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Abstract. An immune system without tissue is like evolution without genes. 
Something very important is missing. Here we present the novel concept of tis-
sue for artificial immune systems. Much like the genetic representation of ge-
netic algorithms, tissue provides an interface between problem and immune al-
gorithm. Two tissue-growing algorithms are presented with experimental results 
illustrating their abilities to dynamically cluster data and provide useful signals. 
The use of tissue to provide an innate immune response driving the adaptive re-
sponse of conventional immune algorithms is then discussed. 

1   Introduction 

Multicellular organisms are very attractive places for viruses, bacteria, fungi and 
parasites. They provide protection against the uncertainties of the world: stable tem-
peratures, food, machinery to help reproduction, and sometimes even help remove 
their waste products. But unfortunately, the cellular structure of multicellular organ-
isms (which for simplicity, we will call tissue in this paper) is not always designed to 
cope with such uninvited guests. When infected, tissue may degrade or deteriorate, 
leading to, at worst, the death of the entire organism. To overcome such problems, 
some of the cells of organisms fight back. They actively search out and destroy 
pathogens, in order to maintain the tissue of the organism. (In immunobiology, it is 
known that tissue also provides an innate immune response, with cells such as B and 
T cells providing the adaptive response .) 

So the immune system exists to protect tissue from harm. In one sense, an immune 
system without tissue is meaningless. Yet in the field of artificial immune systems 
there is no real concept of tissue. Data is typically mapped directly to antigens. In 
many cases there is not even the concept of immune cells, let alone tissue cells. Both 
conceptually and technically, this can cause difficulties – for if every new artificial 
immune system (AIS) is directly “wired” to a specific problem, then it becomes diffi-
cult to compare, analyse and even to apply the AIS to new problems. 

Here we propose an alternative treatment for artificial immune systems. Instead of 
joining the AIS to its application directly, it is proposed that an intermediary represen-
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tation is employed, much like the genetic representation of the genetic algorithm. This 
intermediary will be a dynamic encoding of the current problem providing the equiva-
lent of an innate immune response to support the adaptive response of an AIS. The 
encoding will be modified according to the problem like the genetic encoding of a GA 
[1]. But regardless of the underlying data, it will present a consistent interface to an 
artificial immune system. That interface will be tissue, fig 1. 

 

Fig. 1. Tissue should act as the interface between problem and AIS 

2   Background 

The concept of artificial tissue is used extensively in cell modelling and simulation, 
with additional applications in electronics and biotechnology. One well-known exam-
ple was the POEtic project, which used the concept of cellular tissue and immune cell 
modelling within hardware devices [11]. In this architecture each cell is treated as an 
individual processing device, with the tissue performing the role of providing an inter-
face between a biologically inspired processing mechanism and data provided by the 
environment. Similarily, in [3], fault tolerant electronic circuits were constructed and 
used a combination of embryonically grown cells coupled with immune-inspired 
negative selection. This model provides an immune inspired component and entity to 
protect, though the protected cells did not provide feedback signals to the AIS. The 
protected cells in this system were embryonically grown, sending out signals to sup-
port each other. The system partitioned the AIS and the cells into separate layers, 
providing communication between the two components. This architecture was im-
plemented and applied to various hardware devices.  Examples of developmental 
models that include aspects of tissue growth are becoming more popular; interested 
readers should consult  [7]. 

In biology, tissue has long been known to be a crucial component of the immune 
system, and this role was highlighted further by Matzinger. The Danger Model, pro-
posed by Polly Matzinger in 1994 [9], attempted to alter the perspective from which 
the immune system was viewed. This involved abandoning the belief that the immune 
system is conditioned at an early age to distinguish self from non-self proteins. In-
stead, this model proposes that the immune system contains cells sensitive to cellular 
damage. In her words: “The Danger model  … suggests that neither the innate nor 
adaptive immune systems are in ultimate control. This function belongs to the ancient 
innate responses of the normal bodily tissues themselves” [8]. 

The theory suggests that signals are innately released from cells under stress, due 
to damage, often derived from pathogens, physical disruption, radiation, extreme pHs 
or temperature. These signals may cause tolerance to proteins through regulatory cell 
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activation or lead to the activation of effector cells [10]. This discrimination is based 
on the information gathered from proteins collected within the body, in combination 
with various signals derived from host tissue cells. The combination of antigens-plus-
signals can give information regarding damage to a specific area of tissue. In order to 
understand what the signals are and under what conditions they arise, two important 
types of cell death have to be examined.  

1. Apoptosis. Tissue cells can die in a number of different ways, forming part of 
the life cycle of a cell. It is essential for cells to die under controlled conditions to 
provide regulation of tissue growth and to remove defective and virally infected cells. 
This type of pre-programmed cell death is known as apoptosis. On receipt of an apop-
totic signal the cell releases a number of degrading enzymes which have dramatic 
effects on the internal structure of the cell. The cell's DNA is fragmented into orderly 
portions, nuclear condensation is initiated and organelles are broken down. During 
this period of degradation, the integrity of the outer cell membrane remains intact, 
while expressing greater quantities of signalling molecules on the membrane surface. 
These molecules are detected by innate immune cells, such as macrophages, which 
are triggered to ingest the cell, ultimately resulting in removal of the apoptotic cell 
from the tissue[5].  

 2. Necrosis. In contrast, unexpected, chaotic cell death does not involve an intri-
cate removal system. Unlike apoptotic cells, the necrotic cell swells up, the internal 
material is chaotically fragmented and the membrane integrity is lost. Ultimately, the 
cell explodes, releasing its contents into the fluid surrounding the cell. Cellular prod-
ucts released as a result of necrotic cell death are known as danger signals - endoge-
nous activators of the innate immune system. This includes molecules derived due to 
cell degradation, inclusive of uric acid, adenosine-tri-phosphate, and heat shock pro-
teins[12], in addition to an array of pro-inflammatory cytokines.  

 Without tissue there would be no endogenous danger signals, no innate immune 
activation and nothing to protect. Additionally it is thought that the absence of tissue 
derived danger signals is as equally important as their presence, through the genera-
tion of proteins that do not belong to the host, yet cause no damage, e.g. bacterial gut 
flora. The detection of an apoptotic signal is translated into the activation of the adap-
tive immune system's regulatory cells [10].  

It is clear that tissue has been highlighted as an integral part of immune function. 
Danger signals released from cells dying under stressful conditions activate cells be-
longing to the innate immune systems. These cells ultimately control the effector cells, 
and giving direction to the immune response. Yet, the concept of tissue has not been 
widely used within AIS. The question remains: is it possible to construct artificial 
tissue to provide an interface between an application and an artificial immune system? 

3   Defining Tissue 

Focussing for now on the task of anomaly detection, it is proposed that tissue de-
signed for artificial immune algorithms should comprise a series of linked cells, each 
cell “grown” in response to specific data, in a data stream being input to the system. 
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Cells should grow and be supported by homogeneous data. Where data does not exist 
to support a cell, the cell dies. Where too much/too diverse data exists for a cell, the 
cell divides. Cells should exist in a dynamic network structure, with similar cells 
linked or placed near to each other. The use of a cellular representation is also in-
tended to enable distributed processing and the support of multiple datastreams simul-
taneously. 

In the ‘tissue paradigm’ all communication between a problem and AIS is medi-
ated via the tissue. Tissue thus provides some functionality of the innate immune 
system, with the AIS performing the common role of adaptive immune system. 

3.1   Uplinks 

Given a data stream of temporally homogeneous data items, the tissue will quickly 
grow to form a specific shape, structure and size, which will be maintained indefi-
nitely. The artificial immune system should consult all cells in the tissue, examining 
them and any corresponding danger signals. If the data changes, the tissue will change 
in response. Those aspects of the data that remain the same will continue to support 
the corresponding parts of tissue. Those aspects that differ will result in a restructur-
ing or even cell death. An artificial immune system should thus be able to ignore 
static tissue and quickly cause an immune response on and near to the cells where the 
changes (and corresponding signals) are occurring. In this way the tissue provides 
more than an interface to the underlying data – it provides a spatial and temporal 
structure, enabling the AIS to specialise and focus to different extents, spatially and 
temporally. 

It is recognised (and experiments confirm later) that the tissue will not perform 
perfectly as a clusterer and anomaly detector – if it did there would be no reason to 
have the AIS. Instead, the tissue provides useful data preprocessing, gathering similar 
data items together, and presenting gross, short-term anomalies to the AIS. (Specific, 
problem dependent knowledge can also be incorporated and exploited in the cells in 
order to present other innate signals to the AIS.) It is expected that critical anomalies 
will still occur within “normal” tissue. Thus the role of the AIS in the ‘tissue para-
digm’ is now to consult cells within the tissue and identify fragments of data (anti-
gens) presented by the cells that together may indicate a critical anomaly. Note that 
there is no real concept of a self/non-self division; here the concept is more one of 
stability/entropy. A stable tissue is considered ‘healthy’; unstable or entropic tissue is 
‘unhealthy’ and will attract attention from the AIS. 

3.2   Downlinks 

The natural immune system is designed to both detect harmful anomalies and remove 
the causal agents. However, an artificial immune system using the ‘tissue paradigm’ 
cannot simply remove ‘infected’ cells from the tissue – this would only prevent the 
tissue from presenting information about the anomaly to the AIS, it would not prevent 
the underlying anomaly in the application from reoccurring. Instead, the AIS should 
use the tissue as an interface to the application. If a critical anomaly is discovered, 
cells should be informed which antigens are responsible. The cells then pass this in-
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formation down to the underlying application, where the information should be used 
to remove the cause of the anomaly. For example, in a computer network intrusion 
detection application, if the AIS identifies a specific antigen in one cell, the cell will 
then communicate this information to the network management software. This soft-
ware might terminate a corresponding process and thus remove the ‘infection’ from 
the input data stream, or just inform the system administrator. If there is a one-to-one 
correspondence between cell and anomaly, then by identifying the anomalous antigen 
within the cell, and causing the subsequent prevention of the anomalous data in the 
input stream, the corresponding cell will no longer be supported by the data stream 
and will die. In other words, it is possible for the AIS to cause tissue cell death by 
interacting with the application via the tissue. 

create zygote (initial cell) with first data point (antigen) 
 
    get next antigen from data steam 
    find nearest cell (cell with mean antigen closest to current antigen) 
 
    if current antigen is sufficiently similar* to nearest cell mean 
      add antigen to nearest cell 
      if nearest cell has number of antigens == maxantigenspercell 
        split current cell into two linked cells s.t. antigens are shared 

equally** 
        update cell means, danger signals and linked neighbours 
    else 
      create new cell at current antigen; nearest cell is linked parent 
 
    for every cell 
       for every antigen in the cell 
          age antigen 
          if antigen age > maxantigenage 
            remove antigen 
       if antigens in cell == 0 
         cell dies (can no longer respond to input) 
         create new dangersignal, origin = final antigen, 
                   range = cell stddev, 
                   strength = max (or inversely proportional to cell age) 
         pass all danger signals of dying cell to linked neighbouring cells 
 
    for every dangersignal 
       reduce stength 
       if stength == 0 
         delete dangersignal 

 
 
*similarity measures depend on the matching function used and underlying appli-

cation; in the experiments reported here, data values are normalised and the 
Euclidian distance between cell mean and antigen compared against a similarity 
threshold of 0.2 (default). 

**the cell split function should use the same distance function to divide anti-
gens into two groups; in the experiments reported here, all antigens greater than 
the mean are placed in one cell, all antigens less than the mean are placed in the 
other. 

 
In addition to the similarity measures, there are 2 important constants: 
maxantigenage – determines number of antigens held by tissue cells at any point 

in time. 
maxantigenspercell – affects how many cells there will be in the tissue 

Fig. 2. The network tissue algorithm 
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4   Tissue Algorithms 

There are many ways in which tissue can be developed. Here we present two dif-
ferent approaches: a network tissue growing algorithm, and a swarm tissue grow-
ing algorithm. Both effectively act as dynamic clusterers, using danger signals as 
approximate alerts of anomalies in the input stream. Both are independent of the 
size of any data set – computational time depends on the size of the window on the 
data and the bitrate of the data stream (which will determine the size of the tissue 
being maintained). 

4.1   Network Tissue Algorithm 

The network-based algorithm explicitly maintains cells in a dynamic network, with 
parent cells pointing to daughter cells, and link restructuring on cell death to maintain 
network coherence (e.g., the death of a parent cell results in the oldest daughter cell 
taking the parent’s position in the network). In this algorithm, each cell may hold up 
to maxantigenspercell antigens before dividing into two. Figure 2 outlines the net-
work tissue algorithm. 

4.1.1   Biological Analogies 
Figure 3 summarises the model with respect to natural biology. In this model a single 
cell may represent a particular cell type of a living organism. While there is data to 
support a cell (i.e., while the impact of the environment and genes results in a particu-
lar type of tissue structure), the cell will survive indefinitely (the tissue will have a 
certain cell type and structure indefinitely). If the input stream changes permanently 
(or for a sufficiently long duration), even if the change is dramatic, the new data will 
cause corresponding new tissue to develop and be supported (i.e. a long-term change 
in the environment causes long-term useful changes in tissue structure). But if an 
anomalous datum creates a cell, and there is insufficient subsequent similar data to 
support that cell, then the cell will die. (In an organism, cells can be created in re-
sponse to the environment, affected by the existing tissue; but the environment might 
include some form of pathogen, which infects and destroys cells of that type). It is not 
necessary for apoptosis to be modelled explicitly – it is assumed that a single cell 
represents many cells of that type growing and dying to be replaced by new cells 
naturally. So should a cell die in the model, this can only be necrosis – and thus it 
causes the release of a danger signal, to be passed to the neighbouring cells in the 
tissue. 

In an attempt to match biological characteristics of danger signals, in the model, 
danger signals emitted as a result of necrosis are general indicators of an anomaly, but  
are spatially and temporally specific. The danger signals from a dead cell are held by 
its neighbouring cells (which, through automatic network restructuring or swarming 
after necrosis, “fill the gap” left by the dead cell). It is possible for cells to hold many 
danger signals at once. Danger signals decay over time; they are removed once their 
strength falls to zero.  
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Fig. 3. Left: Organic tissue grows according to its DNA, and interactions with its environment. 
To create a new cell, an existing cell divides into two. Necrosis results in “danger signals”. 
Immune cells consult antigens presented by tissue cells and respond by destroying infection. 
Right: AIS tissue grows according to its rules of growth and interactions with a problem. To 
create a new cell, an existing cell may split into two. Unnatural cell death results in danger 
signals. The AIS consults antigens presented by tissue cells and responds by signalling the 
underlying application via the cells, potentially resulting in the destruction of cells that are 
presenting anomalous antigens. 

4.1.2   Experiments 
A series of experiments were performed using the standard “breast cancer” UCI 
machine learning data set, comprising 240 ‘malignant’ items in class 1 and 460 
‘benign’ items in class 2. (Each data item, or antigen, comprised a vector of 9 real- 
valued numbers, which describe various cancer cell measurements.) For each sys-
tem setting, the same experiment was repeated 30 times. Implemented in ‘C’ and 
running on a Mac Powerbook G4, each run of 10,000 iterations (with one ran-
domly picked data item presented to the tissue each iteration) lasted less than 5 
seconds. Class 2 (benign) is treated as the “normal” class of data, with items from 
class 1 (malignant) being introduced into the datastream every 25 iterations (this 
value is investigated in the first 3 experiments). Table 1 lists the different parame-
ter settings used in the experiments. 

Table 1.  System setups for the nine experiments 

 

Experiment Max 
antigen age 

Max antigens/cell Similarity 
threshold 

Class 1 
item freq. 

1 40 10 0.2 25 
2 40 10 0.2 10 
3 40 10 0.2 5 
4 40 10 0.1 25 
5 40 10 0.3 25 
6 40 5 0.2 25 
7 40 15 0.2 25 
8 20 10 0.2 25 
9 60 10 0.2 25 
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Table 2. Results for experiments 1-9, showing mean number of danger signals per run, stan-
dard deviation, and percentage of danger signals that correspond to data items in class 1 and 
class 2. 

 Class 1 Class 2 
experiment mean stddev percent mean stddev Percent 
1 382.8 2.6 98.1% 1008.5 25.1 10.5% 
2 933.4 5.8 95.6% 946.7 20.2 10.5% 
3 1801.7 20.2 92.3% 842.6 22.0 10.5% 
4 390.1 1.4 99.9% 1378 27.2 14.4% 
5 373.5 3.5 95.7% 849.7 20.0 8.9% 
6 383.7 2.4 98.3% 2165.8 27.3 22.6% 
7 384.0 2.2 98.4% 796.7 24.8 8.3% 
8 389.6 1.6 99.6% 1046.1 19.5 10.9% 
9 378.7 3.0 97.2% 946.0 24.0 9.9% 

4.1.3  Analysis 
Table 2 shows the results for the nine experiments (t-tests were used to corroborate 
the following comments). As is to be expected from a deterministic algorithm (where 
the only stochastic element is the data item order in the data stream), the results for all 
experiments were very consistent across runs, as shown by the low standard deviation 
values. Experiments 1 to 3 indicate how the frequency of anomalous data items influ-
ences the accuracy of danger signals, i.e., more frequent items from class 1 reduces 
the tendency of the tissue to treat class 1 items as anomalous (true positive), while the 
percentage of items in class 2 treated as anomalous remains unchanged (false posi-
tive). Experiments 4 and 5 (also compare with experiment 1) show how changing the 
similarity threshold affects danger signal accuracy. A smaller threshold produces near 
perfect detection of anomalies from class 1, but also increases the tendency for items 
in class 2 to be detected as anomalies. The opposite effect occurs when the threshold 
is increased. Experiments 6 and 7 (also compare with experiment 1) show how the 
number of antigens per cell affects danger signals. No real change occurs to the accu-
racy of detection of anomalous items from class 1, but a smaller number of antigens 
produces far less tolerance for different items in class 2 (the cells are more special-
ised, increasing the chances for even slightly different antigens to be treated as 
anomalous). Increasing the number of antigens has the opposite effect – causing a 
significant reduction in the number of items in class 2 that are treated as anomalous. 
Finally, experiments 8 and 9 (also compare with experiment 1) show the effect of 
varying the maximum antigen age. In the experiments, this has only a minor effect on 
danger signal accuracy, although the results suggest that the age should be set in rela-
tion to the expected frequency of anomalies in the datastream, i.e., a long age for 
frequent anomalies increases the tolerance of the tissue for the anomalies, while a 
short age causes infrequent but normal data items to be treated as anomalies. 

4.2   Swarm Tissue Algorithm 

The swarm-based algorithm is a second, alternative approach to tissue development. It 
is designed to follow much the same “tissue growing” principles as outlined previ-
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ously, but now clusters in the tissue are formed by cell movement in a two-
dimensional space (of size 1000 by 1000 units) which is unrelated to the data values, 
with similar cells moving together and dissimilar cells moving apart. In this algo-
rithm, each cell holds just one data item; cells are created by new data and die con-
stantly – thus apoptosis is modelled in this algorithm. If cells have not grouped them-
selves into a cluster by the time they die, they produce a danger signal, i.e. necrosis is 
modelled by the death of “abnormal”cells that do not participate in normal tissue 
development. Figure 4 outlines the algorithm, which uses the following swarming 
rules to drive the motion of cells: 

 
    get next antigen from data steam 
    create cell using antigen and place in swarm-tissue 
 
    for every cell, (current cell = C1) 
       for every cell in neighbourhood* of C1 (neighbour cell = C2) 
        
         if C1 is sufficiently similar** to Cz/cell-cluster***  
           C1 joins/makes cluster with C2/cell-cluster 
           if C1 and C2 were in clusters 
             with mean antigen differences < current similarity 
             they form a new cluster together 
         else 
           C2/cell-cluster*** is added to cell avoidance list 
 
       if C1 is in a cluster, C1 best position is mean pos. of cells in C1 clus-

ter 
       else C1 best position is mean tissue position 
 
       update velocity of C1 using best pos, mean avoidance values (Rules 1 to 

3) 
       update C1 position based on velocity (Rule 4) 
 
       increase age of C1 
       if C1 age is greater than celllifespan 
         remove C1 from swarm-tissue 
         if C1 was not in a cluster 
         create dangersignal, origin = C1, 
                   range = cell stddev, 
                   strength = max 
       (pass all danger signals of dying cell to neighbouring cells) 
 
 
    for every dangersignal 
       reduce strength 
       if stength == 0 
         delete dangersignal 

 
 

* defined by radius around C1 where radius = 300 
** similarity measures depend on the matching function used and underlying ap-

plication; in the experiments reported here, data values are normalised and the 
Euclidian distance between the two cell values are compared against a similarity 
threshold of 0.2 (default). In addition, the similarity measure between C1 and C2 
where C2 is in a cluster is scaled by the inverse of the number of cells in the 
cluster, making larger clusters more attractive. 

*** if C2 is in a cluster, the mean value of cells in the cluster is used, oth-
erwise the value of C2 is used. 

Fig. 4. The swarm tissue algorithm 
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vi
attr

 = wvi+c1r1(xpbest,i – xi) 

vi = vi
attr

 - f2c2r2(xavoid,i – xi) 

if (|vi|>vmax) vi = (vmax/|vi|)vi 

xi = xi+vi 

Rule 1 

Rule 2 

Rule 3 

Rule 4 

where: 
xi is the current position of data item i 
xpbest,i is the current best position of data item i  
xavoid,i  represents the current avoidance position of data item i. 
vi is the velocity of data item i 
w is a random inertia weight between 0.5 and 1 [4] 
c1 and c2 are spring constants set to 1.494 [4] 
r1 and r2  are random numbers between 0 and 1 [2] 
 f2 is the repulsive factor (default value 2). Defines the effect of the repulsive force on ve-
locity; the higher the value the more that dissimilar items repel each other. 
vmax is the maximum velocity (default value of 300) 

Note: xpbest,i is either the central position of all items in the same cluster as i or the 
central position of all items in the swarming space (if i does not belong to a cluster) 

xavoid,i  represents the central position of all data items in i’s neighbourhood whose 
similarity value falls below the similarity threshold. 

4.2.1   Biological Analogies 
Figure 5 summarises the model with respect to natural biology. In this model cells 
are modelled more directly. New data generates new cells which all live for a fixed 
lifespan before dying. While they live they move with respect to each other, with 
similar cells clustering and dissimilar cells moving apart (i.e., the impact of the 
environment and genes results in a particular type of tissue structure, with similar 
cells adhering to each other and forming organs). As with the previous algorithm, 
if the input stream changes permanently (or for a sufficiently long duration), even 
 

 

Fig. 5. Left: Organic tissue grows according to its DNA, and interactions with its environment. 
Right: AIS tissue grows by moving cells relative to each other according to their rules of 
growth and interactions with a problem. A cell that has not formed part of the tissue before it 
dies is necrotic and produces a danger signal. The AIS consults antigens presented by tissue 
cells and responds by signalling the underlying application via the cells. 
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if the change is dramatic, the new data will cause corresponding new tissue to 
develop and be supported (i.e. a long-term change in the environment causes long-
term useful changes in tissue structure). But if an anomalous datum creates a cell, 
and there is insufficient subsequent similar data to produce similar cells, then the 
cell will be unable to form a cluster before it dies. (In an organism, cells can be 
created in response to the environment, affected by the existing tissue; but the 
environment might include some form of pathogen, which infects and alters cells 
of that type). In this algorithm, apoptosis is modelled explicitly – cells grow and 
die to be replaced by new cells naturally. So in this model, necrosis is modelled by 
a dying cell that has not formed part of a group of other cells – and thus it causes 
the release of a danger signal, to be passed to the neighbouring cells in the tissue. 

4.2.2   Experiments 
Again, a series of experiments were performed using the standard “breast cancer” 
UCI machine learning data set. As before, for each system setting, the same experi-
ment was repeated 30 times. This time implemented in Java J2SE and running on a 
2.4 Ghz Pentium 4 PC, each run of 10,000 iterations lasted between 30 and 145 sec-
onds. The same parameter settings as listed in table 1 were used for the experiments, 
although experiments 6 and 7 could not be performed as each cell only holds one 
antigen in this model. 

4.2.3   Analysis 
Table 3 shows the results for the nine experiments. Accuracy of danger signals for class 1 
is consistently high for all experiments, but the changes in parameter settings do appear 
to affect the percentage of items in class 2 treated as anomalous. Presenting items from 
class 1  more  frequently  (see  results for experiments 1,2,3) produces a subtle increase in 
class 2 anomalies; this may be caused by a disturbance effect of more  cells in class 1 di- 
srupting the path of class 2 cells as they try to cluster. A lower similarity threshold 
allows fewer cells to cluster and so produces a considerably worsened percentage for 
class 2 anomalies, while a higher threshold has the reverse effect (see results for ex-
periments 1,4,5). The same effect occurs when cell age is modified (see results for 
 

Table 3. Results for experiments 1-9, showing mean number of danger signals per run, 
standard deviation, and percentage of danger signals that correspond to data items in class 1 and 
class 2. 

 Class 1 Class 2 
experiment mean sstdev Percent mean stdev Percent 
1 398.0 0.18 99.99% 1973.6 39.2 20.6% 
2 996.0 0.18 100.0% 1903.1 38.4 21.2% 
3 1991.9 0.37 100.0% 1783.4 46.0 22.4% 
4 398 0 100.0% 4045.0 61.7 42.3% 
5 397.3 0.92 99.82% 1434.4 44.8 15.0% 
8 399 0.0 100.0% 6425.9 75.4 67.1% 
9 396.9 0.25 99.98% 1422.4 44.5 14.9% 
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experiments 1,8,9) – a lower age produces fewer chances for clusters to form in time; 
a higher age increases the chance and thus reduces the class 2 signals. Further ex-
periments showed that increasing the lifespan to 100 and using a threshold of 0.3 
produced accuracy in class 1 of 99.8% and in class 2 of 8.9%, although execution 
times increased to 145 seconds for 10,000 items. 

5   Discussion 

Like immunobiology, the field of artificial immune systems has been obsessed with 
the workings of the adaptive immune system and its capabilities of specificity, diver-
sity and memory, with little work spent on the innate immune system. This work 
attempts to lay the foundations of a more complete view of the immune system for 
AIS. We propose that the concept of tissue is important for several reasons: 

• Tissue provides a generic data representation which interfaces between problem 
and conventional AIS, simplifying future AIS development. 

• Tissue stores the current state of the application, providing a clearer concept of 
“organism” and enabling the AIS to learn to detect changes in the organism, cor-
rect harmful changes and prevent future damage by similar agencies. 

• For applications such as anomaly detection, tissue provides a dynamic window of 
the input data stream; the data is dynamically organized and spatially structured, 
encapsulating the important concepts of temporal and spatial variability. An AIS 
exploiting tissue would be able to specialize and focus on different areas of the 
problem, at different times, enabling a more precise response. 

• Tissue encapsulates ideas of homeostasis – if the problem becomes heterogenous 
or chaotic, the tissue will reorganize its structure in response. An AIS collaborat-
ing with the tissue would be able to correct harmful changes and work to main-
tain homeostasis. 

• Tissue is essential for the innate immune system, and tissue algorithms can be 
used to provide desirable “automatic” processing and signals from data. 

It is proposed that an AIS will employ tissue by traversing its spatial representation 
and allocating resources according to the spatial and temporal requirements. A network-
based AIS might form distinct and functionally diverse subnetworks to focus on tissue 
cells of different types. A population-based AIS would be able to allocate subpopulations 
of agents (e.g., antibodies, B-cells or T-cells) for specific regions of tissue. In all cases, 
all aspects of the problem should be presented to the AIS through tissue, and all AIS 
responses should be presented to the underlying application by the tissue. 

In this work we have focused on the task of anomaly detection, and both tissue-
growing algorithms were developed with this in mind. However, we propose that the 
concept of tissue should be employed for all AIS applications. This may inevitably 
involve different forms of tissue growth. For example, in a robot control application 
[6], sensor input might be used as an input data stream and the algorithms presented 
above could be used. Alternatively, the state of sensors and actuators might be repre-
sented by a fixed and predefined tissue structure (e.g. a cell for each sensor, and a cell 
for each motor). Such a structure would change if sensors or motors were lost through 
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damage – obviously requiring a significant response from the controlling AIS. But 
normal control would occur through the robot presenting its changing state via anti-
gens and signals from the cells, interpreted by the AIS, with responses made to the 
cells being mapped back to robot motor control. 

Like the genetic representations of genetic algorithms, the exact tissue representa-
tion necessary is likely to be application-specific, but the AIS used to consult with the 
tissue and respond to it should be generic. It is conceivable that evolutionary compu-
tation could be employed to evolve useful innate tissue responses  for a given applica-
tion and AIS. Indeed if each tissue cell contained an evolving GP function [1], cells 
would be able to present one or more evolved interpretations (i.e., signals) derived 
from the raw data, in addition to the raw data. 

6   Conclusions 

In this work we have presented the novel concept of tissue for artificial immune sys-
tems. Much like the genetic representation of genetic algorithms, tissue provides an 
interface between problem and immune algorithm. From the perspective of immuno-
biology, tissue provides an innate immune response, with the AIS providing an adap-
tive response. Two tissue-growing algorithms were presented with experimental re-
sults illustrating their abilities to dynamically cluster data and provide useful signals. 
Both algorithms are able to detect anomalous data items with accuracies up to 100% 
depending on the parameter settings. Future work will investigate the integration of 
these algorithms with artificial immune systems for intrusion detection. 
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