Two-Variable Logic on Words with Data

Mikotaj Bojahczyk Anca Muscholl Thomas Schwentick Luc Segoufin Claire David
Warsaw University LIAFA, Paris VI Dortmund University INRIA, Paris XI LIAFA, Paris VII

Abstract—In a data word each position carries a navigational predicates on strings: the linear order
label from a finite alphabet and a data value from < and the successor relationl. (With only two
some infinite domain. These models have been alreadyvariables the successerl cannot be defined in

considered in the realm of semistructured data, timed t f th d A | | h
automata and extended temporal logics. erms of the order<.) As usual we also have a

It is shown that satisfiability for the two-variable ~Unary predicate corresponding to each letter of the
first-order logic FO?(~,<,+1) is decidable over finite finite alphabet.
and over infinite data words, where ~ is a binary Perhaps surprisingly, we show that the satisfia-
predicate testing the data value equality and+1,< bility problem forF02(~,<,+1) is closely related

are the usual successor and order predicates. Thet th Ik bl f hability f
complexity of the problem is at least as hard as Petri 0 the well known problem or reachanility ior

net reachability. Several extensions of the logic are Petri nets. More precisely we show that languages
considered, some remain decidable while some are formed by the projection onto the finite alphabet

undecidable. of word models definable by aifO?(~,<,+1)
sentence are recognized by multicounter automata
(which are equivalent to Petri nets [7]). The con-
Finding decidable logics for models that handlgerse is also true, modulo an erasing inverse mor-
data values is an important problem in severghism. Moreover, the correspondences are effec-
areas that need algorithmic procedures for progye. We give a 2KPTIME reduction of satisfia-
erty validation. Examples can be found in botr[bi"ty for FO?(~,<,4+1) to emptiness for multi-
program verification and database management. dgunter automata which is known to be decidable
this paper we reconsider a data model that wag1), [14]. For the opposite direction we provide a
investigated both in verification (related to timetbTme reduction from emptiness for multicounter
languages [1] and extended temporal logics [4Butomata to satisfiability foFO?(~,<,+1). Since
and in XML reasoning [16]. As in these papersihere is no known elementary upper bound for
data values are modeled by an infinite alphabetmptiness for multicounter automata (see e.g. [5]),
consisting of a finite and an infinite part. The logiginding the exact complexity of satisfiability for
can address the finite part directly, while the infinit@02(,v7<,+1) formulas is a hard question.
part can only be tested for equality. As a first step, The decidability ofFO%(~,<,+1) immediately
this paper considers simple models: words, boﬂhplies the decidability of EMSO?(~,<,+1).
finite and infinite. Here EMSO? stands for the closure afO? under
Our main result is that the satisfiability prob-existential quantification of sets of nodes. Without
lem for two variable first-order logic extended bygata valuesEMSO?(+1) has the same expressive
equality tests for data valuesRO®(~,<,+1) for power as MSO. In this sense the decidability of
short — is decidable over word models. When MOIEMSO?(~, <, +1) can be seen as an extension of

variables are permitted, or when a linear order ofhe classical decidability result of monadic second-
the data values is available, or when more thagyder logic over strings.
two equivalence relations are present, the logic \we also show that the satisfiability problem
becomes undecidable. for FO?(~,<,+1) remains decidable over data
Following [1], a data word is a finite sequenceyords. In this case we no longer recognize the
of positions having each a label over some finitgtring projection of definable languages but we
alphabet together with a data value over somghow that, again using emptiness of multicounter
infinite alphabet. The logic admits the equalityytomata, it is decidable whether BO? (~,<,+1)
testz ~ y, which is satisfied if both positions formula is satisfied in a data-word whose string
carry the same data value. Moreover, there are tWgojection is ultimately periodic.

_ We then show that our decision procedure works
*Work supported by the French-German cooperation pro-

gramme PROCOPE, the EU-TMR network GAMES and PolisfFV€N when the logic is eXFended_ by predic_aids
MNII grant 4 T11C 042 25 and +2, +3, ... Here %1 is a binary predicate,

I. INTRODUCTION

which relates two positions if they have the samstructures, first-order logic is undecidable, while
data value, but all positions between them haveits two-variable fragment is decidable [15]. This
different data value. The-k binary predicate, on does not imply anything on the decidability of
the other hand, generalizes the successor predicB®?(~,<,+1), since the equivalence relation, the
+1 to the kth successor. successor relation and the ordercannot be ax-

The paper is organized as follows. The maiiomatized with only two variables. A recent paper
result — a decision procedure for satisfiability ofjeneralized the result of [15] in the presence of
FO?(~,<,+1)- is presented in Section IIl. In theone or two equivalence relations [10]. Again this
proof, a concept of data automaton is introducedloes not apply to our context as we also have the
There are two steps: first we show in Section I\érder and the successor relation. However [10] also
that each language definableB®?(~,<,+1) can showed thaf'O? with three equivalence relations,
be recognized by a data automaton; then we shawithout any other structure, is undecidable. This
in Section V how emptiness for data automatamplies immediately that we cannot extend the
can be decided using multicounter automata. Thiecidability result to data words with more than
reduction from reachability of multicounter au-two data parts.
tomata to satisfiability oFO?(~,<,+1) is shown In the context of XML reasoning we considered
in Section VI. In Section VII, we extend the mainFO?(~, +1) over unranked ordered data trees [2]
decidability result: first by adding new predicatesand showed the decidability of the satisfiability
second by considering-words. In Section VIII, question. In this context, the predicatel stands
we show that the logic becomes undecidable whefar two successor predicates, one for the vertical
a) three variables are allowed (even without thaxis and one for the horizontal one. As data words
order <); or b) a linear order on data values isare special cases of data trees, this implies the
included. Finally, we conclude with a discussiordecidability of FO*(~,+1) over words. The com-
of the results. Because of space limitation som@exity for data trees is in 3NEPTIME but it be-
proofs are missing and are available only in theomes 2NEPTIME when restricted to data words.
full version of this paper. This should be contrasted with the complexity of

Related work.Automata on finite strings of satisfiability of FO?(~,<,41) which is not known
data values (without labels) were introduced ito be elementary.

[18], [9]. They used registers to store data values On strings over a finite alphabet (without data
and data values could be compared wrt. equalityalues), theFO?(<,+1) fragment of first-order

In [16] register automata and pebble automatagic is very well understood. A characterization in
over such words were studied. Several versionerms of temporal logic says that it is equivalent to
of these automata (one-way/two-way, determirl-TL restricted to the unary operatofs G, X and
istic/nondeterministic/alternating) were comparedheir past counterparts [6]. In terms of automata,
Most of the results were negative however, i.eFO?(<) is equivalent to partially-ordered, two-
most models are undecidable. Register automatay deterministic finite automata [17], while in
have been also considered by Bouyer et al. [1] iterms of algebra the logic corresponds to the semi-
the context of timed languages. However, the agroup variety DA [19]. The satisfiability question
tomata considered therein have a limited expressii@ NEXPTIME-complete in [6] (using an arbitrary
power and cannot test data equality on arbitranyumber of unary predicates).

two positions (they are one-way automata). In
particular the string projection of any language rec-
ognized by their automata is regular. As mentioned Let ¥ be a finite alphabet ofabels and D an
above, this is not the case for the logic consideradfinite set of data values A data word w =

in this paper. wy ---wy IS a finite sequence over x D, i.e.,

In [4] an extension of LTL was given which eachw; is of the form (a;,d;) with a; € ¥ and
can manipulate data values usingfrmeze op- d; € D. A data languageis a set of data words, for
erator. Their decidable fragment is incomparasomeX. The idea is that the alphabgtis accessed
ble to FO?(~,<,+1) as it can only process thedirectly, while data values can only be tested for
word left-to-right, but can express properties thatquality. This amounts to considering words oker
F02(~7<,+1) cannot. endowed with an equivalence relation on the set of

Restricting first-order logic to its two-variablepositions. The string stw) = a; - - a,, is called
fragment is a classical idea when looking fothe string projection of A. The marked string
decidability [8]. Over graphs or over any relationaprojection mstr{(w) = (a1,b1) - -+ (an,bn) € (X X

Il. PRELIMINARIES

{0,1})* of w adds a new coordinate, whefe= 1 [1l. DECIDABILITY OF FO?(~,<,+1)
on all positions: with the same data valug S The main result of this paper is:
i — 1. For a language of data words we write
str(L) for {strw) | w € L} and mst(L) for
{mst(w) | w € L}.

A class is a maximal set of positions in a
data word with the same data value. For a clasthe basic idea of the proof of Theorem 1 is to com-

Theorem 1 Satisfiability of FO?(~,<,+1) over
data word models is decidable.

with positionsi; < --- < i the class string pute for each formulg a multicounter automaton
IS @i, ---a;, and the marked class string is that recognizes gf.(¢)). As an intermediate step,
(@i, biy) -+ (aq,, b;,), with the b; as above. we use a new type of finite automaton that works

Data words can be seen as models for first-ordgver data words, called a data automaton (these
logic, where the carrier of the model is the set ofill be defined in Section IV). Theorem 1 follows
positions in the word. LeFO(~, <, +1) be first- immediately from the following three statements.
order logic with the following atomic predicates:
r~y, z<y z=y+1, and a predicate(z) for proposition 2 Every language definable in
everya € X. The interpretation ofi(x) is that the FO?(~,<,+1) is recognized by an effectively
label in positionz is a. The order< and successor ghtained data automaton.
+1 are interpreted in the usual way. Two positions

satisfyx ~ y if they have the same data value. Weproposition 3 From each data automaton we can
write L(p) for the set of data words that satisfycompute a multicounter automaton recognizing the

the fo.rmulago_. A formula satisfied by some datasmng projection of its recognized language.
word is satisfiable

We write FO* for formulas using at most Thegrem 4 [11], [14] Emptiness of multicounter
variables. Note that the following examples use 2 i1omata is decidable.
variables only.

Proposition 2 is shown in Section 1V, and Propo-
sition 3 is shown in Section V. Regarding com-
plexity, satisfiability of aFO?(~,<,+1) formula
is reduced in 2EPTIME to the emptiness of a

. Tlhe formulag, says alla’s are in different iicounter automaton of doubly exponential size.
classes:

o =VaVy(z #y Na(x)Na(y)) — x4y .

Example: We present here a formula such that
str(L(y)) is exactly the set of all words ovér, b}
that contain the same number @6 andb’s.

IV. DATA AUTOMATA
In this section we definedata automath, a

Similarly we defineypsy,. means to define data languages, and show that they
» The formulay,; says each class with an can recognize all languages of data words definable
also contains a&: in FO*(~,<,+1).

A data automaton D = (A, B) consists of

= Vzdy(a(x b(y) Nx ~ . L .
Ya y((z) = (o) y)) « a nondeterministic letter-to-letter string trans-

Similarly we defineyy, . ducer A (the base automatof with input

« Hence, in a data word satisfying = ¢, A alphabetY x {0,1}, for someX and some
A\ Ya p NDp o the numbers of andb-labeled output alphabel” (letter-to-letter means that
positions are equal. each transition reads and writes exactly one

This can be easily extended to describe data words Symbol), and

with an equal number of’s, b's andc’s, hence a * @ nondeterministic string automatdf (the

language with a non-context-free string projection. class automator) with input alphabet’.

A data wordw = w;---w, € (X x D)* is

accepted byD if there is anacceptingrun of A

on the marked string projection af, yielding an

output stringb; - --b,, such that, foreach class

a(x) ATy (y <z Aaly) A xoey)A {x1,...,21} C{l,...,n}, v1 < -+ < x, the
Yy (y <z A aly)) — class automaton acceps, , ..., by, .

[z ey AV ((x <y Aa(z))— z~y)

Example: Fora € X the formula below is satisfied
precisely by the first which has an in a different
class onits left, i.e., the firgtin the second-class.

]]]) 10ur data automata differ from what is called data automaton
Note how in this example the variahteis reused. in [1], which are essentially 1-way automata with one register.

As an example, consider the property ‘has we rewrite the given formula into “intermediate
at least two classes with an”. The data au- normal form”, and then we show that the normal
tomaton for this property works as follows. Theform can be recognized by data automata. Each
base automaton nondeterministically chooses tvabep gives an exponential blowup.
positions with am and outputs 1 on each of them In the first step, we transforrfO?(~,<,+1)
and O everywhere else. If there are no such twiormulas into an intermediate normal form (we
positions it rejects. The class automaton checks thég¢note astype below any conjunction of unary
each class contains at most ohethus verifying predicates or their negations):
that the two positions were chosen from different
classes. We call belowenaminga letter-to-letter pefinition 7 A formula is said to be inin-
morphism, that is a morphism defined/as® — termediate normal form if it is of the form
Y, whereX, ¥/ are alphabets. 3Ry Ry (01 A -+ A 6y,), where 3Ry --- Ry,

) guantifies over unary predicates (sets of positions)
Lemma 5 Languages recognized by data automatg,q eacty; is of one of the following kinds:

are closed under union, intersection, and renamin&) vty [p(x y) A a(z) A By) Ao y)}
bl ‘ b g

Proof. Closure under union and intersection is ~(z,y)

obtained using the usual product construction. CI¢2) Vz3y «(z) — [B(y) A 6(z,y) A e(,y)]
sure under renaming is obtained using the nof3) VaVy

determinism of the base automaton. O where

The same cannot be said about negation. Indeeds « andg are types,
if we were to have effective closure under negation, « p(z,y) =(z #Zy+ 1Ay #xz+ 1Az #Yy),
then all data languages defined by monadic second-s §(z,y) isx ~y or x £ y,
order logic could be effectively translated into « ~(z,y) isz <y, x >y, orff, and
data automata, as we show that data automatae e(z,y) isz+1 <y, z+1 =1y, z =y,
recognize all ofEMSO?(~, <, 41). This would be r=y+lorz>y+1,
a contradiction, since we show that emptiness of « ¢ is a quantifier free formula in DNF that
data automata is decidable, while satisfiability is doesn’t use~.
undecidable for monadic second-order logic [16]
(even for first-order logic, see Proposition 20). Here,z+1 <y is an abbreviation for < y Az +
The following lemma presents a family of datal # -
languages recognizable by data automata whichFormally speaking, a formula in intermediate
will be used later in the proof. normal form is a normal form oEMSO?(~, <
,+1), the extension oFO*(~,<,+1) by existen-
Lemma 6 For any given regular language C tial monadic second-order predicates quantification
(X x {0,1})%, there is a data automaton accepting front of FO?(~,<,+1) formulas. Note that as
all data stringsw, for which each marked classfar as satisfiability is concerndeD?(~,<,+1) and
string belongs ta.. EMSO?(~, <, +1) are equivalent.

Proof. The base automaton just copies its input
{0,1} and the class automaton checks members
in L. d

Lemma 8 Every formula ofFO?(~,<,+1) can be
ectively transformed into an equivalent formula
in intermediate normal form of exponential size,
One can also verify ifomemarked class string with exponentially many unary predicatéy.
belongs toL: for each positiort, the base automa-
ton nondeterministically chooses to either outpdtroof. The overall idea is classical: we reduce the
the input symbola; or a special symbolL. It quantifier depth to 2, then we add unary pred-
accepts, if it outputs at least one nansymbol. icates that color certain distinguished positions,
The class automaton accepts the languagel*. 'esp. classes containing distinguished positions.
These additional colors are then used to simplify
A. Reduction to data automata the formulas.
The goal of this section is to prove Proposition 2, The formal proof proceeds in three steps.
i.e. to transform a formula oFO?(~,<,+1) into Step 1: Scott normal form
an equivalent data automaton of doubly exponenti@he first step is classical for two variable logics
size. The transformation is done in two steps, fir§see e.g. [8]). It says that eadhO?(~,<,+1)

4

formulay is equivalent with respect to satisfiability where «, 3 are types occurring im,, and
to a (linear size) formula’ in Scott Normal Form ¢ (z,y) is a quantifier-free formula using onky

and~. Finally, we rewrite the formula (z, y) into
VZVy X A /\Vxﬂy Xi» the form:

where y and eachy; are quantifier-free. The sig- (@, ¥) = (# ~y — 71(2,9))A\ (@ = y — 12(z,y))
nature ofy’ is an extension of the signature of
by (linearly many) unary predicates. Furthermor
a data word satisfies if and only if it can be
extended by additional predicates to a word satig:) ; ;
fying ¢’. The additional unary predicates are th§tep 3: Dealing Wlth/\vxay i
relations R; which are existentially quantified byIn the last step, we show that each formula
the formula. The additional predicates state whictiz3y v can be rewritten into an equivalent formula
subformulas are satisfied at a given position. 3R ---3R/, A, 0; with 6, of type (2) or (3) in Def-
Hence,p is equivalent to a formula of the form inition 7. Moreover, the size of; and the number
n of additional predicates are both polynomial.
IRy -+ AR (Vy XA/\Vfray Xi)- First, Y can be written as a disjunction (of
! exponential size)

where~;(z,y) andve(x,y) arex < y, x > y, ff
rtt.

Step 2: Dealing withVaVy .
In the second step we show that the formula \/(aj(ff) — Bi(y) Aoz, y) Aej(x,y)),
VaVy x can be replaced by a formula J
‘ ‘ where then;, 3;,d;, ¢; are of corresponding forms

I HRm/i\e’ A /\ Vo & as in (2). jlt anI)f rémains to eliminate the dis-
) - junction. To this end, we add for each conjunct
where the¢; are again quantifier-free and eaéh apove a new unary predical, ; with the intended
is of the form (1.) (from Def!nmon 7). Moreover, meaning thatk, ; holds at a position: if there is
the number ob; is e>_<ponent|gl. . a y such thata;(z) A B;(y) A 6;(xz,y) A e;(z,y)

To this end, we first rewrite/zVy x into the pglgs. Formally, we rewrite eactizJy y as

following form:
IR Ry (Vo V, Ryi(x) A

i=1,2,3

N z=y+1 —te—yii(z,y) (8;(y) A 6;(z,y) A ej(x,y))))
ANr=y = hey(2,y) _ _
A op(zy) = (z,y)) By putting together the obtained formulas we get

- a formula in intermediate normal form. O
where thety formulas are quantifier-free and use

only ~, < and the unary predicates. They have the We are now ready for the second step, where
same size ag. Over the (linearly ordered) modelsthe intermediate normal form is transformed into
considered in this paper this is logically equivalera data automaton, thus completing the proof of

to: Proposition 2. Since data automata are closed under
¥ (pot) = 3) enaming e miesecton, i sufices o conader
A VxIy (—|R|ast(a:) —(y=z+1 A ¢y=m+1)) J | :

AVaTy (~Risi(z) = (@ =y +1 Athgeysn)) Cartesian product gives an exponential blowup.
AVzdy ((x =y A= . -

(’ y)) Lemma 9 Every conjunct of a formula in inter-
Here, we assume thasst and Riast areé tWo mediate normal form can be recognized by a data

extra predicates marking the first and last positiog,tomaton with constantly many states.
of the word, respectively. They can easily be en-

forced by a formula of the form (3). The last thred’roof. The formulad may be in one of the three
conjuncts give rise tg@, &2, £3 and we are left with forms (1), (2) or (3) from Definition 7. The case
the first conjunctvaVy (p(z,y) — ¥,(z,y)). We of formula of the form (3) is no problem as it can
turn ¢, into CNF (with an exponential blow-up) easily be checked using the base automaton. We

and rewrite it as consider first the case of (1):
N (a(z) A B(y) = d(z,y) oy [(p(z,y) A alz) A Bly) A d(zy)) —
o, V(. y)]

The proof uses the data automaton for marks+ 1 thend can be verified by the base automaton.
ing a fixed number of classes, sa&yfor some Otherwisee(z,y)isz+1<yorz>y+ 1. We
constant k. We explain this technique first. describe the case aof + 1 < y, the other being
The base automaton uses the output alphatstalogous.

Iy = {L,(1,1),...,(k1),(1,0),...,(k,0)}. It In this case,f expresses that each-position
guesses, for each positiéran output symbob; € needs a3-position in a different class to its right
I'x. It makes sure that, for each at most once (but not as its right neighbor). Since eveuoy
the symbol(j,1) is chosen. The class automaposition before Llsi—2 is guaranteed to have such
ton accepts then all strings of the formm* and ag3-witness in a different class, it suffices to require
(1,1)(1,0)*, for somel. In this way, it is ensured the following properties: a) from position Lst- 1
that, for each class, always the output symhdks on, the data word contains ne; and b) alla’s
chosen or the first output symbol {§,1) and all between LIs§ —1 and Lsg — 2 are not in the same
others arg(l, 0), for somel. As each(j, 1) is used class as Lst. This involves checking 2 classes and
at most once, it can not happen that two classean be handled analogously as the cases above.
share the samgj,0) (and (j,1)) symbols. Thus, As for the size, it is easy to check that the
the base automaton can assume, for each positipase and class automata have a number of states

to which of the< k classes it belongs. bounded by a constant. The number of transitions
It remains to perform a case analysis on thg bounded by the number of types (if we allow
formulasd, v ande. also type negations in the transitions, the number

In the case wheré(z, y) is « ~ y the formulad of transitions is also bounded by a constant)]
gives a regular condition that must be satisfied by

each class. Thanks to Lemma 6, we can use thatWe would like to note that the converse of
class automaton to verifg. Proposition 2 does not hold. There are two rea-
If 6(z,y) is x # y there are three subcases. sons for this. First, a data automaton can verify
« 7(z,y) = ff means that the data string mayarbitrary regular properties of classes, which can-
not have ar- and aj3-position which are not not be done with first-order logic. For instance,
adjacent (or identical) and in different classed)0 FO?(~,<,+1) formula captures the language:

It is easy to see that the formula evaluates t®ach class is of even length”. This problem can

false if botha and 3 appear in the string and be solved by adding a prefix of monadic second-
there are at least 4 classes with anor at order existential quantification. However, even with

least 4 classes with &. such a prefix, it is difficult to write a formula
Thus, it is sufficient that the base automatofhat describes accepting runs of data automata.
selects (at most) 6 classes, using the techniql&e problem is that describing runs of the class

explained above, and tests that (a) neither automata requires comparing successive positions
nor 8 occur outside these 6 classes and () the same class, which need not be successive po-

within the 6 classe$ holds. sitions in the word. That is why we consider a new
o 7(z,y) = < y. In this case only two classespredicatex 1, called theclass successomwhich is
are involved. true for two successive positions in a same class of

Let Lst, be theposition of the rightmosta, the data word. The following result easily follows

in the string and Llst be the position of the from Proposition 2 and the obvious extension of
rightmost a that is in a different class thanits proof to includeEMSO? (~,<,+1,%1):

Lst,. Using this notationd holds if and only

if w (&) has noj up to position LIst — 2, proposition 10 A language is recognized

and (b) thej-positions between List-1and 5 data automaton iff it is definable in

Lst, — 2 are in the same class as /st EMSOQ(~,<,+1,¢1).

Thus, the base automaton simply guesses the

two classes containing Lstand List, and pyoof, It is easy to extend the proof of Proposition

tests that (a) and (b) hold. 2 to the logic EMSO?(~,<,+1,%1). The other
« The case wherg(z,y) is z > y is analogous. gjrection follows immediately from the classical
It remains to consider formulasof type (2): simulation of automata iEEMSO?(+1). O
Vzdy a(z) — [By) A d(z,y) A e(z,y)] By translating a formula into a data automaton
As before, the difficult case is wheix, y) isz 4 and then back again into a formula, we can obtain a
y. If e(x,y) isone ofz +1 =y, z = y, z = certain normal form foEMSO?(~,<,+1,%1). In

the normal form, the formulas verify the correctiransition
ness of transitions in an accepting run. In particular, N T
PANg P (¢.a. (ded" (D)inc" (1))icc.) € 6

the order< is not used.
) . . can be applied if the current statedisthe current
Remark: Using the same idea of the proof Ofigyer js, and for every countei € C, the value

Proposition 2 one cguld show the following nor- "is at |eastk;. The successor configuration is
mal form for EMSO“(~, <,+1). Each formula

f 9 . val h d= (¢, (c(i)—k;+l;)icc). A run over a wordw is
of EMSO"(~, <, +1) is equivalent to one where 5 seqence of configurations that is consistent with

the FO part is a Boolean combination of simpley,e ransition functiors. The acceptance condition
formulas of the form (wherex and g are types): is given by a subseR of the counters” and the

(@) 0 is does not use~ (i.e., an FO?(<,+1) final states. A run isaccepting if it starts in the

formula). state ¢; with all counters empty and ends in a
(b) Each class contains at most one occurrencenfiguration where all counters iR are empty
of a. and the state is final.
(c) Ineach class, all occurrencescobccur strictly The key idea in the reduction from data automata
before all occurrences df. to multicounter automata, is that acceptance can be
(d) In each class with at least one occurrence efkpressed using the Shuffle) operation defined
«, there must be &, too. below.
(e) If = is not in the same class at its successor
then it is of typea. Definition 11 A word v € (¥ x {0,1})* is a
marked shuffle of n wordsu.,...,u, if its po-
V. RECOGNIZING THEPROJECTION BY sitions can be colored witlh colors so that we
MULTICOUNTER AUTOMATA have:

, i) ... 1) for everyi, the positions colored with color
In this section, we show that the string projection ~ _ read from left to right — give the word,

of a Iangugge recognizeq by a data automaton caQ) a position ofv is labeled by a symbol from
be recognized by a multicounter automaton. > x {1} iff its predecessor position has the
We first introduce multicounter automata. An same color (neighborhood condition).

I(r)er-]e ;nxliletlr(]:gggtebr a;t(;mﬁteonsgajm'ti automa- We write Shuffl¢L) for the set of marked shuffles
y - {L,....n} of words from a languagé C X*.
of counters. It can be described as a tuple

(@, 2,C, 8,q5, F). The set of states), finite alpha- Proposition 12 Let D = (A, B) be a data automa-

betX, initial stateg; € () and final states” € Q ton. The string projection Stf(D)) is recognized

are as in a usual finite automaton. The transitio&l a multicounter automaton of size(|.A||B|)
relationd is more involved — it is a finite subset of '

Q x X x (dec (i)inc*(i))iec X Q. Proof. By definition of data automata, a word
The idea is that in each step, the automaton N
can change its state and modify the counters, by “ ~ (a1,ma) -+ (an, mn) € (3 {0, 1})

incrementing or decrementing them, according tbelongs to the marked string projection ni&tD))
the current state and the current letter on the input.and only if it there is an accepting run of the
In a step, the automaton can apply to each countiesse automaton om with output b; ---b,, such
i € C a sequence of decrements, followed byhat (b1,m1)--- (b,, m,) is a marked shuffle of
a sequence of increments. Whenever it tries the language accepted by the class automaton.
decrement a counter of value zero the computatiave will show in Proposition 13 that the set of
stops. Besides this, the transition of a multicountesuch words(b;, m;) - - - (b,, m,,) is recognized by
automaton does not depend on the value of themulticounter automatom of same size a$.
counters. In particular, it cannot test whether a Thus, it is sufficient to compos#1 with a non-
counter is exactly zero. Nevertheless, by decreleterministic transducer which, on inpu - - - a,,
menting a counterk times and incrementing it outputs a stringay,m1) - - - (a,, m,), Where each
again afterward it can test whether the value af,; € {0,1} is guessed independently, and which
that counter is at leagt. simulates.A. We obtain a multicounter automa-
A configuration of such an automaton is a tupleton which on inputa, - - - a,, constructs a string
¢ = (q,(¢;)iec) € Q x N™, where ¢ is the (a;,mq)---(an,my,) which is read by.4 and
current state and; is the value of the counter A whose output in turn is the input fok1. O

Thus it remains to prove the following propo-e.g. the existence of two positiomsandy such that
sition which is an adaptation of Lemma (IV.6)z andy are in the same class and the substring
in [7], where the result is shown for the usuabetweenx and y is abc. This does not seem
shuffle operation (i.e., without marking explicitlyto be expressible iffO*(~,<,+1). This kind of

the positions where the coloring changes). property becomes immediately expressible in the
N . presence of the predicatesk for any k € N,
Proposition 13 If L C X* is regular then where = y + k has the obvious meaning.

Shufflg L) is.recognized by a mu!ticounter au-we denote byFO?(~, <, +w) the logic extending

tomato_n _of size bounded by the size of an NF"FOQ(N,<,+1) with all predicatestk. It turns out

recognizingL. that this does not affect the decidability of the logic.
VI. L OWER BOUNDS The proof follows the lines of the of the proof for

. : - FO?(~,<,+1) and will appear in the full version
In this section we show that satisfiability foro]c the paper.

FO?(~,<,+1) is at least as hard as non-emptiness
of multicounter automata. The best lower boun
known for the latter problem is ¥SPACE [12]
and no elementary upper bound is known.

Hheorem 15 Satisfiability of FO?(~, <, +w) is
decidable.

. . B. Infinite words
Theorem 14 Emptiness of multicounter automata

can be reduced i TIME to the satisfiability prob- Another extension which is useful in the context
lem of FO2(~,<,+1). of verification is the case of data-words, i.e.,

infinite length data strings. In this section we show
Proof sketch. Without loss of generality we as-the following result.

sume that the multicounter has a one-letter input
alphabet, no states (also known as vector additiqheorem 16 It is decidable whether a sentence of
system) and it accepts whetl counters are empty. FO?(~ < +1) has a dataw-word model.
This can be done by adding one counter per states.
Given a multicounter automatad, we construct a The proof is along very similar lines as that of
FO?(~,<,+1) formula whose models are exactlyTheorem 1 but slightly departs as it does not reason
(the encodings of) the accepting runs of the awbout the string projection $ffi(¢)). Instead, the
tomaton. basic idea is to show that each satisfiable formula
Let C = {1,...,n} be the counters of they € FO?(~,<,+1) has asimplemodel of a given
automaton, and let be its transition relation. shape and that it is decidable whether a formula
We defineX to be Dy,I;,...,D,,I,, and $. has a simple model. A data-word z is called
An occurrence ofD; (I;) codes a decrement (ansimple if mstr(z) is of the formw - v for some
increment) of countei. The idea is to use datafinite wordsu andv over X.
values to make sure that each decrement matche#\s an intermediate step we use datautomata
a previous increment. We encode a transitios which are defined in analogy to data automata.
(dedi)*iinc(i)");cc € 0 by a data word erf¢) = We only mention the differences here. data
Diplv ... DEnIln ¢ where each occurrence @f w-automaton (A, By, B;) consists of (1) abase
have a new data value while each occurrence afitomaton .4 which is a Bichi letter-to-letter
D, has the data value of the matching incremeritansducer with output over some alphabgt(2)
of the counter. a finitary class automaton B; which is a finite
We can now check irfO?(~,<,+1) that the string automaton over and 3) aninfinitary class
string projection belongs tdendt) | ¢ € 6}*. automaton 3;, which is another Bchi automaton
This is expressible iFO?(<,+1) by a formula overT'. A dataw-word w is accepted if the base
whose size is polynomial if. Then we enforce by automaton has an accepting run over the marked
anFO?(~,<,+1) formula that each class string isstring projection ofw with outputb;b, - -- such

either$ or I, D,, for somek. that for every finite clas$; < --- < iy, b;, - - b;,
O is accepted by; similarly, for every infinite class
i1 < iy < ---, thew-string b;,b;, - - - is accepted
VIl. DECIDABLE EXTENSIONS by B;.
A. More successors Theorem 16 follows immediately from the fol-

It is often useful to be able to express in thdowing propositions.
logic the existence of a given pattern in the string,

Proposition 17 Every dataw-language definable Let w, andw, be the data subwords af from

in FO?(~,<,+1) is recognized by some data positions 1 tar and fromz + 1 to 2/, respectively.

automaton. Let v = mst(w,)) and v = mstr(w,)). The
proof is completed by showing how to choose the

Proof sketch. The proof follows exactly the lines data values forv* in order to get the desired data
of the proof of Proposition 2. Actually, the re-,,-word. O
duction to intermediate normal form is literally
identical, as the proof of Lemma 8 does not assume " . .

finiteness. For the transformation of the intermedf-oPOSItion 19 It is decidable whether a data-

ate normal form into a data-automaton, it suffices automaton accepts some simplestring.

again to consider just the conjundissince data prqoof sketch.We construct a multicounter automa-
w-automata are closed under renaming, union agh which tests, for a stringv whether it can be
Intersection. marked and extended by data values and a (partial)

Thus, it only remains to show that every conjunciyn such that conditions (1) - (4) above are satisfied
@ of a formula in intermediate normal form can bQ/\”th T the |ast position OtL andx/ the |ast position

recognized by a data-automaton. of v. If this automaton accepts some string we
This statement can be shown by a similar casgn conclude thatv* is the string projection of an
analysis as in the proof of Lemma 9. O w-string accepted by. Otherwise, it can be shown
that E accepts no data string at all, in particular it
N accepts no simple string. O
Proposition 18 If a dataw-automaton accepts any
w-string it also accepts some simplestring. VIII. UNDECIDABLE EXTENSIONS
Proof sketch. Let w be a (data)w-string ac- In this section we show that many immediate

cepted by a datas-automaton (A, By, B;). Let extensions yields undecidability. In the context of
r = (ra,r5,,75,) be an accepting run fan that XML, nodes in the document may have several
we view as functions from position to states. Wélifferent attributes which are accessed via the query
call a position inw which is in a different class than anguages. Equality tests between node attributes
its successor border position. If w contains only could be simulated using several equivalence rela-
finitely many border positions we can findandv tions. For msta_nce checking tha'_[the nodeand
analogously as for classical (non-datajutomata. ¥ agree on attribute could be written as ~, y.
We only have to make sure that contains all However, very recently Kiertski and Otto [10]
border positions. We thus assume in the followin§nowed that two-variable logic with 3 equivalence
that there are infinitely many border positions ifelations and some unary relations is undecidable.
_ Extending the model by allowing more variables,
A class ¢ overlaps a positionz if ¢ contains €Ven three, also gives undecidability.
positionsy < x and z > z. We say the class is
g-openatz if rs, or rz, assigns the staigto the
last position ofc occurring beforer. For a border
positionz of w, and for each staig, letin, denote Note that this implies the undecidability of
the number of-open classes ab overlappingz. g3 (~, <), since the relation-1 is definable from
The construction of, andv is based on the fact _ i three variables are allowed.

that there exist two border positions< =’ of w proof sketch. We reduce Post's Correspondence

w

Proposition 20 Satisfiability of FO*(~,+1) is
undecidable.

such that: Problem (PCP) to the satisfiability 10 (~, +1).

(1) ra(z) = ra(z’) andra(y) € F, for somey, An instance of PCP consists of a finite number of
r<y<uda. pairs (u;, v;) of words fromX* and the question is

(2) For eachy € B; and eachj-open class: of w whether there exists a non-empty, finite sequence
overlappingz there is a positionr < y. < 2’ of indexesiy,...,i, such thatw; u;, ---u;, =
of ¢ with r4(y.) accepting forBy. VigViq =+~ Vi, -

(3) For eachy € B; and eachy-open class: of w Given an instancd of PCP, letY' = X U X be
overlappingz there is a position., z < y. < the alphabet consisting of two disjoint copiesXaf

2’ with r5(y.) accepting forl;. Consider a solution, ...,7, such thatw =
(4) for eachq, my(x) = mg(a’) = 0 0or 0 < wiuu;, -+ wi, = Viy¥;, -+~ v;,,. We encodew by a
mg(z) < mg(a’). data wordw € (¥’ x D)* satisfying the following:

e The string projection stev) is When only one of the two predicatesl and
u;, sy - - - Wi, Ui, . IN particular, the sequence< is present we can show that the decision prob-

of letters fromY is w and the sequence oflem is elementary. It is NEPTIME-complete for

letters fromY. is .

FO?(~, <) and in 2NEPTIME for FO?(~,

+1).

« Each data value appears exactly twice, onde [2] we studied in more details the logO? (~
associated with a letter df and once asso- ,+1) and proved that it is decidable over un-

ciated with the same letter |B. Moreover, if
a data value ofv occurs at positiori within

ranked ordered trees. We inferred from this result
many interesting consequences for XML reasoning.

w then its second occurrence must be at thA/hetherFO2(~,<,+1) is decidable over trees is

same position within .
It is possible to construct a formulg of

FO?(~, +1) such thatw is a solution off iff w0 is
a model ofp. O

Another possible extension is to suppose that
there is a linear order on the data values and"
to include in the logic an extra binary predicate

=< such thatz < y if the data value ofz is [2]
smaller than the one af. Unfortunately this yields
undecidability even for F& [3]
” e 9 (4]
Proposition 21 Satisfiability of FO*(~, <, +1,<)
is undecidable.
(5]
IX. DISCUSSION
(6]
We have shown that satisfiability of
F02(~7<,+1) over data words is decidable. 7]

Actually we have shown that the stronger logic
EMSO?(~,<,+1,«£1) is decidable over such
models. (8]

In the absence of data valuegD*(+1,<) has [qg]
several equivalent characterizations, for instance it
corresponds to the fragment of LTL that uses onlg}o]
unary temporal predicates. Still in the absence of
data valuesEMSO?(+1, <) has the same expres-[11]
sive power as MSO. In a sense the decidability (HZ]
EMSO?(~, <,+1) can be seen as an extension of
classical decidability result of MSO over strings.

An interesting side result is the connection be3l
tween FO?(~,<,+1) and multicounter automata[14]
(and therefore Petri nets). Indeed, if we project
out the data values, the languages defined
FO?(~,<,+1) formulas are recognized by multi-
counter automata. The converse is also true moduk$]
an erasing inverse morphism. It would be interest-
ing to understand better the connection between the]
two formalisms. Because of the connection with
Petri nets pinpointing the complexity of satisfiabil-
ity is likely to be difficult. [18]

Our reduction from the decidability of
FO’(~,<,+1) to emptiness multicounter [19]
automata, is 2NEPTIME. We do not know
whether this is optimal or not.

10

still an open question which was shown in [2]

to be at least as hard as checking emptiness of
multicounter automata over trees (stated as an open
guestion in [3]).

REFERENCES

P. Bouyer, A. Petit and D. Térien. An algebraic approach
to data languages and timed languagdsf. Comput,
182(2): 137-162 (2003).

M. Bojanczyk, C. David, A. Muscholl, T. Schwentick,
and L. Segoufin. Two-Variable Logic on Data Trees and
XML Reasoning. To appear in PODS’06.

P. de Groote, B. Guillaume, and S. Salvati. Vector
Addition Tree Automata. IlLICS'04, pp. 64-73, 2004.

S. Demri, R. Lazic, D. Nowak. On the Freeze Quantifier
in Constraint LTL: Decidability and Complexity. In
TIME’05, 2005.

J. Esparza and M. Nielsen. Decidability Issues for Petri
Nets - a survey.Elektronische Informationsverarbeitung
und Kybernetik30(3): 143-160 (1994).

K. Etessami, M.Y. Vardi, and Th. Wilke. First-Order
Logic with Two Variables and Unary Temporal Logiaf.
Comput, 179(2): 279-295 (2002).

J. L. Gischer. Shuffle Languages, Petri Nets, and Context-
Sensitive Grammars. Commun. ACM 24(9):597-605
(1981).

E. Gradel and M. Otto. On Logics with Two Variables.
Theor. Comp. SGi224:73-113 (1999).

M. Kaminski and N. Francez. Finite memory automata.
Theor. Comp. Sci134(2):329-363 (1994).

E. Kierohski and M. Otto. Small Substructures and De-
cidability Issues for First-Order Logic with Two Variables.
Preprint. 2005.

S.R. Kosaraju. Decidability of reachability in vector
addition systems. I$TOC’'84 pp. 267-281. 1984.

R.J. Lipton. The reachability problem requires exponential
space. Dep. of Comp.Sci., Research report 62, Yale
University, 1976.

M. Marx. First order paths in ordered trees. I[EDT’05,
2005.

E. Mayr. An algorithm for the general Petri net reacha-
bility problem. SIAM J. of Comp.13:441-459 (1984).

] M. Mortimer. On languages with two variableZeitschr.

f. math. Logik u. Grundlagen d. Ma{t21(1975), pp. 135-
140.

F. Neven, Th. Schwentick, and V. Vianu. Finite state
machines for strings over infinite alphabeSCM Trans.
Comput. Log. 15(3): 403-435 (2004).

Th. Schwentick, D. Téarien, and H. Vollmer. Partially-
Ordered Two-Way Automata: A New Characterization of
DA. In Developments in Language Theory (DLT'01)
pp. 239-250, 2001.

Y. Shemesh, N. Francez. Finite-State Unification Au-
tomata and Relational Languagesli. Comput, 114(2):
192-213 (1994)

D. Thérien and Th. Wilke. Over Words, Two Variables Are
as Powerful as One Quantifier Alternation. 5TOC’98
pp. 234-240, 1998.

