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1Laboratory of Computer and

Information Science
Neural Networks Research Centre
Helsinki University of Technology

P.O. Box 5400
FI-02150 TKK, Finland

Janne Sinkkonen

Xtract Ltd.
Helsinki, Finland

Samuel Kaski1,2

2Department of Computer Science
P.O. Box 68

FI-00014 University of Helsinki
Finland

Abstract

We introduce a novel latent grouping model
for predicting the relevance of a new docu-
ment to a user. The model assumes a la-
tent group structure for both users and doc-
uments. We compared the model against
a state-of-the-art method, the User Rating
Profile model, where only users have a latent
group structure. We estimate both models
by Gibbs sampling. The new method pre-
dicts relevance more accurately for new doc-
uments that have few known ratings. The
reason is that generalization over documents
then becomes necessary and hence the two-
way grouping is profitable.

1 INTRODUCTION

This work has been done as a part of a proactive in-
formation retrieval project (PRIMA, 2003–2005) that
aims at estimating relevance of new documents to users
based on both explicit and implicit user feedback. A
proactive system adapts to the interests of the user, in-
ferred from implicit feedback. User feedback by explic-
itly pointing out relevant documents might sometimes
be more accurate, but users often consider giving such
feedback too laborious. The usability and accuracy of
information retrieval applications would therefore be
greatly enhanced by complementing explicit feedback
with more readily available implicit feedback signals
measured from the user interface.

As implicit feedback typically is noisier than explicit
ratings, efficient generalization over users and docu-
ments becomes necessary. In this paper we introduce
a two-way latent grouping model that predicts binary
relevances for user-document pairs.

Traditionally, user preferences have been predicted us-
ing so-called collaborative filtering methods, where

the predictions are based on the opinions of similar-
minded users. Collaborative filtering is needed when
the task is to make personalized predictions but there
is not yet sufficient amount of data about the user’s
personal interests. Then the only possibility is to
generalize over users, for instance by grouping them
into like-minded user groups. The early methods were
memory-based; predictions were made by identifying a
set of similar users, and using their preferences fetched
from memory. See, for instance (Shardanand and
Maes, 1995) and (Konstan et al., 1997). Model-based
approaches are justified by the exponentially increas-
ing time and memory requirements of the memory-
based techniques. Recent work includes probabilistic
and information-theoretic models, for instance (Hof-
mann, 2004; Wettig et al., 2003; Zitnick and Kanade,
2004; Jin and Si, 2004). An interesting family of mod-
els are the latent component models, which have been
successfully used in collaborative filtering (Pritchard
et al., 2000; Hofmann, 2004; Blei et al., 2003; Marlin,
2004). In these models, each user is assumed to be-
long to one or many latent user groups that explain
her preferences.

As a collaborative filtering system has to rely on the
past experiences of the users, it will have problems
when assessing new documents not seen yet by most
of the users. To tackle this problem we propose a
model that generalizes over documents as well. We
go one step further from the state-of-the-art proba-
bilistic models which have a latent structure for the
users, and introduce a similar latent structure for the
documents as well.

We will test the model for two different kinds of data
sets. The model is generally applicable, but since
our main application area is proactive information re-
trieval, we will refer to the items as documents. In
both of the tests the performance of our model is
compared to a state-of-the-art method, the User Rat-
ing Profile model, URP (Marlin, 2004), which we also
evaluated by Gibbs sampling. In the work of Marlin,



the URP model, which was evaluated with variational
methods, outperformed the other latent topic models.
Our first study involves a set of about 500,000 votes
given by 679 members of British parliament on roughly
1,200 issues. In the second study, the data were gath-
ered in a controlled experiment where the test subjects
browsed through a set of titles of scientific articles, and
chose the most interesting ones via a web form. The
data consisted of 25 users’ opinions on 480 articles.

This paper is structured as follows. We first introduce
our two-way grouping model and the models used in
the experimental as comparisons, including the base-
line models. After that we discuss the differences and
similarities of our model with the related models. We
then proceed to describe the experimental setup and
the results.

2 METHODS

2.1 TWO-WAY GROUPING MODEL

We introduce a model that clusters users into user
groups and documents into document clusters, in order
to generalize relevance over both groupings. Each user
may have several “attitudes,” that is, belong to differ-
ent groups during different relevance evaluations, and
likewise each document may have several “aspects.”
These are modeled as probabilistic soft assignments.
Our notation is summarized in Table 1.

Table 1: Notation

SYMBOL DESCRIPTION

u user index
d document index
r binary relevance

u∗ user group index
d∗ document cluster index
Z user attitude in URP

NU number of users
ND number of documents
N number of triplets (u, d, r)
KU number of user groups
KD number of document clusters

D observed data

The model generates rating triplets (user, document,
rating), or (u, d, r), with binary relevances r as follows
(see Figure 1):

1A) For the whole user collection, a vector of Multino-
mial parameters θU is drawn from Dirichlet(αu∗).
The parameter vector θU contains the probability
for each user group u∗ to occur.

2A) For each user group u∗, a vector of Multinomial
parameters βU (u∗) is drawn from Dirichlet(αU ).
The parameter vector βU (u∗) contains the prob-
ability for each user to belong to user group u∗.

3A) A user group u∗ is drawn from Multinomial(θU ).
As the user group is fixed the corresponding pa-
rameters βU (u∗) can be selected and a user u is
drawn from Multinomial(βU (u∗)).

1B) Symmetrically, for the whole document collection,
a vector of Multinomial parameters θD is drawn
from Dirichlet(αd∗). The parameter vector θD

contains the probability for each document cluster
d∗ to occur.
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αU βU u
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Figure 1: A Graphical Model Representation of Our
Two-Way Grouping Model. The grey circles indicate
observed values. The boxes are “plates” representing
replicates; the value in the corner of each plate is the
number of replicates. The rightmost plate represents
the repeated choice of N (user, document, rating)
triplets. The plate labeled with KU represents the
multinomial models of the KU different user groups.
The plate labeled with KD represents the multinomial
models of the KD different document clusters.



2B) For each document cluster d∗, a vector of
Multinomial parameters βD(d∗) is drawn from
Dirichlet(αD). The parameter vector βD(d∗) con-
tains the probability for each document to belong
to the document cluster d∗.

3B) A document cluster d∗ is drawn from
Multinomial(θD). As the document cluster
is fixed the corresponding parameters βD(d∗) can
be selected and the document d is drawn from
Multinomial(βD(d∗)).

4) For each cluster pair (u∗, d∗), a vector of Bi-
nomial parameters θR(u∗, d∗) is drawn from
Dirichlet(αR). The parameters θR(u∗, d∗) contain
the probability of the user group u∗ to consider
the document cluster d∗ relevant (or irrelevant).

5) For each cluster pair (u∗, d∗), a binary relevance
r is drawn from Binomial(θR(u∗, d∗)).

The model parameters are simulated with Gibbs sam-
pling. As a very brief tutorial, the model parameters
are sampled one at a time, conditional on the current
values of all the other parameters. One iteration step
consists of sampling all the parameters once, in a fixed
order. The observed data consists of triplets (u, d, r).
For each iteration step of sampling, m, we get a sam-
ple of all parameters of the model, denoted by ψ(m).
Asymptotically, the sampled parameters ψ(m) satisfy
ψ(m) ∼ P (ψ | D).

Each sample of parameters generates a matrix of prob-
abilities P(r, u, d | ψ(m)). The prediction of relevance,
P(r | u, d), can be computed from these by the Bayes
rule. As the final prediction we use the mean of the
predictions over the M Gibbs iterations,

P(r | u, d) = EP (ψ|D) [P(r | u, d,ψ)]

≈
1

M

M∑

m=1

P(r | u, d,ψ(m)) . (1)

The sampling formulas are presented in the Appendix.

2.2 USER RATING PROFILE MODEL

URP is a generative model which generates a binary
rating r for a given (user, document) pair.1 It was
originally optimized with variational Bayesian meth-
ods (variational URP), including also maximum like-
lihood estimates. We replaced the optimization with
the potentially more accurate Markov chain Monte
Carlo sampling from the full posterior distribution
(Gibbs URP). This is expected to improve estimates

1Note that the model allows also multiple-valued ratings
if the binomial is replaced with a multinomial.

especially for the small numbers of known ratings in
our application. We estimate the posterior predictive
distribution P (r|u, d,D) by Gibbs sampling where D
denotes the training data consisting of observations
(u, d, r). The model assumes that there are a number
of latent user groups whose preferences on the docu-
ments vary. The users belong to these groups prob-
abilistically, into different groups at different times.
Alternatively, the groups can be interpreted as differ-
ent “attitudes” of the user, and the attitude may be
different for different documents.

The generative process proceeds according to the fol-
lowing steps (see also Figure 2):

1) For each user, a vector of multinomial parameters
θ(u) is drawn from Dirichlet(α). The parameter
vector θ(u) contains the probabilities for the user
to have different attitudes Z, that is, to belong to
different user groups Z.

2) For each user u, a user group or attitude Z

is drawn for each document d, from the user’s
Multinomial(θ(u)). The value of Z in effect se-
lects the parameters β(Z, d) from the set of pa-
rameters in the node labeled by β in Figure 2.

3) For each (user group, document) pair (Z, d), a
vector of binomial parameters β(Z, d) is drawn
from Dirichlet(αβ(Z, d)). The parameters β(Z, d)
define the probability of the user group Z to con-
sider document d relevant (or irrelevant).

4) For each pair (Z, d), a binary relevance value r is
drawn from the Binomial(β(Z, d)).

βα β

α θ Z

N
U

N
D

K
U

r

Figure 2: A Graphical Model Representation of URP.
The grey circle indicates an observed value. The boxes
are “plates” representing replicates and the value at
the corner of each plate indicates the number of repli-
cates. The lowest plate represents users and the plate
labeled with ND represents the repeated choice of user
group for each document. The plate labeled with KU

represents the multinomial models of relevance for the
KU different user groups.



2.3 NAIVE MODEL AND DOCUMENT

FREQUENCY MODEL

We implemented two simple models to give baseline
results. The naive model always predicts the same
relevance value for r, according to the more frequent
value in the training set. The prediction of the naive
model was r = 0 for the scientific articles and r = 1
for the parliament votings.

The document frequency model does not take into ac-
count differences between users or user groups. It sim-
ply models the probability of a document being rele-
vant as the frequency of r = 1 in the training data for
the document:

P (r = 1 | d) =

∑
u #(u, d, r = 1)∑

u,r #(u, d, r)
.

2.4 COMPARISON TO OTHER MODELS

The models most closely related to our two-way group-
ing model are the so-called latent topic models, espe-
cially Hofmann’s probabilistic latent semantic analysis
(pLSA) (Hofmann, 2004), Latent Dirichlet Allocation
(LDA) (Blei et al., 2003) also known as multinomial
PCA or mPCA (Buntine, 2002), and the already in-
troduced URP (Marlin, 2004). The main differences
to these three models are discussed in this Section.

The three models have subtle differences, but in all of
them each user is assigned an individual multinomial
distribution with parameters θ, and the latent user
group Z is sampled again for each document2. Each
user can therefore belong to many groups with varying
degrees. In our model both users and documents can
belong to many latent groups, much in the same way
as users in these three models.

In pLSA and URP each user group has a set of multi-
nomials Mult(β) for all documents—they immediately
determine the probabilities of ratings once the user
group has been generated. Each mPCA user group,
on the contrary, has a multinomial Mult(β) over the
documents. Hence, mPCA could be interpreted as a
model where the most probably occurring documents
are the ones that have the largest probability of being
relevant. Thus, multinomial PCA can be interpreted
as a binary relevance model but it cannot represent
multiple-valued ratings. URP can be seen as an ex-
tension to mPCA with one extra dimension in the pa-
rameter matrix β to represent the different rating val-
ues. In our model the relevance is assumed to depend

2Note that in text modeling this corresponds to sam-
pling a “topic” Z for each word or token. In such a
framework each document has a multinomial distribu-
tion Mult(θ) over topics.

only on the latent groups, that is, there is a probabil-
ity distribution of different ratings, Mult(θR), for each
(user group, document cluster) pair.

In addition to being two-way, our model differs from
URP in that the users u and documents d are explicitly
generated. In other words, the margins P (u) and P (d)
are estimated from data. In contrast, URP contains
no generative process for the users or documents.

Finally, although our model is not far from the diverse
set of so-called biclustering models (Tanay et al., 2005;
Madeira and Oliveira, 2004; Wettig et al., 2003), we
aim at prediction instead of clustering, and therefore
it is enough that the latent structure makes the pre-
dictions accurate. Because the model is evaluated by
sampling, we do not even obtain a single explicit set
of clusters.

3 DATA

3.1 PARLIAMENT DATA

The model was first empirically tested on a publicly
available data set of votings of the British parliament
during year 1997. The data set consisted of 514,983
votes given by the members of parliament on 1,272
issues. We predict the votes for previously unseen
(user, issue) pairs, where the users are the members
of the parliament (MP).

3.1.1 Missing Data

In the parliament data we do not have a “yes” or “no”
answer for all the (user, issue) pairs, i.e., about 40 % of
all possible votes are missing. The fact that a member
of parliament has not voted “yes” or “no” on a partic-
ular issue may either be due to her not being present at
the voting, or her tactical reasons not to take a stand
in the matter. In either case, the vote is not missing
at random. From the modeling perspective we could
assign a “rating,” say -1, to all the missing votes and
make the sparse data matrix full. This would, however,
notably increase the computational load. Fortunately,
some of this information is effectively taken into ac-
count by modeling the user margins P(u | D) and the
document margins P(d | D).

3.2 SCIENTIFIC ARTICLES DATA

Our other data set was gathered in a controlled exper-
iment where the test subjects browsed through a set of
titles of scientific articles and chose the most interest-
ing ones via a web form. The test subjects were shown
80 lists, with six article titles each. The subjects par-
ticipating in the experiment were researchers in vision
research, artificial intelligence, and machine learning.



Figure 3: Web Form of the Scientific Articles Data.
The test subjects were shown 80 lists, each with six
article titles. On each page the task of the subjects
was to choose the two most interesting titles. They
were asked to give their feedback explicitly via web
forms, like the one shown in the figure.

The browsed lists consisted of titles of scientific arti-
cles published during autumn 2004 in major journals
in the fields of vision research, artificial intelligence,
machine learning, and general science. On each page
there was a randomly generated list of titles always
containing titles from each discipline. On each page
the subjects were to choose the two most interesting
titles according to their own preferences (see Figure 3).
Altogether, the data consisted of 25 users’ opinions on
480 titles of scientific articles (“documents”).

4 EXPERIMENTS

4.1 “NEW” DOCUMENTS AS TEST SET

We constructed the experiments to correspond to pre-
diction of relevances for “new” documents having only
few relevance judgments available. For the test set,
we randomly selected Nt documents to represent the
“new” documents (Nt = 50 in the parliament data and
Nt = 48 in the scientific articles data). We took care
that these documents were represented with very few
ratings in the training data, which would be the case
for new documents in information retrieval. Of the
ratings for these documents, randomly selected 3 rat-
ings per document were taken to the training set and
the rest of the ratings were left to the test set. For the
rest of the documents, all the ratings were included
in the training set. These documents represented the
“older” documents that many users have already seen
and revealed their opinion on. They correspond to
older documents in an information retrieval situation.
This way all the tested documents are “new” in the
sense that we only know 3 users’ opinions of them.
However, we are able to use “older” documents (for

which users’ opinions are already known) for training
the user groups and document clusters.

For the validation of parameters we used the train-
ing set to construct a validation set and a preliminary
training set in a similar manner. “New” documents in-
cluded in the test set were not used in the validation.
From the rest of the documents we again randomly
selected Nv documents to be the “new” documents of
the validation set (Nv = 50 in parliament data and
Nv = 42 in the scientific articles data). Of the ratings
for these documents, randomly selected 3 ratings per
document were taken to the preliminary training set
and the rest of the ratings were left to the validation
set.

Our two-way grouping model and Gibbs URP were
trained with the preliminary training set for a range
of cluster numbers. The trained models were tested
with the validation set, and the lowest perplexity (see
the next section) was used as performance criterion for
choosing the cluster numbers. For the final results the
models were trained with all the training data with
the validated cluster numbers and tested with the test
data set.

4.2 MEASURES OF PERFORMANCE

For all the models, except the naive model, we used
log-likelihood of the test data set as a measure of per-
formance, written in the form of perplexity3

perplexity = e−
L

N , where L =
N∑

i=1

log P (ri | ui, di,D) .

Here D denotes the training set data, and N is the size
of the test set. Gibbs sampling gives an estimate for
the table of relevance probabilities over all (u, d) pairs,
P (r | u, d,D), from which the likelihood of each test
pair (ui, di) can be estimated as P (ri | ui, di,D).

We further computed the accuracy, that is, the frac-
tion of the triplets in the test data set for which the
prediction was correct. For the naive model the predic-
tion accuracy was the only performance measure used,
since, unlike the other models, it does not produce
probability for the relevance. For the other models we
took the predicted relevance to correspond to

arg max
r∈{0,1}

P (r | u, d,D) .

3The best possible performance yields perplexity = 1
and random guessing (coin flipping) yields perplexity = 2.
If perplexity is greater than 2 the model is doing worse
than random guessing. Theoretically, it can grow with-
out a limit if the model predicts zero probability for some
item in the test data set. However, we actually clipped
the probabilities to the range [e−10, 1] implying maximum
perplexity of e10 ≈ 22, 000



4.3 CONVERGENCE

Convergence of the Markov chain Monte Carlo simu-
lations was measured as explained below. We sampled
three MCMC chains in parallel and monitored the con-
vergence of predictions. First, each of the chains were
run for 100 iterations of burn-in, with tempering like
in (Koivisto, 2004). After that, the burn-in period was
continued for another 50 iterations without the tem-
pering, to burn in the actual posterior distribution. At
the end of the burn-in period, the squared Hellinger
distance4 H2 was used as a convergence check: it was
required to achieve the limit of 10−3. After the burn-
in each chain was run for another 400 iterations, and
finally those 1200 samples were averaged to estimate
expectations of P (r | u, d).

5 RESULTS

The results of comparing the perplexities of the models
on test data set are shown in Tables 2 and 3. Statistical
significance was tested with the Wilcoxon signed rank
test.

Our model performed better than URP, the reason
probably being that in URP the number of “bins” is
large compared to the number of training data sam-
ples. URP does not generalize over documents, so for
each test document it has KU = 2 bins and 3 data sam-
ples. For each test document there are only 3 training
samples to estimate the parameters of the KU bins,
so when KU grows the performance of URP gets in-
evitably worse. In our model, there are KU bins per
document cluster, not per document, which makes it
more robust to variation caused by the small number
of training data samples.

5.1 PARLIAMENT DATA

The choices from which the cluster numbers were se-
lected using a validation set for the parliament data
were KU ∈ {1, 2, 5, 10, 20, 50} for the user groups and
KD ∈ {1, 2, 3, 4, 5, 10} for the document clusters. The
best numbers were KU = 2 for URP, and KU = 2 and
KD = 2 for the two-way grouping model. These values
were used in the experiments with the test set. The
results of the experiments are summarized in Table 2.

4We evaluated the squared Hellinger distance H2(p, q) =
1 −

∑
x

√
px

√
qx pairwise, between the conditional distri-

butions P (r | u, d) produced by the 3 chains. The average
of the Hellinger distances between the chains is an upper
bound for the expectation of the Hellinger distance between
the true distribution and the distribution obtained by the
MCMC approximation.

Table 2: Parliament Data. Comparison between the
models by perplexity and prediction accuracy over
the test set of 50 documents. All the values differ
from each other statistically significantly with P-value
≤ 0.01. Small perplexity and large accuracy is better.

Method Perplexity Accuracy %

Two-Way Model 1.37 92.6
Gibbs URP 1.47 88.8
Doc.Freq.Model 4.87 67.8
Naive Model – 50.4

5.2 SCIENTIFIC ARTICLES DATA

The choices from which the cluster numbers were se-
lected using a validation set for the scientific articles
data were KU ∈ {1, 2, 3, 4, 5, 10, 15, 20} for the user
groups and KD ∈ {1, 2, 3, 4, 5, 10, 15, 50} for the docu-
ment clusters. The parameter validation yielded clus-
ter number KU = 2 for URP and cluster numbers
KU = 5 and KD = 3 for the two-way grouping model.
Generalization over documents enables the two-way
model to produce a more fine-grained description of
the users with five user clusters. These values were
used in the experiments with the final test set. The
results of the experiments are summarized in Table 3.

Table 3: Scientific Articles Data. Comparison between
the models by perplexity and prediction accuracy over
the test set of 48 documents. The perplexity of the
two-way grouping model differs from all the other
models statistically significantly with P-value ≤ 0.01.
Small perplexity and large accuracy is better.

Method Perplexity Accuracy %

Two-Way Model 1.71 75.3
Gibbs URP 1.74 73.2
Doc.Freq.Model 3.76 69.2
Naive Model – 67.1

5.2.1 Clusters

The latent groups are unidentifiable, so a group num-
ber k could refer to different groups during differ-
ent Gibbs iterations. It is possible, however, to de-
fine clusters based on same users sharing the latent
user group frequently, and analogously for the docu-
ments. (Technically, we compute the expectation of
the Hellinger distance between the users’ distributions
over user groups.) As a result of this analysis we found
the groupings for users and documents that we ex-
pected in the scientific articles data set. The clusters



roughly corresponded to the users’ research fields and
disciplines of the journals, respectively.

6 DISCUSSION

We have built a latent grouping framework that can
be used to predict the user-specific relevance of an un-
seen document, and vice versa. The model assumes
that both users and documents have a latent group
structure. The predictions were computed with Gibbs
sampling. We compared the model against a state-of-
the-art method, the User Rating Profile model (URP),
also estimated with Gibbs sampling.

The task was to predict users’ subjective relevances for
new documents, with only very few existing ratings—
still being able to utilize information about relevances
of earlier seen documents for a mass of users. It re-
sembles a collaborative filtering situation where rel-
evance of a new document is predicted. Our method
gives more accurate relevance predictions than URP in
this task. In the task the available information about
the attitudes of users towards the new documents is
very limited, and generalizing over similar documents
is beneficial. The document group structure of our
model enables such generalization.

The aim of this study was to show that this kind of
model can give more accurate results than models that
generalize only over users. We have not yet optimized
the current implementation for the requirements of
concrete applications at this stage. A remaining ques-
tion of future work is how to implement the model
as efficiently as possible. The complexity of comput-
ing one iteration of Gibbs sampling with our model is
O(N(K2

U +K2
D)+NUKU +NDKD +KUKD), whereas

for URP the complexity is O(NK2
U +NUKU +NDKU )

per iteration. The number of observed (u, d, r) triplets
is denoted by N and it dominates the complexities
of both the models. However, the problem could be
solved approximately more efficiently, for example as
follows: One could keep a set of randomly selected
samples and use it to represent all other users, while
sampling only the parameters of the new incoming
user.

The model could be easily extended to handle
multiple-valued ratings, by replacing the binary out-
put with a multinomial. Binary responses, however,
have the clear advantage that the ratings have a nat-
ural ordering: From the posterior we obtain sim-
ple probabilities varying continuously between the ex-
tremes, 0 and 1. In comparison, the multinomial dis-
tribution does not take the ordering of the ratings
into account. A multi-valued response variable would
therefore probably require extra structure to take the
natural ordering of the ratings into account.

The model is constructed to make its expansion by
adding other sources of relevance feedback easy. On-
going work includes combining users’ explicit feedback
with implicit relevance estimates gained from users’
eye movements.
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Appendix

In this appendix we give the Gibbs sampling formulas
for the posterior distributions for each variable relating
to the user clusters. The formulas are analogous for
document clusters. In our notation n denotes an index
for the observed triplets (n ∈ {1, 2, , . . . , N}) and ψ
denotes all the parameters of the model.

Sampling formula for user group u∗:

P (u∗
n | un, rn,ψ) ∝ (2)

βU (u∗
n)un

θR(u∗
n, d∗n)rn

θU (u∗
n)∑

u∗ βU (u∗)un
θR(u∗, d∗n)rn

θU (u∗)

Sampling formula for the user groups vs. users matrix
βU (u∗):

P (βU (u∗) | {un},ψ) ∝ (3)

Dir(nu∗u1 + αU (u∗)1 , . . . , nu∗uNU + αU (u∗)NU
)

where nu∗uq = #{Samples with u∗
n = u∗ ∧ un = q}.

Sampling formula for the user group probability pa-
rameters θU :

P (θU | {u∗
n},ψ) ∝ (4)

Dir(nu∗1 + αu∗(1) , . . . , nu∗KU + αu∗(KU ))

where nu∗k = #{Samples with u∗
n = k}.

Sampling formula for document cluster d∗, the docu-
ment cluster vs. documents matrix βD(d∗), and docu-
ment cluster probability parameters θD can be derived
analogously (u ↔ d).

Sampling formula for the group-wise probability of rel-
evance θR(u∗, d∗) :

P (θR(u∗, d∗) | {rn},ψ) ∝ (5)

Dir(αR(0) + nu∗d∗0, αR(1) + nu∗d∗1)

where

nu∗d∗r = #{Samples with u∗
n = u∗ ∧ d∗n = d∗ ∧ rn = r}.


