TWO WAY DETERMINISTIC PUSHDOWN AUTOMATON
LANGUAGES AND SOME OPEN PROBLEMS
IN THE THEORY OF COMPUTATIORK

Zvi Galil

" TR 74-204

April 1974

Department of Computer Science
Cornell University
Ithaca, New York 14850

TWO WAY DETERMINISTIC PUSHDOWN AUTOMATON
LANGUAGES AND SOME OPEN PROBLEMS
IN THE THEORY OF COMPUTATION

Zvi Galil

Abstract

We consider some of the important unsolved problems in
the theory of computation concerning the relationship between
deterministic and nondeterministic computations, and between
tape and time bounded computations. For each such problem we
find an equivalent problem concerning two way deterministic
pushdown automaton languages. This is the first time many of
the open problems have been reduced to questions about one

class of automata.

Keywords and Phrases:

Two way deterministic pushdown automata, open problems,
determinism versus nondeterminism, space bounded computations,
time bounded computations, Turing machines, multihead pushdown

automata, two way counter machines, auxiliary pushdown machines.

CR Categories: 5.22, 5.23

0. Introduction

In the theory of computation we can find several open
problems. One of them the LBA problem [10), has been around
more than ten years. These problems concern the relationship be-
tween tape and time bounded computations and the relationship
between deterministic and nondeterministic computations.

Each of these problems is of the following form: There
are two classes of languages, &?A and éz% , and two classes
of machines(/ﬂg andu4@é , which characterize them. In each
case it is easy to prove that éZ% c é?B and the open problem
is whether é?A equals éz%. It is usually the case that there
are languages in é?B that are easily shown to be there, but
nobody can prove that they are not in é?;: there is still a
chance that although ézg looks much richer, each machine in

V4ZB can be simulated by some machine in °4¥A, perhaps using
clever tricks.

Although unable to solve these open problems, researchers
have recently reduced them to various other, seemingly
simpler problems. One of the most common approaches was to
construct L € ‘?B such that L € @, iff Fp = ¥, . Thus,
the question 'can we simulate all machines in bdzg by machines
in ufZA?‘ was reduced to the question 'can we accept L by a
machine in‘/ﬂ&?', which seems much easier. Moreover, we try
to construct an L as simple as possible and thus to reduce

the original problem to the simplest form.

In this paper we follow this approach and reduce some of
the most important open problems of the theory of computation

to questions about two-way pushdown automaton languages (2DPDA).

The idea of reducing open problems to other, seemingly simpler
problems is not new. But this is the first time most of the
open problems about the relationship between tape and time
bounded coyputations and between nondeterministic and determinis-
tic computations are reduced to questions about one cl.:s of
automata. So far every open problem has been dealt with separ-
ately. Moreover, this class is a model for simple computations,
since S. Cook proved in [E] that every two-way deterministic
pushdown automaton (2dpda) can be simulated in linear time by a
random access machine (RAM). Note that we cannot say the same
about any class of languages (or automata) to which the open
problems were reduced in the past. Another innovation is the
rather surprising fact that we can reduce problems about non-
determinism versus determinism to questions about 2dpda's which
don't mention nondeterminism at all. So far, the question

'Does non-determinism buy us more computational power?' was re-
duced either to the same gquestion for simpler machines,f or to
the question whether a specific ﬁondcterministic language can

be accepted deterministically as well.

We are mainly interested in 2dpda's, but we will also con-
sider two-way deterministic counter machines (2dc's) and two-way
nondetcrministic counter machines (2nc's).

In Section 1 we list the open problems of the theory of

computation, that are discussed in the paper. In Section 2 we

fe.g. in [21) it was reduced to the question whether every two-
head, one~way, nondeterministic finite automaton can be simulated
by a k-head, two-way deterministic finite automaton.

describe briefly the classes of pushdown automaton languages and
some unsolved questions about them. In the first two sections

we also introduce our notation. In Section 3 we relate some
questions about pushdown automaton languages and the relationship
between deterministic and nondeterministic tape bounded compu-
tations. In Section 4 we relate some questions about two-way
deterministic pushdown automaton languages and open problems
involving the class of languages which can be accepted in
polynomial time. 1In Section 5 we relate some open problems

to questions about two-way deterministic counter machines.

1. Some Open Problems of the Theory of Computation

In this section we list six of the most important unsolved
problems of the theory of computation. In the sequel we will
relate these problems to questions about languages accepted
by two-way deterministic pushdown automata. First we introduce
the notation we use to describe these open problems.

By a TM we shall mean an off-line multi-tape Turing machine+
defined as a recognition device as in [12]. By convention, such an
automaton usually receives its input (a member of Z+ , where I
is the input alphabet) on its input tape. We will write DTM (NTM)
for a deterministic (nondeterministic) TM.

A TM, M, accepts the word x € gt if some computation by M

on x halts in accepting state. M accepts the set L(M) = {x € Z+|

M accepts x}. M accepts x within time t (within space s) if some

TWhen we discuss tape bounded computations we assume w.%.0.g.

that the TM has only one working tape.

computation by M on x halts in accepting state after at most t
steps (using at most s tape squares). For convenience we shall
say that a ™, M, operates within t steps on x if either M
accepts x within t steps or M does not accept x.

M operates within time T(n) if it operates on each x € st

within time T(Ix!).+
Define NTIME(T(n)) = {L C E+]L = L(M) for some NTM M which
operates within time T(n)} and DTIME(T(n)) = {L < Z+]L = L(M) for
some DTM M which operates within time T(n)l.
We define similarly the notions of operation within space
S(n) and the classes NSPACE({S(n)) and DSPACE(S(n)}.
w

1, o«
We also define P-TIME = U DTIME(nK), NP-TIME = U NTIME(nk),
k=1 k=1

DSPACE(n), NLBA = NSPACE(n),

P-~SPACE = U DSPACE(nk),

k=1

DLBA

DLOG = DSPACE(fogn) and NLOG = NSPACE(fogn). We are ready now to
give a list of the open problems which are the subject of this

paper.

A Determinism versus nondeterminism in tape bounded computations.

1. 1Is DSPACE(S(n)) = NSPACE(S(n)) for all S(n) > zogn?ﬁ The

special case S{n) = n is called the LBA problem and has already
been around for ten years ([10]}). The problem was reduced to

the question of whether a specific language L in NLOG (NLBA),

1-I-‘or any string w = 2yee-ap, |w| denotes the length n of w.

++All logarithms in this paper are of base 2. Also f£(n) > g(n)

means that there is a constant c > 0 such that f(n) > cg(n)
for all n.

is in DLOG (DLEA)?T ([181,[10]). Among examples of such an L
are a context-free language and a nondeterministic one way two

head finite automaton language ([21]).

B Determinism versus nondeterminism in time bounded computations.
2. Is P-TIME = NP—TIME?#f
This problem is probably the most important one, since many
believe that P-TIME is a reasonable candidate for the class
of feasible computations. Many combinatorial problems are
easily shown to be in NP-TIME, but nobody knows if they are
in P-TIME. Some of them+++ have the property that they be-
long to P-TIME iff P-TIME = NP-TIME ([3],[16]). This is

again reducing the question about a class of languages to a

similar question about one language in the class.

In [2] the question is reduced to the question: "Is P-TIME

closed under nonerasing homormerphism?” or "Is NTIME(n) € P-TIME?"

C Space bounded computations versus time bounded computations.

3. Is P-TIME

P~SPACE?

4, 1Is P-TIME = DLOG?

1"rhese are the <1.0G complete in NLOG. We preferred not to use
this terminlogy since we deal with different kinds of redu-
cibilities.

1

The corresponding problem for space is solved [18], and the answer
is positive. However, most researchers conjecture that the answer
is negative for time.

1~+-l"I‘he so-called polynomial complete problems.

The last two problems show very clearly how poor is our
knowledge about the relationship between tape and time bounded
computations (since DLOG § DLBA G P-SPACE) g

Another problem is:

5. Is P-TIME © DSPACE((logn)i)++ for some i?
Cook, and Cook and Sethi have proved ([6],[71) that the
answer is negative when we consider very restricted compu-
tations. Jones and Lad@ser [15) reduced the last two prob-

lems to questions about specific languages in P-TIME.+++

D Does an auxiliary stack add to the computational power of tape

bounded TM's?

In {4] Cook has introduced the notion of PDM(S(n)), i.e.
a2 TM using a pushdown stack and operating within S(n) space
(not counting the space used by the stack). He then proved
the surprising result that NPDM(S(n}) = DPDM(S(n)) for all

S{(n) > fogn. The last open problem in our list is
6. Is PDM(S(n)) = DSPACE(S(n)) for all S(n) > fogn?

Note that the six problems are not independent. For
example P-TIME = DLOG => DSPACE(S(n)) = NSPACE(S(n)) for all
S(n) > fogn and P-SPACE = P-TIME => P-TIME = NP~TIME, In Section

4 we will see that problems 6 and 4 are actually the same.

fBook {2] has proved that P-TIME ¥ DLBA.

ffNote that preblem 4 is the same as problem 5 when i = 1 since
DLOG < P-TIME.
T+t

The <, .. complete problems for P-TIME.
LOG

Figure 1.1 describes some of the classes mentioned above.
Circle A is inside circle B if A C B. The open problems are:
Are these inclusions strict? We only know that DLOG and NLOG
(the two innermost circles) are strictly contained in P-SPACE

(the outermost circle).

P-SPACE = NP~SPACE

NP-TIME

P-TIME

NLCG

Figure 1.1

2. Pushdown Automaton lLanguages and Some Unsolved Questions

About Them
Although most of our results concern two-way deterministic
pushdown autcmaton languages, some of the proofs and some of the
results deal with much more general definitions from which we
derive all other classes as special cases. The definitions
(and hence part of the proofs) are informal. For formal defini-
tions see [14].

A two~way nondeterministic k-head pushdown automaton,
k-npda, is a finite control attached to a read only input tape
and a pushdown stack. The input tape will contain a string ¢x$
where x € had , where I is a finite alphabet, and ¢ and $ are left
and right endmarkers, respectively. There are k heads on the
input tape which communicate with the finite control as follows:
The automaton depending on its state, the k symbols scanned by its
heads and its top stack symbol can choose one of a finite number
of possible moves to perform. A move consists of 1) changing
state, 2) popping off the top symbol of the stack, 3) pushing some
symbols onto the stack and 4) moving some of the heads one square
to the left and some others one to the right.+ The k~npda starts
in a starting state with all its heads scanning the ¢, It
accepts the input if some choice of moves takes it to an accept-
ing state. The language accepted by a k-npda is defined as for
TM's. A k~dpda is defined as above, except that at most one
choice of move is defined for each k-tuple of input symbols,
state and stack symbol.

TNo head can move left (right) when it scans ¢ ($).

Let DPDA(k) = {L|L = L(A) for some k-dpda A}.
We will mostly be interested in the case k = 1. In this
case the automaton is a 2dpda and the class of languages is 2DPDA.f
Similarly we define all the classes related to 2npda. We
will be interested in the counter machines (always with one head).
Namely, the 2dc (2nc) which is a 2dpda (2npda) which uses only cne
stack symbol (in addition to one extra symbol which marks the bcttom
of the stack). The class 2DC (2NC) is defined in the obvious way.
We will mention also a k~head deterministic (nondeterministic)
finite automaton, k-dfa (k-nfa). It is a k-dpda (k-npda) without
a stack and its next move is determined by its state and the k
symbols which are scanned by its heads. The corresponding classes
are defined in the obvious way.
2dpda's were introduced in [8]. We don't find much about
them in the literature and all the open problems which were men-
tioned in the introductory paper are still unsolved. In [5]
Cook proved that the membership problem for 2dpda's can be solved
on a RAM (Random access machine) in linear time. This gives a
proof that some pattern matching type problems can be solved in
linear time (e.g. recognition of palindromes). A 2dpda can per-
form some computations in a very strange way. It is an amusing
exercise to show that each of L; = (™ [w g Z+},T
L, = {wlwiwzwgu |wl,w2 € £t} ana Ly = {oM" |n > 1} is in 2DPDA.

i The 2 stands for 'two-way' and is used to prevent confusion with

the one way device. TFor k > 1 "k-dpda" ("k-npda") will always
mean two-way device.
++

_ R
If w= ajee.ay then w 3 +e.8y.

10

Thus a 2dpda can simulate, in some sense, a bounded number of
guesses and can perform some integer arithmetic. Therefore,
Cook's result is of a great significance and justifies further
- effort to study this class (We don't know even how to simulate
a 2-dfa in lineaxr time on a RAM).

The main reason which, in our opinion, accounts for the
fact that not much is known about 2DPDA is that the head can move
in two ways.f Therefore, a 2dpda cannot be characterized by a
simple grammar++ and we cannot apply any sort of 'Pumping lemmas'
to produce a language not in 2DPDA. Actually, the only languages,
that we know, not to be in 2DPDA either are obtained by a straight-
forward diaconalization or are languages which are shown not to
be in P-SPACE ([171,[131).

We are ready to describe the unsolved questions which we
are going to relate to the open problems mentioned in Section 1.
Figure 2.1 shows the current state of knowledge about some of the

classes we defined earlier.
DLBA

Gy

2NC —2- DPLOG -2— 2pPDA
D %

2DC
Figure 2.1

'C' is inclusion and ' ? ' stands for an unknown relation.

The same difficulty implies that we cannot prove that some simple
languages cannot be accepted by 2-dfa. Sudborough hus proved re-
cently ({30}) that some simple languages cannot be accepted by
o0y k-dfa which makes a bounded number of head reversals.

" ‘From what follows we will see that every L € 2DPDA is generated
by some context-sensitive grammar, but this does not héelp much.

11

Inclusions 2 and 3 follow trivially from the definitions.
For completeness we prove below inclusion 1, which is a well
known fact ([8]). We also need the proof, since we will refer

to it in Section 5.
Lemma 2.2: 2DPDA S DLBA ..

Proof: Let A be a 2dpda with s states and t stack symbols which
can push at most & symbols on its stack in one move. Assume that
the input is x with [¢x$] = n and at some point of the computa-
tion the length of the stack is bigger than s.t.f£.n. Consider

the computation up to this point. In the process of growing the

stack there must be two points at which

1. The lengths of the stack are £, and 2

1 20 % < 2

1 2°
2. A scans the same symbol, is in the same state and has the same

top symbol on its stack, and

3. During the computation from the first point to the second the

length of the stack is never shorter than ll.

This implies that the computation must diverge (overflowing the
stack). Thus x € L(A) => the length of the stack never exceeds
stin => an LBA (linear bounded automaton) can simulate A using

linear tape instead of the stack => L{(A) € DLBA.

As in the situation with the open problems, which we mentioned
in Section 1, all inclusions in Figure 2.1 are probably strict
(and all ' <?:r ' gtand probably for the fact that the classes are

incomparable), but we cannot prove it.

12

We do not solve here any of the problems which arise from
Figure 2.1. 1In Section 4 we will get as a corollary that
2DPDA # DLOG. It is also easy to see that one of inclusions
1 and 2 must be strict, since DLBA i 2DC. (In Section 5 we
prove that 2DC € DLOG and thus the claim follows from the
hierarchy of tape bounded computation established in [19]).
We are ready now to describe briefly the main results
of this paper. 1In Section 3 we construct a 2dpda-language
{lnc-language), L, such that L € DLOG iff DSPACE(S(n))= NSPACE(S{(n))
for ‘all S(n) > fogn. In Section 4 we construct a family of languages
{Lk);;o ({L)'{}:=o) such that L, £ 2DPDA (L' £ 2DPDA) for some
k iff P-SPACE = P-TIME (P-TIME = NP-TIME). We also construct
a 2dpda-language, L, such that L € DSPACE((Zogn)i) for some i
{L € DLCG) iff P-TIME < DSPACE((.QOgn)i) (P-}TIH‘,= DLOG or
PDM(S(n)) = DSPACE(S(n)) for all S(n) > fogn). In Section 5
ve construct several families of 2dpda~languages (2nc-languages)

{Lk}m . We prove in the case of 2dpda-languages that L, € 2DC

k

for zgge k iff NSPACE(S(n)) = DSPACE(S(n)) for all S{(n) > fogn
(or iff P-TIME = DLOG, or iff PDM(S(n)) = DSPACE(S(n)) for all
S(n) > %ogn for other families) and in the case of 2nc-languages
that Lk € 2DC for some k iff NSPACE(S(N)) = DSPACE(S(n)) for all
S{n) > fogn.

As we mentioned above, Figure 2.1 includes only those ques-
tions which we relate to the six open problems we described in

Section 1. A very important question —namely 'is 2NPDA = 2DPDA?'

-— is missing. We could not relate it to any of the open problems.

13

3. Pushdown Automaton Languages and the Relationship between

Deterministic and Nondeterministic Tape Bcunded Computations

In [18), Savitch defined the set Mz of threadable mazes
over L. He proved that the existence of a DTM that operates in
fogn space which recognized My would imply that DSPACE(S(n)) =
NSPACE(S(n)) for all S(n) > fogn. We review briefiy the defini~
1

tion of MZ'

Definitioﬁ 3.1: Let [,], #, and A be four symbols not in I.
A maze over I is a string A of the form

(1), () (1) (t) (t)
s[xl#yl #y2 ...#yn(l)]...[xt#yl "'#Yn(t)]

where n(i) > 0, s, y;l) ¢t ang Xy € Z+_U tta , 1 i<t

1 <3 <n(i).

Definition 3.2: A maze ./ is threadable if there is a sequence

. . +
il,lz,...,lk such that s = x,. , Xy ,& £ A and for each 2.,

1
1 k . (lz)
1 <% <k-l,there is a j,, 1 £ j, < n(iy), with xi£+l =¥

Notation: Mz denotes the set of all threadable mazes over L.

Savitch proved the following result in [18]:

Theorem 3.3: M € DLOG iff DSPACE(S(n)) = NSPACE(S(n}) for all

S(n) > fogn.

+Our definition differs from the definition given in {18] in

two ways: 1)} We identify mazes and their encodings and 2) In
{18] the string is followed by the string ui#us...#u, which is
a list of what he called the goal rooms. In our definition a
goal room is denoted by Xir X5 € ITA.

14

Proof: Athough we made some changes in the definition of ME ,
the proof in {18] still holds. We sketch below the essential
elements in that proof: If an NTM Z which operates within space

S{n) > fogn and an input x are given, then one can define a se-

quence of mazes L4zk |k=1,2...} such that
2,x

a) The xi‘s are the i.d.'s* of Z on x under the assumption that
k tape cells are used,

b) Xi~€ sta iff it is an accepting i.d.;

c) s is the initial i.d. of 2 on x and

é) yéi) 1 <3 < n(i) are all the i.d.'s which follow from Xy by

one nove of Z.
g k s oo
For all k > 1 7 y Satisfies
r
¥
(1)b4Z5 x is threadable iff Z accepts x within space k.
?

{2) Given x as an input, a DTM can generatec the i-th symbol of

k : k .
u4Zz'x (1<ic ludyz'xl) by using no more than max(fLogn, k)

tape cells. ¢

We will modify ME to get a 2dpda-language M‘i and a lnc-
language M; for which a theorem analogous to Theorem 3,3 still
holds. Hence we will be able to establish the existence of a
language L € 2DPDA (1INC) such that L € DLOG iff DSPACE(S(n)) =
NSPACE(S(n)) for all S(n) > fogn.

Definition 3.4: A maze is binary if for every i, 1 i<t

n(i) < 2 in Definition 3.1.

*i.d. stands for instantenous description.

15

Definition 3.5: A maze is monotone if a) i > Xy for i' > i ang

b) yéi) > x; for 1 < j < n(i).+

Lemma 3.6: Given an NTM,Z, which operates within space S(n) > fogn

and an input x, we can define a sequence of monotone binary mazes

'£47“§ x]k=l,2...} which all satisfy properties 1) and 2) of.u%(g x
N 1

in the proof of Theorem 3.3.

Proof: We first construct a sequence of NTM's, {Z£|k=l,2...} .
which satisfy

a) For all k, has at most two choices for the next move

1
Zk
(This can easily be achieved by adding more states.};
b) Zi simulates Z on one track of its working tape as long as
it uses less than or egual to X tape cells while counting

its steps on a lower track;

c) Zi always halts, since it can detect when Z loops on k tape-

cells; and

4a) Zi accepts x iff Z accepts x within space k.

k

For every k > 1 let /) %
r

be the maze which corresponds to Zi, x
and k (i.e. replace Z by Z, in the definition of V’Zé%x in the
proof of Theorem 3.3). By property (a) of Zi, U¢[éfx is binary.
By property (b) of z% <A¥'§’x can be choosen to be monotone. This
is done by ordering the tape symbols giving'high priority to the

symbols of the second track and adding some symbols in such a way

that the process of updating the counter in the second track

—

If 2] = m and we assign some arbitrary order to I, then we can
consider x € L7 as an integer in m-ary notation.

16

preserves monotonicity. We omit the tedious details. It is easy
to verify that QIZ'E % satisfies properties 1) and 2) as was claimed
r

above.

Notation: Mi denotes the set of all monotone binary threadable

mazes.

Theorem 3.7: Mé,e DLOG iff DSPACE(S(n))= NSPACE(S(n)})) for all

S{n) > fogn.

Proof: The proof is the same as the proof of Theorem 3.3, except

k

< . R
that 7 z,x 1S used instead of '/'%Z,x

for k = 1,2...
We are ready now to prove the main theorem of this section.

Theorem 3.8: There exists a language L, L € 2DPDA, such that

L € DLOG iff DSPACE(S(n)) = NSPACE(S(n)) for all S(n) > fLogn.

Proof: We show that L = Mé € 2DPDA and the above claim will

follow directly from Theorem 3.7. We give below a program for
a 2dpda, A, that checks if its input is in Mé. It will use its
stack to keep track of the path it is trying to find from s to

some x € ta. at any stage of the computation the stack will

contain the string 3x, J.X. J,X, «..3. X, , 1< i, < t and
1,717, 2 i, i - "% = (il)
S j£ < n(il) <2 forl<?tc<r, X; =8 and X =vy.
+ 1 2+l Ry}

l1<2<r.

ft and n{iy) are those of Defipition 3.1 and Definition 3.2, 3

1 < j < 3 are three symbols not in I (j=3 is a bottom of stack
marker) .

17

1) 1Initialization
Check if the input is of the right format, i.e. if it is

. +
a binary monotone maze.

RS

If it is not - reject the input.

o

Otherwise, push 3s on the stack

(3 marks the bottom of the stack).

2) Continuve the path

£
Scan the input from left to right and look for x5 ,+'

where x; € {x,xA} and Jx is on top of the stack.’

a 1If there is no such X5 then go to 3.

b) If there is such Xir X, = x4 , then accept the input.

Otherwise,
¢ If there is such X5 and n({i)=0 then go to 3
(A dead end was found = try another path),

d If there is such %4 and n(i) # 0 (The path may be
continued) then push I y{l)TT onto the stack and go

to 2.

TNote that s, ixi, ygl), can be long strings, but a 2dpda can

match strings and can check monotonicity.

++ (1)

x. is identified by the endmarkers [*, ¥y
by * 1.

by * * and yéi)

18

3} Change the Path

Let ﬁx be on top of the stack, 1 < j < 3.
a If j =3 ~ reject the input (x = s and all possibilities
have been tried).
Otherwise scan the input, moving the head to the right,
(i).
3

b Record j in the finite control and erase jx. Now

until you find x = y

ky is on the top of the stack.

(i) If y # Xy then restore the stack, returning
(1)
j

and go to 3 (continue the search for Xy

ky and jy to it (3 is in the finite control)
the search must eventually succeed since x; was

put on the stack).

(ii) If y = Xy then return only ky to the stack.
Now, if j=1 and n(i)=2 then push Zyéi) onto the

stack and goto 2., Otherwise go to 3.

Since the maze is monotone the 2dpda, A, can never loop
and can check, if necessary, all paths. It essentially uses a

depth~first search (c.f. [22]).

Corollzry 3.9: 2DPDA € DLOG => DSPACE(S(n)) = NSPACE(S(n)) for all

S{n) > fogn.

In Section 4 we will prove that we get a much stronger

result if we assume that 2DPDA € DLOG, namely that P-TIME = DLOG.

19

Definition 3.10: A maze, ff, is one-way threadable if there are

k £ t such that s = x, , x, € A ang for
- i i,

1
k-1, there is a j,, 1 <3, <n(iy,” witn

1<y <i
each 2, 1 <
(
X, Y .
o4l 3
Notation: M; denotes the set of all one way threadable mazes
over I = {a}l. (i.e. s,xi,yél) are strings over one letter alphabet).

++

Theorem 3.11: There exists a language, L, L € 1NC, such that

L € DLOG iff DSPACE(S(n)) = NSPACE(S(n)) for all S(n) > Z2ogn.

Proof: Theorem 3.3 and hence Theorem 3.7 are still true if

we assume that I = {a}. We construct mazes, LAZ"glxlk =1,2...}
which are the same as those in the proof of Theorem 3.7, except
that now they are represented by strings of a's. If r symbols
are used to describe the i.d.'s then an i.d. X is represented

by aP(x)

where P(x) is the value of x interpreted as an r-ary
numeral. We still use [,*,],A as extra symbols. For each k

Ldz;kx satisfies the following properties:
’

1) Since it is monotone, uk is one way threadable
Z,x%

iff it is threadable iff Z accepts x within space k.

2). Given x as an input, a DTM can generate the i-th
symbol of °4y"§ g (1 2ig]u4{"§ xf) by using no more
’ 4

than max(%ogn,k) tape cells. This is done in a manner

*t and n(ig) are as in Definition 3.1 and Definition 3.2.

++It has becen brougnt to our attention that Theorem 3.11 was proved

independently by Sudborough in a recent paper (which is an
extended version of (21) and will appear in JCSS). In that
paper he uses more complicated constructions (reduction to

k head one way nfa) to obtain what we call here monotonicity.

20

2) continued.
similar to that in [18] using several r-ary counters.
The only difference is that any time an i.d. is generated
in one of the counters, the corresponding change of the
counter which contains the input head position is not

the length of the i.d. but the r-ary number it represents.

Note that !~4Zékx| = O(nrkzog(nrk)f'and [04Z§kx| = O((nrk)z)
and thus 20g|v4{ékx] = 0(k + fogn) = 209[04Z;kx[. Thus

max (Logn,k) of tape cells will suffice for the counters.
Thus Theorem 3.3 (Theorem 3.7) holds with M; replacing
MZ (M'Z)' To complete the proof we show that

L = M; € INC. A 1l-nc, A, that accepts L operates as

follows: First, A pushes s onto its counter. Let

(ig) (i)
s =Y, . When some yj

is in the counter, A guesses
at some point, while moving its head to the right, that
(i,) (i,)
X3 = y." (or x5 = y.“A). It checks its guess
g+l I 241 J
(since it has just started scanning X) by popping
241

out the counter. If its guess was wrong, then A
rejects. Otherwise, if a A follows then A accepts;

if not, then if n(i) = 0 A rejects and if

L+1
n(i£+l) > 0 then it nondeterministically chooses

(i,)

Y and pushes it onto its stack. It repeats the

3y
process described above and rejects if it hits the

right endmarker ($).

Tf(n) = O0(g(n)) if there are ¢, cl > 0 such that

>
€39(n) < £(n) < c,g(n) for all n.

21

Corollary 3.12: 1NC & DLOG iff DSPACE(S(n)) = NSPACE(S(n))
for all s(n) > fogn.

One way to interpret the results of this section is
the following: If we could determine whether a given 2dpda-
language {lnc-language), belongs to DLOG, then we could find
out whether nondeterminism buys us more computational power

in space bounded computation.

22

4. 2DPDA and Some Open Problems involving P-TIME

In this section we relate questions about 2DPDA to some
open problems involving P-TIME. Our strongest result is the
construction of a 2dpda-language, L, such that for every i,

L € DSPACE((iogn)i) iff P-TIME C DSPACE((logn)i). We will make
use of the following result, by Cook, which relates P-TIME and

the languvages accepted by multi-head dpda's.

- «©
Lemma 4.1: P-TIME = U DPDA(k) = U NPDA(k).
k=1 k=1

Proof: See [4].

*
We now define an operator ¢, with domain and range 22 .

This operator will have the following property: If L € P-TIME,

then ¢i(L) € 2DPDA for some i.f

Definition 4.2: Let a and b be two symbols not in I. Then

jaxb|

(L) = {(axb) |x € L}. We will refer to each copy of axb

as a block of (axb)laXbl.
Lemma 4.3: L € DPDA(2k) iff ¢ (L) € DPDA(k) for kx > 1.1

Proof: First we assume that L € DPDA(2k) i.e. there is a 2k-dpda,
A, which accepts L. We construct a k-dpda, B, that accepts ¢ (L)
and thus prove that ¢ (L) € DPDA(k). B operates as follows: it

first checks if the input is of the form (axb)n, n = laxb| and

¥ ¢* means applying ¢ i times, i.e. ¢XL) = L and 43" (n) = ¢ (ot (1)),

H-Our techniques were introduced by Ibarra in [14]. For k > 2,

Lerma 4.3 follows from a similar lemma in [14].

x €zt Obviocusly, even a (one-head) 2dpda can do this. If the
input is not of this form, B, rejects it. Otherwise, on input
(axb)n,B, simulates the action of A on x: The state of A is stored
in B's finite control. Each head-of B represents two heads of A
as follows: The head of B scans the i~th symbol of the j~th block
of (axb)® (1 < i, jJ £ n) iff the two heads it represents scan the
i-th and the j-th symbols of ¢xS$.

In order to look at the j-th symbol of axb (This is needed
for simulating A),+ B does the following actions: 1) It stacks
i tt

P by moving its head to the beginning of the block (one P per

syrbol), 2) It stacks Q- vt

by moving its head to the left end-~
marker, ¢, (one Q per block). 3) It moves its head to the j~th
symbol of the first block (while popping off the Q's) and stores
that symbol in its finite control. 4) Finally, B reverses this
process and returns to the configuration it was in before acticn
number 1. In a similar way, B can change its head position to
reflect a corresponding change of the two heads it represents.
Thus, in order to simulate one move of A, B acts as follows: 1)

It first records in its finite control the symbols which are scanned
by the 2k heads of A (by rcpeating k-times the process we described
above). 2) If A accepts or rejects so does B. 3) Otherwise, B
records the change of state and changes the positions of its k

heads to reflect the change of the 2k heads of A. Hence B accepts
¢ (L).

1hNote that the i-th symbol is scanned by the head of B.

TTP and Q are new stack symbols.

24

To prove the converse, just note that if a k~dpda accepts
¢ (L), then a 2k-dpda accepts L. The latter uses two-heads for
each head of the former. The first head represents the number
of the block and the second represents the position in the block.

We omit the obvious details of the simulation.

Lemma 4.4: If L C I*, then L € P-TIME iff L, = ¥ (1) € 2pPDA

for some k.

Proof: By Lemma 4.3 L, € 2DPDA for some k iff L € 2DPDA(2k) for

k
some k. By Lemma 4.1 the latter occurs iff L € P-TIME.

Theorem 4.5: There is a family of languageSr{Lk}°°
k k=0
(Lk € NSPACE(nl/Z }), such that P-TIME = P-SPACE iff Lk € 2ppDA

for some k.

Proof: Let Ly = {R|R is a regular expression over I and

L(R) = Z*)-+ And let L, = ¢k(Lo) for k > 0. In [10], Hartmanis
and Hunt proved that given a TM,M, which operates in polynomial
space and x € ¥ we can construct, in polynomial time, a regular
expression R = RM,x such that 1) The length of R is bounded by

a polynomial in |x|, and 2) L(R) # I* (R € Ly iff x € v, Y
Thus P~TIME = P~SPACE iff L0 € P-TIME. But by Lemma 4f4

k
L0 € P-TIME iff Lk € 2DPDA for some K. Lk € NSPACE(nl/2).
This is because 1) To check the format we need O(fogn) space

{(we need several counters) and 2) To check that x € L we need

L(R) is the language that R describes.
H‘L is < complete in F-SPACE.

0 P-TIME

25

k

172k 2
") space, since LO_E NLBA and x appears n times in a

O(n

word in Lk which corresponds to it.

Theorem 4.6: There is a family of languages,{Lk}m , such
k=0

that P-TIME = NP-TIME iff L_ € 2DPDA for some k.

Proof: Let L0 be the set of satisfiable formulas of the pro-

positional calculus and let Lk = ¢k(L0) for k > 0. By

[3] P-TIME = NP-TIME iff L, € P-TIME. But by Lemma 4.4

L, € P-TIME iff L € 2DPDA for some k.

0

Note that to recognize Lk a T needs linear deterministic
k
time (to check the format) and then O(nl/2) time to check

nondeterministically whether x € L (L0 € NTIME(n)).

0"

By Theorem 4.6 DLBA = 2DPDA => P-SPACE = P-TIME. We
don't have the converse, since a much weaker condition implies
the same, namely for every € > 0 there is L € DSPACE (n%) such
that L € 2DPDA => P-SPACE = P-TIME.

One way to interpret the results of Theorem 4.6 (Theorem
4.5) is the following: If we could detexmine when at least one
of a given family of languages could be accepted by a 2dpda,
we could find out if P-TIME = P-SPACE (P-TIME = NP-TIME).

In order to prove some stronger results we first prove
some auxiliary lemmas.
Lemma 4.7: L € DSPACE((Qogn)i) iff ¢ (L) € DSPACE((Zogn)i).
Proof: Assume L € DSFACE((zogn)i) and let A be a DTM which
accepts L and operates within space (logn)i. Let B be a DTM
that first checks whether its input is (axb)® and x = jaxb|

for x € L*, If it is not of this form, B rejects it; otherwise

it simulates A on x. B accepts ¢ (L) within space (logn)i because
the check requires fogk < fogn space (using a binary counter) and
the simulation requires (logk)i < (Zogn)i space.

Now assume ¢ (L) € DSPACE((logn)i) and let C be a DTM which
accepts it and operates within space (logn)i.

Let D be a DTM which, on input x, simulates C on (axb)k
(k = laxb]), by using a binary counter to keep track of the number
of the block which is currently scanned by C. D accepts L within

(zogn)l space. This is because the counter needs fogn space and

the simulation needs (lognz)1 = O((logn)l) space.
Lemma 4.8: P-TIME C DSPACE((fogn)') iff DTIME(n) G DSPACE((fogn)l).

Proof: The proof uses the padding argument which was used in [2].
The 'only if' part is trivially true. For the 'if' part, assume
DTIME(n) < DSPACE((logn)i). Let L € P-TIME., L € DTIME(nk) for
some k => L' = {xc" |x € L} € DTIME(n) => L' & DSPACE((logn)i) =>
L€ DSPACE((lcgn)i). The last implication follows from the fact
that a DTH on input x can simulate the DTM which accepts L' within
O((logn)i) space: It has a binary counter which counts up to nk

in order to keep track of the simulation in the c¢'s part (the
counter needs O(Rogn) space). It uses O((lognk)i) = O((logn)i)

space.

Theorem 4.9: There exists a 2dpda-language, L, such that

L € DSPACE((%ogn)®) iff P-TIME € DSPACE((Zogn)l).

Proof: Consider L' = {code(Mi)#x | My is a DTM and it accepts x

within ixiz steps}.T

TCode(Mi) is any standard binary encoding of TM's.

27

Fact 1: L' € P-TIME. (Obvious)
k
Fact 2: ﬂko such that L' € DPDA(2 0) (by Lemma 4.1)
Fact 3: L' € DSPACE((fogn)®) => DTIME(n) © DSPACE((fogm?).

Proof of Fact 3: If Mi is a DTM which operates in linear time,

then code(Mi)#x € L' for all x € L(Mi) sufficiently long.

Thus a DTM, A;, can accept L(Mi) by accepting the short strings
by a table look-up and the long strings by simulating the DTM
which accepts L' within space (Zogn)i. Ai uses its finite
control for the simulation on the code(Mi)# part (since its
input is x). If x € L(Mi), then Ai accepts x within

(2og lcod (M;)4x|)* = 0(2og|x|)* space. Hence L(M;) € DSPACE((fogn)
Fact 4: L = ¢ 0(L') satisfies the requirements of the theoremn.

Proof of Fact 4: L € 2DPDA by Fact 2 and Lemma 4.3. Since
L € P-TIME the ‘only if' part is trivially true. Assume
L€ DSPACE((zogn)i). By Lemma 4.7 L' € DSPACE((zogn)i), by
Fact 3 DTIME(n) € DSPACE((logn)i) and by Lemma 4.8

P-TIME © DSPACE((fogn)®).
Corollary 4.10: 2DPDA € DSPACE((%ogn)®) iff P-TIME C DSPACE ((fogn)

Corollary 4.11: There is a 2dpda-language, L, such that the
following three statements are equivalent:

a) L € DLOG

b) P~TIME = DLOG

c) 2DPDA g DLOG.

28

Proof: a => b by Theorem 4.9 (i=1) and the fact that

DLOG © P-TIME.

b => ¢ since by [1] 2DPDA < DTIME(nzlogn) and by [111}

DTIME(nk) § P-TIME for all k.

€ =>a is trivial,

Corollary 4.12: DLOG # 2DPDA
In order to prove the last result in this section, concerning
the question 'does the auxiliary push down stack add to the com-

putational power of a TM?', we need one more lemma.

Lemma 4.13: PDM(S(n)) = DSPACE(S(n)) for all s(n) > fogn iff

P-TIME = DLOG.

Proof: By [4] PDM(fLogn) = P-TIME. Hence we must show that
PDM(S(n)) = DSPACE(S3(n)) for all S(n) > fogn iff it is true for
S(n) = fogn. The 'only if' part is trivial and a simple padding
argument (like in Lemma 4.8) proves the 'if part': Assume
PDM(fogn) = DLOG. Let L € PDM(S(n)), S(n) > 20gn, and let

M be a PDM which operates within space S{(n) and accepts L. Define
L' = {xckiM accepts x within space fog(n+k)}. ZLet M' be a PDM
which, on input xck, first lays off fog(n+k) tape cells and then
simulates M on x and accepts x iff M accepts x within that amount
of space. Obviously M' accepts L' and operates within fLogn space.
(By the definition of L', xc* € L' => log(|xcX|) = fog(n+k) will
suffice for the simulation). Thus, L' € PDM(fogn) and by our
assumption L' € DLOG. Hence there is a ™, ﬁ', which accepts L' within
fogn space and halts for all inputs, (A T™ which operates in fLogn
space can be made to halt for all inputs). Let M be a TM which

on input x simulates M' on xc,xcz,... and accepts x iff M' accepts

29

k
xcX for some k. ‘Now, x € L iff xc ¢ for some k, with

log(n+k0) <2S(n). Thus i accepts L and uses £og(n+k0)
space which M' uses plus Qogko for counting the c's. Altogether
< 0(S(n)) space is used, Thus PDM(S(n)) € DSPACE(S(n)) and hence

PDM(S(n)) = DSPACE(S(n)) for all S(n) > fogn.

Theorem 4.9 (i=1) and Lerma 4.13 imply
Theorem 4.14: There exists a 2dpda-language, L, such that

L € DLOG iff PDM(S(n)) = DSPACE(S(n)) for all S(n) > fogn.

Note that all the theorems in this section are true if
we replace 2DPDA by 2NPDA or if we replace DLOG by NLOG (and
DSPACE(S(n)) by NSPACE(S(n)) in Theorem 4.14). They are stated
and proved in the strongest form.

One way to interpret the results of Theorem 4.9 and
Theorem 4.14 is the following: If we could determine whether a
given 2dpda-language, L, is in DLOG (DSPACB((logn)i)), then we
could find out whether P~-TIME = DLOG and whether the auxiliary
pushdown stack does add more computational power (whether

P-TIME C DSPACE ((fogn)l)).

5. The Relationship Between Some Open Problems and

Questions About 2DC

In this section we relate some open problems of the theory
of computation to the questions a) Is 2DC = 2NC? and b) Is
2DC = 2DPDA? First we prove in Lemma 5.1 that 2DC € DLOG.
Thus, by coroilary 3.12 2DC = 2NC => DSPACE(S(n)) = NSPACE(S(n)) for
all s(n) > fogn and by Corollary 4.11 2DC = 2DPDA => P-TIME = DLOG.
We cannot prove the converse, and we cannot construct a 2nc-lan-
guage (2dpda-language), L, such that L € 2DC iff 2DC = 2NC (2DC =
2DPDA)}. However, we can prove several weaXer results like those
in Theorem 4.5 and Theorem 4.6.

Note that a 2dc is one of the simplest forms of automaton.
It is even simpler than a 2dfa, since a 2dfa can simulate a given

2dc using its second head for counting.
Lemma 5.1: 2DC € DLOG.

Proof: In Lemma 1.1 we saw that given a 2dpda, A, there is a con-
stant, c, such that if A accepts x, its stack never has more than
clx| symbols in it. Thus if A is a 2dc we can construct a ™, B,
that simulates it using a binary counter, whose maximum value is

+

clx], to simulate A's counter. Obviously, B operates within

fogn space and the proof is completed.
Remark: In fact, 2DC ? DLOG, but we don't need that fact here.

Given a language, L, we now show how to construct a family

of languages:{Lk}m , such that L € DLOG iff L, € 2DC for some
k=0

k. This will enable us to translate some theorems in Section 3

and Section 4, dealing with DLOG, into some weaker theorems about 2DC.

fThe stack of a counter machine is called a counter.

pDefinition 5.2: Let ' = {a,b,(,),[,1,<,>} be a set of eight

symbols not in £. Given x, |x| = n-2, and k let Xg = axb,
= . . i >
X5 ((xi)(xl)...(xl)) for i > 0,
| R —
n times

Yo = Xpoqr Y49 = [lygllyyle..lyyl] for i > 0 and
A\

J

n times
_ 1
z(x,k) = YV Yy -eo Yy -
CNe——
k times

Note 2z(x,k) consists of knk "big blocks" (the yo‘s), and

k-1

each big block consists of n “small blocks"(the axb's). Thus,

lz(x,k)| = 0(n?K).

Lemma 5.3: Given w and k a 2dc can check if w = z(x,k) for some

x € g,

Proof: (sketch) The proof follows from three observations:
a) L ={z#z|z € £¥} € 2pC (left to the reader).
_Hence, a 2dc can check if w is of the form

xtt

*
(<(E'+x£')+>) for some x € I*,

b) Balanced parentheses (of all kinds) can be checked by
the finite control, since they are nested only up to

depth k.

¢) For each i, 1 < i <k, a 2dc can locate all matching
parentheses (of all kinds) of depth i (by its finite

control) and check whether there are exactly n(=|axb})

tActually the xi's depend on x and the yi's depend on x and X,
but we omit thém for clarity.

HThe '(' and ')' belong to the regular expression and are not the

symbols of L'.

32

occurrences of matching parentheses of depth i+l
in it. The counting up to n is done by using the
counter and one of the small blocks, and the matching

of parentheses is done by the finite control.

Definition 5.4: Given L and %k , let

Iy

{z(x,k) [x € L},

Lermma 5.5: L € DLOG iff Iy € 2DC for some k > 0.

Proof: Assume L € 2DC for some k. Then by Lemma 5.1
Lk € DLOG. Let A be a TM which accepts Lk and operates within
space fogn. We construct a TM, B, which operates in fogn space
and accepts L and thus we show that L € DLOG. B on input x
simulates A on z(x,k). B needs several binary counters to keep
track which big block and which small block A is currently scann-
ing. B will know that A is ecanning some symbol in I' (one of
the parentheses), by the fact that one of the counters has
reached n. Thus, L € DLOG.

Now, assume L € DLOG. Then L is accepted by a k-dfa, C.
(This is a well-known fact, see, for example, [9]). We now

construct a 2dc, D, which accepts IL,. On input w, D first

k
checks if w = z(x,k) for some x € Z+. It can do so by Lemma

5.3. 1If the check fails, then D rejects the input. Otherwise,

D proceeds to simulate C on input X. We show below how D can simu-
late one step of C. At the beginning of the simulation, the head

of D scans the leftmost symbol of w, the counter contains P iff
k-1 :

P= I a;n7, and the (i+l)th head of A scans the ai—th symbol
i=0

33

of ¢x$, 0 < i < k-1. We need only to show how D can scan

the ao-th symbol of ¢x$ and change the contents of the
k-2 .

k-1 i _ k-1 P.T
of +i£0 a; 0" = agn +210 .

corresponds to a cyclic right shift of the ai's.*+ By

counter to P' = a This
repeating this process, D can record all symbols which are
scanned by the heads of C. If C accepts or rejects so does D.
Otherwise D records the change of state and the directions of
movement of each of the heads of C. By repeating the process of
visiting the ai—th symbol of ¢x$, 0 < i < k-1 (with minor
changes), D updates P to reflect the new values of the ai's.

D accomplishes the task of looking at the ao-th symbol
and rotating the coefficients as follows: D moves its head
from left to right popping off n symbols for each big block it
passes. It identifies each big block by '[(a’ and uses the first
small block in a big block to count up to n. When the counter
is empty its head scans the ao—th symbol of the first small

th

block in the ([§]+l)—th big block. D records this symbol,

moves its head left to the '(' before the axb, pushing a. onto

0
its counter. Now, D can identify the beginning and end of each

Xy by counting depth of parentheses with its finite control.
D moves its head to the right, popping one symbol off its

counter for each xk_2 it traverses. When the counter is empty,

D moves its head left to the beginning of the big block, counting

the a's, the b's and the symbols of I on its way. Note that

f[%] is the largest integer c such that cb < a.

Tt .
They are shifted from (ak_l...ao) tO(aoak_l...al)

+++Note that w = z(x,k) has enough big blocks.

(a) When it reaches the beginning of the block the counter

_contains aonk-l, and
(b} during this last stage, D has been scanning the same big

block.

Now D moves its head left counting the big blocks. It is not
hard to see that when it reaches the leftmost symbol of w the
value of the counter is P' = aomk"1 +[§] , as was claimed above.

This completes the proof of the lemma.

Lemma 5.6: Let LCE* and'{Lk};=o be those of Definition 5.4, then
(1) If L € 2DPDA, then L, € 2DPDA for all k.

(2) If L € 2NC, then Lk_E 2NC for all k.

Proof of (1): Assume L € 2DPDA. Since 2DC € 2DPDA a 2dpda can
check if the format is right, by Lemma 5.3. Thus a 2dpda which
accepts Ly first checks the format, and if it is right it simulates
the 2dpda which accepts L on one of the small blocks.

The proof of (2) is identical.

Lemma 5.5 and Lemma 5.6 enable us to obtain another version
of Theorem 3.8, Theorem 3.12, corollary 4.11 and Theorem 4.14.
Namely
Theorem 5.7: There exists a family of 2dpda-languages,

{Lk}eo , such that L_ € 2DC for some k iff
k=0 k

DSPACE(S(n)) = NSPACE(S(n)) for all S(n) > %ogn.

Theorem 5.8: There exists a family of 2nc-languages, {Lk}m
k=0
such that Lk € 2DC for some k iff DSPACE(S(n)) = NSPACE(S(n))

for all s(n) > fogn.

Theorem 5.9: There exists a family of 2dpda-languages, {Lk} ’
k=0
such that L, € 2DC for some k iff P-TIME = DLOG.

Theorem 5.10: There exists a faﬁily of 2dpda-languages, {Lk}m y
k=0

such that Lk € 2DC for some k iff PDM(S(n)) = DSPACE(S(n)) for all

S(n) > Zogn.

Note that Theorem 3.10 which deals with 1NC is translated
into Theorem 5.8 which deals with 2NC. This is because Lemma 5.6
does not hold for INC (The Lk's are not context-free).

One way to interpret these theorems is the following:
If we could determine when at least one of a given family of
2dpda-languages (2nc-languages) can be accepted by a 2dc, then
we could find out if DSPACE(S(n)) = NSPACE(S(n)), P-TIME = DLOG
and PDM(S(n)) = DSPACE(S(n) for all S(n) > 2o0gn (whether

DSPACE(S(n)) = NSPACE(S(n)) for all S(n) > %ogn).

6. Conclusion

In this paper we relate some of the most important open
problems of the theory of computation to questions about
2dpda-languages. There can be two interpretations to our results.,
The first, the optimistic one, was expressed throughout the paper:
We hope that we will be able to solve questions such as 1) Does
a given 2dpda-language (lnc-language), L, belong to DLOG?
2) Does one of a given family of languages belong to 2DPDA?
3) Does one of a family of 2dpda-languages (2nc-languages) belong
to 2DC? Being able to solveAthem we will be able to solve the six

open problems listed in Section 1.

36

The second interpretation, perhaps a more realistic one,
is the following: 2DPDA is a class of languages whose member-
ship problem can be solved in linear time (by a RAM), and
thus is perhaps the only natural model for the concept of "sim-
ple computations”. Nevertheless, 2dpda-languages are not so
simple. Even though 2dpda's can only perform simple computa-
tions, open problems concerning space versus time and deter-
minism versus nondeterminism can be found (in disguised form)
among 2dpda-languages.

No matter which interpretation is correct, we hope that
the results of this paper will add to our insight into the
relationship between determinism and nondeterminism, and be-

tween space and time.

Acknowledgements:

I wish to thank my advisor Professor J. Hopcroft and
Professor J. Hartmanis for their encouragement, advice and
suggestions. I also would like to thank K. Mehlhorn, J. Simon

and M. Solomon for useful discussions and suggestions.

[1}

(2]

(31

4]

{51

(6]

(7]

(8]

{9]

[10]

[11)

12}

[13]

[14]

[15]

37

References

Aho, A.V., J.E. Hopcroft and J.D. Ullman, "Time and Tape
Complexity of Pushdown Automaton Languages", Information
and Control 13, 3 (1968), 186-206.

Book, R.V., "On Languages Accepted in Polynomial Time",
SIAM J. Computing 1 (1972), 281-287.

Cook, S.A., "The complexity of Theorem Proving Procedures”,
Proceedings of 3rd Annual ACM Symvosium of Theorv of Computing,
1571, 151-158.

Cook, S.A., "Characterization of Pushdown Machines in Terms
of Timec-Bounded Computers”, JACM 18 (1971), 4-18.

Cook, S.A., "Linear Time Simulation of Deterministic Two-
Way Pushdown Automata", Information Processing 71, North
Holland Publishing Co., (1972), 75-80.

Cook, S.A., "An Observation of Time-Storage Trade Off",
Proceeding of 5th Annual ACM Symprosium on Theorv of Computing,
(1973}, 29-33.

Cook, S.A. and R. Sethi, "Storage Requirements for Deterministic
Polynomial Time Recognizable Languages", Proceedings of 6th
Annual ACM Symposium on Theory of Computing (1974).

Gray, J.W., M.A. Harrison, and O.H. Ibarra, "Two-Way Pushdown
Automata", Information and Control 13,5 (1967), 433-470,

Hartmanis, J., "On Necn-Determinancy in Simple Computing Devices”,
Acta Informatica 1 (1972), 336-344,

Hartmanis, J. and H.B. Hunt, III., "The LBA Problem and Its
Importance in the Theory of Computing", Cornell University
Technical Report 73-171.

Hartrmanis, J. and R.E. Stearns, "On the Computational Complexity
of Algorithms", Trans. of AMS, May 1965.

Hopcroft, J.E. and J.D. Ullman, "Formal Languages and Their
Relation to Automata", Addison-Wesley, 1969.

Hunt, H.B. III., "On Time and Tape Complexity of Languages I",
Proceedings of 5th Annual ACM Symposium on the Theory of Comput-
ing , (1973), 10-19.

Ibarra, O.H., "On Two-Way Multi-Head Automata”, JCSS 7,1 (1973),
28-36.

Jones, N.D. and W.T. Laaser, "Some Simplified Polynomial Complete
Problems", Proceedings of 6th Annual ACM Symposium on Theory of

Computing”,” (1974)

(16]

{17}

{18]

[19]

[20}

{21)

[22]

Karp, R.M., "Reducibilities Among Combinatorial Problems"
in R. Miller and J. Thatcher (eds), Complexity of Computer
Computaticn, Plenum Press, (1972), 85-104.

Meyer, A.R. and L.J. Stockmeyer, "Word Probklems Requiring
Exponential Time", Proceedings of 5th Annual ACM Symposium
on_Theory of Computing, (1973}, 1-9.

Savitch, W.J., "Relationship Between Nondeterministic
and Daterministic Tape Complexities", JCSS 4,2 (1970),
177-192.

Stearns, R.E., J. Hartmanis, and P.M. Lewis II, "Hierarchies
of Memory Limited Computations", IEEE Conference Record on
Switching Circuit Theorv and Logical Dcsicn, (1965), 179-190.

Suétorough, I.H., "Bounded Reversal Multi-~llead Finite Automata
Languages"”, to appear in Information and Control.

Sudborough, I.H., "On Tape-Bounded Complexity Classes and
Multi-Head Finite Automata", IEEE Conference Record of
Thirteenth Annual Symposium on Switching and Automata Theory,
(1973}, 138-144,

Tarjan, R.E., "Depth First Search and Linear Graph Algorithms",
SIAM J. Computing 1 (1972), 146-159,

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif
	pdftemp/0031.tif
	pdftemp/0032.tif
	pdftemp/0033.tif
	pdftemp/0034.tif
	pdftemp/0035.tif
	pdftemp/0036.tif
	pdftemp/0037.tif
	pdftemp/0038.tif
	pdftemp/0039.tif
	pdftemp/0040.tif
	pdftemp/0041.tif
	pdftemp/0042.tif

