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TWO WAYS TO COMPACTNESS

IVANA DJOLOVIC

ABSTRACT. In this paper we give two different ways of proving
the compactness of some linear operators between certain se-
quence spaces. One of them is based only on the theory of
matrix transformations and the other uses the Hausdorff mea-
sure of noncompactness.

1. INTRODUCTION

The theory of FK and BK spaces is of great importance in the charac-
terization of matrix transformations between certain sequence spaces, so we
will give some necessary definitions and notations which will be used in our
work.

An FK space is a complete linear metric sequence space with the property
that convergence implies coordinatewise convergence; a BK space is normed
FK space.

By ¢, we denote the set of all finite sequences and by e and e(™ (n € Ny)

we denote the sequences such that e, = 1 for all k, and e%n) =1 and e,(gn) =0
for k # n. An FK space X D ¢ is said to have AK if every sequence
x = (2)72, € X has a unique representation x = Y ;2 zre®).
Let w be the set of all complex sequences and X and Y be sequence spaces
By (X,Y) we denote the set of all matrices that map X into Y. If we
denote by A = (ank)%._ an infinite matrix with complex entries and by A,
its n-th row, we write

Apz =Y apgay and Az = (Apa)n,
k=0

A€ (X,Y) if and only if A,z converges for all x € X and all n and A(z) € Y

X ={acw| Zak:ﬂk converges for all x € X}.
k
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For our investigation we also need the next important results.

Theorem 1.1. ([3, Theorem 1.17]) Any matriz map between FK spaces is
continuous.

Theorem 1.2. ([3, Theorem 1.23]) Let X and Y be FK spaces. Then,
(X,Y) C B(X,Y), that is each A € (X,Y) defines an element Ly €
B(X,Y) where Lyx = Az, xz € X.

(In this paper, we will write A instead of L4 )

In our work we consider the compact operators in the class (X,Y’) and
denote the class of such operators by K (X,Y); that is, we try to find neces-
sary and sufficient conditions for L 4 to be a compact operator. Hence, let
us recall that if X and Y are metric spaces and f : X — Y, we say that
f is a compact map if f(Q) is a relatively compact subset of Y for every
bounded subset @ of X (that is, for every bounded sequence (z,), in X, the
sequence (f(zy)), has a convergent subsequence in Y).

2. MATRIX TRANSFORMATIONS AND COMPACTNESS

In this section we will consider matrix transformations between classical
sequence spaces and give necessary and sufficient conditions for A to be a
compact operator in the form of conditions for the entries of the infinite
matrix A. The whole investigation is based on results from [6]. For further
work, the next theorem will be very useful.

Theorem 2.1. ([6, Theorem 3]) Let A € (X,Y) and AT denote the transpose
of A. Then A € K(X,Y) if and only if AT € K(Y?,XP).

We can conclude that if we find conditions for compactness of operators
from B(co, ¢p) or B(41,¢,), 1 < p < oo, we will be able to find all the other
conditions. Hence, let us find the conditions.

We need following notations.

Let zp,) denote the element of X whose first n coordinates coincide with
those of  and whose remaining coordinates are zero;

AMg = A(z!") and Ay = (Az)M.

Theorem 2.2. ([6, Corollary]) Let A € (X,Y) and let X have AK. Then
A e K(X,Y) if and only if

lim |4 —A™]| =o0.

Corollary 2.3. We have A € B(co,l,) , 1 < p < oo if and only if A €
K(co,lp) , 1 < p < o0, that is if A is given by an infinite matric A =
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(Ank)—q, then A € K(co,lp) , 1 < p < oo, if and only if
1
sup (Z\ Z ank|P)? < o0,
KCF n keEK

where F denotes the class of all finite sets of positive integers.

It remains to find the conditions for A € (£1,4,) ,1 < p < oo to be a

compact transformation. Since 6/13 = f and {4, is not an AK space, we
cannot use Theorem 2.2. Hence, we need following result.

Theorem 2.4. ([6, Theorem 2|) Let A € (X,Y) and Y have AK. Then
Ae K(X,Y) if and only if

n—oo

Corollary 2.5. Let A be given by an infinite matriz A = (ank)px—o- Then
Ae K(l1,0y) , 1<p<ooifand only if

1
sup anklP)? < 00
sup (1Y el

n  keK
and
S /
; p\1/p —
Jim sup( Y fagif?)P = 0.
j=n+1

Now, using the previous results,we can obtain all the other conditions.
For example, we are interested in transformations A in (¢, {oo).

Corollary 2.6. We have A € K(c,l) if and only if

[e.9]
A sup 3 x| = 0.
Jj=n+1

3. THE HAUSDORFF MEASURE OF NONCOMPACTNESS AND MATRIX
TRANSFORMATIONS

Now, applying the Hausdorff measure of noncompactness, we solve the
problem from the previous section. Let us recall some definitions and well-
known results.

Definition 3.1. Let (X, d) be a metric space and @ a bounded subset of
X. Then the Hausdorff measure of noncompactness of @), denoted by x(Q),
is defined by

X(Q)=inf{e >0| Q C U K(z;,ri),z; € X,r; <ei=1,... ,n,n € N}
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If Q, Q1 and Q2 are bounded subsets of the metric space (X, d), then
Xx(®@) = 0 if and only if @ is a totally bounded set

x(Q) = x(Q),
Q1 C @2 implies x(Q1) < x(Q2),
X(Q1 U Q2) = max{x(Q1),x(Q2)},
X(Q1 N Q2) < min{x(Q1), x(Q2)}
If Q,Q1 andQ2 are bounded subsets of the normed space X, then
X(@1 + Q2) < x(Q1) + x(Q2),

X(Q@+1)=x(@Q),reX,
X(AQ) = [AIx(Q), VA € C.
Let X and Y be Banach spaces, S = {x € X | ||z|| = 1}, K = {z € X |

lz|| <1} and A € B(X,Y). Then, the Hausdorff measure of noncompact-
ness of an operator A, denoted by ||A]|y, can be obtained by

[A]lx = x(AK) = x(AS).

Furthermore, A is a compact if and only if ||A], = 0. It holds that
1Al < [1A]l-

Theorem 3.2 (Goldenstein, Gohberg, Markus). ( [3, Theorem 2.23]) Let X
be a Banach space with Schauder basis {e1, ea, ...}, Q a bounded subset of X,
and P, : X — X the projector onto the linear span of {e1,es,...,en}. Then
we have

—thUP(supH(f Po)xf) < x(Q) < hmsup(supll(f Pn)]])

a n—oo zeQ n—0o  zeQ
where a = limsup,,_, [|[I — P,||.

Theorem 3.3. Let A € B(co,?,) , 1 < p < 0o be given by an infinite matric
A = (ank);k—o- Then we have [|Al = 0.

Corollary 3.4. Let A € B(co,lp) , 1 < p < oo be given by an infinite
matriz A = (ank)sp—o- Then, A € B(co,€p) , 1 < p < oo if and only if
Ae K(cp,lp) , 1 <p<o0.

Theorem 3.5. Let A € B({1,¢,) , 1 < p < oo be given by an infinite matric
A = (ank);k=o- Then we have

141l =, Jim_ sup{ Z lajilP}s.

n—00
j=n+1
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Corollary 3.6. Let A € B({1,4,) , 1 < p < oo be given by an infinite matriz
A = (ank)yg—o- Then, A is compact if and only if

o0
1
o 4 Pl —
,};H;osgp{’ > laklP}r = 0.
Jj=n+1

Applying the properties of the Hausdorff measure of noncompactness in
the investigation of matrix transformations in the class (¢, f~ ), we obtain
following result

0 <[4y < limsupz |an]-
n—oo k

Hence, in this case, we cannot give necessary and sufficient conditions for
the compactness of the operator. Actually, we have following corollary.

Corollary 3.7. Let A € B(c,ls) be given by an infinite matric A =
(ank)pok—o- Then A is compact if

lim sup Z |ank| = 0.

n—od k
FEquivalence does not hold in general.

Example 3.8. This example illustrates that equivalence does not hold in
the previous corollary. Let A = (anx) be an infinite matrix such that
ang) = 1 and ap, = 0 for k # k(0). Using the known characterization
of matrix transformations, we conclude A € (¢, £). In this example, we ob-
tain imsup,, .o >k |ank| # 0. Also, if we put x = e = (1,1,...), we obtain
that A is a compact operator.

In the previous corollary, we could not find necessary and sufficient con-
ditions for the compactness of the operator by only applying the Hausdorff
measure of noncompactness. That was not the case in the previous section
where we had a more powerful tool, but in the all other cases we have got
the same conditions, hence here is only the matter of choice.

Proof. Now we prove Theorem 3.3. Set S = {z € ¢¢ | ||z|| = 1}. By Theorem
3.2 we have

0 < [|A]ly = x(AS) = lim sup|({ — P,)Az| = lim sup{z |Aj$|p}% =0,

i>n

hence || 4|, = 0. O
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Proof. Now we prove Theorem 3.5. Set S = {z € ¢; | ||z|| = 1}. By Theorem
3.2, we have

4l = X(AS) = lim sup (I ~ P) x| = Jim sup(Y |4;a}>
xe

i>n

= Jim_supf Z 1S apaPyr < 3¢ Z lagki[P}7

j=n+1 k k  j=n+1

Z\wk\ { Z laul?}> < ] - sup{ Z lajl}?

Jj=n+1 j=n+1

1

= oup{ 3 Jasel’} .

k j=n+1
It remains to prove the converse inequality.
Let @ be the set defined as @ = {Ae;,i = 1,2,... }. Since A(Q) C ¢p, we

have

X(@) = Jim sup (1 = Po)al = Jimm sup (1~ ) des]

(2

n—oo

= lim sup{ Z ajilP} 7.
n—oo Pl
The inequality x(Q) < x(AS) yields

X(AS) = [|Ally > Jim sup{ Z \a]k\p}zj.
j=n+1

Finally, we can conclude

141 =, Jim_ sup{ Z lajulP}.
j=n+1

REFERENCES

[1] Cohen L.W., Dunford N., Transformations on Sequence Spaces, Duke Math.J., 3
(1937), 689-701.

[2] Maddox L.J., Infinite Matrices of Operators, Lecture Notes in Mathematics 786,
Springer-Verlag, Heidelberg, Berlin, New York, 1980.

[3] Malkowsky E., Rakocevi¢ V., An Introduction into the Theory of Sequence Spaces
and Measures of Noncompactness, Zbornik radova 9(17), Matematicki institut SANU,
Belgrade, 2000, 143-234.

[4] Malkowsky E., Rakoc¢evié V., Zivkovié-Zlatanovié S., Matrix Transformations between
some sequence spaces and their measures of noncompactness, Bulletin Academie Serbe
des Sciences et des Arts, 27 (2002), 33—46.



TWO WAYS TO COMPACTNESS 21

[5] Peyerimhoff A., Lectures on Summability, Lecture Notes in Mathematics 107,
Springer-Verlag, Heidelberg, Berlin, New York, 1969.

[6] Sargent W.L.C., On Compact Matrix Transformations Between Sectionally Bounded
BK-spaces, Journal London Math.Soc., 41 (1966), 79-87.

[7] Stanojevi¢ 1., Sequence Spaces, Matriz Transformations and Measure of Noncompact-
ness, Master’s Thesis, Nig, 2003

TECHNICAL FACULTY, UNIVERSITY OF BELGRADE, VJ 12, 19210 BOR, SERBIA AND
MONTENEGRO
E-mail address: zucko@ptt.yu



