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Abstract We present a Bayesian model for two-way ANOVA-type analysis of high-
dimensional, small sample-size datasets with highly correlated groups of variables.
Modern cellular measurement methods are a main application area; typically the task is
differential analysis between diseased and healthy samples, complicated by additional
covariates requiring a multi-way analysis. The main complication is the combination
of high dimensionality and low sample size, which renders classical multivariate tech-
niques useless. We introduce a hierarchical model which does dimensionality reduction
by assuming that the input variables come in similarly-behaving groups, and performs
an ANOVA-type decomposition for the set of reduced-dimensional latent variables.
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We apply the methods to study lipidomic profiles of a recent large-cohort human
diabetes study.

Keywords ANOVA · Factor analysis · Hierarchical model · Metabolomics ·
Multi-way analysis · Small sample-size

1 Introduction

Although two-way linear models have been thoroughly studied in classical statistics
and modern data analysis tasks often involve two-way covariate information, the two-
way modelling task has gained little attention in the machine learning literature. A
particular, currently active application area where two-way, or in general multi-way
experimental setups are ubiquitous, is modern high-throughput bioinformatics. Moti-
vated by research problems in metabolomics, which is an emerging field requiring
bioinformatics methods, we introduce a Bayesian hierarchical model capable of two-
way analysis of high-dimensional datasets with small sample-size. We present the
method as an extension of Bayesian Factor Analysis to maintain a connection to the
probabilistic multivariate linear models currently under active research.

1.1 Metabolomics

Metabolomics is rapidly gaining popularity as an application field of bioinformatics.
Typically mass spectrometry combined with a chromatography method, such as Liquid
Chromatography is used to measure concentrations of metabolic products from tissue
samples. Datavectors are then typically 20–200-dimensional metabolic profiles over
metabolites, some identified and many not.

In typical experiments, the main interest is in comparing metabolite concentrations
between diseased case samples and healthy control samples. When case samples have a
consistently higher(lower) concentration, the effect is called up(down)-regulation and
considered as a potential biomarker for disease. In addition to the main effect of dis-
ease, there are usually additional covariates, such as treatment groups or measurement
times that need to be taken into account, resulting in a need of a two-way or in gen-
eral a multi-way analysis. Additional independent variables and cross-effects between
them are introduced and the problem becomes considerably more complicated than a
simple differential analysis. There are trivial solutions to convert a two-way problem
to one-way problem(s), such as a series of independent one-way analyses or pooling,
but they would naturally lose information.

A main complication in metabolomics, and practically in all branches of high-
throughput bioinformatics, is that the number of samples n is often much lower than
the number of variables p, known as the n � p problem. The classical multivariate
methods break down due to the singularity of the sample covariance matrix and there-
fore methods using the full covariance matrix cannot be used directly. Dealing with
this problem is currently an active field of research.
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Two-way analysis of high-dimensional collinear data 263

1.2 ANOVA for n � p

ANOVA, analysis of variance, is a well-established univariate method for multi-way
analysis in classical statistics. In multivariate cases, especially in bioinformatics, a
usual solution is to fit an independent ANOVA-model for each variable. The problem
with such multiple testing when n � p is a greatly increasing risk of false positives
with increasing dimensionality, commonly dealt with more or less heuristic means
such as the false discovery rate (FDR) (Benjamini and Hochberg 1995). Typically
the data is highly collinear, and information about correlations between metabolites
is biologically very relevant; it makes sense to take the collinearity explicitly into
account.

The straightforward multivariate generalization of ANOVA, MANOVA, is unfor-
tunately useless when n � p, since the sample covariance matrix becomes singular.
A further technical complication is that (M)ANOVA does not directly reveal the loca-
tion or direction of the effect (up or down), and these have to be deduced by other
methods. There are three common ways for tackling the small sample size problem:
dimensionality reduction, regularization of the covariance matrix, and clustering of
similarly behaving variables.

Dimensionality reduction is most often done with principal component analysis
(PCA). A simple solution is to fit independent ANOVA-models on the principal com-
ponent scores of each component. Another approach (Langsrud 2002) is to carry out
MANOVA on principal component scores. The well-known problem of PCA here is
that because of the arbitrariness of the rotation of the components, there is no reason
why it should find biologically relevant components.

Partial least-squares (PLS) is a commonly used method for regression and classi-
fication and can deal with collinear n � p datasets. However, PLS can overfit badly,
and component scores are not necessarily reliable for interpretation (Westerhuis et al.
2008).

For studying multivariate n � p metabolomic datasets with 2-way experimental
setup, a method called Anova-Simultaneous Component analysis or ASCA (Smilde
et al. 2005) has been proposed. In the model, both of the one-way effects and the
interaction effect were solved independently, assuming a separate basis estimated
with principal component analysis. While this is a working solution, it involves major
simplifications.

A sparse Bayesian ANOVA model has been proposed for the n � p case (Seo et al.
2007). A linear four-way ANOVA model was applied to each gene, using a shared
point-mass mixture prior to allow only a small fraction of effects to be non-zero. The
sparsity helps in controlling against false discoveries in multiple testing, and also in
interpreting the results.

1.3 Covariance regularization

Regularization of the covariance matrix is another way to deal with n � p. The covari-
ance matrix has to be made non-singular to use traditional statistical multivariate meth-
ods, such as Factor Analysis, MANOVA, Linear Discriminant Analysis, or Canonical
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Correlation Analysis (CCA). The simplest approach is to use a diagonal correlation
matrix, which can be interpreted as assuming the variables to be (conditionally) inde-
pendent. Lots of less drastic regularization methods have been proposed for shrinking
the singular sample covariance matrix towards a positive definite matrix, usually a
diagonal matrix; for instance (Cao and Bouman 2009; Tai and Pan 2007). A usual pro-
cedure for restricting the projection matrix for Bayesian PCA (Bishop 1999) and FA
(Ghahramani and Beal 2000) is by using an Automatic Relevance Determination prior
(ARD). Recently sparsity has been imposed in Bayesian PCA and CCA (Archambeau
and Bach 2009), resulting in additional advantages in interpretability.

Bayesian sparse factor regression models (West 2003), developed for gene expres-
sion data, are suitable for n � p regression tasks. Sparsity is enforced by a heavy
point-mass mixture prior allowing only a small fraction of regression coefficients to
be non-zero. The method is useful in finding only the variables (genes) most strongly
related to the external covariate and to infer relationships between the variables via
common latent factors. The sparsity also helps in interpreting the components. The
model was used for a binary regression, corresponding to a one-way experimental
setup.

1.4 Linear mixed models and clustering

It is common to assume that metabolites (as well as mRNAs) form strongly corre-
lated groups, and then to study group-wise differential expression. Studying genes or
metabolites one at a time results in a high risk of false positives when n � p, and
the risk can be reduced by studying groups. This has been done on known groups of
genes (Wang et al. 2008); other usual approaches include clustering variables accord-
ing to p-values or choosing only variables with a small enough p-value prior to doing
multivariate analyses.

Several methods have been proposed for clustering gene-expression profiles with
Linear Mixed Models, usually with a time-dependent experimental design (Ng et al.
2006; Celeux et al. 2005). In a particularly interesting study (Ng et al. 2006), a model-
based clustering algorithm was set up by assigning each cluster a subject and clus-
ter-specific random effect common to genes in the cluster. The effect allows modeling
correlations and clustering correlated genes, and the clustering solution was computed
as the maximum likelihood estimate of the linear model additionally utilizing one-way
covariate information as fixed effects. The primary interest of this method was clus-
tering rather than the interpretation of the fixed effects, but it gives inspiration for us
to progress to analyzing 2-way effects in a model regularized by assuming a cluster
structure for the metabolites.

1.5 Modelling metabolomic datasets

Metabolomic data has certain properties that we want the model to take into account.
Fortunately it turns out that the resulting model will still be a reasonably general
multi-way factor analysis model.
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Two-way analysis of high-dimensional collinear data 265

Due to the existing biochemical pathways where metabolites are converted to one
another by chemical reactions, metabolomics data contains correlations caused by
tiny fluctuations in metabolic concentrations being transmitted through the pathway.
Groups of metabolites are strongly correlated even over biological replicates having
the same experimental treatment, a feature not apparent in for instance gene expression
data where the correlations mainly result from responses of the genes to the external
perturbations (Steuer 2006). Another peculiar feature of metabolomics data is that
mean concentrations and scales of different metabolites vary by orders of magnitude;
they can be modelled by metabolite-specific means and scales of, say, a healthy control
group.

Factor analysis models where latent factor(s) fluctuating around zero are assumed
to generate correlated fluctuations around the variable-specific means, fit well the
above assumptions. To solve the n � p limitation of factor analysis and to simplify
the interpretation of the results, we make the simplifying assumption that each vari-
able is generated by exactly one factor. The factor analysis task can now be interpreted
to include model-based clustering of variables as a subtask. Biologically the task is
related to finding sub-parts of linear pathways which is a current research trend in
bioinformatics (Sanguinetti et al. 2008).

We now assume that effects of covariates, such as disease, are visible in the same
factors describing the activity of parts of the biochemical network, as up- or down-reg-
ulations of the factors. The healthy control biological replicates are assumed to fix the
“coordinate basis” of the problem, from which the up- and down-regulations deviate
the means of factor values.

As far as we know, the multi-way modeling in high-dimensional metabolomics
data, with grouping assumptions made to regularize the problem, is a new approach
for generative modeling of the measurement data. Sparse latent factor models (West
2003), being regression-type approaches, can only be used to discover variation of the
data that is explained by external covariates. This is reasonable for gene expression
data also considering that it has been claimed (Steuer 2006) that for gene expression
data, correlations between variables arise mainly due to responses to external variation.
However, in metabolomics, fluctuations due to biochemical pathways themselves are
another important source of variation that can be useful for instance in finding biolog-
ical pathways not responding to external covariates. This motivates us in modelling
the whole dataset with hierarchical generative modelling.

The clustering methods based on Linear mixed models (Ng et al. 2006; Celeux et al.
2005) have so far not been used for multi-way experimental setups, and because their
main goal is clustering they have not considered estimation of statistical significance
of the effects.

As PCA in general, ASCA, the only currently existing method addressing the multi-
way generative n � p metabolomics data, can only be considered an exploratory
visualization of PCA scores of one effect at a time. It does not estimate the statistical
significance of the effects, although an approach based on permutation tests was later
proposed (Vis et al. 2007).

In summary, we introduce a method that combines central aspects needed to model
metabolomic datasets in a single, hierarchical generative model. The two-way exper-
imental setup of the research problem is included as population-specific priors on the
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latent variables. As a projection matrix we use a clustering matrix enabling n � p
cases, which also allows an easy interpretation of the clusters related to the different
latent factors. Inference on the statistical significance of the effects of external covar-
iates is done by studying the confidence intervals of the posterior distribution. The
method is additionally capable of finding clusters of correlated metabolites that are
not related to external covariates, but can be interpreted as sub-parts of biochemical
pathways. The method generalizes directly to a general multi-way analysis, but for
simplicity of presentation we introduce it in the two-way case.

2 Model

We next formulate the two-way analysis model as a factor analysis model where the
ANOVA-type two-way effect terms are assigned as the priors of the latent factors. To
deal with the small sample size, the projection matrix is formed as a sparse clustering
matrix containing only one non-zero element for each variable; this is particularly sen-
sible under the assumption that metabolomics data contains strongly correlated groups
of variables. The projection matrix is now non-singular even in the n � p cases. The
posterior is computed with Gibbs sampling.

In effect the model, shown in Fig. 1 consists of a factor analyzer, where the loadings
assume cluster memberships (multiplied with scales) and population-specific priors
assume ANOVA-type multi-way structure. We will now introduce each of these parts
in turn.

2.1 Factor analysis model

Factor analysis (FA) model (Roweis and Ghahramani 1999) for n exchangeable
replicates of the control group is p(x j |V, xlat

j ,µ,�) = N (x j |µ + Vxlat
j ,�), where

xlat
j ∼ N (0, I)

x j ∼ N (µ + Vxlat
j ,�). (1)

Fig. 1 Plate diagram of the
two-way clustering factor
analysis model
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Two-way analysis of high-dimensional collinear data 267

Here x j is a p-dimensional observation vector, j = 1, . . . , n, and V is the projection
matrix that is assumed to generate the datavector x j from the latent variable xlat

j . The

Vxlat
j models such common variance of the data around the variable-means µ that

can be explained by factors common to all or many variables, effectively estimated
from the sample covariance matrix of the dataset. The sample covariance becomes
decomposed into �̂ = VVT +�, where � is a diagonal residual variance matrix with
diagonal elements σ 2

i , modelling the variable-specific noise not explained by the latent
factors. The xlat

j is a latent variable vector, whose elements are known as factor scores.
Following the discussion on unidentifiability problems in (Roweis and Ghahramani
1999), the covariance matrix of xlat is set to be the identity matrix.

At this point, the covariates are not yet assumed to induce any special effects, and
when n < p, V cannot be estimated due to the singularity of the sample covariance
matrix.

2.2 Extending the factor analysis model to low sample-size cases and to two-way
analysis

We now extend the model to two complementary directions. We restrict first V to a
non-singular sparse clustering matrix, suitable for data containing highly correlated
groups of variables. We then extend the model to include a two-way experimental
setup in the latent variable space.

2.2.1 Forming the sparse clustering matrix

We make the structured assumption that there are strongly correlated groups of metab-
olites in the data, the actual values of group being governed by one latent variable.
The projection matrix V is a positive-valued clustering matrix where each row has one
non-zero element corresponding to the cluster assignment of the variable:

V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ1 0 0
0 0 γ2
...

...
...

0 γ j 0
0 γ j+1 0
...

...
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

The location of the non-zero value on row i , vi follows a categorical distribution
(multinomial with a single observation), with an uninformative prior distribution π i

that does not depend on the size of the cluster. However, the π i could be used to encode
prior information on the known grouping of variables.

The variation of each variable within a cluster is assumed to be modeled by the same
latent variable, but the scales may differ. The scales γi are assigned heavy empirical
priors γ 0

i that keep them close to the values of the control group, to make the γi and the
population prior-effects identifiable. We follow (Gelman et al. 2003) in parametrizing
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the distribution as a scaled Inv-χ2 distribution with a degrees-of-freedom weighted
sum of empirical prior and data scale.

The variable-specific residual variances σ 2
i , that are the diagonal elements of �,

follow a scaled Inv-χ2 with an uninformative prior.
In summary, we regularize the covariance matrix by assuming that the main cor-

relations are positive correlations between variables belonging to the same cluster.
This correlation is mediated through a common latent variable; this is a reasonable
assumption for metabolomics data.

2.2.2 ANOVA-type model for latent variables

For two-way analysis we assume that the samples have been classified into two sets of
classes, a = 0, . . . , A and b = 0, . . . , B. A traditional two-way (M)ANOVA model
would be

x j |class( j)=(a,b) = µ + αa + βb + (αβ)ab + ε j , (3)

where µ is the grand mean over all samples, αa and βb are the main effects of the two
directions and (αβ)ab are the interaction effects for a = 0, . . . , A and b = 0, . . . , B.

We assume that the ANOVA-type effects act on the latent variable space, which
makes sense both in terms of the interpretation of the latent variables as activities of
metabolic pathway parts, and in making it possible to estimate the model for small
sample sizes. In the K -dimensional latent variable space we have

xlat
j |class( j)=(a,b) = µK + αa + βb + (αβ)ab + εK

j , (4)

where class( j)denotes the class labels of sample j, and K denotes lower dimensionality.
The ANOVA effects are set as population priors to the latent variables, which in

turn are given Gaussian priors αa , βb, (αβ)ab ∼ N (0, I).
To simplify the interpretation of the effects we now deviate from the standard

ANOVA convention. Similar choice has been done successfully in other ANOVA
studies (Seo et al. 2007), and it does not significantly sacrifice generality. We set the
parameter vector µ describing variable-specific means to the mean of one class, the
control group, instead of the grand mean. One group now becomes the baseline to
which other classes are compared by adding main and interaction effects. The terms
α0, β0,(αβ)00,(αβ)a0,(αβ)0b become therefore zero. The difference between the clas-
ses is now modelled directly with xlat and hierarchically by the main effects αa, βb
and (αβ)ab.

As a simple example consider 2×2 ANOVA analysis. The classes are now (a, b) =
(0, 0), (1, 0), (0, 1), (1, 1). The ANOVA terms for samples belonging to different clas-
ses are
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xlat
j |(a,b)=(0,0) ∼ N (0, I) xlat

j |(a,b)=(1,0) ∼ N (α1, I) (5)

xlat
j |(a,b)=(0,1) ∼ N (β1, I) xlat

j |(a,b)=(1,1) ∼ N (α1 + β1 + (αβ)11, I)

There is no effect estimated for the control class (a, b) = (0, 0). The terms α1 and
β1 now directly model the difference of the samples in the two directions to the control
group, and the interaction term (αβ)11 models the interactions of the two directions.
In standard ANOVA four main effects and four interaction effects would have to be
estimated and compared. The inference on the statistical significance of the ANOVA
effects now reduces to inferring whether the posterior distribution of these effects is
above(up-regulation) or below(down-regulation) zero with, say 95% probability. Each
component of the terms, representing different clusters is estimated individually. Note
that having only one class would reduce the problem to factor analysis.

The hierarchical model is summarized as

α0 = 0,β0 = 0, (αβ)a0 = 0, (αβ)0b = 0, (αβ)00 = 0

αa,βb, (αβ)ab ∼ N (0, I)

xlat
j | j∈a,b ∼ N (αa + βb + (αβ)ab, I)

x j ∼ N (µ + Vxlat
j ,�). (6)

2.3 Gibbs-equations

Let us index samples by j = 1, . . . , n, variables by i = 1, . . . , p, and clusters by
k = 1, . . . , K . The Gibbs sampling formulas for the model are as follows:

xlat
j ∼ N (µ̂

lat
j , �̂

lat
), (7)

where

µ̂
lat
j = �̂

lat
(VT �−1x j + αa + βb + (αβ)ab), (8)

�̂
lat = (VT �−1V + I)−1. (9)

The effects are sampled as

αa ∼ N
⎛
⎝ 1

na + 1

∑
j∈a

(xlat
j − βb j

− (αβ)ab j ),
1

na + 1
I

⎞
⎠ , (10)

βb ∼ N
⎛
⎝ 1

nb + 1

∑
j∈b

(xlat
j − αa j − (αβ)a j b),

1

nb + 1
I

⎞
⎠ , (11)

(αβ)ab ∼ N
⎛
⎝ 1

nab + 1

∑
j∈ab

(xlat
j − αa j − βb j

),
1

nab + 1
I

⎞
⎠ , (12)
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where na , nb and nab denote the number of samples belonging to group a, b, and both
a and b, respectively. Finally, the equation for clustering is

p(vi = k) = πk
∏

j p(x ji |µi + γi x lat
jk , σi )

�kπk
∏

j p(x ji |µi + γi x lat
jk , σi )

, (13)

and for the residual variance and scale parameter

σ 2
i ∼ Inv-χ2(n, � j (xi j − µi − γi z jk)

2), (14)

γ 2
i ∼ Inv-χ2

(
n + n0,

nγ̂ 2
i + n0γ

0
i

2

n + n0

)
, (15)

where

γ̂ 2
i = � j (x ji x lat

jk )

� j (x lat
jk )2

. (16)

2.4 Empirical prior

To fix the factor analysis to model the correlations of the control group, strong empir-
ical priors are used for µ and γi . The γ 0

i is the standard deviation of the control group,
and n0 controls the strength of the prior. We use n0 = n. The µ is the mean vector
calculated over the control group. For simplicity and following the results of (Rowe
2006), µ is subtracted from the whole data and is not sampled, corresponding to the
centering discussed in Chap. 2.2.2.

2.5 Model complexity selection

Model complexity, that is, the number of clusters and latent variables is chosen by
predictive likelihood with 5-fold cross-validation.

3 Results

We study the performance of the method on simulated data and on data from a recent
large-scale empirical study. The simulated data is first used to study how the method
copes with a decreasing number of samples in the task of finding ANOVA-type effects.
The use of the method is then illustrated on a Lipidomics dataset from a recent Type 1
diabetes study (Oresic et al. 2008). In this study, lipidomic profiles of healthy human
patients and patients developing into type 1 diabetes were measured at variable inter-
vals. We first carry out a 2×2 cross-sectional analysis in one time point, on the treatment
variables healthy-diseased vs female-male. Finally, we consider the time index as one
of the experimental variables, the other being healthy vs diseased samples.
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3.1 Simulated data

3.1.1 Effect of sample size

We demonstrate how well the method finds up-regulation effects as a function of the
number of samples. The data is generated with the following parameters: There are
four classes within a 2-way experimental setup as in Eq. 5. There are K = 4 clusters
in which the following effects are generated: α1 = (+2, 0, 0, 0), β1 = (0,+2, 0, 0)

(αβ)11 = (0, 0,+2, 0). Dimensionality of the dataset is p = 200. The optimal num-
ber of clusters is chosen by predictive likelihood, recovering the correct number of
clusters K = 4 (Fig. 2).

The sample size now varies from n = 20 to n = 1,000, such that the four classes
have an equal number of samples (e.g., n = 20 means 5 samples in each class). The
noise parameters are set to σi = 1, scale parameters to γi = 1, and mean parameters
to µi = 0 for i = 1, . . . , p. The prior n0 is fixed to n0 = 20. In each run, 1,000 Gibbs
samples are collected after 1,000 burn-in iterations. For each sample size, 10 indepen-
dent datasets with the same parameters are generated and Gibbs sampling repeated
for each. The posterior intervals and means of the pooled posterior distributions of
the effects are plotted for each found cluster in Fig. 3. We intentionally computed the
model with a slightly misplaced number of clusters to demonstrate effects of minor
misspecification, having K = 5 clusters instead of the optimal K = 4.

The results show that the model finds the generated effect in each cluster and does
not find false-positive effects in clusters where none were generated (although there
is a fair measure of uncertainty in the estimates for small sample sizes). Uncertainty
of the effects, that is, the width of the posterior interval diminishes as the number
of samples grows, as expected. Correct clustering is found from the posterior of V
each time. In metabolomics experiments, usually 20–100 samples are available. These

Fig. 2 The correct number of
clusters K = 4 is found for
generated data in model
complexity selection. Average
predictive likelihood of left-out
data is shown as a function of
number of clusters. Increasing
the number of clusters after
K = 4 does not increase the
likelihood
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Fig. 3 The method finds the generated effects αcluster1 = +2, βcluster2 = +2, (αβ)cluster3 = +2. In
the other clusters, no effects are found. The 95% posterior intervals of the main and interaction effects are
plotted for each cluster

amounts are on the borderline of the posterior interval of the effects differing from
above zero.

3.2 Lipidomic diabetes data set

3.2.1 Cross-sectional study of healthy-diseased, male-females

We study the two-way experimental setup of a single time point (avg. time 750) in
subjects who later progressed to type 1 diabetes (Oresic et al. 2008). The classes are
healthy female (18 samples, subjects who have not progressed to diabetes, chosen as
the control group), healthy male (17), diabetic female (11 who have later progressed
to diabetes), diabetic male (8), and there are 53 lipids. Following the notation of the
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Two-way analysis of high-dimensional collinear data 273

Fig. 4 The method finds statistically significant effects for the human diabetes cross-sectional healthy-
diseased, male-female comparison. Effects are found for αcluster3, βcluster1 and βcluster4. The figure shows
posterior intervals of the main and interaction effects for each cluster. In addition, average correlation
coefficients between lipids within each cluster are given

example of Eq. 5, the disease effect is estimated with the α1-parameter for each cluster,
β1 models the gender-effect and (αβ)11 models the interaction of these two effects.
The optimal number of clusters is found to be K = 6. According to the results shown
in Fig. 4, there is a positive, statistically significant gender effect found for clusters 1
and 4 signifying that males have a higher concentration for 18 and 4 lipids, respec-
tively. A negative disease effect is found for cluster 3, signifying that diabetic patients
have a lower concentration for 5 lipids. Note that the other effects are not statistically
significant, but we still find clusters of strongly correlated lipids.

3.2.2 Time development of healthy and diabetic patients

Finally, we demonstrate the performance of the model for a simple time-series anal-
ysis of the human diabetes. The time indices are treated as independent values of the
covariate; later the model will be extended by taking the time order into account, for
instance by assuming a Hidden Markov Model structure (Beal and Krishnamurthy
2006; Nikkila et al. 2008).
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In the diabetes data, lipidomic profiles of healthy human patients and patients devel-
oping into type 1 diabetes had been measured at variable intervals. The measurements
were aligned to six time-points. The two-way setup now contains time effects and a
healthy-diseased categorization. We now assume that there is no static disease effect,
but instead disease effects change in time. Therefore, only time effects α1,...,5 and
time-disease interaction effects (αβ)(0,...,5)1 are estimated. The latter now indicate,
for each time point, the deviation caused by the disease from the normal time-devel-
opment. The optimal number of clusters was found to be K = 5. The results shown
in Fig. 5 reveal clear time-dependent behavior, estimated by the α, that is distinct for
all clusters. Statistically significant interactions of time and disease (αβ) are found at
timepoint 0 for clusters 4 and 5 (disease up-regulation), at timepoint 4 for cluster 3
(disease down-regulation) and at timepoint 5 for clusters 2 and 3 (disease down-regu-
lation). In this machine learning paper we do not analyze the biological implications

Fig. 5 Statistically significant time-varying behavior is found for each cluster in the human diabetes data
(upper figures). Time-disease interaction effects are found as well for clusters 3, 4 and 5 (lower figures).
Posterior intervals of the main effect (time) and interaction effects (time, disease state) are plotted
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further; some interesting findings were made and they are being worked on for a
biological paper.

4 Conclusion

We introduced a Bayesian hierarchical model that can be used to model two-way exper-
imental data even when n � p. The model was formulated as a factor analyzer where
population-specific priors were set on the latent variables. This can be interpreted as
an ANOVA-type model.

The model finds a clustering of correlated variables, and the clustering assump-
tion helps solve the n � p problem. There are strong justifications why clusteredness
would be a good assumption particularly for modeling metabolomics data. Clustering
factor analysis can be easily replaced by a simpler component model such as PCA,
sparse PCA or exponential PCA if they are considered more appropriate for other
applications.

Prior knowledge on clustering the variables, often available in bioinformatics appli-
cations, could directly be taken into account as prior probabilities in the clustering
matrix. The model can also be extended to take the time-series nature of the data into
account.
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