
MARK JOHNSON 

TWO WAYS OF FORMALIZING GRAMMARS* 

1. INTRODUCTION 

A grammar is a formal device which both identifies a certain set of utter 

ances as well-formed, and which also defines a transduction relation be 

tween these utterances and their linguistic representations. This paper 
focuses on two widely-used "formal" or "logical" representations of gram 

mars in computational linguistics, Definite Clause Grammars and Feature 

Structure Grammars, and describes the way in which they express the 

recognition problem (the problem of determining if an utterance is in the 

language generated by a grammar) and the parsing problem (the problem 
of finding the analyses assigned by a grammar to an utterance). 

Although both approaches are 'constraint-based', one of them is based 

on logical consequence relation, and the other is based on satisfiability. 
The main goal of this paper is to point out the different conceptual basis 

of these two ways of formalizing grammars, and discuss some of their 

properties. 

1.1. Definite-Clause Grammars, A Validity-based Approach 

The definite-clause grammar (DCG) framework originates in Colmerauer's 

work on Metamorphosis Grammars in the 1970's (Colmerauer 1978) and 

was developed and popularized by Pereira and Warren (1981), Pereira 

and Shieber (1987) and others. In this approach, a grammar (here taken 

to include the lexicon) is conceived of as a set of axioms. The well 

formedness of an utterance and the fact that it has a certain linguistic 

structure are theorems that follow from these axioms, so both the recog 
nition and parsing problems is one of determining if certain types of 

formulae are logical consequences of these axioms. Thus the well-form 

edness or grammaticality of a particular utterance is expressed by the fact 

that the corresponding formula is a consequence of the grammar axioms, 
and ungrammaticality by the fact that the corresponding formula is not a 

* I would like to thank Edward Stabler and an anonymous L&P reviewer for their helpful 
comments on an earlier draft of this paper. Of course, all responsibility for errors in this 

paper rests with me. 

Linguistics and Philosophy 17: 221-248, 1994. 

? 1994 Kluwer Academic Publishers. Printed in the Netherlands. 



222 MARK JOHNSON 

consequence of the grammar axioms (even though it may be consistent 

with them). 
That is, if the grammar axioms are D and the formula wf (u, s) asserts 

that the utterance u is well-formed with linguistic reprsentation s (where 
s might be interpreted as a parse tree, etc.), then the recognition problem 
is the problem of determining if the following holds.1 

D t 3s wf(u, s). 

The parsing problem is the problem of finding all of the s such that the 

following holds for the given utterance u. 

D t wf(u, s). 

In general D is a finite set of closed formulae, so these problems are 

equivalent to the following validity problems, where D' is a conjunction 
of the members of D. 

t=D' -3s wf(u, s). 

l D' -wf(u, s). 

To summarize, in the DCG approach the intended interpretation Xi is 

one in which linguistic representations and strings are conceptualized as 

individuals. The grammar axioms D state the essential properties of the 

intended interpretation Ati, so if u is interpreted in X, as a grammatical 
utterance with linguistic structure s, then wf(u, s) is true in every model 

of D. 

1.2. Feature Structures, A Satisfiability-based Approach 

The second framework is the feature-structure (FS) approach, where a 

grammar (which includes the lexicon) is conceived of as a set of constraints, 
and a well-formed linguistic representation is any structure that satisfies 
these constraints.2 Specifically, the grammar and the utterance both im 

pose constraints that the linguistic structure must meet. The well-formed 

or grammatical structures are those that satisfy the constraints imposed 

by the grammar. An utterance is well-formed iff one of these structures 

1 In this paper the following notation is used. Object-language expressions are written in 

sanserif font, e.g. x, y etc., while meta-language variables (ranging over object-language 

expressions) are written in italic font, e.g. x, y, etc. 
2 

The version considered here is similar to HPSG (Pollard and Sag 1987) in that it is 

expressive enough that no external phrase structure component is required - the phrase 
structure rules are encoded as feature structure constraints - and is a simplification of systems 
proposed by Carpenter (1992). 



TWO WAYS OF FORMALIZING GRAMMARS 223 

also meets the additional constraint that it "corresponds" to the utterance 

in an appropriate way (e.g., the structure's yield (terminal string) is the 

string of words of that utterance). Thus grammaticality or well-formedness 

of an utterance corresponds to the satisfiability of a set of constraints, and 

ungrammaticality or ill-formedness corresponds to the unsatisfiability of 

that set. 

In formalizing the recognition and parsing problems in this approach, 

linguistic representations can be regarded as interpretations, and the con 

straints as expressions or formulae (from some language of constraints) 
which these interpretations must satisfy in order to be considered well 

formed linguistic representations. That is, a well-formed linguistic repre 
sentation is a model of these formulae (rather than an individual in a 

model as in the DCG approach), and the set of all models of the gramma 
tical constraints is the set of all well-formed linguistic representations. 

Thus unlike the DCG approach, in general there is no single intended 

model of a set of feature structure constraints. 

Most of the work in this field has focussed on the development of 

specialized languages for expressing systems of constraints to be used 

as annotations on phrase-structures rules (e.g., the Feature Description 

Language of Kasper and Rounds (1990) and the attribute-value languages 
of Johnson (1988)). It seems that the language of first-order logic (in fact, 

usually decidable sublanguages thereof) is capable of expressing these 

kinds of constraints (Johnson 1990a, b, 1991a, b, Smolka 1992). Manaster 

Ramer and Rounds (1987) and Carpenter (1992) propose extended ver 

sions of these systems that are expressive enough to be linguistically useful 

alone (i.e., without other descriptive devices such as a phrase-structure 

'backbone'). This paper explores the degree to which such an extended 

feature system can be expressed in a first-order language.3 This also aids 

comparison with the DCG approach, which is formulated in the same 

language. 
The recognition problem is the problem of determining the simultaneous 

satisfiability of both grammar and utterance constraints. That is, if F is a 

formula expressing the grammatical constraints that every well-formed 

linguistic structure must satisfy (i.e. that is true in exactly the well-formed 

structures) and yield(u) is a formula that is true in an interpretation (i.e., 
a linguistic structure) iff that interpretation corresponds to utterance u 

3 An interesting alternative not discussed in this paper is to extend a standard first-order 

language by adding 'feature-structure expressions' to that language. It seems that the most 

insightful semantics for such an extended language is based on abduction; see Hohfield and 

Smolka (1988) and Chen and Warren (1989) for details. 



224 MARK JOHNSON 

(say, has u as its phonological form), then utterance u is well-formed iff 

there exists a model . such that the following is true. 

~ F A yield(u). 

The parsing problem is the problem of describing or characterizing the 

set of models of the conjoined constraints. Since this set may be infinite, 
it is not in general possible to exhaustively enumerate these models. There 

are two standard techniques for describing the models of the constraints, 
both exploiting the observation that infinite sets can have finite descrip 
tions (e.g. the infinite set of integers greater than 7 has the finite descrip 
tion "{x I x > 7}"). These two techniques are discussed in detail in sections 

2.8 and 2.10 of Johnson (1988). 
The first technique exploits the observation that in cases where the 

possible constraints are restricted, it may be possible to show that the set 

of models possesses a certain structure, so that an infinite set of models 

can be finitely described, i.e., specified or identified with finite means. 

Usually, attention is restricted to a certain type of interpretation, e.g. 

acyclic deterministic finite automata (DFA) in Kasper and Rounds (1990), 
and attribute-value structures (AVS) in Johnson (1988). Kasper and 

Rounds (1990) showed that the set of DFA satisfying any constraint 

expressible in their Feature Description Logic is a finite union of principal 
filters (generated by the "minimal models" with respect to the "subsump 
tion" ordering), and Johnson (1988) showed that the set of AVSs satisfying 

any constraint expressible in an attribute-value language is a finite union 

of finite differences of finitely-generated principal filters;4 in both cases 

there are effective procedures for constructing these generators, which 

constitute a finite description of a (possibly infinite) set of models. 

The second technique is a variation of the first one; it is based on the 

observation that every formula identifies a set of interpretations, namely 
those that satisfy it. Thus the formula F A yield(u) is a description of the 

set of its models (although perhaps not a very useful one). For some 

constraint languages (including those of Kasper and Rounds (1990) and 

Johnson (1988)) there exist algorithms that reduce an arbitrary formula 

to an equivalent formula in a "normal form", from which one can "read 

off' the important properties of the models (see sections 2.8 and 2.10 of 

Johnson (1988) for further discussion). 

Independently of the existence of normal forms, however, if it can be 

shown that if 

4 Because attribute-value languages can express negated constraints, Johnson (1988) requires 
"negative" minimal models (i.e. "inequality arcs") as well as "positive" minimal models. 



TWO WAYS OF FORMALIZING GRAMMARS 225 

F A yield(u) 1 A 

for some formula A, then A is true of every linguistic representation that 

satisfies the grammar constraints and corresponds to the utterance u, i.e. 

A is a description of the well-formed structures of u. Thus information 

about an utterance can be extracted by computing the logical consequences 

of the (grammar and utterance) constraints.5 

For example, if the utterance u is ungrammatical, then 

F A yield(u) 1 false 

because there are no models of these constraints. 

2. FORMALIZING CONTEXT-FREE GRAMMARS 

Both approaches are capable of expressing grammars considerably more 

complicated than the context-free grammars described in this section, but 

it is instructive to consider these simpler systems. This paper follows 

standard linguistic practice in assuming that the right hand side of each 

production in the grammars being formalized is either a (possibly empty) 
sequence of non-terminals or else a single terminal. This assumption sim 

plifies the formalization somewhat without restricting the class of lan 

guages that can be expressed. 

First, formalizations of the recognition problem for following simple 
context-free grammar (based on the simple grammar of Shieber 1986) are 

presented. 

Then the axioms are modified so that a representation of the parse tree 

is produced as well. Finally, the axioms are further modified to include 

agreement features, so that ungrammatical utterances such as *Knights 

sleeps are not generated. 

S -* NP VP 

VP-*V NP 

NP uther () 
NP-, knights 
VP -> sleeps 
V-- like 

5 
Not all the consequences A are informative, of course, since the set of consequences 

includes e.g. all tautologies. Correspondingly, not all of the logical consequences of the 

DCG axioms are of interest either. 



226 MARK JOHNSON 

Both of the formalizations presented exploit the following observation 

about context-free parse trees.6 

The precedence relationships between the nodes of a parse tree can be 

described by associating each node with two positions in the terminal 

string, called its left and right string positions. These identify the extent 

of the substring that this node dominates (see e.g., Pereira and Shieber 

1987 for a more detailed discussion). 
The necessary precedence relationships can be established by requiring 

that for each node X and its children nodes Xo... X,, the left string 

position of X is the same as the left string position of Xo, the right string 

position of Xi is the left string position of Xi+1, 0 < i < n, and the right 

string position of X, is the right string position of its parent X. Figure 1 

sketches this relationship. 

String positions are diacritics, in the sense that their precise identity is 

immaterial; all that matters is that the string positions are pairwise distinct. 

There are n + 1 string positions associated with a string of length n; it is 

convenient to use the suffixes of the string being analysed as these string 
positions. The striposiositions in Figure 1 show the substrings used to 

represent each of these string positions. 

S 

NP / \VP 

Knights like Uther 

t t t 
NP's left string position NP's right string position VP's right string position 
S's left string position VP's left string position S's right string position 

[knights, like, uther] [like, uther] 0 

Fig. 1. The relationship between string positions associasted with parent and children nodes. 

6 
The same observation also underlies tabular or chart parsing algorithms, and Chomsky's 

original formalization of context-free grammars in terms of phrase-markers. 



TWO WAYS OF FORMALIZING GRAMMARS 227 

2.1. Definite-Clause Grammar 

In this approach, a context-free grammar is formalized as axioms that 

imply the existence of nodes in a 'bottom-up' fashion:7 for each production 
X - X... Xn there is an axiom requiring that if there is a sequence of 

adjacent nodes X1,.. ., Xn then there is also a node X (with the appropri 
ate precedence relations). 

2.1.1. DCG Formulation of the Recognition Problem 

The recognition problem is formalized as follows in this approach. For 

each non-terminal symbol X a two-place relation symbol x is introduced, 
and for each terminal symbol w a constant symbol w is introduced. 

Informally, the arguments of the relations x range over string positions, 
which are represented by sequences of terminal symbols. The relation 

x(s1, s2) is true if s2 is a suffix of sl, and the 'difference' between sl and 

S2 (i.e., the sequence s such that s1 is the result of concatenating s and s2) 
is a string of terminals derived by X. 

Each production is translated to a separate Horn clause; a production 

expanding to non-terminals 

X. -x o X. . Xn 

translates to the clause 

Vo... . . x(uo, Un) -xo(uo, Ul) A xl(u, U2) 

A .* * A Xn(Un-1, Un) (2) 

where the variables uo... u, are intended to range over string positions. 
Each production expanding to a terminal item 

X--w 

translates to 

Vux([w u], u). (3) 

where again, the variable u is intended to range over string positions. 
Lists or sequences in the DCG approach are formalized as follows. The 

constant 0 is interpreted as the empty list and the binary function symbol 

[I *] is interpreted as the list constructor, where [f Ir] is interpreted as the 

7 
"Bottom-up" here refers to direction of the implication arrow (from children to parents). 

Backward-chaining proof procedures, such as Prolog's SLD proof procedure (Lloyd 1984) 

using these axioms will traverse the nodes in the parse tree in a top-down fashion. 



228 MARK JOHNSON 

list whose first element is f and whose suffix is the list r. Further, 

[xo,... ,Xn] is an abbreviation for [xo[... [xnl0 ]]], the list containing 
x ... Xn. For example, three-element list containing a, b and c in that 

order is written [a, b, c], which is an abbreviation for [a [b [cl ]]]]. 
The recognition problem for sample grammar is formalized in this ap 

proach as follows. 

Vx y z s(x, z) <- np(x, y) A vp(y, z) 
Vx y z vp(x, z) 

- 
v(x, y) A np(y, z) 

Vx np([utherlx], x) 
Do 

=Vx np([knightslx], x) 
Vx vp([sleeps Ix], x) 

x vp([like x], x) 

From these axioms we can draw conclusions such as 

Do t s([uther, sleeps], 0) 

which is interpreted as that Uther sleeps is a well-formed expression of 

category S. 

2.1.2. DCG formulation of the Parsing Problem 

The parsing problem can be formalized by translating each non-terminal 

category into a three-place relation symbol, where the additional argument 
(here, the first argument) is the parse tree associated with each constituent. 

That tree is encoded as a term where the name of the principal functor is 

the label of the root node, and its arguments are the tree's immediate 

subtrees. 

Thus each production in the grammar expanding to non-terminals 

X xo X1 . .. Xk 

is translated to 

Vuo ... UkVO . . Vk X(x(V, ...,Vk), U, Uk, u) <-o(, UO, U1) A ... A Xk(Vk, Uk1_, Uk) 

(4) 

and each production expanding to a terminal item 

X 

is translated to 

Vu x(x(w), [w I u], u). (5) 



TWO WAYS OF FORMALIZING GRAMMARS 229 

Thus the parsing problem for the sample grammar is formalized as 

follows. 

Vx y z u v s(s(u, v), x, z) <- 
np(u, x, y) A vp(v, y, z) 

Vx y zuvvp(vp(u,v),x,z)<--v(u,x,y) A np(v,y,z) 

Vx np(np(uther), [utherix], x) 
' Vx np(np(knights), [knights x], x) (6) 

Vx vp(vp(sleeps), [sleeps Ix], x) 
Vx v(v(like), [like I x], x) 

From these axioms we can deduce the following theorem, 

D1i s(s(np(uther), vp(sleeps)), [uther, sleeps], 0), 

which demonstrates that Uther sleeps is a well-formed expression of cate 

gory S with the parse tree represented by the term 

s(np(uther), vp(sleeps)). 

The binary relation wf, which holds of an utterance and one of its well 

formed linguistic structures or analyses, can now be defined as follows. 

Vu awf(u,s) 
-- 

s(a, u, ). 

2.1.3. Syntactic features in the DCG approach 

The standard way to incorporate syntactic features to a Definite Clause 

Grammar is by adding "extra arguments" to the predicates that define 

the string positions spanned by syntactic categories. The values of the 

additional arguments encode particular syntactic features. 

This sort of encoding of syntactic features is sometimes called a posi 
tion-value encoding, since each syntactic feature is associated with a speci 
fic argument position in each predicate.8 

In the example below an argument has been inserted in initial position 
in the np, vp and v predicates to represent number agreement features. 

The constant sg indicates singular number agreement, and pi indicates 

plural number agreement. The universally quantified variables a and b 

range over these agreement values, and a is used in the first two clauses 

of D2 to specify a feature-passing requirement enforcing subject-verb 

agreement. 

8 
More complex encodings of syntactic features are possible, e.g. by using compound terms 

to represented heirarchically structured features. 



230 MARK JOHNSON 

Vx y z u a s(s(u, v), x, z) <- np(a, u, x, y) Avp(a, v, y, z) 
Vx y z u a b vp(a, vp(u, v), x, z) <- v(a, u, x, y) A np(b, v, y, z) 

Vx np(sg, np(uther), [utherix]) 
D2 

V= x np(pl, np(knights), [knights x], x) 
Vx vp(sg, vp(sleeps), [sleeps x], x) 
Vx v(pl, vp(like), [like Ix], x) 

(8) 

With this modification, it is now the case that 

D2 3s wf([knights, sleeps], s) 

corresponding to the fact that the verb sleeps disagrees in number with 

the noun phrase knights. 

2.2. Feature Structure Grammar 

In the feature-structure approach, a well-formed linguistic structure is 

conceptualized as a model that satisfies the constraints imposed by the 

grammar. Informally, the constraints corresponding to a context-free 

grammar require the existence of nodes in a 'top-down' fashion. First, the 

existence of a root node of appropriate category is required (say, by 

introducing a constant symbol to name it). Then a constraint is imposed 
which requires the existence of the other nodes needed to form a well 

formed linguistic structure as determined by the grammar. More specifi 

cally, this constraint takes the form of a universally-quantified disjunction, 
which requires that if n is a node of category X then either: 

* n is a non-terminal node that dominates nodes no... nk of 

categories Xo .. Xk, the grammar contains a production 
X -> X ... Xk and the string positions of n and no... nk are 

appropriately related, or 
* n is a terminal node whose string position spans the terminal 

item w, and the grammar contains a production X - w. 

Two other constraints must also be imposed if we want the interpretations 
that satisfy these constraints to correspond to context-free grammar 

parses. These are: 

* no node dominates itself, and 
* there are only finitely many nodes. 

If we permit a node to dominate itself in a linguistic structure, then we 



TWO WAYS OF FORMALIZING GRAMMARS 231 

may incorrectly classify structures with cyclic dominance relations as well 

formed, even though such structures cannot correspond to context-free 

grammar parse trees. For example, suppose the grammar contains only 
the single production S -> S, where S is the category of the root node. 

This grammar generates the empty language, and so should have no well 

formed linguistic structures. But an interpretation containing one node 

(which must be the root node) labelled S which directly dominates itself 

satisfies the grammar constraints described above, regardless of the string 

positions (and hence the terminal string) associated with that node. 

Similarly, if we permit infinitely many nodes in a linguistic structure, 
we may incorrectly classify such structures as well-formed. Consider the 

same grammar as before. Construct an interpretation that contains an 

infinite set of nodes no, nl,... all labelled S, where no is the root node 

and each n, immediately dominates ni+l. All of the nodes are associated 

with the same left and right string positions and so span the same terminal 

string. Even at this informal level, it is easy to see that each node ni 
in this interpretation satisfies the constraints imposed by the grammar, 

regardless of the terminal string they actually span. 
The constraint requiring the irreflexivity of the dominance relation is 

easy to state in first-order logic, and will be provided below. Unfortu 

nately, the constraint requiring that the number of nodes is finite cannot 

be stated in first-order logic. However, a stronger version of this con 

straint, called the Off-line Parsability Constraint (Kaplan and Bresnan 

1982, Pereira and Warren 1983), can be formalized in first-order logic, 
and is presented below. The Off-line Parsability Constraint is in fact 

sufficient to ensure the decidability of the recognition problem for feature 

structure grammars with syntactic features encoded by equality con 

straints, as shown in the appendix. 
We now proceed to show in detail how constraints corresponding to a 

context-free grammar can be expressed using first-order formulae. The 

formalization presented in this section may look unfamiliar because it is 

expressed in the language of first-order logic rather than one of the special 
ized feature structure languages usually used, but in fact it is closely 
related to standard treatments, such as the one provided by Manaster 

Ramer and Rounds (1987). 

2.2.1. FS formulation of the Recognition Problem 

The recognition problem in this approach is formalized as a union of five 

sets of formulae that must be simultaneously satisfied by any interpretation 



232 MARK JOHNSON 

that possesses the structure of a well-formed linguistic representation.9 
The first two sets of formulae Fg and Fc encode the grammar. The third 

set of formulae Fd defines predicates such as dominates and directly 
dominates. The fourth set Foip specifies the Off-line Parsability Constraint, 
and the fifth set Fu specifies the constraints imposed by the utterance. 

In the intended interpretations node(n) is true of a node n in a syntactic 
tree, cat(n) is n's syntactic category and left(n) and right(n) are its left 

and right string positions respectively. 
The first set of formulae Fg, which encodes the grammar, consists of 

a single formulae. This formula expresses the grammatical constraints 

described informally at the start of this section. It has the form of a 

universally quantified implication, where A is specified below. 

Fg= {Vn node(n)- A} 

In Fg, A is a disjunction whose disjuncts correspond to the productions of 

the grammar in the following way. 
For each production in the grammar expanding to non-terminals 

X Xo- . .Xk 

the disjunction A contains a disjunct of the form 

3no... nk(node(no) A ... A node(nk) 
A cat(n) = x A cat(no) = Xo A .. A cat(nk) = Xk 
A directly-dominates(n, no,... , nk)) 

and for each production expanding to a terminal 

X->w 

the disjunction A contains a disjunct of the form 

cat(n) = x A preterminal(n, w). 

In these formulae attributes are formalized as unary functions:10 e.g. 

cat(n) = x requires that n's category is x. The relations directly-domin 
ates and preterminal will be defined below; informally directly-domin 
ates (n, no,..., nk) requires that node n directly dominates the sequence 

9 These models may also possess 'junk', e.g. structure disconnected from the linguistic 
representation we are interested in. Since the constraints ensure that the submodel corre 

sponding to the linguistic structure is itself well-formed, the additional structure is of no 
concern. 

10 Partial functions are used to model attributes in Johnson (1990a,b). The use of total 
rather than partial functions here is discussed below. 



TWO WAYS OF FORMALIZING GRAMMARS 233 

of nodes no ... nk, and preterminal(n, w) requires that the string of termi 

nals dominated by node n is the unit string w. 

The set Fg associated with the sample grammar is shown as Fg0 below. 

If an interpretation satisfies this formula, then every node must be of 

category s, np or vp, and if the node is not a preterminal node then there 

must exist other nodes of appropriate categories that it directly dominates. 

Vn node(n) - ((3non, node(n1) A node(n2) 
A cat(n) s 

A cat(n) = np A cat(n) = vp 
A directly-dominates(n, no, nj)) 

v (3nonl node(nl) A node(n2) 

pF.~ =~ 
~A cat(n) 

= 
vp 

go 
;A cat(no) 

= 
v A cat(n) 

= 
np 

A directly-dominates(n, no, no)) 
v (cat(n) = np A preterminal(n, uther)) 
v (cat(n) = np A preterminal(n, knights)) 
v (cat(n)= vp A preterminal(n, sleeps)) 
v (cat(n)= v A preterminal(n, like))) 

It is interesting to note that the implication sign in the single formula 

of Fg points in the opposite direction to the implication signs in the 

corresponding DCG axiomatization Do. Informally, this is because in the 

DCG approach the well-formedness of the utterance is shown by proving 
that it is a consequence of the grammar axioms, whereas in the FS ap 

proach the well-formedness is shown by ensuring that the constraints 

derived from the utterance are not inconsistent with the grammar con 

straints. 

The second set of formulae Fc defines the one-place predicates category 
and terminal (which will be used in the Off-line Parsability Constraint) 
and introduces inequalities that require that distinct constants naming 

categories and lexical items denote distinct individuals (Johnson 1990a, b, 

1991a, b; Smolka 1992). In many treatments these inequalities are 'built 

in', i.e. specified implicitly in the interpretation procedure, but for ex 

plicitness here they are listed here. 

The one-place predicates category and terminal are defined as follows. 

If the non-terminal categories of the grammar are X1,..., Xm, then Fc 

contains the following formula. 

Vx(category(x) <- 
\v 

x = ). (9) 
V 0~~~~~<k--m / 



234 MARK JOHNSON 

Similarly, if the terminal items introduced by the grammar are w,., . ,, 
then FC contains the following formula. 

Vw(terminal(w)- Z 
y 

w= wk). (10) 

In addition, Fc also contains inequalities that require that certain distinct 

constant symbols denote distinct individuals. For all pairs wi, wj of distinct 

terminal items in the grammar Fc contains an inequality of the form 

Wi + Wj 

(where for the purposes of this schema, the empty list nil is considered a 

terminal item). 

Finally, for all pairs xi, xj of non-terminal categories in the grammar, 

F, contains an inequality of the form 

Xi Xj. 

These inequalities require that the syntactic categories are (pairwise) 
distinct and that the lexical items and nil are also (pairwise) distinct. 

For the example grammar the following formulae appear in F,. 

Vx category(x) (x = s v x = np v x = np) 

Vx terminal(x) 
- 

(x = knights v x = uther v 

x = like v x = sleeps) 
uther = 

knights uther + sleeps 
uther + like uther + nil 

co 
~knights = sleeps knights 

+ like 

knights + nil sleeps + like 

sleeps # nil like + nil 

s np s vp 

np * vp sg + pi 

Now we turn to the third set of formulae Fd, which includes the definitions 

of the predicates directly-dominates and preterminal, as well as formu 

lae that stipulate properties of the functions first and rest that are used to 

construct lists in the manner described in Shieber (1986). The utterance's 

sequence of terminal items is represented as such a list, and the functions 

left and right map nodes into sublists of this list. 

The two-place relation preterminal requires that its first argument is a 

node whose string position spans exactly the terminal item given as the 

second argument. It is defined as follows (this definition should be com 



TWO WAYS OF FORMALIZING GRAMMARS 235 

pared with the DCG axiom schema given in (3)). The first two conjuncts 
in the implication's antecedent in effect restrict the quantification to range 
over nodes and terminals. This suffices, since the only other place that 

the preterminal relation appears is in the single formula in Fg, and there 

the two arguments are required to be a node and a terminal respectively. 
The quantification restriction simplifies the proof of decidability of the 

recognition problem with the Off-line Parsability Constraint imposed. 

Vn w(node(n) A terminal(w) A preterminal(n, w)) 

-(first(left(n)) = w A 

rest(left(n)) = right(n)). (11) 

The relations directly-dominates (n, no,..., nk) require that the string 

positions of the parent node n stand in an appropriate structural relation 

ship to the string positions of its children nodes no. .., nk, and that n 

dominates its children. One such relation is defined for each different 

production length n of grammar rules. Just as in the previous formula, 
the first k + 1 conjuncts in the implication's antecedent effectively restrict 

the quantification to range over k + 1-tuples of nodes. 

Vn no... nk (node(n) A node(no) A ... A node(nk) A 

directly-dominates(n, no,..., n,)) 

(left(n) = left(no) A right(n)= right(nk) A 

right(no) 
= 

left(nl) A . * A right(nk_-)= left(nk) A 

dominates(n, no) A ... A dominates(n, nk)). (12) 

The next two constraints require that the dominates relation is transi 

tively closed and irreflexive, thus requiring that the directly-dominates 
relation is acyclic. 

Vn n n2n3(noden node(nl) A node(n2) nde ) A 

dominates(ni, n2) A dominates(n2, n3)) 
- 

dominates(n1, n3). (13) 

Vn(node(n) 
- 

-idominates(n, n)). (14) 

Finally, we turn to the constraints defining the properties of lists. A 

constraint stipulating that the empty list element nil contains no elements 

is required. The encoding of the parsing problem requires in addition a 

constraint that every node is also distinct from nil. (These constraints 

could be implicitly stated in a sorted logic, as discussed below). 
Since features are modeled by total functions here, first and rest are 

defined on all elements in the domain of the model, including nil. In 

general the value of first and rest on non-list elements is irrelevant, but 



236 MARK JOHNSON 

it is necessary to ensure that nil is distinct from any nonempty list element. 

The following formulae enforce these constraints for lists of nodes. 

first(nil) = nil. (15) 

rest(nil) = nil. (16) 

Vx node(x) -x * nil. (17) 

This completes the third set of constraints. The set of formulae (11) 

through (17) inclusive is called Fd. 
As mentioned above, it is necessary to impose a constraint that bounds 

the number of nodes in a model. Although a constraint satisfied in exactly 
the interpretations containing a finite number of nodes cannot be stated 

in first-order logic, the Off-line Parsability Constraint can be. The Off 

line Parsability Constraint requires that there is at most one node for any 
given triple of left string-position, right string-position and category 
label.11 The predicate string-position will be defined below; it is true of 

exactly the string-positions in the utterance being recognized. The appen 
dix shows that the satisfiability problem for feature-structure grammars as 

formalized here with the Off-line Parsability Constraint is decidable. 

Vn node(n) string-position(left(n)). 
Vn node(n) - string-position(right(n)). 
Vn node(n) - category(cat(n)). 

FoZp 
= Vnl n2 (node(nl) A node(n2) A 

left(n) = left(n2) A 

right(ni) = right(n2) A 

cat(ncat(n= at(n2)) 
-- n = n2. 

Finally, the utterance itself imposes constraints on the linguistic structure. 

The set of formulae Fu express these constraints. Specifically, F, contains 

the formulae 

node(root), (18) 

cat(root) = s (19) 

which require that there is a root node (denoted by the constant root) 
whose category is s. 

The string of terminals of the utterance is encoded as a set of equations. 

1 Shieber (1992) presents a generalization of the Off-line Parsability Constraint discussed 
here that does not require that every node is associated with an atomic category, but is still 
sufficient to ensure decidability. 



TWO WAYS OF FORMALIZING GRAMMARS 237 

For each terminal wi, if wi is the ith (terminal) item in the utterance to 

be recognized, F, contains an equation of the form 

first(rest"i-(left(root))) = wi. (20) 

In addition, F, contains the following equations, where n is the number 

of terminal items in the utterance to be recognized. The equations (20 

22) encode the string being analysed and require that the 'end' of the 

terminal sequence is terminated in the empty list. 

restn(left(root)) = nil, (21) 

right(root) = nil. (22) 

All that remains is to define the predicate string-position, which is true 

of exactly the string positions. 

Vp string-position(p) X l p = rest(left(root)). (23) 

The formulae (18-23) constitute the members of the set F,. 
For the sample utterance Uther sleeps, the following formulae comprise 

Fu. 

node(root) 

cat(root) = s 

first(left(root)) = uther 
= first(rest(left(root))) = sleeps 

rest(rest(left(root)))= nil 

right(root) = nil 

Vp string-position(p) 
- p = left(root) v 

p = rest(left(root)) v 

p = rest(rest(left(root))) 

The recognition problem is then equivalent to the problem of determin 

ing the satisfiability of 

F = {Fg U F U Fd U Folp U Fu}. 

Thus the well-formedness of the utterance Uther sleeps is expressed by 
the existence of a satisfying model A such that 

f l 
FgoU Fco U Fd U 

Folp 
U Fu. 

In general, if all of the constraints are satisfiable then there are infinitely 



238 MARK JOHNSON 

many models that satisfy these constraints. This is usually the case in 

feature-structure systems.12 

2.2.2. FS Formulation of the Parsing Problem 

The parsing problem can be formalized by means of an additional attribute 

children that encodes the immediate dominance relationships between 

nodes.13 To encode the parse tree as part of the feature structure a new 

function where for every node n, children(n) is a list of n's immediate 

descendants. 

This can be done by including the appropriate instances of the following 
schema in Fd (we call the resulting set F). 

Vn w (node(n) A terminal(w) A preterminal(n, w)) 
- children(n) = nil. (24) 

Vn no..., nk (node(n) A (node(no) A * A node(nk) A 

directly-dominates(n, no,..., nk)) 

(first(children(n)) = no A ... A 

first(restk(children(n))) = nk A 

restk+l(children(n)) = nil) (25) 

Requiring the satisfaction of (24) and (25) does not change the set of 

utterances accepted, but it does require that every satisfying model include 

an encoding of the parse tree (as the value of the children function on 

the nodes). Since the set of all constraints require that every satisfying 
model include some parse tree of the utterance, if a formula is a (valid) 

consequence of all of the constraints then it is true of every parse tree of 

the utterance. This can be used to obtain information about the utterance's 

parse tree(s). Thus for example 

Fgo U Fc U F U Folp U Fu t cat(first(children(root))) = np 

since the category of the first child of the parse tree for the utterance 

Uther sleeps is NP. If the utterance were ambiguous - say if the category 
of the first child of the root is either an NP or an AP - then only a 

disjunctive consequent would follow from the union of constraints. Of 

course, since an utterance is well-formed iff the corresponding constraints 

are satisfiable, it makes no sense to investigate the consequences of an 

inconsistent set of constraints. 

12 
Carpenter (1992) proposes a sorted feature structure system which does not have this 

property. 
13 This attribute is called daughters in HPSG and some other grammars. 



TWO WAYS OF FORMALIZING GRAMMARS 239 

2.2.3. Syntactic Features in the FS Approach 

An important property of the feature structure approach is the ease with 

which syntactic features can be added to a grammar. A feature is treated 

as a function from nodes, and a feature constraint is an equality or in 

equality over these values. 

Subject-verb agreement in the sample grammar can be treated as fol 

lows. The agreement features are encoded using the function agreement 
and the constants sg and pi. This change is incorporated into the grammar 
as follows. First, we add the inequality 

sg + pi 

to the inequalities in the set Fc, reflecting the fact that the singular agree 
ment feature value (whatever we take it to be) must be distinct from the 

plural agreement feature value. Call the resulting set of formulae Fc. 
Then we add appropriate equations that constrain the agreement feature 

values associated with each of the nodes. 

Vn node(n)-- (3non1 node(n1) A node(n2) A 

cat(n) = s A 

cat(no) = np A cat(n1) = vp A 

agreement(no) 
= 

agreement(n1) A 

directly-dominates(n, no, n1)) v 

(3n0on node(nl) A node(n2) A 

cat(n) = vp A 

cat(no) = vp A cat(n1) = np A 

agreement(n) = agreement(no) A 

Fg1 = directly-dominates(n, no, nJ)) 
v 

(cat(n) = np A terminal(n, uther) A 

agreement(n) = sg) v 

(cat(n) = np A terminal(n, knights) A 

agreement(n) = pi) v 

(cat(n) = vp A terminal(n, sleeps) A 

agreement(n) = sg) v 

(cat(n) = v A terminal(n, like) A 

agreement(n) = pi) 

With this modification the grammar correctly excludes the ungrammati 
cal utterance *Knight sleeps; that is, 

Fg, U Fci U Fd U Folp U F, (26) 

is unsatisfiable, where 



240 MARK JOHNSON 

node(root) 
cat(root) = s 

first(left(root)) = knights 
first(rest(left(root))) = sleeps 
rest(rest(left(root))) = nil 

right(root) = nil 

3. DIFFERENCES BETWEEN THE APPROACHES 

The last section sketched how the recognition and parsing problems can 

be conceptualized as either validity problems (as in the DCG approach) 
or satisfiability problems (as in the FS approach). 

The methods express grammars in quite different ways. For example, 
consider the modifications that need to be made when an additional pro 
duction is added to the grammar. In the DCG approach, an additional 

axiom is added to the axiom set D, logically strengthening the system. On 

the other hand, in the FS approach another disjunct is added to A in Fg, 

resulting in a weaker system. 
We can also try to compare the approaches by comparing the compu 

tational complexity of the validity and the satisfiability problems for first 

order formulae. 

Since the class of valid first-order formulae is recursively enumerable but 

not recursive, the class of satisfiable first-order formulae is co-recursively 
enumerable, but not recursive or recursively enumerable. Thus it would 

seem that the two approaches should differ in their computational proper 
ties; in the general case the set of well-formed utterances should be 

recursively enumerable in the DCG approach, and the set of ill-formed 

utterances should be recursively enumerable in the FS approach. 
However, as noted above, in order to correctly encode the recognition 

and parsing problems the FS approach requires the additional constraint 

that the model be finite. If we restrict attention to finite models, the 

satisfiability problem for first-order formulae becomes recursively enumer 

able, but not recursive (Fagin 1990). Thus the computational complexity 
of the two approaches is the same. This is as expected; after all, both 

approaches are capable of formalizing grammars for recursively enumer 

able languages (see Manaster-Ramer and Rounds 1987 or Johnson 1988 

for examples of how to construct such grammars). 



TWO WAYS OF FORMALIZING GRAMMARS 241 

3.1. Equality and 'Data-structures' 

Both approaches use terms and equality to encode 'structured entities' 

such as strings, trees, etc. Because the DCG approach is validity-based, 
while the FS approach is satisfiability-based, different constructs must be 

used in each approach to represent similar data structures. 

Satisfiability (truth in at least one interpretation) and validity (truth in 

all interpretations) have very different properties. For example, g(a)= 

f(b) is satisfiable: a one-element interpretation in which a, b, g(a) and 

f(b) all (necessarily) have the same denotation makes this equation true. 

On the other hand this equation is not valid, since there are models in 

which g(a) and f(b) do not denote the same element. 

Informally, this difference can be described as follows: the equality tl = 

t2 is valid only if ti and t2 are identical terms, whereas ti = t2 is satisfiable 

(unless other constraints imply that the terms are not equal). 
In computing valid consequences, terms behave like data structures. 

Since t denotes the same individual as f(a, b) in all interpretations (i.e. 
t = f(a, b) is valid) iff t actually is the term f(a, b), the term f(a, b) 
functions as a compound entity from which a and b can be recovered. 

In computing satisfiability, (unary) terms behave like features. Since 

in the absence of equality axioms f(a, b) = f(c, d) is satisfiable in an 

interpretation in which a + c and b + d, the (value of the) term f(a, b) 
does not function as a compound entity from which a and b can be 

recovered. On the other hand the fact that functions are single-valued can 

be exploited to encode attributes or features of entities: thus in any model 

of f(a) = c A f(a) = d, it must be the case that c = d. 

Thus in a validity-based system a compound data-structure with two 

elements a and b can be represented by a term f(a, b), where f can be 

regarded as the name of the 'record type'. In a satisfiability-based system 
the same compound data-structure with two elements a and b can be 

represented by the conjunction 

first(x) = a A second(x) 
= b A arity(x) = 2. 

Even constant symbols behave differently in satisfiability and validity 
based approaches. The equation a = b is not a valid formula, but it is a 

satisfiable formula. The effect of this is that the satisfiability-based ap 

proach in general requires inequality axioms that require that distinct 

constant symbols denote distinct entities; something that the validity-based 

approach does not require. 
The representation of lists in the two systems reflects this difference. In 

a validity-based approach nonempty lists are usually represented using a 



242 MARK JOHNSON 

two-argument function [1 | ], where [e l] is interpreted as a list whose first 

element is e and whose rest is 1. In a satisfiability-based approach the same 

list could be represented by the conjunction first(x) = e A rest(x) = 1. 

One difficulty that arises in the particular satisfiability-based formulation 

here is that first and rest are interpreted as total functions (like all function 

symbols in a standard first-order interpretation), so they are defined on 

all elements, including the empty list element nil. 

This is only a minor technical difficulty, and techniques for dealing with 

it are well-known in the literature. One way of doing this is to interpret 
function symbols as denoting partial functions, which can be modeled in 

first-order logic by introducing a new "equality relation" and a new ele 

ment that serves as the "undefined value" as in Johnson (1988, 1990); 
another way is to formulate the attributes as relations as in Johnson 

(1991a,b). The conceptually neatest solution is probably to adopt a sorted 

logic, where the functions first and rest are only defined on the sort 

proper-list, to which nil does not belong. Such systems have been pro 

posed in a similar setting by Hohfeld and Smolka (1988) and Carpenter 

(1992), and in a more linguistic setting by Pollard and Sag (1987). 
In this paper a less-principled but simpler technique is used: the axioms 

first(nilnil=il and rest(nil) = nil ensure that the empty list "contains" 

nothing other than the empty list. 

Note that in many ways the satisfiability-based system is more flexible 

than the validity-based system. 
First, the validity-based approach represents basic data-structures with 

a fixed arity, and an element of the data structure is identified by the 

position it occurs in (a position-value encoding). The satisfiability-based 

approach represents data-structures of indeterminate arity, and an element 

is identified by the name of the function whose value it is of the compound 

entity (an attribute-value encoding). It is often easier to "add additional 

components" to the satisfiability-based representation of such data struc 

tures, since this can be done without having to change the arity of all 

occurrences of the term representing the data-structure, as has to be done 

in the validity-based approach. 
Second, self-referential or cyclic structures cannot be directly repre 

sented in the validity based approach. For example, there is no term t 

such that f(t) 
= t is valid, i.e., f(t) and t denote the same individual in all 

interpretations. 
But such structures can be directly represented in the satisfiability-based 

approach: the equation first(x) = x is satisfiable. 

Third, the data structures in the validity-based approach are terms 

(hence finite by definition), and so can only represent elements from 



TWO WAYS OF FORMALIZING GRAMMARS 243 

countable sets of data structures. No such restriction holds for the satisfia 

bility-based approach, and imposing a finiteness requirement on models 

changes the computational properties of the system, as noted above. 

3.2. Reification and Ambiguity 

In the DCG approach all of the infinitely many linguistic structures are 

simultaneously represented in the minimal Herbrand model of the DCG 

axioms, whereas in the FS approach a model corresponds to a single 

linguistic structure. That is, in the DCG approach the linguistic structures 

are reified, i.e. considered as individuals, (infinitely) many of which are 

simultaneously present in the universe of discourse, while in the FS ap 

proach only the component "nodes" of one linguistic structure are always 
individuals in the domain. 

This difference is reflected in the treatment of ambiguous utterances. In 

the DCG approach if an utterance u is ambiguous with respect to a 

grammar with a DCG axiomatization D and tx and t2 are the terms 

representing two of its different parse trees, then 

D t wf(u, tl) A f(u, t2). 

Informally, since both structures are "present" in the minimal Herbrand 

model of D, ambiguity is reflected by a conjunction of consequences, each 

corresponding to the different analyses. That is, we can infer that both t, 
and t2 are structures for s. 

On the other hand, in the FS approach, if F is a set of (satisfiable) 
feature-structure constraints corresponding to an ambiguous utterance and 

grammar, and A1 and A2 are formulae describing two different parse trees 

that satisfy these constraints, then in general 

FVA1 AA2 

but only the weaker 

FIA1 vA2 

holds. 

This is because a model for F represents a single well-formed structure, 
and an ambiguous utterance will be one where there are two essentially 
different models for F, say Jt1 and A2, where Atl 1 A1 and At2 t A2. Thus 

in the feature-structure approach, ambiguity is reflected as a disjunction 
of consequences. 

The 'disjunctive' treatment of ambiguity that follows in the FS approach 
is in some ways more natural, since an ambiguous utterance (with perhaps 



244 MARK JOHNSON 

the exception of jokes involving ambiguity, etc.) probably has only one 

interpretation, even though it is not clear from the words in the utterance 

which interpretation that is. 

In defense of the 'conjunctive' treatment of ambiguity, one might argue 
that a grammar only serves to relate the words of utterances with their 

possible parse trees, so that ambiguous utterances actually have two parse 
trees, even if only one interpretation. 

In fact, in some applications it may be necessary to reify linguistic 
structures, as the DCG approach does. For example, Chomsky's (1988) 
new 'economy' theory requires that a well-formed linguistic structure 

(here, a quadruple consisting of a D-structure, an S-structure, and LF and 

PF representations) be produced by as few 'transformational operations' 
as possible. The economy requirement of such a theory might be formaliz 

able as a quantification over linguistic structures; the well-formed struc 

tures being the ones involving no more transformational operations than 

any other structure with the same D-structure. 

4. CONCLUSION 

Given that both use the language of first-order logic, it is perhaps surpris 

ing how different the two formalizations of the same context-free grammar 
are. The difference arises from the fact that the DCG formalization for 

malizes the difference between grammatical and ungrammatical utterances 

as the difference between valid and invalid formulae, whereas the feature 

structure formalization formalizes the difference between grammatical and 

ungrammatical utterances as the difference between satisfiable and unsatis 

fiable formulae. 

There are a number of interesting questions about the relationship 
between the DCG and the FS formalizations remaining to be answered. 

For example, it would be interesting to know to what extent these two 

approaches can be unified. That is, can we devise an axiomatization A 

where the formula corresponding to the parsing problem (say wf(u, s), as 

in the DCG approach) is satisfiable iff it is valid? This is equivalent to 

saying that for all u and s, either A t wf(u, s) or A t ~-wf(u, s), i.e., wf 

represents the parse relation in the theory defined by A. Stabler (1992) 
answers this question affirmitively for CFGs, but also points out that the 

theory of CFGs is essentially incomplete (because it includes the theory of 

strings, and there is no complete axiomatization of the theory of strings). 
It may also be profitable to see if the relationship between the DCG 

and the FS approaches is similar to other familiar relationships between 

theories. For example, it seems that the feature structure formalization 



TWO WAYS OF FORMALIZING GRAMMARS 245 

is closely related to completion (Clark 1978, Lloyd 1984) of the DCG 

axioms. 

Finally, it might be possible to generalize the validity-based and satis 

fiability-based approaches away from the first-order languages used in this 

paper. Ideally, such a treatment would encompass a wider class of methods 

for formalizing grammars, including those based on fixed-point construc 

tions, such as Rounds' (1988) LFP systems. 

BIBLIOGRAPHY 

Carpenter, R.: 1992, The Logic of Typed Feature Structures, Cambridge Tracts in Theoretical 

Computer Science 32, Cambridge University Press, Cambridge, England. 
Chen, W. and D. S. Warren: 1989, Abductive Logic Programming, m.s., Department of 

Computer Science, State University of New York at Stony Brook. 

Chomsky, N.: 1988, Some Notes on Economy of Derivation and Representation, m.s., Depart 
ment of Linguistics and Philosophy, Massachusetts Institute of Technology. 

Clark, K. L.: 1978, 'Negation as Failure', in H. Gallaire and J. Minker (eds.), Logic and 

Databases, Plenum Press, New York. 

Colmerauer, A.: 1978, 'Metamorphosis Grammars', in Leonard Bloc (ed.), Natural Lan 

guage Communication with Computers, Springer-Verlag, Berlin, Germany. 

Fagin, R.: 1990, 'Finite-Model Theory - a Personal Perspective', in S. Abiteboul and P. C. 

Kannellakis (eds.), ICDT '90: 3rd International Conference on Database Theory, Springer 

Verlag, New York. 

Gallier, J.: 1986, Logic for Computer Science, Harper and Row, New York. 

H6hfeld, M. and G. Smolka: 1988, Definite Relations over Constraint Languages, LILOG 

Report 53, IBM Deutschland, Stuttgart. 
Johnson, M.: 1988, Attribute Value Logic and the Theory of Grammar, CSLI Lecture Notes 

Series, University of Chicago Press. 

Johnson, M.: 1990a, 'Expressing Disjunctive and Negative Feature Constraints in Classical 

First-Order Logic', Proceedings of the 28th Annual Meeting of the Association for Compu 
tational Linguistics, Pittsburgh, Pennsylvania. 

Johnson, M.: 1990b, 'Features, Frames and Quantifier-Free Formulae', in P. Saint-Dizier 
and S. Szpakowicz (eds.), Logic and Logic Grammars for Language Processing, Ellis 

Horwood, New York. 

Johnson, M.: 1991a, 'Features and Formulae', Computational Linguistics 17(1), 131-152. 

Johnson, M.: 1991b, 'Logic and Feature Structures', Proceedings of IJCAI-91, Sydney, 
Australia. 

Johnson, M.: to appear, 'Computing with Features as Formulae', Computational Linguistics. 

Kaplan, R. and J. Bresnan: 1982, 'Lexical-Functional Grammar: A Formal System for 

Grammatical Representation', in J. Bresnan (ed.), The Mental Representation of Gramma 

tical Relations, The MIT Press. 

Kasper, R. and W. Rounds: 1990, 'The Logic of Unification in Grammar', Linguistics and 

Philosophy 13(1), 35-58. 

Kay, M.: 1979, 'Functional Unification Grammar', Proceedings of the 5th Annual Meeting 

of the Berkeley Linguistics Association, Berkeley, California. 

Lloyd, J. W.: 1984, Foundations of Logic Programming, Springer-Verlag, Berlin. 

Manaster-Ramer, A. and W. Rounds: 1987, 'A Logical Version of Functional Grammar', 

Proceedings of the 25th Annual Meeting of the Association for Computational Linguistics, 
Stanford University, Palo Alto, California. 



246 MARK JOHNSON 

Nelson, G. and Oppen, D. C.: 1980, 'Fast Decision Procedures Based on Congruence 
Closure', J. ACM 27(2), 356-364. 

Pereira, F.: 1982, Logic for Natural Language Analysis, Ph.D. thesis, The University of 

Edinburgh. Reprinted as Technical Note 275, Artificial Intelligence Center, SRI Interna 

tional, Menlo Park, California. 

Pereira, F. and S. Shieber: 1984, 'The Semantics of Grammar Formalisms seen as Computer 

Languages', The Proceedings of COLINC 1984 Association for Computational Linguistics, 
Stanford University, Palo Alto, California. 

Pereira, F. and S. Shieber: 1987, Prolog for Natural Language Analysis, CSLI Lecture Notes 

Series, University of Chicago Press. 

Pereira, F. and D. H. D. Warren: 1983, 'Parsing as Deduction', Proceedings of the 21st 
Annual Meeting of the Association for Computational Linguistics, MIT, Cambridge, Massa 

chusetts. 

Pollard, C. and I. Sag: 1988, Head-Driven Phrase Structure Grammar, CSLI Lecture Notes 

Series, University of Chicago Press. 

Rounds, W. C.: 1988, 'LFP: A Logic for Linguistic Descriptions and an Analysis of its 

Complexity', Computational Linguistics 14(4), 1-10. 

Stabler, E.: 1992, The Logical Approach to Syntax: Foundations, Specifications and Im 

plementations of Theories of Government and Binding. The MIT Press, Cambridge, Massa 
chusetts. 

Shieber, S.: 1986, An Introduction to Unification-Based Theories of Grammar, CSLI Lecture 
Notes Series, University of Chicago Press. 

Shieber, S.: 1992, Constraint-Based Grammar Formalisms, The MIT Press, Cambridge, 
Massachusetts. 

Smolka, G.: 1992, 'Feature-Constraint Logics for Unification Grammars', Journal of Logic 
Programming 12(1&2), 51-88. 

APPENDIX 

This appendix shows that if there is an interpretation which satisfies all of 

the formulae in the sets of feature-structure constraints (including the Off 

line Parsability Constraint), then there is a finite model which satisfies 

these formulae. This implies the decidability of systems of such constraints. 

Intuitively, the proof is very similiar to the one given in Johnson (1988). 
First, we show that the Off-line Parsability Constraint implies that the 

number of individuals that satisfy the node predicate is finite. Then we 

show that because the domain of quantification is essentially restricted to 

the domains of the finite predicates node, terminal, category and string 

position, the satisfiability problem for the original feature-structure for 

mulae can be reduced to the satisfiability problem for formulae in the 

quantifier-free subset first-order logic. Since the latter problem is decidable 

(Nelson and Oppen 1980, Gallier 1986) the former is too. Moreover, 
models for the quantifier-free formulae are easily modified to provide 
finite models for the original feature-structure formulae. 

LEMMA 1. Let F = 
{Fg U Fc U Fd U Folp U Fu} be a feature-structure for 



TWO WAYS OF FORMALIZING GRAMMARS 247 

mulae set of the kind described above, and suppose A 1 F. Then [node]]s, 

Categoryy]], [terminal]t and [string-position]l are all finite sets. 

Because A ? F, any model M must satify the formulae (9), (10) and (23), 
so [category]lf, [terminal]r and Istring-position]] are all finite sets. 

Now, the fourth formula in Fotp requires that the value of at least one 

of the functions left, right or cat must differ on every pair of distinct 

nodes n1 and n2. But the first three formulae in Folp require that for any 

node n, these functions take their values over the finitely bounded sets 

just identified ([left(n)Ls and [right(n)]]u range over [string-positionlt, 
and [cat(n)], ranges over [category]]). Hence the [nodeb] is also a 

finite set. 1 

The next technical lemma establishes the satisfiability of a certain class 

of first-order sentences. 

LEMMA 2. Let t, be any formula of the form Vx1 ... xk(p1(X1) A ... 

A pk(Xk) 
-* 

P), where ;p is any quantifier-free formula. Suppose there is an 

interpretation A such that A ~ if and [p]ju is finite for each 0 < i 
- 

n. Then 

there is a finite model Xf such that Af t qi. Moreover, the satisfiability 

problem for the class of formulae of the form i, is decidable. 

We prove the lemma for the case k = 1, i.e., i = 
Vx(p(x) 

-> 
p). The proof 

extends straightforwardly to larger values of k. Suppose [p]l 
= 

{e1,. . . , en}. Then let cl,. . ., c, be constant symbols not appearing in i. 

The ci will be used as names for the n elements of I[pl.f 

Let Sp' be the result of replacing each atom of the form p(t) (where t is 

any term) in 'p with the conjunction of equalities (t = c1 v * * v t = c,). 

Let 

A'= A o'[cilx]. 
0<i<n 

Then i' is satisfied by an interpretation AJ' which agrees with A every 
where except possibly on the ci, where [cion, = ei for 0 < i 

- 
n. Moreover, 

since ?i' is a satisfiable quantifier-free formula, it has a finite model Mf 

(see section 10.6 of Gallier 1986). We use At to construct a finite model 

Af for if as follows. Let Af agree with Mf everywhere except possibly on 

p, where 

pDf= 
= 

{cly, . . . , ICn]?}. 

Clearly Mf t qp[ci/x] for each 0 < i < 
n, and hence Jtf s i. The finite model 

property immediately implies the decidability of the class T (a decision 



248 MARK JOHNSON 

procedure can be obtained by enumerating both the set of finite models 

and the set of inconsistent formulae). U 

The theorem follows by combining Lemmas 1 and 2. 

THEOREM 3. Let F be a satisfiable feature-structure formula set as speci 

fied above. Then F has a finite model. Moreover, the satisfiability problem 

for the class of such feature-structure formulae sets is decidable. 

By Lemma 1, in any satisfying model node, category, terminal and 

string-position all denote finite sets. Now consider the formula 4, ob 

tained by conjoining all of the formulae in F. Clearly 4 has the same 

models as F. Further, 4 can be transformed into a formula 4' that meets 

the conditions of Lemma 2 by moving all universal quantifiers outward, 

skolemizing the existential quantifiers, and performing minor rearrange 
ments of the propositional connectives. It is easy to check that the finite 

model for 4' exhibited by Lemma 2 is also a model of F. U 

Cognitive and Linguistic Sciences 

Box 1978 

Brown University 
Providence RI 02912 

U.S.A. 


