∀x∃y ξi

where theξi are again quantifier-free and eachθi

is of the form (1) (from Definition 7). Moreover,
the number ofθi is exponential.

To this end, we first rewrite∀x∀y χ into the
following form:

∀x∀y
(

y = x+ 1 → ψy=x+1(x, y)
∧ x = y + 1 → ψx=y+1(x, y)
∧ x = y → ψx=y(x, y)
∧ ρ(x, y) → ψρ(x, y)

)
where theψ formulas are quantifier-free and use
only ∼, < and the unary predicates. They have the
same size asχ. Over the (linearly ordered) models
considered in this paper this is logically equivalent
to:

∀x∀y
(
ρ(x, y) → ψρ(x, y)

)
∧ ∀x∃y

(
¬Rlast(x) → (y = x+ 1 ∧ ψy=x+1)

)
∧ ∀x∃y

(
¬Rfirst(x) → (x = y + 1 ∧ ψx=y+1)

)
∧ ∀x∃y

(
(x = y ∧ ψx=y)

)
Here, we assume thatRfirst and Rlast are two

extra predicates marking the first and last position
of the word, respectively. They can easily be en-
forced by a formula of the form (3). The last three
conjuncts give rise toξ1, ξ2, ξ3 and we are left with
the first conjunct∀x∀y

(
ρ(x, y) → ψρ(x, y)

)
. We

turn ψρ into CNF (with an exponential blow-up)
and rewrite it as∧

α,β

(α(x) ∧ β(y)) → ψ(x, y)

where α, β are types occurring inψρ, and
ψ(x, y) is a quantifier-free formula using only<
and∼. Finally, we rewrite the formulaψ(x, y) into
the form:

ψ(x, y) = (x ∼ y → γ1(x, y))∧(x � y → γ2(x, y))

whereγ1(x, y) and γ2(x, y) arex < y, x > y, ff
or tt.

Step 3: Dealing with
∧
i

∀x∃y χi.

In the last step, we show that each formula
∀x∃y χ can be rewritten into an equivalent formula
∃R′

1 · · · ∃R′
n

∧
i θi with θi of type (2) or (3) in Def-

inition 7. Moreover, the size ofθi and the number
n of additional predicates are both polynomial.

First, χ can be written as a disjunction (of
exponential size)∨

j

(
αj(x) → βj(y) ∧ δj(x, y) ∧ εj(x, y)

)
,

where theαj , βj , δj , εj are of corresponding forms
as in (2). It only remains to eliminate the dis-
junction. To this end, we add for each conjunct
above a new unary predicateRχ,j with the intended
meaning thatRχ,j holds at a positionx if there is
a y such thatαj(x) ∧ βj(y) ∧ δj(x, y) ∧ εj(x, y)
holds. Formally, we rewrite each∀x∃y χ as

∃Rχ,1 Rχ,2 · · · (∀x
∨

iRχ,i(x)) ∧∧
j ∀x∃y

(
αj(x) ∧Rχ,j(x) →

(βj(y) ∧ δj(x, y) ∧ εj(x, y))
)
.

By putting together the obtained formulas we get
a formula in intermediate normal form. �

We are now ready for the second step, where
the intermediate normal form is transformed into
a data automaton, thus completing the proof of
Proposition 2. Since data automata are closed under
renaming and intersection, it suffices to consider
just the conjunctsθ in Definition 7. Note that the
Cartesian product gives an exponential blowup.

Lemma 9 Every conjunctθ of a formula in inter-
mediate normal form can be recognized by a data
automaton with constantly many states.

Proof. The formulaθ may be in one of the three
forms (1), (2) or (3) from Definition 7. The case
of formula of the form (3) is no problem as it can
easily be checked using the base automaton. We
consider first the case of (1):

∀x∀y
[
(ρ(x, y) ∧ α(x) ∧ β(y) ∧ δ(x, y)) →

γ(x, y)
]

5



The proof uses the data automaton for mark-
ing a fixed number of classes, sayk for some
constant k. We explain this technique first.
The base automaton uses the output alphabet
Γk = {⊥, (1, 1), . . . , (k, 1), (1, 0), . . . , (k, 0)}. It
guesses, for each positioni an output symbolbi ∈
Γk. It makes sure that, for eachj, at most once
the symbol (j, 1) is chosen. The class automa-
ton accepts then all strings of the form⊥∗ and
(l, 1)(l, 0)∗, for somel. In this way, it is ensured
that, for each class, always the output symbol⊥ is
chosen or the first output symbol is(l, 1) and all
others are(l, 0), for somel. As each(j, 1) is used
at most once, it can not happen that two classes
share the same(j, 0) (and (j, 1)) symbols. Thus,
the base automaton can assume, for each position,
to which of the≤ k classes it belongs.

It remains to perform a case analysis on the
formulasδ, γ and ε.

In the case whereδ(x, y) is x ∼ y the formulaθ
gives a regular condition that must be satisfied by
each class. Thanks to Lemma 6, we can use that
class automaton to verifyθ.

If δ(x, y) is x 6∼ y there are three subcases.
• γ(x, y) = ff means that the data string may

not have anα- and aβ-position which are not
adjacent (or identical) and in different classes.
It is easy to see that the formula evaluates to
false if bothα andβ appear in the string and
there are at least 4 classes with anα or at
least 4 classes with aβ.
Thus, it is sufficient that the base automaton
selects (at most) 6 classes, using the technique
explained above, and tests that (a) neitherα
nor β occur outside these 6 classes and (b)
within the 6 classesθ holds.

• γ(x, y) = x < y. In this case only two classes
are involved.
Let Lstα be theposition of the rightmostα
in the string and Llstα be the position of the
rightmostα that is in a different class than
Lstα. Using this notation,θ holds if and only
if w (a) has noβ up to position Llstα − 2;
and (b) theβ-positions between Llstα−1 and
Lstα − 2 are in the same class as Lstα.
Thus, the base automaton simply guesses the
two classes containing Lstα and Llstα and
tests that (a) and (b) hold.

• The case whereγ(x, y) is x > y is analogous.
It remains to consider formulasθ of type (2):

∀x∃y α(x) →
[
β(y) ∧ δ(x, y) ∧ ε(x, y)

]
As before, the difficult case is whenδ(x, y) is x 6∼
y. If ε(x, y) is one of x + 1 = y, x = y, x =

y+1 thenθ can be verified by the base automaton.
Otherwiseε(x, y) is x + 1 < y or x > y + 1. We
describe the case ofx + 1 < y, the other being
analogous.

In this case,θ expresses that eachα-position
needs aβ-position in a different class to its right
(but not as its right neighbor). Since everyα-
position before Llstβ−2 is guaranteed to have such
aβ-witness in a different class, it suffices to require
the following properties: a) from position Lstβ − 1
on, the data word contains noα; and b) allα’s
between Llstβ−1 and Lstβ−2 are not in the same
class as Lstβ . This involves checking 2 classes and
can be handled analogously as the cases above.

As for the size, it is easy to check that the
base and class automata have a number of states
bounded by a constant. The number of transitions
is bounded by the number of types (if we allow
also type negations in the transitions, the number
of transitions is also bounded by a constant).�

We would like to note that the converse of
Proposition 2 does not hold. There are two rea-
sons for this. First, a data automaton can verify
arbitrary regular properties of classes, which can-
not be done with first-order logic. For instance,
no FO2(∼,<,+1) formula captures the language:
“each class is of even length”. This problem can
be solved by adding a prefix of monadic second-
order existential quantification. However, even with
such a prefix, it is difficult to write a formula
that describes accepting runs of data automata.
The problem is that describing runs of the class
automata requires comparing successive positions
in the same class, which need not be successive po-
sitions in the word. That is why we consider a new
predicate�1, called theclass successor, which is
true for two successive positions in a same class of
the data word. The following result easily follows
from Proposition 2 and the obvious extension of
its proof to includeEMSO2(∼,<,+1,�1):

Proposition 10 A language is recognized
by a data automaton iff it is definable in
EMSO2(∼,<,+1,�1).

Proof. It is easy to extend the proof of Proposition
2 to the logic EMSO2(∼,<,+1,�1). The other
direction follows immediately from the classical
simulation of automata inEMSO2(+1). �

By translating a formula into a data automaton
and then back again into a formula, we can obtain a
certain normal form forEMSO2(∼,<,+1,�1). In

6



the normal form, the formulas verify the correct-
ness of transitions in an accepting run. In particular,
the order< is not used.

Remark: Using the same idea of the proof of
Proposition 2 one could show the following nor-
mal form for EMSO2(∼, <,+1). Each formula
of EMSO2(∼, <,+1) is equivalent to one where
the FO part is a Boolean combination of simple
formulas of the form (whereα andβ are types):

(a) θ is does not use∼ (i.e., an FO2(<,+1)
formula).

(b) Each class contains at most one occurrence
of α.

(c) In each class, all occurrences ofα occur strictly
before all occurrences ofβ.

(d) In each class with at least one occurrence of
α, there must be aβ, too.

(e) If x is not in the same class at its successor
then it is of typeα.

V. RECOGNIZING THEPROJECTION BY

MULTICOUNTER AUTOMATA

In this section, we show that the string projection
of a language recognized by a data automaton can
be recognized by a multicounter automaton.

We first introduce multicounter automata. Anε-
free multicounter automaton is a finite automa-
ton extended by a finite setC = {1, . . . , n}
of counters. It can be described as a tuple
(Q,Σ, C, δ, qI , F ). The set of statesQ, finite alpha-
bet Σ, initial stateqI ∈ Q and final statesF ⊆ Q
are as in a usual finite automaton. The transition
relationδ is more involved – it is a finite subset of
Q× Σ× (dec∗(i) inc∗(i))i∈C ×Q.

The idea is that in each step, the automaton
can change its state and modify the counters, by
incrementing or decrementing them, according to
the current state and the current letter on the input.
In a step, the automaton can apply to each counter
i ∈ C a sequence of decrements, followed by
a sequence of increments. Whenever it tries to
decrement a counter of value zero the computation
stops. Besides this, the transition of a multicounter
automaton does not depend on the value of the
counters. In particular, it cannot test whether a
counter is exactly zero. Nevertheless, by decre-
menting a counterk times and incrementing it
again afterward it can test whether the value of
that counter is at leastk.

A configuration of such an automaton is a tuple
c = (q, (ci)i∈C) ∈ Q × Nn, where q is the
current state andci is the value of the counteri. A

transition

(q, a, (decki(i)incli(i))i∈C , q
′) ∈ δ

can be applied if the current state isq, the current
letter is a and for every counteri ∈ C, the value
ci is at leastki. The successor configuration is
d = (q′, (c(i)−ki+li)i∈C). A run over a wordw is
a sequence of configurations that is consistent with
the transition functionδ. The acceptance condition
is given by a subsetR of the countersC and the
final states. A run isaccepting if it starts in the
state qI with all counters empty and ends in a
configuration where all counters inR are empty
and the state is final.

The key idea in the reduction from data automata
to multicounter automata, is that acceptance can be
expressed using the Shuffle(L) operation defined
below.

Definition 11 A word v ∈ (Σ × {0, 1})∗ is a
marked shuffle of n words u1, . . . , un if its po-
sitions can be colored withn colors so that we
have:

1) for everyi, the positions colored with colori
– read from left to right – give the wordui,

2) a position ofv is labeled by a symbol from
Σ × {1} iff its predecessor position has the
same color (neighborhood condition).

We write Shuffle(L) for the set of marked shuffles
of words from a languageL ⊆ Σ∗.

Proposition 12 LetD = (A,B) be a data automa-
ton. The string projection str(L(D)) is recognized
by a multicounter automaton of sizeO(|A||B|).

Proof. By definition of data automata, a word

v = (a1,m1) · · · (an,mn) ∈ (Σ× {0, 1})∗

belongs to the marked string projection mstr(L(D))
if and only if it there is an accepting run of the
base automaton onv with output b1 · · · bn such
that (b1,m1) · · · (bn,mn) is a marked shuffle of
the language accepted by the class automaton.
We will show in Proposition 13 that the set of
such words(b1,m1) · · · (bn,mn) is recognized by
a multicounter automatonM of same size asB.

Thus, it is sufficient to composeM with a non-
deterministic transducer which, on inputa1 · · · an,
outputs a string(a1,m1) · · · (an,mn), where each
mi ∈ {0, 1} is guessed independently, and which
simulatesA. We obtain a multicounter automa-
ton which on inputa1 · · · an constructs a string
(a1,m1) · · · (an,mn) which is read byA and
whose output in turn is the input forM. �

7



Thus it remains to prove the following propo-
sition which is an adaptation of Lemma (IV.6)
in [7], where the result is shown for the usual
shuffle operation (i.e., without marking explicitly
the positions where the coloring changes).

Proposition 13 If L ⊆ Σ∗ is regular then
Shuffle(L) is recognized by a multicounter au-
tomaton of size bounded by the size of an NFA
recognizingL.

VI. L OWER BOUNDS

In this section we show that satisfiability for
FO2(∼,<,+1) is at least as hard as non-emptiness
of multicounter automata. The best lower bound
known for the latter problem is EXPSPACE [12]
and no elementary upper bound is known.

Theorem 14 Emptiness of multicounter automata
can be reduced inPTIME to the satisfiability prob-
lem ofFO2(∼,<,+1).

Proof sketch. Without loss of generality we as-
sume that the multicounter has a one-letter input
alphabet, no states (also known as vector addition
system) and it accepts whenall counters are empty.
This can be done by adding one counter per states.
Given a multicounter automatonA, we construct a
FO2(∼,<,+1) formula whose models are exactly
(the encodings of) the accepting runs of the au-
tomaton.

Let C = {1, . . . , n} be the counters of the
automaton, and letδ be its transition relation.
We define Σ to be D1, I1, . . . , Dn, In, and $.
An occurrence ofDi (Ii) codes a decrement (an
increment) of counteri. The idea is to use data
values to make sure that each decrement matches
a previous increment. We encode a transitiont =
(dec(i)ki inc(i)li)i∈C ∈ δ by a data word enc(t) =
Dk1

1 I l1
1 · · ·Dkn

n I ln
n $ where each occurrence ofIi

have a new data value while each occurrence of
Di has the data value of the matching increment
of the counter.

We can now check inFO2(∼,<,+1) that the
string projection belongs to{enc(t) | t ∈ δ}∗.
This is expressible inFO2(<,+1) by a formula
whose size is polynomial inδ. Then we enforce by
an FO2(∼,<,+1) formula that each class string is
either$ or IkDk for somek.

�

VII. D ECIDABLE EXTENSIONS

A. More successors

It is often useful to be able to express in the
logic the existence of a given pattern in the string,

e.g. the existence of two positionsx andy such that
x and y are in the same class and the substring
betweenx and y is abc. This does not seem
to be expressible inFO2(∼,<,+1). This kind of
property becomes immediately expressible in the
presence of the predicates+k for any k ∈ N,
where x = y + k has the obvious meaning.
We denote byFO2(∼, <,+ω) the logic extending
FO2(∼,<,+1) with all predicates+k. It turns out
that this does not affect the decidability of the logic.
The proof follows the lines of the of the proof for
FO2(∼,<,+1) and will appear in the full version
of the paper.

Theorem 15 Satisfiability of FO2(∼, <,+ω) is
decidable.

B. Infinite words

Another extension which is useful in the context
of verification is the case of dataω-words, i.e.,
infinite length data strings. In this section we show
the following result.

Theorem 16 It is decidable whether a sentence of
FO2(∼,<,+1) has a dataω-word model.

The proof is along very similar lines as that of
Theorem 1 but slightly departs as it does not reason
about the string projection str(L(ϕ)). Instead, the
basic idea is to show that each satisfiable formula
ϕ ∈ FO2(∼,<,+1) has asimplemodel of a given
shape and that it is decidable whether a formula
has a simple model. A dataω-word x is called
simple if mstr(x) is of the formu · vω for some
finite wordsu andv over Σ.

As an intermediate step we use dataω-automata
which are defined in analogy to data automata.
We only mention the differences here. Adata
ω-automaton (A,Bf ,Bi) consists of (1) abase
automaton A which is a B̈uchi letter-to-letter
transducer with output over some alphabetΓ, (2)
a finitary class automaton Bf which is a finite
string automaton overΓ and 3) aninfinitary class
automaton Bi, which is another B̈uchi automaton
over Γ. A dataω-word w is accepted if the base
automaton has an accepting run over the marked
string projection ofw with output b1b2 · · · such
that for every finite classi1 < · · · < ik, bi1 · · · bik

is accepted byBf ; similarly, for every infinite class
i1 < i2 < · · · , the ω-string bi1bi2 · · · is accepted
by Bi.

Theorem 16 follows immediately from the fol-
lowing propositions.

8



Proposition 17 Every dataω-language definable
in FO2(∼,<,+1) is recognized by some dataω-
automaton.

Proof sketch. The proof follows exactly the lines
of the proof of Proposition 2. Actually, the re-
duction to intermediate normal form is literally
identical, as the proof of Lemma 8 does not assume
finiteness. For the transformation of the intermedi-
ate normal form into a dataω-automaton, it suffices
again to consider just the conjunctsθ since data
ω-automata are closed under renaming, union and
intersection.

Thus, it only remains to show that every conjunct
θ of a formula in intermediate normal form can be
recognized by a dataω-automaton.

This statement can be shown by a similar case
analysis as in the proof of Lemma 9. �

Proposition 18 If a dataω-automaton accepts any
ω-string it also accepts some simpleω-string.

Proof sketch. Let w be a (data)ω-string ac-
cepted by a dataω-automaton(A,Bf ,Bi). Let
r = (rA, rBf

, rBi
) be an accepting run forw that

we view as functions from position to states. We
call a position inw which is in a different class than
its successor aborder position. If w contains only
finitely many border positions we can findu andv
analogously as for classical (non-data)ω-automata.
We only have to make sure thatu contains all
border positions. We thus assume in the following
that there are infinitely many border positions in
w.

A class c overlaps a positionx if c contains
positionsy < x and z > x. We say the class is
q-open at x if rBi

or rBf
assigns the stateq to the

last position ofc occurring beforex. For a border
positionx of w, and for each stateq, letmq denote
the number ofq-open classes ofw overlappingx.

The construction ofu andv is based on the fact
that there exist two border positionsx < x′ of w
such that:

(1) rA(x) = rA(x′) and rA(y) ∈ F , for somey,
x < y ≤ x′.

(2) For eachq ∈ Bf and eachq-open classc of w
overlappingx there is a positionx < yc ≤ x′

of c with rA(yc) accepting forBf .
(3) For eachq ∈ Bi and eachq-open classc of w

overlappingx there is a positionyc, x < yc ≤
x′ with rB(yc) accepting forBi.

(4) for eachq, mq(x) = mq(x′) = 0 or 0 <
mq(x) ≤ mq(x′).

Let wu andwv be the data subwords ofw from
positions 1 tox and fromx+1 to x′, respectively.
Let u = mstr((wu)) and v = mstr((wv)). The
proof is completed by showing how to choose the
data values foruvω in order to get the desired data
ω-word. �

Proposition 19 It is decidable whether a dataω-
automaton accepts some simpleω-string.

Proof sketch.We construct a multicounter automa-
ton which tests, for a stringuv whether it can be
marked and extended by data values and a (partial)
run such that conditions (1) - (4) above are satisfied
with x the last position ofu andx′ the last position
of v. If this automaton accepts some stringuv we
can conclude thatuvω is the string projection of an
ω-string accepted byE. Otherwise, it can be shown
thatE accepts no data string at all, in particular it
accepts no simple string. �

VIII. U NDECIDABLE EXTENSIONS

In this section we show that many immediate
extensions yields undecidability. In the context of
XML, nodes in the document may have several
different attributes which are accessed via the query
languages. Equality tests between node attributes
could be simulated using several equivalence rela-
tions. For instance checking that the nodesx and
y agree on attributea could be written asx ∼a y.
However, very recently Kierónski and Otto [10]
showed that two-variable logic with 3 equivalence
relations and some unary relations is undecidable.

Extending the model by allowing more variables,
even three, also gives undecidability.

Proposition 20 Satisfiability of FO3(∼,+1) is
undecidable.

Note that this implies the undecidability of
FO3(∼, <), since the relation+1 is definable from
< if three variables are allowed.
Proof sketch. We reduce Post’s Correspondence
Problem (PCP) to the satisfiability ofFO3(∼,+1).
An instance of PCP consists of a finite number of
pairs(ui, vi) of words fromΣ∗ and the question is
whether there exists a non-empty, finite sequence
of indexes i0, . . . , in such thatui0ui1 · · ·uin =
vi0vi1 · · · vin

.
Given an instanceI of PCP, letΣ′ = Σ ∪ Σ be

the alphabet consisting of two disjoint copies ofΣ.
Consider a solutioni0, . . . , in such thatw =

ui0ui1 · · ·uin
= vi0vi1 · · · vin

. We encodew by a
data wordŵ ∈ (Σ′×D)∗ satisfying the following:

9



• The string projection str(ŵ) is
ui0vi0 · · ·uin

vin
. In particular, the sequence

of letters fromΣ is w and the sequence of
letters fromΣ is w.

• Each data value appears exactly twice, once
associated with a letter ofΣ and once asso-
ciated with the same letter inΣ. Moreover, if
a data value of̂w occurs at positioni within
w then its second occurrence must be at the
same positioni within w.

It is possible to construct a formulaϕ of
FO3(∼,+1) such thatw is a solution ofI iff ŵ is
a model ofϕ. �

Another possible extension is to suppose that
there is a linear order on the data values and
to include in the logic an extra binary predicate
≺ such thatx ≺ y if the data value ofx is
smaller than the one ofy. Unfortunately this yields
undecidability even for FO2.

Proposition 21 Satisfiability ofFO2(∼,≺,+1,<)
is undecidable.

IX. D ISCUSSION

We have shown that satisfiability of
FO2(∼,<,+1) over data words is decidable.
Actually we have shown that the stronger logic
EMSO2(∼,<,+1,�1) is decidable over such
models.

In the absence of data values,FO2(+1, <) has
several equivalent characterizations, for instance it
corresponds to the fragment of LTL that uses only
unary temporal predicates. Still in the absence of
data values,EMSO2(+1, <) has the same expres-
sive power as MSO. In a sense the decidability of
EMSO2(∼, <,+1) can be seen as an extension of
classical decidability result of MSO over strings.

An interesting side result is the connection be-
tween FO2(∼,<,+1) and multicounter automata
(and therefore Petri nets). Indeed, if we project
out the data values, the languages defined by
FO2(∼,<,+1) formulas are recognized by multi-
counter automata. The converse is also true modulo
an erasing inverse morphism. It would be interest-
ing to understand better the connection between the
two formalisms. Because of the connection with
Petri nets pinpointing the complexity of satisfiabil-
ity is likely to be difficult.

Our reduction from the decidability of
FO2(∼,<,+1) to emptiness multicounter
automata, is 2NEXPTIME. We do not know
whether this is optimal or not.

When only one of the two predicates+1 and
< is present we can show that the decision prob-
lem is elementary. It is NEXPTIME-complete for
FO2(∼, <) and in 2NEXPTIME for FO2(∼,+1).
In [2] we studied in more details the logicFO2(∼
,+1) and proved that it is decidable over un-
ranked ordered trees. We inferred from this result
many interesting consequences for XML reasoning.
WhetherFO2(∼,<,+1) is decidable over trees is
still an open question which was shown in [2]
to be at least as hard as checking emptiness of
multicounter automata over trees (stated as an open
question in [3]).

REFERENCES

[1] P. Bouyer, A. Petit and D. Th́erien. An algebraic approach
to data languages and timed languages.Inf. Comput.,
182(2): 137-162 (2003).

[2] M. Bojańczyk, C. David, A. Muscholl, T. Schwentick,
and L. Segoufin. Two-Variable Logic on Data Trees and
XML Reasoning. To appear in PODS’06.

[3] P. de Groote, B. Guillaume, and S. Salvati. Vector
Addition Tree Automata. InLICS’04, pp. 64-73, 2004.

[4] S. Demri, R. Lazic, D. Nowak. On the Freeze Quantifier
in Constraint LTL: Decidability and Complexity. In
TIME’05, 2005.

[5] J. Esparza and M. Nielsen. Decidability Issues for Petri
Nets - a survey.Elektronische Informationsverarbeitung
und Kybernetik, 30(3): 143-160 (1994).

[6] K. Etessami, M.Y. Vardi, and Th. Wilke. First-Order
Logic with Two Variables and Unary Temporal Logic.Inf.
Comput., 179(2): 279-295 (2002).

[7] J. L. Gischer. Shuffle Languages, Petri Nets, and Context-
Sensitive Grammars. Commun. ACM, 24(9):597-605
(1981).

[8] E. Grädel and M. Otto. On Logics with Two Variables.
Theor. Comp. Sci., 224:73-113 (1999).

[9] M. Kaminski and N. Francez. Finite memory automata.
Theor. Comp. Sci., 134(2):329-363 (1994).

[10] E. Kieroński and M. Otto. Small Substructures and De-
cidability Issues for First-Order Logic with Two Variables.
Preprint. 2005.

[11] S.R. Kosaraju. Decidability of reachability in vector
addition systems. InSTOC’84, pp. 267-281. 1984.

[12] R.J. Lipton. The reachability problem requires exponential
space. Dep. of Comp.Sci., Research report 62, Yale
University, 1976.

[13] M. Marx. First order paths in ordered trees. InICDT’05,
2005.

[14] E. Mayr. An algorithm for the general Petri net reacha-
bility problem. SIAM J. of Comp., 13:441-459 (1984).

[15] M. Mortimer. On languages with two variables.Zeitschr.
f. math. Logik u. Grundlagen d. Math., 21(1975), pp. 135-
140.

[16] F. Neven, Th. Schwentick, and V. Vianu. Finite state
machines for strings over infinite alphabets.ACM Trans.
Comput. Log., 15(3): 403-435 (2004).

[17] Th. Schwentick, D. Th́erien, and H. Vollmer. Partially-
Ordered Two-Way Automata: A New Characterization of
DA. In Developments in Language Theory (DLT’01),
pp. 239-250, 2001.

[18] Y. Shemesh, N. Francez. Finite-State Unification Au-
tomata and Relational Languages InInf. Comput., 114(2):
192-213 (1994)

[19] D. Thérien and Th. Wilke. Over Words, Two Variables Are
as Powerful as One Quantifier Alternation. InSTOC’98,
pp. 234-240, 1998.

10


