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TWO WAYS TO COMPACTNESS

IVANA DJOLOVIĆ

Abstract. In this paper we give two different ways of proving
the compactness of some linear operators between certain se-
quence spaces. One of them is based only on the theory of
matrix transformations and the other uses the Hausdorff mea-
sure of noncompactness.

1. Introduction

The theory of FK and BK spaces is of great importance in the charac-
terization of matrix transformations between certain sequence spaces, so we
will give some necessary definitions and notations which will be used in our
work.

An FK space is a complete linear metric sequence space with the property
that convergence implies coordinatewise convergence; a BK space is normed
FK space.

By φ, we denote the set of all finite sequences and by e and e(n)(n ∈ N0)

we denote the sequences such that ek = 1 for all k, and e
(n)
n = 1 and e

(n)
k = 0

for k 6= n. An FK space X ⊃ φ is said to have AK if every sequence
x = (xk)

∞
k=0 ∈ X has a unique representation x =

∑
∞
k=0 xke

(k).

Let ω be the set of all complex sequences and X and Y be sequence spaces
. By (X,Y ) we denote the set of all matrices that map X into Y . If we
denote by A = (ank)

∞
n,k=0 an infinite matrix with complex entries and by An

its n-th row, we write

Anx =
∞∑

k=0

ankxk and Ax = (Anx)n,

A ∈ (X,Y ) if and only if Anx converges for all x ∈ X and all n and A(x) ∈ Y

Xβ = {a ∈ ω |
∑

k

akxk converges for all x ∈ X}.
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For our investigation we also need the next important results.

Theorem 1.1. ([3, Theorem 1.17]) Any matrix map between FK spaces is

continuous.

Theorem 1.2. ([3, Theorem 1.23]) Let X and Y be FK spaces. Then,

(X,Y ) ⊂ B(X,Y ), that is each A ∈ (X,Y ) defines an element LA ∈
B(X,Y ) where LAx = Ax, x ∈ X.

(In this paper, we will write A instead of LA )
In our work we consider the compact operators in the class (X,Y ) and

denote the class of such operators by K(X,Y ); that is, we try to find neces-
sary and sufficient conditions for LA to be a compact operator. Hence, let
us recall that if X and Y are metric spaces and f : X → Y , we say that
f is a compact map if f(Q) is a relatively compact subset of Y for every
bounded subset Q of X (that is, for every bounded sequence (xn)n in X, the
sequence (f(xn))n has a convergent subsequence in Y ).

2. Matrix transformations and compactness

In this section we will consider matrix transformations between classical
sequence spaces and give necessary and sufficient conditions for A to be a
compact operator in the form of conditions for the entries of the infinite
matrix A. The whole investigation is based on results from [6]. For further
work, the next theorem will be very useful.

Theorem 2.1. ([6, Theorem 3]) Let A ∈ (X,Y ) and AT denote the transpose

of A. Then A ∈ K(X,Y ) if and only if AT ∈ K(Y β, Xβ).

We can conclude that if we find conditions for compactness of operators
from B(c0, `p) or B(`1, `p), 1 ≤ p < ∞, we will be able to find all the other
conditions. Hence, let us find the conditions.

We need following notations.
Let x[n] denote the element of X whose first n coordinates coincide with
those of x and whose remaining coordinates are zero;

A(n)x = A(x[n]) and A(n)x = (Ax)[n].

Theorem 2.2. ([6, Corollary]) Let A ∈ (X,Y ) and let Xβ have AK. Then

A ∈ K(X,Y ) if and only if

lim
n→∞

‖A − A(n)‖ = 0.

Corollary 2.3. We have A ∈ B(c0, `p) , 1 ≤ p < ∞ if and only if A ∈
K(c0, `p) , 1 ≤ p < ∞, that is if A is given by an infinite matrix A =
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(ank)
∞
n,k=0, then A ∈ K(c0, `p) , 1 ≤ p < ∞, if and only if

sup
K⊂F

(
∑

n

|
∑

k∈K

ank|
p)

1

p < ∞,

where F denotes the class of all finite sets of positive integers.

It remains to find the conditions for A ∈ (`1, `p) , 1 ≤ p < ∞ to be a

compact transformation. Since `
β
1 = `∞ and `∞ is not an AK space, we

cannot use Theorem 2.2. Hence, we need following result.

Theorem 2.4. ([6, Theorem 2]) Let A ∈ (X,Y ) and Y have AK. Then

A ∈ K(X,Y ) if and only if

lim
n→∞

‖A − A(n)‖ = 0.

Corollary 2.5. Let A be given by an infinite matrix A = (ank)
∞
n,k=0. Then

A ∈ K(`1, `p) , 1 ≤ p < ∞ if and only if

sup
K⊂F

(
∑

n

|
∑

k∈K

ank|
p)

1

p < ∞

and

lim
n→∞

sup
k

(
∞∑

j=n+1

|ajk|
p)1/p = 0.

Now, using the previous results,we can obtain all the other conditions.
For example, we are interested in transformations A in (c, `∞).

Corollary 2.6. We have A ∈ K(c, `∞) if and only if

lim
n→∞

sup
k

∞∑

j=n+1

|akj| = 0.

3. The Hausdorff measure of noncompactness and matrix

transformations

Now, applying the Hausdorff measure of noncompactness, we solve the
problem from the previous section. Let us recall some definitions and well-
known results.

Definition 3.1. Let (X, d) be a metric space and Q a bounded subset of
X. Then the Hausdorff measure of noncompactness of Q, denoted by χ(Q),
is defined by

χ(Q) = inf{ε > 0 | Q ⊂ ∪n
i=1K(xi, ri), xi ∈ X, ri < ε, i = 1, . . . , n, n ∈ N}.
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If Q,Q1 and Q2 are bounded subsets of the metric space (X, d), then

χ(Q) = 0 if and only if Q is a totally bounded set

χ(Q) = χ(Q),

Q1 ⊂ Q2 implies χ(Q1) ≤ χ(Q2),

χ(Q1 ∪ Q2) = max{χ(Q1), χ(Q2)},

χ(Q1 ∩ Q2) ≤ min{χ(Q1), χ(Q2)}.

If Q,Q1 andQ2 are bounded subsets of the normed space X, then

χ(Q1 + Q2) ≤ χ(Q1) + χ(Q2),

χ(Q + x) = χ(Q), x ∈ X,

χ(λQ) = |λ|χ(Q),∀λ ∈ C.

Let X and Y be Banach spaces, S = {x ∈ X | ‖x‖ = 1}, K = {x ∈ X |
‖x‖ ≤ 1} and A ∈ B(X,Y ). Then, the Hausdorff measure of noncompact-
ness of an operator A, denoted by ‖A‖χ, can be obtained by

‖A‖χ = χ(AK) = χ(AS).

Furthermore, A is a compact if and only if ‖A‖χ = 0. It holds that
‖A‖χ ≤ ‖A‖.

Theorem 3.2 (Goldenštein, Gohberg, Markus). ( [3, Theorem 2.23]) Let X

be a Banach space with Schauder basis {e1, e2, ...}, Q a bounded subset of X,

and Pn : X → X the projector onto the linear span of {e1, e2, ..., en}. Then

we have

1

a
lim sup

n→∞

(sup
x∈Q

‖(I − Pn)x‖) ≤ χ(Q) ≤ lim sup
n→∞

(sup
x∈Q

‖(I − Pn)x‖)

where a = lim supn→∞ ‖I − Pn‖.

Theorem 3.3. Let A ∈ B(c0, `p) , 1 ≤ p < ∞ be given by an infinite matrix

A = (ank)
∞
n,k=0. Then we have ‖A‖χ = 0.

Corollary 3.4. Let A ∈ B(c0, `p) , 1 ≤ p < ∞ be given by an infinite

matrix A = (ank)
∞
n,k=0. Then, A ∈ B(c0, `p) , 1 ≤ p < ∞ if and only if

A ∈ K(c0, `p) , 1 ≤ p < ∞.

Theorem 3.5. Let A ∈ B(`1, `p) , 1 ≤ p < ∞ be given by an infinite matrix

A = (ank)
∞
n,k=0. Then we have

‖A‖χ = lim
n→∞

sup
k
{

∞∑

j=n+1

|ajk|
p}

1

p .
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Corollary 3.6. Let A ∈ B(`1, `p) , 1 ≤ p < ∞ be given by an infinite matrix

A = (ank)
∞
n,k=0. Then, A is compact if and only if

lim
n→∞

sup
k
{

∞∑

j=n+1

|ajk|
p}

1

p = 0.

Applying the properties of the Hausdorff measure of noncompactness in
the investigation of matrix transformations in the class (c, `∞), we obtain
following result

0 ≤ ‖A‖χ ≤ lim sup
n→∞

∑

k

|ank|.

Hence, in this case, we cannot give necessary and sufficient conditions for
the compactness of the operator. Actually, we have following corollary.

Corollary 3.7. Let A ∈ B(c, `∞) be given by an infinite matrix A =
(ank)

∞
n,k=0. Then A is compact if

lim sup
n→∞

∑

k

|ank| = 0.

Equivalence does not hold in general.

Example 3.8. This example illustrates that equivalence does not hold in
the previous corollary. Let A = (ank) be an infinite matrix such that
ank(0) = 1 and ank = 0 for k 6= k(0). Using the known characterization
of matrix transformations, we conclude A ∈ (c, `∞). In this example, we ob-
tain lim supn→∞

∑
k |ank| 6= 0. Also, if we put x = e = (1, 1, . . . ), we obtain

that A is a compact operator.

In the previous corollary, we could not find necessary and sufficient con-
ditions for the compactness of the operator by only applying the Hausdorff
measure of noncompactness. That was not the case in the previous section
where we had a more powerful tool, but in the all other cases we have got
the same conditions, hence here is only the matter of choice.

Proof. Now we prove Theorem 3.3. Set S = {x ∈ c0 | ‖x‖ = 1}. By Theorem
3.2 we have

0 ≤ ‖A‖χ = χ(AS) = lim
n→∞

sup
x∈S

‖(I − Pn)Ax‖ = lim
n→∞

sup
x∈S

{
∑

j>n

|Ajx|
p}

1

p = 0,

hence ‖A‖χ = 0. �
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Proof. Now we prove Theorem 3.5. Set S = {x ∈ `1 | ‖x‖ = 1}. By Theorem
3.2, we have

‖A‖χ = χ(AS) = lim
n→∞

sup
x∈S

‖(I − Pn)Ax‖ = lim
n→∞

sup
x∈S

{
∑

j>n

|Ajx|
p}

1

p

= lim
n→∞

sup
x∈S

{
∞∑

j=n+1

|
∑

k

ajkxk|
p}

1

p ≤
∑

k

{
∞∑

j=n+1

|ajkxk|
p}

1

p

=
∑

k

|xk| · {
∞∑

j=n+1

|ajk|
p}

1

p ≤ ‖x‖ · sup
k
{

∞∑

j=n+1

|ajk|
p}

1

p

= sup
k
{

∞∑

j=n+1

|ajk|
p}

1

p .

It remains to prove the converse inequality.
Let Q be the set defined as Q = {Aei, i = 1, 2, . . . }. Since A(Q) ⊂ `p, we

have

χ(Q) = lim
n→∞

sup
x∈Q

‖(I − Pn)x‖ = lim
n→∞

sup
i

‖(I − Pn)Aei‖

= lim
n→∞

sup
i
{

∞∑

j=n+1

|aji|
p}

1

p .

The inequality χ(Q) ≤ χ(AS) yields

χ(AS) = ‖A‖χ ≥ lim
n→∞

sup
k
{

∞∑

j=n+1

|ajk|
p}

1

p .

Finally, we can conclude

‖A‖χ = lim
n→∞

sup
k
{

∞∑

j=n+1

|ajk|
p}

1

p .

�
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