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Introduction

Here we give an account of two appealingly simple techniques to generate monotonic

sequences that were developed by the author and Grahame Bennett. Sadly, Bennett died in

2016 after a lifetime of distinguished contributions in the field of inequalities. This article is

dedicated to him.

The first method works with averages of values of convex functions. It was described

in full in [1]; a partial version was given by Kuang in a Gazette note [2]. The second

method deals with ratios of partial sums. The idea has been known for a long time, but the

applications described here were first presented in [3], as part of a wider study.

The main application relates to the sum Sn(p) =
∑n

r=1 r
p. We present a companion

pair of results on monotonicity of Sn(p)/[np(n+1)] and Sn(p)/[n(n+1)p] for various values of

p. At first sight, these ratios may seem a bit abstruse, but in a sense they are more natural

than, for example, Sn(p)/np+1, because they reproduce the fact that Sn(1)/[n(n + 1)] is

constant. We show how these results can be obtained equally by both methods. Another

result delivered by both methods is a strengthening of the theorem of [4] concerning (n!)1/n.

We then present a result on sums of the form
∑n

r=1(2r − 1)p which is delivered by

Method 2 but not at all easily by Method 1. We finish with a survey of various other

averages of convex functions.

Method 1: averages of convex functions

For a function f on the interval [0, 1], we define

An(f) =
1

n− 1

n−1∑
r=1

f
( r
n

)
(n ≥ 2),

Bn(f) =
1

n+ 1

n∑
r=0

f
( r
n

)
(n ≥ 1).

These are, respectively, the averages of the values f( r
n
) excluding and including the end

points. For An(f), we do not need f to be defined at 0 and 1. If f is continuous on [0, 1],

then both An(f) and Bn(f) tend to
∫ 1

0
f(x) dx as n → ∞ (we return to this point later).

The point for us is that for convex functions, they do so in a monotonic way.
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Recall that f is “convex” on an interval I if it lies below the straight-line chord between

any two points on its graph. More exactly, for x1, x2 in I and 0 ≤ λ ≤ 1, we have

f [(1− λ)x+ λy] ≤ (1− λ)f(x) + λf(y). Also, f is “concave” if −f is convex. If a function

is both convex and concave, then it is linear. A sufficient condition for convexity is that

f ′′(x) ≥ 0 on the interval. So for x > 0, the function xp is convex for p ≥ 1 and p ≤ 0, and

concave for 0 ≤ p ≤ 1. We can now state our results.

Theorem 1: If f is a convex function on (0, 1), then An(f) increases with n. If f is

concave, then An(f) decreases with n.

Proof: We prove the statement for convex f ; the statement for concave f then follows

by considering −f . For 1 ≤ r ≤ n−1, the point r/n lies between r/(n+1) and (r+1)/(n+1).

More exactly,
r

n
=
n− r
n

r

n+ 1
+
r

n

r + 1

n+ 1
.

Write f [r/(n+ 1)] = fr. Since f is convex,

f
( r
n

)
≤ n− r

n
fr +

r

n
fr+1.

Hence
n−1∑
r=1

f
( r
n

)
≤ n− 1

n
f1 +

1

n
f2 +

n− 2

n
f2 +

2

n
f3 + · · ·+ 1

n
fn−1 +

n− 1

n
fn

=
n− 1

n

n∑
r=1

fr,

which says that An(f) ≤ An+1(f).

Theorem 2: If f is convex on [0, 1], then Bn(f) decreases with n. If f is concave, then

Bn(f) increases with n.

Proof: Assume f convex and take n ≥ 2. This time, we use the fact that for 1 ≤ r ≤
n− 1,

r

n
=
r

n

r − 1

n− 1
+
n− r
n

r

n− 1
.

Write f [r/(n− 1)] = gr. By convexity of f , for r as above,

f
( r
n

)
≤ r

n
gr−1 +

n− r
n

gr,

also f(0/n) = g0 and f(n/n) = gn−1. Hence

n∑
r=0

f
( r
n

)
≤ n

n
g0 +

1

n
g0 +

n− 1

n
g1 +

2

n
g1 + · · ·+ 1

n
gn−1 +

n

n
gn−1

=
n+ 1

n

n−1∑
r=0

gr,
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which says that Bn(f) ≤ Bn−1(f).

Of course, if f is linear, it follows that An(f) and Bn(f) are constant. This is easily

verified directly: if f(x) = x, then An(f) = Bn(f) = 1
2

for all n.

Method 2: ratios of partial sums

Our second method for generating monotonic sequences is beautifully simple both to

state and to prove. It is far from new: it appears as an exercise (albeit without serious

applications) in [5, p. 21], published in 1908.

Theorem 3: Let (an) and (bn) be sequences, with bn > 0 for all n. Write An =

a1 + a2 + · · ·+ an, similarly Bn. If an/bn increases (or decreases) with n, so does An/Bn.

(Of course, this notation An has no connection with the previous An(f).)

Proof: We prove the increasing case: the decreasing one follows by considering −an.

Write an = cnbn and An = KnBn. Then (cn) is increasing, and hence An =
∑n

r=1 crbr ≤
cn
∑n

r=1 br = cnBn, so Kn ≤ cn. So also Kn ≤ cn+1, and we have

An+1 = An + an+1

= KnBn + cn+1bn+1

≥ Kn(Bn + bn+1)

= KnBn+1.

But An+1 = Kn+1Bn+1, so Kn+1 ≥ Kn.

The special case bn = 1 says: if an is increasing, then so is An/n, the arithmetic mean

of a1, a2, . . . , an. We mention here that we can deduce the same for the geometric mean:

Corollary 3.1: Let (an) be an increasing sequence of positive numbers, and let Gn =

(a1a2 . . . an)1/n. Then (Gn) increases with n. In particular, (n!)1/n is increasing.

Proof: Since log an increases with n, so does 1
n

∑n
r=1 log ar = logGn.

Of course, to apply Theorem 3, we have to equip ourselves with the sequence an/bn.

The examples to follow will illustrate what this may involve.

Application to Sn(p)

Let Sn(p) =
∑n

r=1 r
p. We will show how both methods can be applied to this sum,

with a similar outcome. Note that Sn(0) = n and Sn(1) = 1
2
n(n + 1). We do not exclude
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negative values of p: for example, Sn(−1) is the harmonic sum Hn =
∑n

r=1
1
r
.

A basic estimation of Sn(p) (which we will shortly improve) is given by comparison

with the integral of xp, as follows. Let f be any increasing function with f(0) = 0. Write

Sn =
∑n

r=1 f(r). On the interval [r−1, r], we have f(r−1) ≤ f(x) ≤ f(r), hence f(r−1) ≤∫ r

r−1 f(x) dx ≤ f(r). Adding the right-hand inequalities for 1 ≤ r ≤ n and the left-hand

inequalities for 1 ≤ r ≤ n + 1, we obtain
∫ n

0
f(x) dx ≤ Sn ≤

∫ n+1

0
f(x) dx. For f(x) = xp,

where p > 0, this says
np+1

p+ 1
≤ Sn(p) ≤ (n+ 1)p+1

p+ 1
. (1)

hence Sn(p)/np+1 → 1/(p + 1) as n → ∞. In fact, this limit also holds for −1 < p < 0

(we omit the details). Of course, for p < −1, Sn(p) is simply the nth partial sum of the

convergent series
∑∞

r=1 r
p.

We are now ready for our Theorem on monotonicity.

Theorem 4: Let

cn(p) =
Sn(p)

n(n+ 1)p
.

Then cn(p) increases with n for p ≥ 1 and p ≤ 0, and decreases for 0 ≤ p ≤ 1.

Also, let

dn(p) =
Sn(p)

np(n+ 1)
.

Then dn(p) decreases with n for p ≥ 1, and increases for p ≤ 1.

The reversals at p = 1 reflect the fact that cn(1) and dn(1) have the constant value 1
2
.

Similarly, cn(0) has the constant value 1.

Ahead of the proof (by both methods), note that for p ≤ 0, the statement for dn(p)

follows from the one for cn(p). In fact,

dn(p) =

(
n+ 1

n

)p−1

cn(p).

Now (n+ 1)/n = 1 + 1
n
, which is decreasing. Since p− 1 < 0, [(n+ 1)/n]p−1 is increasing.

Recall that xp is convex for p ≥ 1 and p ≤ 0, and concave for 0 ≤ p ≤ 1. With this

remark, we can read off Theorem 4 from Theorems 1 and 2 without further work.

Proof by Method 1: The statements for cn(p) are given by Theorem 1 with f(x) = xp,

since

An+1(f) =
1

n

n∑
r=1

rp

(n+ 1)p
= cn(p).
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By the preceding remark, we only need to consider dn(p) for p ≥ 0. The statements

are given by Theorem 2, since

Bn(f) =
1

n+ 1

n∑
r=0

rp

np
= dn(p). �

The proof by Method 2 needs a little more work. We include it for comparison, and

because it paves the way for the proof of another result to follow.

Proof by Method 2: We apply Theorem 3 to 1/cn(p): this equals An/Bn, where

an = n(n+ 1)p − (n− 1)np, bn = np.

So for p 6= 0,
an
bn

= n

(
1 +

1

n

)p

− n+ 1.

Now
d

dx

(
1 +

x

n

)p
=
p

n

(
1 +

x

n

)p−1
,

and hence
an
bn

= n
[(

1 +
x

n

)p]1
0

+ 1 = p

∫ 1

0

(
1 +

x

n

)p−1
dx+ 1.

Now 1 + x
n

decreases with n, so (1 + x
n
)p−1, and hence its integral, decreases if p ≥ 1 and

increases if p < 1. For an/bn, this is reversed by the factor p when p < 0. The result follows.

For dn(p), with p > 0, we have 1/dn(p) = An/Bn, where

an = np(n+ 1)− (n− 1)pn, bn = np.

So, in similar style,

an
bn

= n+ 1− n
(

1− 1

n

)p

= 1 + p

∫ 1

0

(
1− x

n

)p−1
dx.

This increases with n if p ≥ 1 and decreases if 0 < p < 1.

Example 1: We can illustrate the case p = 2 by giving exact expressions. Since Sn(2) =
1
6
n(n+ 1)(2n+ 1), we have

6cn(2) = 2− 1

n+ 1
, 6dn(2) = 2 +

1

n
,

showing that cn(2) is indeed increasing and dn(2) decreasing.

Example 2: The case p = −1 for cn(p) says that (1+ 1
n
)Hn increases with n. On writing

it out, one finds that this actually follows from the inequality Hn ≤ n.
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We mention a number of consequences of Theorem 4.

If p > 0, it follows from (1) that cn(p) and dn(p) tend to 1/(p+1) as n→∞. Since the

terms of an increasing sequence are not greater than the limit, we can deduce the following

refinement of (1):

Corollary 4.1: For p ≥ 1, we have

1

p+ 1
np(n+ 1) ≤ Sn(p) ≤ 1

p+ 1
n(n+ 1)p.

The inequalities reverse when 0 < p ≤ 1.

At the cost of some loss of accuracy, we can deduce simpler statements where the

denominators are np+1 and (n+ 1)p+1.

Corollary 4.2: Let un(p) = Sn(p)/np+1. Then un(p) decreases if p ≥ 0 and increases if

p ≤ 0.

Proof: We have un(p) = (1 + 1
n
)dn(p), hence is decreasing for p ≥ 1. Also, un(p) =

(1 + 1
n
)pcn(p), hence is decreasing for 0 ≤ p ≤ 1 and increasing for p < 0.

Corollary 4.3: Let vn(p) = Sn(p)/(n+ 1)p+1. Then vn(p) is increasing for all p.

Proof: For p ≥ 1 and p < 0, this follows from vn(p) = [n/(n+ 1)]cn(p), since n/(n+ 1)

is increasing. For 0 < p ≤ 1, it follows from vn(p) = [n/(n+ 1]pdn(p).

Note that unlike cn(p) and dn(p), these ratios fail to be constant when p = 1.

Application to n!

We now describe another result delivered by both methods.

Theorem 5: The expression
1

n+ 1
(n!)1/n decreases with n.

It was shown in [4] that 1
n
(n!)1/n decreases; this statement is weaker than ours, because

their expression equates to ours multiplied by the decreasing factor 1 + 1
n
.

Proof 1: We apply Theorem 1 to the concave function log x (recall that for this Theorem

there is no need for f to be defined at 0). Then An+1(f) decreases with n. The result follows,

since

An+1(f) =
1

n

n∑
r=1

(
log r − log(n+ 1)

)
=

1

n
log(n!)− log(n+ 1).

Proof 2: Let an = n[log(n+1)− log n]. Then an =
∫ 1

0
n

n+x
dx. For x ≥ 0, n

n+x
increases
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with n, since n+x
n

= 1 + x
n

decreases. So an increases. By Theorem 3, so does An/n. But

An

n
=

1

n

n∑
r=1

r[log(r + 1)− log r] = log(n+ 1)− 1

n

n∑
r=1

log r.

Note: There is another application of Proof 2: take an = log(n+ 1)− log n and bn = 1
n
,

to conclude that log(n+ 1)/Hn increases with n.

Some further applications of Method 2

Method 1 gives an instant proof for sequences that are of one of the forms described,

but it is limited to such sequences. Method 2 is effective in some areas beyond the reach of

Method 1. One such area concerns odd-number sums. Let

Un(p) =
n∑

r=1

(2r − 1)p.

An immediate application of Theorem 3 is that Un(p)/Sn(p) increases with n for p > 0, since

this is of the form An/Bn, where an/bn = (2− 1
n
)p. More seriously, by a suitable modification

of the proof by Method 2, we can derive a pleasantly simple analogue of Theorem 4 for Un(p).

This proof follows [2, p. 559].

Theorem 6: The expression
Un(p)

np+1
increases with n if p ≥ 1 or p ≤ 0, and decreases if

0 ≤ p ≤ 1.

Remark: The reversal at p = 1 reflects the fact that Un(1) = n2.

Lemma: Let g(t) = (1 + t)p + (1− t)p. If p ≥ 1 or p ≤ 0, then g(t) increases with t for

0 ≤ t < 1. If 0 ≤ p ≤ 1, then g(t) decreases.

Proof: We have g′(t) = p[(1 + t)p−1 − (1− t)p−1]. Hence g′(t) ≥ 0 on [0, 1) if p ≥ 1 or

p ≤ 0, and g′(t) ≤ 0 if 0 ≤ p ≤ 1.

Proof of Theorem 6: If p ≤ −1, then 1/np+1 = nq where q ≥ 0, so increases with n, so

the statement is trivial. So assume that p > −1. We have np+1/Un(p) = An/Bn, where

an = np+1 − (n− 1)p+1, bn = (2n− 1)p.

Then

an
bn

= (2n− 1)

[(
n

2n− 1

)p+1

−
(
n− 1

2n− 1

)p+1
]

=
2n− 1

2p+1

[(
1 +

1

2n− 1

)p+1

−
(

1− 1

2n− 1

)p+1
]
.
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Now

(2n− 1)
d

dx

(
1 +

x

2n− 1

)p+1

= (p+ 1)

(
1 +

x

2n− 1

)p

,

so
an
bn

=
p+ 1

2p+1
In,

where

In =

∫ 1

−1

(
1 +

x

2n− 1

)p
dx =

∫ 1

0

[(
1 +

x

2n− 1

)p

+

(
1− x

2n− 1

)p]
dx.

By the Lemma, In decreases with n if p ≥ 1 or p ≤ 0, and increases with n if 0 ≤ p ≤ 1.

The statement follows, by Theorem 3.

Clearly, this sum is not a case of An(f) or Bn(f). In the next section, we will see what

happens when this problem is addressed by function averages.

By a slight variation of the proof of Theorem 6, one can establish another result of this

kind for Sn(p): the expression
Sn(p)

(2n+ 1)p+1 − 1

increases with n if p ≥ 1 or −1 < p ≤ 0, and decreases if 0 ≤ p ≤ 1. The reader may

care to attempt the details. Note that again the expression is constant when p = 1, since

(2n+ 1)2 − 1 = 4n(n+ 1).

Some other averages of convex functions

First, we investigate averages including one end-point. Write

Ln(f) =
1

n

n−1∑
r=0

f
( r
n

)
, Rn(f) =

1

n

n∑
r=1

f
( r
n

)
.

Simple formulae link these sums with An(f) and Bn(f), for example nRn(f) =
∑n

r=1 f( r
n
) =

(n+1)Bn(f)−f(0), hence Rn(f) = (1+ 1
n
)Bn(f)− 1

n
f(0). Note also that if g(x) = f(1−x),

then Ln(g) = Rn(f).

These unsymmetrical averages are arguably less natural than An(f) and Bn(f). They

fail to be constant for f(x) = x: in fact, then Ln(f) = 1
2
(1 − 1

n
) and Rn(f) = 1

2
(1 + 1

n
).

So Rn(f) is decreasing for f(x) = x, but increasing for f(x) = −x: there is no result to

the effect that Rn(f) is either increasing or decreasing for all convex f . However, restricted

results on monotonicity do follow easily from Theorems 1 and 2:

Theorem 7: If f is convex and increasing, then Rn(f) decreases with n and Ln(f)

increases. If f is convex and decreasing, then Rn(f) increases and Ln(f) decreases.
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Proof: The statements for Ln(f) follow from those for Rn(f) by applying them to

g(x) = f(1 − x). Suppose that f is convex and increasing. Let h(x) = f(x) − f(0). Then

Rn(h) = Rn(f) − f(0), h(0) = 0 and h(x) ≥ 0 on [0, 1]. So Rn(h) = (1 + 1
n
)Bn(h) and

Bn(h) ≥ 0. By Theorem 2, Bn(h) is decreasing. Hence Rn(h) is decreasing.

Similarly, if f is decreasing, let k(x) = f(x)−f(1). Then Rn(k) = (1− 1
n
)An(k), which

is increasing, by Theorem 1. �

This result was presented in [3]. While it serves to satisfy curiosity about averages

with one end point, it is clear that it is weaker than Theorems 1 and 2.

Applied to f(x) = xp, Theorem 7 reproduces Corollaries 4.2 and (for p > 0) 4.3, since

un(p) = Rn(f) and vn(p) = Ln+1(f).

We can now clarify the relation with
∫ 1

0
f(x)dx. If f is continuous on [0, 1], then Ln(f)

and Rn(f) are Riemann sums for this integral (in the sense that a value of f(x) is chosen

from each successive interval). So they both converge to the integral as n → ∞, and it

follows that the same is true for An(f) and Bn(f), as stated earlier.

We now revisit Theorem 6. The sum is of the form

Mn(f) =
1

n

n∑
r=1

f

(
2r − 1

2n

)
.

What can we say about this kind of average? It passes the test of being constant for

f(x) = x. It describes the approximation to
∫ 1

0
f(x) dx given by taking the tangent to the

curve at the mid-point of each interval [ r−1
n
, r
n
]. A convex function f lies above its tangents,

so Mn(f) ≤
∫ 1

0
f(x) dx.

A dual approximation to the integral is given by the trapezium rule: let

Tn(f) =
1

2n
f(0) +

1

n

n−1∑
r=1

f
( r
n

)
+

1

2n
f(1).

From the definition of convexity, it is clear that Tn(f) ≥
∫ 1

0
f(x) dx for convex functions.

In the light of these facts, it seems plausible that for convex f , Mn(f) increases with

n and Tn(f) decreases. However, this is not true, as the following example shows.

Example 3: Let f(x) = |x− 1
2
|. Then M2(f) = 1

2
(1
4

+ 1
4
) = 1

4
, while M3(f) = 1

3
(1
3

+ 0 +
1
3
) = 2

9
. The reader can easily verify that T2(f) = 1

4
and T3(f) = 5

18
.

The true state of affairs was established in [1]: the suspected results hold if f is convex

and also f ′ is either convex or concave. This, of course, delivers Theorem 6. However, the
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proofs given in [1] are long and intricate. A more pleasant proof of both results is presented

in the forthcoming article [6].

A natural generalisation ofAn(f) andBn(f) is a weighted average of the formBn(W, f) =∑n
r=0wn,rf( r

n
), where wn,r ≥ 0 and

∑n
r=0wn,r = 1 for all n. This is explored in [7]. For

example, it is shown that Bn(W, f) decreases with n for convex f when W is the Euler matrix

defined by wn,r =
(
n
r

)
xr(1 − x)n−r for a chosen x in (0, 1). As some readers will recognise,

Bn(W, f) is then the value at x of the nth Bernstein polynomial for f .
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