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ABSTRACT

The basic finite automata model has been extended over the years with different accep-
tance modes (nondeterminism, alternation), new or improved devices (two-way heads,
pebbles, nested pebbles) and with cooperation. None of these additions permits recog-
nition of non-regular languages. The purpose of this work is to investigate a new kind
of automata which is inspired by an extension of 2DPDAs. Mogensen enhanced these
with what he called a WORM (write once, read many) track and showed that Cook’s
linear-time simulation result still holds. Here we trade the pushdown store for nondeter-
minism or a pebble and show that the languages of these new types of finite automata
are still regular. The conjunction of alternation, or of nondeterminism and a pebble
permits the recognition of non-regular languages. We give examples of languages that
are easy to recognize and of operations that are easy to perform using these WORM
tracks under nondeterminism. While somewhat similar to Hennie machines, our models
do not require an explicit time bound on their computations.
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1. Introduction

Two-way deterministic pushdown automata (2DPDAs) have played an important role
in the development of formal language theory [6]. It is a well-known fact [4, 15] that
the class of languages recognizable by multihead (or single-head with polynomial
padding) 2DPDAs is strongly equal to P in the sense that the polynomial exponent is
closely related to the number of heads. By Cook’s result [5], a k-head 2DPDA can be
simulated on a random-access machine with unit cost in time O(mk) where m is the
length of the input. This has inspired some interesting algorithms such as the Knuth-
Morris-Pratt [12] algorithm or a linear-time algorithm for recognizing “PALSTAR”
[7].

In [14] the idea of extending 2DPDAs with a special kind of track, called a write-
once read-many (WORM) track was introduced. This was done with the hope of
increasing their power while retaining their linear-time simulation property. WORM

1Full version of a submission presented at the 7th Workshop on Descriptional Complexity of

Formal Systems (Como, Italy, June 30 – July 2, 2005).
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tracks are a subtle restriction of Turing machine tracks that preserves memoization,
or caching, of the automata configurations. Memoization is the working principle of
Cook’s initial off-line 2DPDA simulation algorithm and the subsequent on-line variant
due to [1]. The latter can, with almost no modification, simulate WORM machines
in linear time.

As with ordinary Turing tapes, the squares of a WORM track are initially blank.
However the automata-observable content of each square must only be a function of
position. This means that reading a square must always return the same result, which
implies two conditions. The first is that each square can be written at most once;
writes to a non-blank cell should have no effect. The second is that a blank cell that
has been read must always remain blank. Mogensen ensures this by automatically
writing a special symbol θ to a blank cell before the automaton reads it. Although
we initially used that approach, halting the computation upon read access to a blank
square is equivalent (just write θ before each read) and shortens some proofs. Hence
each square has only one automata-observable value.

WORM tracks thus serve as an auxiliary storage device permitting, for instance,
lexical tokenization in linear time [17], as opposed to the quadratic worst-case time of
current lexical scanners. WORM tracks are also useful for recognizing some languages
more easily, such as {uuRvvR | u, v ∈ {a, b}∗} (PALSQUARE). However it is still an
open question whether or not WORM-2DPDAs recognize more languages than 2DP-
DAs. It seems natural to investigate the simpler case of a standard finite automaton
provided with a WORM track. This gives a two-way deterministic automaton with
a WORM track (a WORM-2DFA) which is easily shown to accept regular languages
only. But if one introduces nondeterminism or a pebble (thus obtaining what we call
WORM-2NFAs and P-WORM-2DFAs), the regularity of the recognized languages is
no longer trivial, and is the main result of this article.

Our contribution is in the vein of improving how far we can go by enriching the
natural finite state model while keeping the same expressive power. Here we think
of models such as one-way or two-way, deterministic, nondeterministic or alternating
automata, which can be cooperating or which can have one pebble or a number of
nested pebbles [9]. All these recognize regular languages.

2. WORM-2NFAs

WORM-2NFAs are somewhat similar to nondeterministic Hennie machines. These are
single-head Turing machines whose heads do not leave the input portion of their tape,
and which have the bounded visit property, that is, there is a constant c such that
the machine never visits any given position more than c times [2]. These machines
recognize regular languages only. In Hennie’s original paper [11] it was shown that
deterministic linear-time Turing machines have the bounded visit property. It should
be noted that there exists linear-time nondeterministic Turing machines recognizing
non-regular, NP-complete languages2 [13]. Furthermore, the linearity of running time
is a non-trivial and thus undecidable property of Turing machines, making the class

2These do not verify the bounded visit property and thus are not Hennie machines.
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of Hennie machines non-constructive. Hence WORM-2NFAs constitute an interesting
class of nondeterministic machines with a writable tape and unrestricted running time
and whose languages are regular. They may in fact be more succinct machines since
they can solve SAT using a polynomial number of states.

2.1. The Model

A k-WORM-2NFA is a 2NFA having, on its tape and below its input track, k WORM
tracks. All these tracks have the same length, and all are accessed with the same
read/write head. The cells of the WORM tracks are called WORM cells or WORM
squares. The principle behind WORM squares is that reading one must always return
the same symbol through the computation. They are initially blank (we denote blank
squares by 2), that is, they have no initial value. There is only one way a WORM
square can get its value, and that is when the automaton decides to write a symbol
γ ∈ Γ into it while it is a blank. Its content then becomes γ and stays that way; further
writes will be silently be ignored – in particular, they will not cause the computation
to abort or otherwise change, as this would be akin to returning a different value.
Reading a blank square is not allowed and halts the computation.

The automaton can never observe blank squares without halting. A WORM track
can thus be seen as a cache for memorizing intermediate results as in dynamic pro-
gramming: its behaviour ensures that any two reads from the same square will return
the same result.

We now give a formal definition of our model 3.

Definition 1 (k-WORM-2NFA) A k-WORM-2NFA is an octuple M =
(Q, Σ, Γ, q0, q+, τ, T, κ). The input alphabet is Σ. The WORM track alphabet is
Γ∪{2}. The set of transitions is T . The set Q of states is divided into three disjoint
subsets by the map τ : Q → {C, R, W}. States q such that τ(q) = C are control states
(C-states) and cannot access the WORM tracks. States where τ(q) = W write on the
WORM tracks (W -states). States where τ(q) = R read from the WORM tracks. The
function κ maps W -states and R-states to the set {1, 2, . . . , k} and selects the WORM
track to use by number; it can be omitted when k = 1. The initial state q0 and the
final state q+ are C-states.

Transitions can be of two forms, depending on the type of the state they apply to
as given by τ .

Definition 2 (Transitions) Let t ∈ T be a transition. We define α(t) = q ∈ Q to
be the source and ω(t) = q′ ∈ Q to be the target states of t.

• If τ(q) = C, the transition is of the form t = (q, σ, d, q′) where σ ∈ Σ is a letter
to be read from the input track and d ∈ {−1, 0, 1} gives the head movement (left,
no movement or right).

3Unless specified otherwise, alphabets are finite, non-empty sets. We write X∗ for the set of
words over an alphabet X, and Xn for the subset of X∗ of words of length n (for n ≥ 0). The empty
word is ε and the length of a word u is written |u|, while its i-th letter is written ui (1 ≤ i ≤ |u|).
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• When τ(q) = R or τ(q) = W , the transition is of the form t = (q, γ, q′), where
γ ∈ Γ gives a letter to read or write from one of the WORM tracks.

For simplifying analysis, we want the automaton to finish its computations with its
head on the right end of the input. Thus we require the set T to contain all transitions
of the form (q+, σ, 1, q+) (for σ ∈ Σ) and no transitions of the form (q+, σ, d, q) with
q 6= q+.

Definition 3 (Configurations) A configuration of M over an input u ∈ Σ∗ of
length m is a triple (q, i, w) where q ∈ Q is the state, 1 ≤ i ≤ m is the position of
the head and w = (w1, . . . , wk) are the WORM contents with each wi ∈ (Γ ∪ {2})m.
Note that 2 6∈ Γ. The initial configuration is (q0, 1, (2m, . . . , 2m)). A configuration
is final whenever q = q+.

Each transition defines a partial function on the set of configurations. That is, when
applicable, a transition leads from one configuration to exactly another configuration.

Definition 4 (Effects of transitions) Let t be a transition and c = (q, i, w) a con-
figuration. The effect of t on c is a new configuration written c · t and is defined as
follows :

• When t = (q, σ, d, q′) with τ(q) = C, and 1 ≤ i + d ≤ m holds, the transition is
applicable and we have c · t = (q′, i + d, w). Otherwise, c · t is undefined.

• When t = (q, γ, q′) with τ(q) = R, the i-th square of the κ(q)-th WORM track
is read. Depending on the that square, we have two cases:

– If the square is not blank and contains the symbol γ, the transition is ap-
plicable and c · t = (q′, i, w).

– If the square is blank or contains a symbol other than γ, the transition is
not applicable.

• When t = (q, γ, q′) with τ(q) = W , γ is written to the i-th square of the κ(q)-th
WORM track if that square is blank, giving w′; in that case c · t = (q′, i, w′).
Otherwise only the state is changed and we have c · t = (q′, i, w).

Definition 5 (k-WORM-DFA) A k-WORM-2NFA is deterministic and called a
k-WORM-DFA when there is at most a unique transition that can apply to any given
state.

Definition 6 (Runs, computations, language) A run is a finite sequence
t1t2 . . . tn of transitions. A computation (over the input u) is a run t1 . . . tn that
can be applied to the initial configuration c0 = (q0, 1, (2m)k), that is: t1 has a defined
effect on c0, t2 has a defined effect on c0 · t1 and so on such that c0 · t1 · t2 · · · tn has
a defined value c = (q, i, w). The computation then leads from c0 to c. Such a com-
putation is accepting when the obtained configuration is final, that is, when q = q+.
A run t1 . . . tn is said to lead from a configuration c to c′ if it can be applied to c to
give c′. The language L (M) of M is the set of input words u admitting an accepting
computation.
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The functions α and ω readily extend to runs: α(t1 . . . tn) = α(t1) and ω(t1 . . . tn) =
ω(tn) when n ≥ 1. Note that ω(ti) = α(ti+1) for 1 ≤ i < n. We now give an example
showing the usefulness of WORM tracks.

Example 1 In [3], given a language L over an alphabet Σ, the set Collage(L) was
defined as the set of words that can be obtained by pasting arbitrary words chosen
from L one on top of the other at random positions.

More precisely, a word w is said to be a collage of words from L when it can be
obtained as the limit of a sequence u0, . . . defined as follows.

• Let 2 6∈ Σ be a distinct symbol.

• Let n = |w| and let u0 = 2
n ∈ (Σ ∪ {2})∗ be the word of length n containing

only the symbol 2.

• If ui ∈ Σ∗, that is, if u has no occurences of 2, then ui+1 = ui.

• Otherwise, select vi ∈ L such that |v| ≤ n and ji such that 1 ≤ ji ≤ n− |vi|+1.
Then ui+1 is the word ui where the subword at positions ji to ji + |vi| − 1 has
been replaced by vi.

As an example let L = {a, aa, aab, baba, aaabbb, abaabb}. Then the word w =
abaababaabbbb is in Collage(L) as can be seen in Figure 1(a). Actually, this collage
idea was inspired by WORM tracks.

It was shown in [3] that if L is regular, then Collage(L) is also regular. This result
is now a consequence of Theorem 1. Indeed let L be a regular language recognized by
a one-way nondeterministic automaton M having n states. It is very easy to give an
O(n)-state 1-WORM-2NFA recognizing Collage(L): the automaton repeatedly places
its head at a random position and writes an arbitrary word from L over its WORM
track by randomly following transitions of M (Fig. 1(b), 1(c)). (The automaton
guesses the words from top to bottom.) It then checks that its WORM and input
tracks have the same contents, see Fig. 1(d). Hence, by Theorem 1, Collage(L) is
regular,

2.2. The Membership Problem

The membership problem for a class C of automata is defined as the language

L = {〈M〉#u | M ∈ C and u is accepted by M}
where 〈M〉 is a suitable encoding of M . The complexity of L thus depends on the
encoding used. Nondeterministic automata are conveniently encoded as the list of
their transitions; this way their descriptional size is at most quadratic in their number
of states. We adopt the same convention and define the size of a WORM-2NFA as
the number of its transitions.

A WORM-2DFA, being deterministic, cannot be twice at the same position and
in the same state without looping. Hence, for a given WORM-2DFA, accepting com-
putations have a length linear in the size of the input, which makes their languages
regular by [11]. This does not hold for WORM-2NFAs.
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(a) A collage of the words aab, baba,
abaabb and aaabbb giving abaababaabbbb.
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(b) The WORM-2NFA M guesses the
topmost word aab and writes it.

a a b b b bbabaaba

a a b b b bbabaaba

(c) The machine continues by guessing the
other words of the collage and writing them
to the WORM track.

a a b b b bbabaaba

a a b b b bbabaaba

accept

(d) Finally M compares the contents of its WORM
and input tracks.

Figure 1: How a WORM-2NFA can recognize Collage(L)
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Proposition 1 There exists a WORM-2NFA whose accepting computations can have
a length quadratic in their input.

Proof. Consider inputs over the alphabet {a, b} of the form ab∗a. Let M be a 1-
WORM-2NFA repeating the following operation an arbitrary number of times.

(1) Place the head on an arbitrary position.

(2) Write X on the WORM track.

(3) Move the head to the beginning of the input (which is the first a).

(4) Move the head to the end of the input (which is the last a).

When M nondeterministically decides to stop performing the above steps, it checks
that all WORM cells have been written with an X . As M must tick m cells, where
m is the length of its input, and as between steps (1)–(4) it must perform ≥ m

transitions, it follows that an accepting computation of M has a length in Θ(m2). 2

This quadratic bound is tight.

Lemma 1 If a word u is accepted by a k-WORM-2NFA M having n states, then it
has an accepting computation of length nk|u|2.

Proof. As M behaves as a 2NFA between two modifications of the WORM tracks,
and since there cannot be more modifications than WORM squares, a computation
of M can be decomposed into ≤ k|u| segments delimited by modifications of the
WORM tracks It is easily shown that every computation of a 2NFA is equivalent to
a computation of length less than the product of the number of states and the length
of the input. It can therefore be assumed that the segments have length ≤ n|u|. The
total length of the computation is then ≤ nk|u|2. 2

Using an idea similar to [16] or to [2], we can give, for every n ≥ 1, a WORM-2NFA
of size polynomial in n and accepting the positive instances of n gates or less of the
circuit satisfiability (CIRCUIT-SAT) problem. For that, we encode Boolean circuits
having n gates over the alphabet Σn = {x1, x2, . . . , xn,∧,∨,¬, I, #} as follows. Such
a circuit is made of input and internal gates. The i-th gate of the circuit is encoded
as #xiI (for input gates), #xi¬xj (for a NOT gate negating the output of gate j),
#xi∧xjxk or #xi∨xjxk (for an AND or an OR gate having gates j and k as inputs).
Gate labels x1, . . . , xn following the # symbol are called defining occurrences. The
circuit is satisfiable when there is a way to assign truth values to the input gates such
that the value computed for x1 is true. Let S+

n be the set of encodings of satisfiable
circuits having ≤ n gates. A WORM-2NFA can then guess values for the input and
the internal gates and check that it satisfies the circuit, using a number of states
polynomial in n.

Lemma 2 For every n there is an O(n2)-state 1-WORM-2NFA Mn accepting S+
n ,

whose description can be computed in time polynomial in n.
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Proof. Let u ∈ Σ∗
n be the input word. The machine Mn first checks that u is

syntactically correct. Then, it nondeterministically guesses a valuation for the circuit
by writing 1 or 0 under the defining occurrence of every input gate. After that, it
enters a loop where it selects an unvisited internal gate, and reads its type t (which
can be AND, OR or NOT) its number i as well as the number j of its first preceding
gate. These two numbers are stored in its finite control, thus requiring O(n2) states.
The machine M then scans its input, looking for the defining occurrence of the gate
j, and reads on its WORM track the boolean value that has been computed (if j

is an internal gate) or guessed (if j is an input gate) for it. (If this value has not
yet been defined, M reads an empty square and thus halts, having badly chosen its
visiting order.) This boolean value is stored as one bit in the control state. Then, M

goes back to the defining occurrence of gate i, and if t = AND or t = OR, reads the
number k of the second input gate of gate i and collects, in the same manner, the
value computed or guessed for that gate. Then M combines, according to the boolean
operation specified by t, the bits thus read, and writes the result on the WORM cell
under the defining occurrence of gate i. This procedure goes on until M computes
the value of gate 1, and accepts if it is true. 2

In fact, the machines Mn given in the above proof can be transformed into two-way
deterministic automata with a length-preserving homomorphism [2] by making them
guess the values of all gates, including inputs, before checking their consistency; then,
once the values have been guessed, the WORM track is not written to any more.

Proposition 2 The membership problem for WORM-2NFAs is NP-complete.

Proof. The language CIRCUIT − SAT = S+ =
⋃

n≥1
S+

n is NP-complete [8]. (To

be precise, it is necessary to reencode S+ over a finite alphabet – this will induce a
logarithmic expansion factor.) Let 〈M〉#u be an instance of the membership problem,
where M is a k-WORM-2NFA having m states. By Lemma 1, u is accepted by M if
and only if there is a valid list of ≥ km|u|2 transitions ending in the accepting state.
Such a list can be guessed by a nondeterministic Turing machine and checked for
acceptance in time polynomial in the size of M , showing that the problem is in NP.
Conversely, an n-gate instance of circuit satisfiability can be converted by Lemma 2
into an O(n2)-sized instance of the membership problem, in polynomial time. This
shows NP-hardness. 2

2.3. Regularity

Given a computation c over an input uv, consider the instants where the head of the
automaton crosses the boundary between the left half u and the right half v. (See
Fig. 2(a)) These are the times t where the head is at position p = |u| and at position
p + 1 at the next moment t + 1, or at position p + 1 and at position p at the next
moment. In the former case the automaton exits the left half and enters the right
half in some state q1. This can be seen as the left half querying the right half, the
question being the state q1. The answer to that query is given when the automaton
exits the right half and comes back to the left half in some state q2. (The automaton
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can also accept in the right half, which we count as the answer q+.) This answer can
itself be seen as a query from the right half to the left half, and so on. This sequence
of queries/answers is a dialog between the two halves, and each half is a speaker. This
concept is well-known under the name of “crossing sequences” [11]; it comes naturally
when one tries to show the regularity of 2NFA or 2DFA languages.

It should be noted that, as for 2NFA and 2DFAs, only the state information crosses
the boundary between u and v. This is because the set of WORM squares of the two
halves are disjoint. The two important ideas in the proof of the regularity of L (M)
are then as follows. First, a speaker is defined by its observable properties, that is, the
way it answers. This allows us to sidestep the problem of the unbounded information
content of WORM tracks. (A similar approach is used for pebble-2NFAs [9].) Second,
the information useful for proving the regularity can be finitely encoded. With these
we are able to show that L (M) has a finite number of left residuals4 and hence is
regular.

Definition 7 (Splicings) Let c = t1 . . . tn be a computation. The splicing of c at
position p (1 ≤ p < m, where m is the length of the input) is a factorization c =
a1a2 . . . ar of c into runs a1, . . . , ar such that odd-numbered runs proceed in the left
half (at positions ≤ p) and even-numbered runs proceed in the right half (at positions
> p).

Our requirement of inclusion for transitions of the form (q+, σ, 1, q+) ensures that
we can restrict ourselves to accepting computations which finish by having the head
scanning the remaining of the input to the right in state q+: any splicing of such a
computation will finish in the right half and thus have an even number of blocks.

Definition 8 (Triangles, dialogs) Given a computation c spliced at p as c =
a1a2 . . . ar, we look at the exchange of states between the left and right halves (i. e.,
between odd- and even-numbered runs). For odd j the automaton leaves the left half
aj and enters the right run aj+1 in state q1 = ω(aj) = α(aj+1). The right run aj+1

then returns to the left run in state q2 = ω(aj+1). Thus the run aj+1 leads from q1

to q2 in the right half. The information carried by the run aj+1 is reduced to the pair
of states q1, q2 along with an indication of which part the run is executed in. This
gives a symbol ãj+1 = [q1 . q2] which we call a (left) triangle. Similarly, for even j,
we write ãj−1 = [q1 / q2]. The dialog of the computation c at p is then the sequence
of triangles of the runs of c spliced at p: dlgp(c) = ã1ã2 . . . ãr.

In Figure 2(a) we have a computation c over a word uv spliced at position |u| = p as
c = a1a2 . . . a6. The left run a1 leads from the initial state q0 to q1. The computation
then continues in the right half with the run a2 leading from q1, back to the left half
in state q2, and so on. The dialog of c at |u| is therefore the sequence of triangles (see
Figure 2(b)):

dlg|u|(c) = [q0 / q1][q1 . q2][q2 / q3][q3 . q4][q4 / q5][q5 . q+]

4The left residual of a language L by a word u is the set u−1.L = {v | uv ∈ L} which is is the
language a one-way automata accepting L accepts after having read u
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(a) A computation c over the word uv, spliced at |p|
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(b) The dialog of c

Figure 2: The dialog of a computation

Take two accepting computations c and c′ over uv and wx respectively. It has
already been noted in [11] for Turing machines that if c and c′ have the same dialog
at positions |u| and |w|, respectively, then we can “join” c and c′ into an accepting
computation c′′ for ux. Indeed, assume dlg|u|(c) = dlg|w|(c

′) and let c = a1 . . . ar

and c′ = b1 . . . br be the splicings of c and c′ at |u| and |w| respectively. Then
c′′ = a1b2a3b4 . . . br is a valid computation for ux.

We now examine a very particular property of WORM-2NFAs which is the key of
our proof. Let c be a computation over u. Initially, all k WORM tracks are empty.
As the computation goes on, WORM squares get filled by write operations. At the
end of the computation the j-th WORM track contains the word wj ∈ (Γ ∪ {2})m

where m = |u|. Assume we restart the machine M from the configuration (q0, 1, w).
In other words, we restart M in the initial state, with its head at the initial leftmost
position, but the WORM tracks already filled instead of being blank. The set of
possible computations starting from that configuration will be different from the set
of computations starting with blank tracks: some computations will require different
WORM contents and will no longer be possible. However the computation c will still
be possible. Indeed, for every WORM square, look at the first access to that square
in c. As the computation c was successful, this access must be a write. Hence M

will try, in the second run of c over the already filled WORM tracks, to write the
same symbol again to that square. This will pose no problem as rewriting is allowed.
Further accesses happen in the same way. Generalizing this observation, we obtain
the following Lemma:

Lemma 3 (Repeatability) Let M be a WORM-2NFA over an input u. If a =
t1 . . . tn is a run leading from (q, i, w) to (q′, i′, w′), and if w′′ are WORM contents
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that can be obtained by filling blank squares of w′, then the run a also leads from
(q, i, w′′) to (q′, i′, w′′).

Consider again two computations c and c′ over uv and wx spliced at |u| and |w| as
c = a1 . . . ak and c′ = b1 . . . b`. We will see that the repeatability lemma allows us to
join c and c′ on a condition over dlg|u|(c) and dlg|w|(c

′) much weaker than equality: c

and c′ will be joinable if the two dialogs have the same subsequences of new triangles.
These are defined as follows.

Definition 9 Let X be a possibly infinite alphabet; X∗ stands for the set of finite
sequences over X. We recursively define the operation I : X∗ → X∗ as follows:

I(ε) = ε

∀x ∈ X, ∀y ∈ X∗ I(yx) =

{

I(y)x if x does not occur in y,

I(y) otherwise.

The sequence I(x) is called the novelty sequence of x.

This operation keeps only the first occurrence of each symbol, deleting repeated
symbols. Thus if X = {0, 1, 2, . . . , 9} we have I(314159265358) = 31459268.

We can now give the core lemma of our result.

Lemma 4 Let c and c′ be two accepting computations over uv and wx respectively.
Let D = I(dlg|u|(c)) and D′ = I(dlg|w|(c

′)) be the respective novelty sequences of their
dialogs spliced at |u| and |w|. If D = D′ then there exists an accepting computation
c′′ over ux.

Proof. Let c = a1 . . . ak and c′ = b1 . . . b` be the splicings of c and c′ at |u| and |w|
respectively. Each run can read and modify the corresponding half of the WORM
tracks. Therefore in each computation, runs working on the same half can depend
one on another: a run x may require the ordered execution of some runs, called
prerequisites of x, before being executable.

Due to the unbounded number of squares in each half, these prerequisites can be ar-
bitrarily complex. However their analysis is not necessary thanks to the repeatability
lemma. Indeed once a run leading from q to q′ has been executed, it can be executed
again to get from q to q′ with no other consequences, i. e., without further modifying
the WORM tracks. This property allows us to classify the runs of a computation in
two ways.

Say that a run x is novel (or a novelty) in a splicing of a computation when no
preceding run has the same triangle as x, that is, no previous run of the same half
leads from the same starting state to the same ending state.

Let N ⊆ {1, . . . , k} (resp. N ′ ⊆ {1, . . . , `}) be the set of indices of novel runs in
c (resp. in c′). Since I(dlg|u|(c)) = I(dlg|w|(c

′)) it follows that the sets N and N ′

have the same cardinality n; let λ1 < · · · < λn and λ′
1 < · · · < λ′

n be their respective
elements. For every ν the runs aλν

and bλ′
ν

are equivalent in the sense that they have
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the same triangle. We will join c and c′ in n iterations. At the ν-th iteration, we will
join the runs aλν−1+1, . . . , aλν

and bλ′
ν−1

+1, . . . , bλ′
ν
.

Say that the computations c and c′ are joinable up to the ν-th novelty when there
exists a computation c′′ over ux such that α(c′′) = q0, ω(c′′) = ω(aλν

) and the
following condition holds. Let d1 . . . dm be the splicing of c′′ at position |u|. Let X be
the set of runs of M , which we will now consider as individual symbols. By

∏

1≤j≤m

j odd

dj

denote the word over X consisting of the left runs of d. We can then use the operation
I over X∗ as in Definition 9 to give the condition:

I









∏

1≤j≤λν

j odd

aj









= I









∏

1≤j≤m

j odd

dj









and I







∏

1≤j≤m

j even

dj






= I









∏

1≤j≤λ′
ν

j even

bj









(1)

This means that, modulo repetitions, c′′ consists of the left runs of c of indexes ≤ λν

and of the right runs of c′ of indexes ≤ λ′
ν , the ordering of the runs in c and c′ being

preserved.
We now show by induction that c and c′ are joinable up to n. The first two runs

of any computation are necessarily novel, i. e., λ1 = λ′
1 = 1 and λ2 = λ′

2 = 2. Since
D = D′, c′′ = a1 and c′′ = a1b2 are adequate computations over ux. Suppose that c

and c′ are joinable up to the ν-th novelty (ν ≥ 2). Let c′′0 be the resulting computation.
It leads from α(a1) = q0 to ω(aλν

) = ω(bλ′
ν
) = q1. Consider the next novel runs. In c

this is aλν+1
and it is equivalent in c′ to (i. e., has the same triangle as) bλ′

ν+1
. They

both lead from q2 = α(bλ′
ν+1

) to q3 = ω(bλ′
ν+1

).

We now construct c′′ by starting from c′′0 . By symmetry, we only consider the case
where the next novelty ν + 1 is a right run. Between the last novelty ν and the next
novelty ν + 1, we have non-novel runs in c (call their sequence L) and in c′ (call their
sequence R): we can write a = a1 . . . aλν

Laλν+1
. . . ak and b = b1 . . . bλ′

ν
Rbλ′

ν+1
. . . b`.

For c′′ to satisfy equation (1) for ν, the left runs of L and the right runs of R must
be executed in order (as they are prerequisites of the computation) and then bλ′

ν+1

must be added. Assume R is not empty (otherwise just skip this step). We need
to modify R, which is a computation over wx, into a computation over ux. To do
this, first recall that all the runs of R are non-novel. By the induction hypothesis,
each left run of R has the same triangle as some left run of c′′0 . By the repeatability
lemma (Lemma 3), we can replace each left run (over w) of R by an already executed
equivalent left run (over u) of c′′0 . This gives a sequence of runs R′ over ux whose
corresponding computation does not further change the WORM contents of the left
half, but behaves on the right half exactly as R over wx. This leads us into the state
q2 in the right half (since the (ν+1)-th run is a right one). To be able to continue with
the symmetric modification of L, we need to get back into q1 in the same half as ν

(which can be left or right). Observe that since the left run bλ′
ν+1

−1 is not novel in c′′0 ,

there exists s < λ′
ν such that b̃s = b̃λ′

ν+1
−1. Therefore there exists a subcomputation

P of c′′0 leading from q2 in the right half to q1 in the corresponding half. As this
subcomputation has already been executed, we can reexecute it to get back into q1.
We are now in q1 in the suitable half and construct the symmetric modification of L
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by replacing the right runs of L with already executed, equivalent right runs of c′′0 .
This gives L′. Finally, we can add the next novelty bλ′

ν+1
. The computations c and

c′ are thus joined up to the (ν +1)-th novelty as c′′ = c′′0 ·R′ ·P ·L′ · bλ′
ν+1

. (As noted

above, there is a symmetric case where λν+1 is even.) This concludes the induction
step. Now note that the computation c′′ over ux is accepting, since the construction
preserves the sequence of novelties and thus has a triangle involving the final state
q+. 2

As an example consider the computations whose dialogs are:

c :





























[0 / 1]
[1 . 2] [2 / 3]
[3 . 2] [2 / 4]
[4 . 2] [2 / 3]
[3 . 2] [2 / 4]
[4 . 2] [2 / 1]
[1 . 2] [2 / 3]
[3 . 2] [2 / 3]
[3 . 5]





























c′ :





























[0 / 1]
[1 . 2] [2 / 3]
[3 . 2] [2 / 4]
[4 . 2] [2 / 3]
[3 . 2] [2 / 4]
[4 . 2] [2 / 1]
[1 . 2] [2 / 4]
[4 . 2] [2 / 3]
[3 . 5]





























Our construction gives a computation whose dialog is:

c′′ :













































[0 . 1]
[1 / 2] [2 / 3]
[3 / 2] [2 / 4]
[4 / 2] [2 / 3]
[3 / 2] [2 / 4]
[4 / 2] [2 / 1]
[1 / 2] [2 / 4]
[4 / 2] [2 / 3]
[3 / 2] [2 / 4]
[4 / 2] [2 / 3]
[3 / 2] [2 / 3]
[3 / 2] [2 / 3]
[3 / 5]













































We are now ready to prove our main result.

Theorem 1 Languages accepted by WORM-2NFAs are regular.

Proof. Let M be a k-WORM-2NFA. To each word u ∈ Σ∗ we associate the set

Fu =
{

I
(

dlg|u|(c)
)

| ∃v c is an accepting computation over uv
}

.

We show that if Fu = Fw for two words u and w then u−1.L (M) = v−1.L (M), i. e.,
for all x, we have ux ∈ L (M) if and only if wx ∈ L (M).

By symmetry, it suffices to show one implication of the equivalence. Suppose there
exists an accepting computation c′ over wx. Then the sequence D = I(dlg|w|(c

′)) is
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in Fu and hence in Fw. Therefore there is an accepting computation c over uv such
that I(dlg|u|(c)) = D, where v is some word. By Lemma 4 there is an accepting
computation over the word ux.

As the set of novelty sequences over triangles over Q is finite, there is only a
finite number of possible values for Fu (u ∈ Σ∗). The left residual u−1.L (M) being
determined by Fu, it follows that L (M) has at most as many left residuals as there
are possible values for Fu and is thus regular. 2

Note that the proof is constructive since the set Fu can be computed by enumerating
novelty sequences and testing them individually. Accepting computations can be
enumerated with the help of the quadratic bound on computation lengths, and the
regularity result which limits the length of the words we must consider. (The number
of residuals and hence the number of states of a deterministic automaton accepting
the same language as M is bounded by a the number of possible sets of novelty
sequences.)

2.4. Conciseness

A WORM-2NFA can easily recognize the image by a length preserving homomorphism
of a 2NFA language by guessing a pre-image on its WORM track and then executing
the 2DFA or 2NFA. It has been shown in [2], Theorem 4.1 that a 2DFA with O(n2)
states (resp. with O(n) states) can simulate, under such an homomorphism, a 2AFA
with n states (resp. a halting 2AFA with n states). It follows that an O(n)-state
WORM-2NFA can simulate an n-state halting 2AFA or a

√
n-state classical 2AFA.

Since 2AFAs are known [9] to be exponentially more succinct than 2NFAs, it follows
that WORM-2NFAs are at least exponentially more succinct than 2NFAs.

3. Further Extensions

3.1. Stringent Cells

The regularity of WORM-2NFAs is very sensitive to the functionality of the WORM
cells. Consider a variant of WORM cells where any attempt to write to a non-blank
cell causes the computation to halt. Call these stringent WORM cells.

Proposition 3 Nonregular languages can be accepted by WORM-2NFAs with strin-
gent cells.

Proof. Let Σ = {/, ., a, b}. The language L = {/apbp . u | p ≥ 0, u ∈ Σ∗} can be
accepted by a 1-WORM-2NFA endowed with stringent WORM cells. The automaton
first checks that the input is of the form /a∗b∗ .Σ∗. It then enters a nondeterministic
loop where it selects a position under an a in the left half and marks the square with an
X , switches to the second half and does the same under a b. After nondeterministically
exiting the loop, the automaton checks that all positions between the first / and .

have been checked and accepts. 2
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3.2. Alternation

It is possible to define alternating WORM machines in the same way as alternating
Turing machines are defined. This gives WORM-2AFAs. Each subcomputation of a
WORM-2AFA gets a copy of the WORM track which can be modified independently
of the others. The nodes of the alternating computation tree are labelled with the
contents of the WORM tracks. However this makes simulation of stringent cells
possible.

Proposition 4 For every WORM-2NFA M running with stringent WORM cells,
there exists a WORM-2AFA M ′ running with ordinary WORM cells and accepting
the same language as M .

Proof. As each branch of a universal fork has its own copy of the WORM track, one
of these branches can be used to check if a given cell is blank without affecting the
same cell in the other branches. This way M can be modified into a WORM-2AFA
M ′ by predicating each write operation with a blankness check, such that the input
is rejected if the check fails. 2

3.3. Pebbles

Since alternation gets us out of the realm of regular languages, we are confined to
nondeterministic acceptance modes. It is possible to add a pebble, or even multiple
specially nested pebbles to 2NFAs or even 2AFAs and still remain in the realm of
regular languages [2, 10, 9]. It is then natural to extend WORM automata with
a pebble. This gives P-WORM-2DFAs and P-WORM-2NFAs. However, adding a
single pebble to WORM-2NFAs permits recognition of non-regular languages. As
P-WORM-2DFAs can have computations of quadratic length, the result of [11] does
not apply. Actually, pebbles and WORM tracks give regular languages only under
determinism.

Theorem 2 P-WORM-2DFAs have regular languages.

Proof. Let M be a P-WORM-2DFA having Q as its set of states, with q+ ∈ Q as its
only accepting state. We assume that the model is suitably enhanced with endmarkers
to allow M to recognize the beginning and end of its input. The automaton M can
reject its input by blocking or by looping in a non-accepting state. Without loss of
generality, we further assume that M moves its head to the right with the pebble end
before accepting. We will refer to this property by saying that M is right-finishing.
Let uv ∈ L (M) be an accepted input of length n, where u is its left half and v

its right half. For brevity, we omit a complete formalization of P-WORM-2DFAs.
However a configuration of M can be represented by a quadruple (q, i, j, w) where

• q ∈ Q is the control state,

• i is the head position (1 ≤ i ≤ n + 2, with the beginning and end markers at
i = 1 and i = n + 2 respectively),
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• j gives the pebble position (0 ≤ j 6= n + 2), j > 0 meaning that the pebble is
dropped at j, and j = 0 meaning that the pebble is picked by the head,

• w ∈
(

Γ ∪ {2}
)n+2

gives the contents of the WORM track.

The initial configuration is (q0, 2, 0, 2n+2). Let c = (qr, ir, jr, wr)r≥0 be the sequence
of configurations of M in its computation over uv, naming initial configuration as
(q0, i0, j0, w0). In the r-th configuration (r ≥ 0) we say that the pebble is in the left
if the pebble is picked and the head is in the left half (jr = 0 and ir ≤ |u| + 1), or if
the pebble is dropped in the left half (jr ≤ |u| + 1); otherwise, the pebble is said to
be in the right half. Factorize the computation c into episodes as c = e0e1 . . . ep such
that for all even (resp. odd) s, the pebble is in the left (resp. in the right) in episode
es. Hence, at the beginning of each episode, the pebble is taken and the head is in
the same position (which is |u| or |u|+ 1 depending on the half in which the episode
takes place). Because M is right-finishing, we have p ≥ 1 and p odd. For every s

(1 ≤ s ≤ r), let α(es) stand for the control state of the first configuration of episode es

(thus α(e0) = q0). As Q is finite, there exist p and r such that 0 ≤ p < r ≤ Card(Q)
such that α(ep) = α(er). Observe that during each episode, the half that does not
contain the pebble is reduced to a WORM-2DFA.

For every p (1 ≤ p ≤ r) let hp (hp ∈ (Q × Q)∗) be the pebble crossing sequence of
the episode p, that is, the sequence of couples (q1, q

′
1) . . . (qk, q′k) where q` is the state

by which the half that does not contain the pebble is called, and q′` is the state by
which it answers. Note that, since the automaton accepts its input, it does not loop,
and hp has finite length. Moreover, by determinism, states in hp cannot repeat, and
thus the set of possible such crossing sequences is finite for a fixed set of states Q.

Let I be the operation of definition 9 suppressing repeated entries of a sequence.
Define the sequence

Su,v =(α(e0), I(h0))·
(α(e1), I(h0h1))·
· · ·
(α(er), I(h0h1 · · ·hr))

The set S = {Su,v | u, v ∈ Σ∗} of these sequences over various entries of the form
uv is finite. A left residual u−1.L (M) can be described by a subset

Gu =
{

Su,v

∣

∣ v ∈ Σ∗
}

of S . Therefore L (M) has a finite number of left residuals and is regular. 2

Figure 3 illustrates the exchange of pebble and control states between the two halves.
The computation consists there of three episodes e0, e1, e2. The automaton starts in
state q0 in episode e0, during which the right half is called in state q1 and answers in
state q2; then is called again in state q3 and answers in state q4. The episode e0 then
ends as the right half is called in state q5 with the pebble. Thus h0 = (q1, q2) · (q3, q4).
Similarly h1 = (q6, q7) · (q8, q9) and h2 = (q11, q12) · (q13, q14). The sequence Su,v is
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Figure 3: Pebble and control state exchanges between the two halves of the input in a

P-WORM-2DFA, showing the evolution of the WORM track contents

then
(

q0, I
(

(q1, q2) · (q3, q4)
)

)

·
(

q5, I
(

(q1, q2) · (q3, q4) · (q6, q7) · (q8, q9)
)

)

·
(

q10, I
(

(q1, q2) · (q3, q4) · (q6, q7) · (q8, q9)
)

)

· (q11, q12) · (q13, q14)
)

)

Proposition 5 P-WORM-2NFAs can accept some non-regular languages.
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Proof. The language
{

ap+qbp | p, q ≥ 0
}

can be accepted by a P-WORM-2NFA M

as follows. First, M checks that the input word is in a∗b∗. Then, M drops its pebble
on the first letter of its input, and repeats the following procedure:

(1) Tick the WORM cell under the pebble.

(2) Nondeterministically select a position whose input letter is a b.

(3) Tick the WORM cell under that position.

(4) Go back to the pebble.

(5) Pick the pebble, advance it one position to the right and drop it.

(6) If the pebble is still over an a, go to (1).

After that, M checks that all WORM cells have been ticked and accepts its input.
Thus, for every a, M checks at most one b. 2

4. Concluding Remarks and Open Questions

The ability of WORM-2NFAs to hold a number of guessed values linear in the size of
the input throughout the computation appears as an ability out of the reach of 2AFA,
pebble-2AFA and other similar models. Also, compared to nondeterministic Hennie
machines, WORM-2NFAs do not have a finite bound on the number of times they can
visit a given square. We therefore conjecture that 2AFAs as well as nondeterministic
Hennie machines cannot solve SAT with a polynomial number of states. We hope
that these results will shed some light on the relative power of WORM-2DPDAs vs
2DPDAs.

The effect of WORM cells on the languages of other kinds of finite computing
devices, such as 2DFAs with nested pebbles, 2DFAs or 2NFAs with monotonic output
tapes and tree-walking automata remains to be explored.
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