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Robots sharing their space with humans need to be proactive to be helpful.

Proactive robots can act on their own initiatives in an anticipatory way to benefit

humans. In this work, we investigate two ways to make robots proactive. One

way is to recognize human intentions and to act to fulfill them, like opening the

door that you are about to cross. The other way is to reason about possible

future threats or opportunities and to act to prevent or to foster them, like

recommending you to take an umbrella since rain has been forecast. In this

article, we present approaches to realize these two types of proactive behavior.

We then present an integrated system that can generate proactive robot

behavior by reasoning on both factors: intentions and predictions. We

illustrate our system on a sample use case including a domestic robot and a

human. We first run this use case with the two separate proactive systems,

intention-based and prediction-based, and then run it with our integrated

system. The results show that the integrated system is able to consider a

broader variety of aspects that are required for proactivity.
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1 Introduction

Humans can act on their own initiative. Imagine the following scenario: you see your

flatmate preparing to leave for a hiking trip in a rainy zone. It is quite likely that you will

give your flatmate some advice like checking the weather forecast or taking some extra

equipment. Such behavior even occurs between strangers. When people see a person

holding garbage and looking around, they tend to show where the garbage bin is since they

recognized the person’s intention to dispose of their garbage. This type of intuitive

interaction is common among humans, and it is already observed in infants (Warneken

and Tomasello, 2006). The question is, what happens if one of the actors is a robot? The

robot should be able to recognize and reason about the human’s intentions; to reason

about the current and forecasted states of the environment; to understand what states may
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be preferable to others; and to foresee problems that the human

could face. The robot should also be able to reason about the

potential effects of its own actions and select and perform actions

that support the human given this context. The behavior of

initiating own action taking into account all these aspects is called

proactive behavior.

Most of the existing work on human–robot interactions rely

on the human taking the initiative: the human sets a request, and

the robot generates and executes a plan to satisfy it. However, in

the above examples of human-to-human interaction, there is no

explicit given goal. The interaction works because humans are

able to assess other humans’ intentions, anticipate consequences,

and reason about preferred states. In this article, we discuss

proactive human–robot interaction, that is, interactions where

the robot behaves by acting on its own initiative, in an

anticipatory way, and without being given an explicit goal

(Grant and Ashford, 2008; Grosinger et al., 2019; Peng et al.,

2019). We consider two types of proactive robot behavior: one in

which the robot understands the human’s intentions and helps

the human to achieve them and the other in which the robot

foresees possible future situations that are undesirable (or

desirable) according to the human’s preferences and acts to

avoid (or foster) them.

In particular, we propose a framework that identifies

opportunities for acting and selects some of them for

execution. Opportunities here are formal concepts grounded in

the relationship among actions, preferences, and state

predictions. Our framework includes two main mechanisms

that contribute to initiating the proactive behavior—human

intention recognition and reasoning (HIRR) and equilibrium

maintenance (EqM). The former mechanism is based on

recognizing human intent from a known list of possible

intents that the human can have. The latter one is based on

predicting how the state may evolve in time and comparing

preferences of states resulting from different actions (or inaction)

(Grosinger et al., 2019). These two mechanisms correspond to

the two types of proactive behavior mentioned above: intention-

based and prediction-based. The whole framework includes

provisions to combine these two mechanisms into an

integrated proactive system. (For a deeper discussion on

different types of proactivity, see Grosinger (2022).)

The general aim of this article is to shed some light on the

notion of proactivity and on its use for service robots interacting

with humans. We focus in particular on the difference between

the two different types of proactivity mentioned above, which are

often found (but not distinguished) in the literature, and we show

that a combined solution is possible and perhaps needed. Within

this aim, the more specific contributions of this article are as

follows: 1) we propose a novel method based on human intention

recognition to generate intention-based proactive robot behavior,

which we call (HIRR); 2) we adapt an existing method based on

temporal predictions and state preferences, called (EqM), to

generate prediction-based proactive robot behavior; 3) we

define an architecture to combine both methods to create a

proactive robot that considers both human intentions and

temporal predictions; and 4) we compare all these using a

sample case study.

The rest of this article is organized as follows. The next

section presents the necessary background together with related

work on intention recognition, proactivity, and their

combination. In Section 3, we define our systems for

intention-based proactivity and for prediction-based

proactivity, together with their integration. Section 4 describes

the implementation and shows the results of a task involving a

simulated domestic robot and a human. At last, in Section 5, we

discuss our results and conclude.

2 Background and related work

In our work, we combine intention recognition and temporal

predictions to generate proactive behavior. Here we provide the

relevant background and related work on these research areas.

2.1 Intention recognition

To assist humans, a robot requires some knowledge of the

human’s goals and intentions. In belief-desire-intention (BDI)

models (Rao and Georgeff, 1995), the agent represents the

environment in terms of beliefs that are true. A set of desires,

representing the agent’s goals, guides the agent’s behavior. We

may or may not know the agent’s goals. The intention

represents the path that the agent is currently taking to

reach a goal. Bratman (1989) points out that the concept of

intention is used to characterize both the human’s actions and

mind (mental states). Actions are considered as done with a

certain intention. Humans attribute mental states of intending

to other agents such as having an intention to act in certain

ways now or later. In this article, we consider an intention to

be a mental state that is expressed through goal-directed

actions.

Intention recognition is the process of inferring an agent’s

intention by analyzing his or her actions and the actions’ effects

on the environment (Han and Pereira, 2013). Approaches in

action recognition, goal recognition, and plan recognition have

been used to infer intention. According to Van-Horenbeke and

Peer (2021), intention recognition systems can be classified as

logic-based, classical machine learning, deep learning, and brain-

inspired approaches, or they can be classified in terms of the

behavior of the observed human toward the observer. We take

here a simplified view and consider two classes of intention

recognition approaches: logic-based and probabilistic. Logic-

based approaches are defined by a set of domain-independent

rules that capture the relevant knowledge to infer the human’s

intention through deduction (Sukthankar et al., 2014). The
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knowledge can be represented in different ways, including using

plan representation languages like STRIPS and PDDL that

describe the state of the environment and the effects of the

possible actions. Logic-based approaches work well in highly

structured environments. Logic representation can define

different kinds of relationships depending on the problem.

These relationships allow us to recognize humans’ intentions

based on observations. Another advantage of logic-based

approaches is that they are highly expressive. The reasoning

result can potentially be traceable and human-understandable.

However, many logic-based approaches assume that human is

rational and try to find the optimal intention that best fits the

observations, while humans often act in nonrational ways

(Dreyfus, 2007). This makes logic-based approaches less

reliable in real-world problems. The uncertainty in humans’

rationality might be addressed by a combination of logic-

based with probabilistic reasoning techniques. Probabilistic

approaches exploit Bayesian networks and Markov models.

Bayesian networks are generative probabilistic graphical

models that represent random variables as nodes and

conditional dependencies as arrows between them (Van-

Horenbeke and Peer, 2021). They can provide the probability

distribution of any set of random variables given another set of

observed variables. Some planning systems use Bayesian

inference to reason about intention. Such approaches are

referred to as Bayesian inverse planning. Ramírez and Geffner

(2009) propose an approximate planning method that generates

a set of possible goals by using Bayesian inverse planning

methods on classical planning. The method assumes that

humans are perfectly rational, which means they only

optimally pursue their goals. As a result of this, the indecisive

behavior of humans is not tolerated. This limitation is partly

addressed by Ramírez and Geffner (2010), who introduced a

more general formulation. Persiani (2020) offers an example of

using Bayesian inference in a logic-based approach. The authors

use classical planning to generate an action plan for each goal,

and then they use a Bayesian prior function to infer human

intention. Probabilistic approaches are able to handle uncertainty

and can therefore handle real-world settings such as nonrational

agents, interrupted plans, and partial observability (Van-

Horenbeke and Peer, 2021). On the other hand, they are less

expressive than logic-based systems, since it is hard to

understand the reasoning behind the result. Scalability is

another well-known difficulty with probabilistic approaches.

In this work, we adopt a logic-based approach as performed

by Persiani (2020): we represent the robot’s knowledge in a

symbolic form, which the robot uses to plan its actions. We

assume rational humans. By this, we mean humans follow the

principle of rationality defined by Newell (1982): “If an agent has

knowledge that one of its actions will lead to one of its goals, then

the agent will select this action.” The approach gives us the

advantage of getting results that are easily traceable and human-

readable.

2.2 Proactivity

Proactive AI systems and robots are opposed to reactive AI

systems, which respond to explicit requests or external events.

In organizational psychology, proactive behavior is

understood as an anticipatory self-initiated action (Grant

and Ashford, 2008). When it comes to artificial agents,

though, we lack a clear definition of proactivity. Drawing

inspiration from the human proactive process, we can identify

the functionalities that are needed for artificial proactivity:

context-awareness, activity recognition, goal reasoning,

planning, plan execution, and execution monitoring. Each

one of these functionalities in itself has been the subject of

active research (Beetz et al., 2016; Ghallab et al., 2016; Aha,

2018; Wang et al., 2019; Doush et al., 2020). Proactivity needs

to contemplate these areas jointly and in a separate process to

each. Context-awareness is not the central topic in proactivity,

but it is used to understand what the current situation is, and

with this knowledge, it is possible to decide how to act. Goal

reasoning deals with questions about generating, selecting,

maintaining, and dispatching goals for execution (Aha, 2018).

Planning can be described as searching and selecting an

optimal action trajectory to a goal that is given externally

by a human or by some trigger. Proactivity resides on the

abstraction level above. It is finding the acting decisions or

goals that should be planned for; hence, it produces the input

to a planner. In conclusion, plan execution and monitoring are

employed by proactivity to enact the acting decision inferred

and to invoke new reasoning on proactivity when execution

fails.

In recent times, there has been a number of promising

works in the field of artificial proactivity. Baraglia et al. (2017)

address the question of whether and when a robot should take

initiative during joint human–robot task execution. The

domain used is table-top manipulation tasks. Baraglia et al.

(2017) used dynamic Bayesian networks to predict

environmental states and the robot’s actions to reach

them. Initiation of action is based on a hard trigger that at

least one executable action exists that does not conflict with

human actions. In contrast, in the work presented in this

article, we aim to find a general solution where acting is based

on reasoning on first principles, rather than on hard-coded

triggers or rules. Bremner et al. (2019) present a control

architecture based on the BDI model incorporating an extra

ethical layer to achieve agents that are proactive, transparent,

ethical, and verifiable. They do anticipation through

embedded simulation of the robot and other agents.

Thereby, the robot can test what-if-hypotheses, e.g., what

if I carry out action x? The robot controller is given a set of

goals, tasks, and actions and thereof generates behavior

alternatives, i.e., plans. The simulation module simulates

them and predicts their outcome. The ethical layer

evaluates the plans and if needed invokes the planner
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module to find new plans proactively. Note that proactive

plans are only generated if previously generated plans from

given goals fail against some given ethical rules, which

admittedly limits generality. The approach that we propose

below is more general since it generates proactive actions

from the first principles. On the other hand, our approach

does not take ethics into account. Umbrico et al. (2020a and

b) present a general-purpose cognitive architecture with the

aim to realize a socially assistive robot (SAR), specifically, for

supporting elderly people in their homes. Their highly

integrated framework includes a robot, a heterogeneous

environment, and physiological sensors and can do state

assessments using these sensors and an extensive ontology.

However, their approach to making the SAR proactive is

based on hard-wired rules like “user need: high blood

pressure → robot action: blood pressure monitoring in

context sleeping.” Peng et al. (2019) are mainly interested

in finding the right level of proactivity. They use hand-coded

policies for guiding the behavior of a robotic shopping

assistant and find that users prefer medium proactivity

over high or low proactivity.

2.2.1 Equilibrium maintenance
In this work, we use EqM, a mechanism proposed by

Grosinger et al. (2019) for achieving proactivity. EqM

autonomously infers acting decisions based on a temporal

prediction of one or several steps. EqM is a general approach

based on a formal model and thereby affords domain

independence. This model is modular and can cope with

different agent capabilities, different preferences, or

different predictive models. The relationship between

situations and triggered actions is not hard coded:

decisions are inferred at run time by coupling action with

state, predicted states and preferences, and choosing among

acting alternatives at run time. In Section 3.2, we give a deeper

description of EqM.

A work that has comparable ideas to the ones in EqM is the

one on αPOMDPs by Martins et al. (2019). With the aim to

develop a technique for user-adaptive decision-making in social

robots, they extend the classical POMDP formulation so that it

simultaneously maintains the user in valuable states and

encourages the robot to explore new states for learning the

impact of its actions on the user. As in all flavors of (PO)

MDPs, however, the overall objective is to find an optimal,

reward-maximizing policy for action selection; by contrast, the

aim of EqM is to maintain an overall desirable world state, be it by

acting or by inaction. Instead of rewarding actions, as done in

MDPs, EqM evaluates the achieved effects of the actions (or of

being inactive).

EqM is also reminiscent of supervisory control of discrete

event systems (Skulimowski, 1990), especially when anticipatory

feedback is used (Skulimowski, 2016). Different from these,

however, EqM does fast local reasoning, and it does not

address the computationally challenging problem of

computing an optimal global policy.

2.3 From intention recognition to
proactivity

Several authors have proposed reactive systems based on

intention recognition. Zhang et al. (2015) provide a framework

for general proactive support in human–robot teaming based on

task decomposition, where the priorities of subtasks depend on

the current situation. The robot reprioritizes its own goals to

support humans according to recognized intentions. Intentions

are recognized by Bayesian inference following Ramírez and

Geffner (2010). Each goal’s probability depends on the agent’s

past and/or current belief, and the goal with the highest

probability from a candidate goal set is recognized as the

current intention. Our framework is similar to that of Zhang

et al. (2015) in linking intention recognition with the proactive

behavior of the robot. In our case, however, the robot does not

have its own independent tasks to achieve: the robot’s only

objective is to help the human proactively by enacting actions

to reach his or her goal.

Sirithunge et al. (2019) provide a review of proactivity

focused on perception: robots perceive the situation and user

intention by human body language before approaching the

human. The review aims to identify cues and techniques to

evaluate the suitability of proactive interaction. Their idea of

proactivity is that the robot identifies a requirement by the

human and acts immediately. This differs from our

understanding of reasoning on proactivity: we generate

proactive agent behavior by considering the overall

environment, the human’s intentions, the overall preferences,

and the prediction on how the state will evolve. This can result in

the agent acting now or later or not at all.

Harman and Simoens (2020) aimed at predicting what

action a human is likely to perform next, based on previous

actions observed through pervasive sensors in a smart

environment. Predictions can enable a robot to proactively

assist humans by autonomously executing an action on their

behalf. The so-called action graphs are introduced to model

order constraints between actions. The program flow is as

follows: 1) action by the human is observed; 2) next actions are

predicted; 3) predicted actions are mapped to a goal state; 4) a

plan for the robot and a plan for the human are created to

reach the goal state; and 5) the robot decides which action it

should perform by comparing the robot’s and the human’s

plan. The work presented in this article shares some traits with

the one by Harman and Simoens (2020): in both cases, we

reason on human intentions and make predictions about

future states using action models. In our case, however,

predictions are made on how the system evolves with and

without robot actions, and proactive actions are taken by
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comparing those predictions. In particular, in our case, these

actions might not be part of the human’s plan. In conclusion,

the trigger to perform proactivity reasoning in the study of

Harman and Simoens (2020) is human action, while in our

work, this trigger is any state change, be it caused by human

action or by the environment.

In the work of Liu et al. (2021), the authors’ aim is to

recognize and learn human intentions online and provide

robot assistance proactively in a collaborative assembly task.

They introduced the evolving hidden Markov model which is

a probabilistic model to unify human intention inference and

incremental human intention learning in real time. Liu et al.

(2021) conducted experiments where a fixed robot arm assists

a human according to recognized intention in assembling

cubes marked by a fiducial mark on top. One such

configuration corresponds to one particular intention. The

human starts to assemble the cubes and the robot proactively

finishes the shape as soon as the intention is recognized or

when a maximally probable intention is found by doing a one-

step prediction. In the study of Liu et al. (2021), proactivity

results from strict one-to-one links where one recognized

intention always leads to the same action sequence, using a

one-step prediction. In our approach, proactive robot

behavior too can be based on recognizing intentions and

their corresponding action sequences, but it can also be

inferred from first principles at run time using multiple

steps prediction.

3 System

We claimed that to initiate proactive behavior, robots must

be equipped with the abilities to recognize human intentions, to

predict possible future states and reason about their desirability,

and to generate and enact opportunities for actions that can lead

to more desirable states. To combine these abilities, we propose

the general system model shown in Figure 1.

The system includes different components to offer a fully

autonomous interaction, namely, a situation assessment, a

knowledge component, a planner, an intention-based

proactivity component, a predictive proactivity component, an

action selection component, and lastly an executor. The situation

assessment and the executor components act as interfaces to the

physical environment. They respectively collect and induce

changes from/to the environment. The knowledge component

represents a model of the environment. This model encodes the

state evolution of the world, the set of goals of a human, action

plans of how the human can reach his or her goals, robot

capabilities as a set of action schemes, the state transition

relation, and a desirability function to compute the degree of

desirability of a state.

To be more specific, we model the environment and its

dynamics using a standard dynamic system Σ = 〈S, U, f〉where
S is the set of states, U is the finite set of external inputs (robot

actions or human actions), and f ⊆ S × U × S is the transition

relation. The system’s dynamics is modeled by the relation f(s,

FIGURE 1
System model: an autonomous system that initiates proactive behavior according to the situation of the environment, including the human.
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u, s′), which holds if Σ can go from s to s′ when input u is

applied in s. To give S a structure, we rely on a symbolic

representation of world states. Given a finite set L of

predicates, we let S ⊆ P(L) and denote the current state by

sc. Each state s ∈ S is thereby completely determined by the

predicates that are true in s. We denote the set of human goals

by GH ⊆ S. Each goal g ∈ GH is determined by predicates that

are true in g. Given a goal g, we denote any state in S where all

predicates in g (and potentially more) are true by sg, hence g ⊆
sg. At last, we denote the set of all states sg by Sg ⊆ S, where the

predicates of g are true.

The planner is an off-the-shelf planner able to create a

sequence of actions that leads from the current state to a goal

state. In our implementation, we use Fastdownward1, a domain-

independent planner based on PDDL, the planning domain

definition language (Ghallab et al., 1998). Both the human’s

plans and the robot’s plans are formulated in PDDL, a standard

language to define planning domains and problems. The

planning domain includes the predicates of L used for

describing states and operators that model the available

actions of humans and robots. The planning problem includes

information about the available objects, the current state sc, and

the goal of the human g ∈GH. Given a domain and a problem, the

planner finds the shortest plan θg(s) between the current state sc
and the given goal g. This plan represents the sequence of actions

that the agent should do to reach any state sg where all predicates

of g are true.

The intention-based proactivity component and the

predictive proactivity component are both able to generate

proactive behavior, but they use two different methods which

we describe below. At last, the action selection component

integrates the decisions generated by those two methods into

an overall proactive behavior to be executed by the robot.

To describe the main contribution of this article, i.e., the

integration of intention-based and predictive proactivity, we first

need to introduce individual systems which it is based on. In

Section 3.1, we present our novel approach for intention-based

proactivity, HIRR. In Section 3.2, we recall our existing approach

to EqM, and in Section 3.3, we describe the integration of HIRR

and EqM.

3.1 Intention-based proactivity: Human
intention recognition and reasoning

Experimental psychology shows that humans can interpret

others’ intentions by observing their actions, which is part of the

so-called theory of mind (Premack and Woodruff, 1978).

Interpreting actions in terms of their final goal may give hints

on why a human performed those actions and hence make us

able to infer those human intentions (Han and Pereira, 2013).

Inspired by these concepts, we define a framework called HIRR

for generating proactive behavior based on intention recognition.

Intention recognition applies inverse planning2 rules to recognize

the intentions of a human in the form of an action plan. A robot

can then proactively enact the next action in that action plan on

behalf of the human, or it can inform the human on which action

to take next to reach their goal.

There are different methods to recognize human intentions. We

select inverse planning since this is a straight-through logic-based

approach for fully observable systems. The approach has been

widely used in other systems for intention recognition (Han and

Pereira, 2013; Farrell and Ware, 2020; Persiani, 2020). While

planning synthesizes a sequence of actions to reach a goal, in

inverse planning we observe the execution of a sequence of

actions to infer the human’s goal and the corresponding plan.

The assumption of full observability may reduce the robustness

of plan recognition in real settings, sincemissing to observe an action

might lead to a plan not being recognized. On the other hand, goal

inference has some degree of robustness with respect to variations in

the sequence in which human actions are observed, that is, different

observed sequences used to reach the same goal can be recognized as

the same intention. Different sequences may arise because of

asynchronous sensors or because the human performs the

actions in a different order. This invariance property allows our

system to tolerate some amount of uncertainty.

Once the user has committed to reaching a goal, we say the

user intends to reach that goal g. We define an intention i(s) in
state s to be an action plan θg(s) to reach goal g from state s. We

infer human intentions I(s) as defined in Eq. 1:

I s( ) � θĝ s( ) | ĝ ∈ argmin
g∈GH

len θg s( )( )( )⎧⎨⎩ ⎫⎬⎭ (1)

In words, for each goal g in the set GH of a human’s potential

goals, we use our planner to compute the shortest plan θg(s) that

the human can perform to reach g from the current state s. We

then select the goal ĝ in GH to which the shortest of these plans

leads: θĝ(s). The rationale behind this is that θĝ(s) has the

shortest number of actions left to be executed; that is, the human

already has executed a large part of this plan. Since we assume

that the human is rational, it is plausible to infer that the human

intends to do all the remaining actions in θĝ(s) to reach ĝ from s.

Therefore, we take the action list in θĝ(s) to be the intention i(s)
of the human in state s. This strategy has been originally

proposed in logic-based approaches by Persiani (2020).

1 https://www.fast-downward.org/

2 Inverse planning means working backward to infer the intention which
caused the agent’s behavior (Baker et al., 2009). This is different from
backcastingwhich is a methodwhere the future desired conditions are
envisioned and steps are then defined to attain those conditions
(Holmberg and Robert, 2000).
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Equation 1 is implemented by Algorithm 1 called HIRR that

returns the intention i(s) ∈ I(s). The returned intention is the

residual action plan θĝ(s) of the human’s recognized intention to

be enacted proactively by the robot. If the cardinality of the set of

goals with the shortest residual action plans, i.e., the cardinality of

the set of intentions, is not 1, the intention is not recognized or it

is ambiguous and an empty set is returned.

Algorithm 1. HIRR(s, GH)

3.2 Predictive proactivity: Equilibrium
maintenance

For doing reasoning on predictive proactivity we use a

computational framework called EqM, described in detail by

Grosinger et al. (2019). We only give a brief overview of the

framework here, the interested reader is referred to the cited

reference for details.

In our framework, the evolution of system Σ by itself, that is,

when no robot action is performed, is modeled by its free-run

behavior Fk. Fk determines the set of states that can be reached

from an initial state s in k steps when applying the null input ⊥.

F0 s( ) � s{ }
Fk s( ) � s′ ∈ S | ∃s″: f s,⊥, s″( ) ∧ s′ ∈ Fk−1 s″( ){ }.

Desirable and undesirable states are modeled by Des, a fuzzy set

of S. The membership function μDes: S → [0, 1] measures the

degree by which a state s is desirable. Des is extended from states

to sets of states in an obvious way: μDes(X) = infs∈X(μDes(s)), where

X ⊆ S. We abbreviate μDes(·) as Des(·).
The available robot actions are modeled by action schemes:

Partial functions α: P(S) → P+(S) that describe how states can be

transformed into other states by robot acting. An action scheme α

abstracts all details of action: α(X) =Y only says that there is a way to

go from any state in the set of states X to some state in set Y. Action

schemes can be at any level of abstraction, from simple actions that

can be executed directly to sequential action plans, or policies, or

high-level goals for one or multiple planners. Applying an

action scheme α in a state s may bring about effects that are (or

are not) desirable, possibly in k steps in the future.We call the degree

to which an applied action scheme achieves desirable effects benefit:

Bnf α, s, k( ) � inf
X∈dom α,s( )

Des Fk α X( )( )( ), (2)

where Fk(X) = ⋃s∈XF
k(s) and dom(α, s) is the domain of α

relevant in s.

With this background, Grosinger et al. (2019) define seven

different types of opportunity for acting, which are the

foundation of proactivity by EqM. We write Oppi(α, s, k) to

mean that applying action scheme α in state s is an opportunity of

type i, by looking k steps into the future.

Opp0 α, s, 0( ) � min 1 − Des s( ),Bnf α, s( )( )
Opp1 α, s, k( ) � min 1 − Des s( ), sup

s′∈Fk s( )
Bnf α, s′( )( )⎛⎝ ⎞⎠

Opp2 α, s, k( ) � min 1 − Des s( ), inf
s′∈Fk s( )

Bnf α, s′( )( )( )
Opp3 α, s, k( ) � sup

s′∈Fk s( )
min 1 − Des s′( ),Bnf α, s′( )( )( )

Opp4 α, s, k( ) � inf
s′∈Fk s( )

min 1 − Des s′( ),Bnf α, s′( )( )( )
Opp5 α, s, k( ) � min sup

s′∈Fk s( )
1 − Des s′( )( ),Bnf α, s, k( )⎛⎝ ⎞⎠

Opp6 α, s, k( ) � min inf
s′∈Fk s( )

1 − Des s′( )( ),Bnf α, s, k( )( )
To understand these opportunity types, consider for example the

first type Opp0: the degree by which α is an opportunity of type

0 is the minimum of (i) the degree by which the current state s is

undesirable and (ii) the benefit of acting now. In an intuitive

manner, α is an opportunity of type 0 if (and to the extent) we are

in an undesirable state, but enacting α would bring us to a

desirable one. As another example, consider Opp5: here, we

compute the minimum of (i) the maximum undesirability of

future states and (ii) the future benefit of acting now: intuitively,

α is an opportunity of type 5 if (and to the extent) some future

states within a look-ahead k are undesirable, but if we enact α

now, then all the k-step future states will be desirable. For a

detailed explanation of the rest of the opportunity types, see

Grosinger et al. (2019).

At last, we can define what it means for a system to be in

equilibrium from a proactivity perspective.

Eq s, K( ) � 1 − sup
k,i,α

Oppi α, s, k( ), (3)

where k ∈ [0, K], i ∈ [0, 6], and α ∈ A, where A is the set of all

action schemes. In an intuitive manner, equilibrium is a

measure of lack of opportunities: if there are big

opportunities, then the system is very much out of

equilibrium; if there are small opportunities, then the

system is close to being in equilibrium; if there are no

opportunities at all, then the system is fully in equilibrium.

The notion of equilibrium is used in the EqM algorithm to

achieve agent proactivity, as shown in Algorithm 23.

3 This algorithm is a slightly modified version of the original version given
by Grosinger et al. (2019); this is done to accommodate for the
integration with HIRR.
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Algorithm 2. EqM(s, K)

3.3 Action selection: Integrating human
intention recognition and reasoning and
equilibrium maintenance

HIRR and EqM are complementary approaches that create

proactive acting in different ways. We now explore how to

integrate the two systems. The action selection component in

Figure 1 integrates the approaches at the result phase after each

system has proposed its proactive action. However, each approach

has a different reasoning mechanism and affects the future states in

different ways. HIRR supports humans in reaching their intentions.

It infers a human’s intention and suggests, or enacts, a sequence of

actions to reach the human’s goal starting from the current state.

EqM prevents the human from being in undesirable states by

predicting possible state evolutions and reasoning on what is

desirable and how available robot actions could create benefit.

Integrating the two systems is not trivial. Consider the hiking

example in the opening of this article and suppose that in a given

state s, EqM infers an opportunity to warn the human of hail,

Opp5(αwarn, s, 2). Suppose that at the same time,HIRR recognized

that the human intention is to go hiking and infers to bring the

compass to the human.

We have two competing goals for robot acting, and action

selection needs to weigh them via a common scale. We propose a

solution for integrating EqM and HIRR by turning the goal from

HIRR into an opportunity of type Opp0, hence, Opp0(αcollect(compass),

s, 0) and check its degree. In other words, we check the desirability of

the states that would be achieved by the action when applied. Note

that we use Opp0 here since the decisions by HIRR are meant to be

acted upon immediately and do not use multiple-step look-ahead,

just like Opp0. Once we have converted the individual outputs from

HIRR and from EqM to a common format, that is, sets of

opportunities, we collect all these opportunities into a pool, from

which the action selection component (Figure 1) chooses an acting

alternative.

To transform aHIRR acting decision into an opportunity of type

Opp0, we temporarily modify the outcome of theDes function. In the

EqM framework, the Des function does not take human intentions

into account. It does not model states with unfulfilled human

intentions as undesirable and those with fulfilled ones as desirable.

Such a Des function would therefore not generate an opportunity

corresponding to an unfulfilled intention. We therefore temporarily

modifyDes to decrease the desirability of the current state (Algorithm

3, line 3), modeling the undesirability of unfulfilled intention, and

increase the desirability of the effects of an action that fulfills the

intention (line 4): This allows the generation of an opportunity based

on human intention recognition. For example, a state that would be

desirable to the degree of 0.7 by itself might only be 0.1 desirable

when a certain human intention has been recognized. In contrast, we

increase the desirability of the effects that would manifest when an

action of the human’s intention is applied, which would not be the

case otherwise when no human intention was recognized, e.g., with

recognized human intention Des(α(s)) = 0.9 and without recognized

human intention Des(α(s)) = 0.3.

Algorithm 3. HIRR -Opp(s, GH)

In our experiments, we have implemented the decrease and

increase functions by scaling by a fixed value; exploring better ways

to implement these steps is a matter for further investigation. The

modified desirability functionDes′(s) is used in line 8 to compute the

degree of the opportunity of typeOpp0 for applying action scheme α

in the current state s. α is the first action in the recognized intention

(action plan) returned by HIRR (line 1). Note that the computation

in line 5 uses amodifiedBnf′(α, s), which is based onDes′(α(s)). This
opportunity and its degree are returned in line 6 and represent the

opportunity based on human intention recognition.

Now that we have opportunities for acting based on prediction,

as returned from Algorithm 2, and the one based on reasoning on

human intention, as returned from Algorithm 3, we can decide

which of them to enact in using the action selection Algorithm 4.

This algorithm continuously checks if the state has changed (line 4),

be it by changes in the environment or by the application of robot

action. If so, it collects the opportunities coming from both

proactivity systems, EqM(s, K) and HIRR(s, GH) (lines 5 and 6)

and then choose one of these to be dispatched to the executive layer

and enacted (line 8). The function Choose(), like the Choose() in

Algorithm 2, can implement several strategies. In our experiments,

Choose() selects the opportunity with the highest degree to be

enacted. If there are several opportunities with the highest degree a

decision is made by the opportunity type, how much benefit can be

achieved and the size of the look-ahead. More discussion on these

strategies can be found in the work of Grosinger et al., 2019.

Algorithm 4. Action Selection (K, GH)
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FIGURE 2
System model overview for human intention recognition and reasoning HIRR.

FIGURE 3
System model overview for equilibrium maintenance EqM.
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4 Illustrative experiments

In this section, we empirically illustrate the behavior of the

presented approaches to proactive behavior by running the same

simulated task with three different configurations of the system.

We compare and analyze the outcomes of the system shown in

Figure 1 when:

1. We only use intention-based proactivity (HIRR);

2. We only use predictive proactivity (EqM); and

3. We integrate both intention-based and predictive proactivity.

Figure 2 and Figure 3 show the systems used for the first two

experiments, while the integrated system used for the third

experiment is the one previously shown in Figure 1. Note that

these experiments are not meant to constitute a systematic

empirical evaluation, but rather to provide a hands-on

demonstration of how different results are obtained by

applying the two types of proactivity discussed in the article,

as well as by a combination of these two types, and to suggest that

a combined approach might be needed.

The code is available in a “research bundle” on the European

AI-on-demand platform, ai4europe.eu4. This research bundle

includes the open source code, libraries, and a form of a

notebook allowing users to interact with the framework by

defining their environment.

4.1 Task description

We define a hypothetical scenario where a human moves

inside a house and collects objects to reach a goal. Figure 4

graphically represents the dynamic system Σ = 〈S, U, f〉 that

models our scenario, where arrows show the state transitions f

that correspond to possible evolutions of the environment

(including actions by the human) if there is no interference

from the robot. The figure also indicates the degree of desirability

Des(s) of each state s. In addition to Σ and Des, the scenario

includes the set of action schemes given in Table 1 and a setGH of

four human goals:

• Hiking; backpack collected, compass collected, water

bottle collected, human is outside.

• Promenade; hat collected, dog collected, walking stick

collected, human is outside.

• Watch TV; water bottle collected, sugar collected, tea

collected, remote control collected.

• Read Book; glasses collected, book collected, tea collected,

sugar collected.

Each goal describes what must be true for it to be considered

reached. For example, the goal of “hiking” is reached when it is

true that a backpack, a compass, and a water bottle are collected

and the human is outside. The actions to reach the individual

goals can be done both by the human and the robot (except for

going outside).

In our implementation, both the dynamic system and the

action schemes are modeled in PDDL. Recall that PDDL

includes a domain definition and a problem definition. In

the domain definition, we model object definitions, predicate

definitions for logical facts, and action definitions with

preconditions and effects. In the problem definition, we

model the initial state of the environment in a logical

format, as well as the goal state. Actions are defined for

gathering and leaving objects, for telling the human they are

ready to leave the house, and for cleaning the dishes. The details

are provided in Table 1. Some actions can be executed by the

robot, some can be executed by the human, and some by both

the human and the robot. The actions that are done by the

human are observed by the robot, and based on them, the

HIRR system recognizes the human’s intention. The EqM

system, on the other hand, reasons about potential robot

actions while taking into account the human’s actions

which are part of the free-run (uncontrollable state

transitions). Note that in this use case, all actions are

deterministic except for cleaning the dishes which is

nondeterministic: the action can have the effect that all

dishes are clean or that they are still half dirty.

The defined robot actions are used in the EqM system to

infer opportunities. HIRR recognizes human intention by

inferring the human’s action plan. When the intention is

recognized, HIRR can make the robot proactively carry out

the rest of the human’s action plan on the human’s behalf.

However, the human’s action plan toward their goal might

contain an action that cannot be carried out by the robot. In

that case, the robot transforms the action into a

communication action where the robot tells the human

what they should do. For example, after having collected all

the necessary items, the human is supposed to leave the house

to reach their goal of “hiking.” The robot can collect all

necessary items but cannot leave the house, hence, it tells

the human “Everything has been collected. You are ready to

leave now for going hiking.”

The desirability function, Des, which computes the

desirability degree of each state, is assumed given. In our

example scenario, we consider one specific run where the state

evolves as follows: s0, s1.0, s2.0, s3.0 (Figure 4). The system starts

in s0 where the weather is nice, the time is morning, and the

human is having breakfast. This state is very desirable,

Des(s0) = 1.0. Later the state is changed to s1.0 where the

weather is still nice and the time is still morning, but the

human finished his or her breakfast so there are dirty dishes,

and the human collected the backpack. This state is less
4 https://www.ai4europe.eu/research/research-bundles/proactive-

communication-social-robots
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desirable, Des(s1.0) = 0.6. Later the state evolves to s2.0, where

the weather is cloudy and dishes are cleaned. In addition to the

backpack, now the compass is collected. The last state chance

is s3.0, where the weather is cloudy, the time is morning, and

the human has collected the water bottle in addition to the

previously collected belongings, backpack and compass. Note

that the predicate “dishes-dirty” changes from true (in s1.0 and

s1.1) to false (in s2.0 and s2.1). This is because the free-run state

evolution models all uncontrollable state transitions, which

include the environment and the human. Hence, the dishes

not being dirty anymore means that the human has taken care

of cleaning them.

4.2 Human intention recognition and
reasoning only

We consider the scenario described in Figure 4 using only

HIRR for achieving proactive agent activity. This means we

evaluate the implementation of the method HIRR as described

in Section 3.1. The architecture of the system is shown in

Figure 2. Table 2 lists the recognized human intentions in the

respective state and the proactive agent activity inferred.In s0, the

HIRR cannot recognize yet what the human’s intention is, and it

could be any of the four known human goals, going on a hike or

going on a promenade, watching TV, or reading a book. Then the

TABLE 1 Actions that a human and a robot are capable to do. The name of the action (possibly including a parameter), preconditions of the actions,
and the effects that will show after the action is applied, as well as who can do the action (human and/or robot), are provided.

Action Precondition Effect Agent

Gather object And (obj is not gathered, human at home) Human gathered object Human/robot

Leave object And (obj is gathered, human at home) Human not gathered object Human/robot

Leave home Human at home Human not at home Human

Suggest humans leave home Human at home Human not at home Robot

Warn human Human at home And (human at home, human warned) Robot

Clean dishes Or (dishes dirty, dishes half dirty) Or (dishes not dirty, dishes half dirty) Human/robot

FIGURE 4
States and possible state transitions (free-run) in our scenario. The desirability values for each state are color coded, as well as indicated
numerically. Green represents desirable states, while pink to red represents less desirable states. Themore undesirable a state is, themore intense it’s
red tone.
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state advances to s1.0 where a backpack is collected. In this state,

theHIRR is able to detect that the human’s intention is to go on a

hike. The HIRR can infer to proactively bring the water bottle to

the human as this is the next action inferred in the human’s

action plan. The action is dispatched and the robot proactively

brings the water bottle to the human (in simulation). Now the

human has the backpack (gathered by the human him-/herself)

and the water bottle (gathered by the robot). The state evolution

advances to the next state s2.0′ . In this state also, a compass is

gathered, which was done by the human. (For any state s in the

free-run in Figure 4, s′marks its equivalent on which robot action

has been applied.) Again, the intent recognition detects that the

human’s intention is going on a hike. The intention reasoning

system detects that all necessary items for going on a hike have

been collected. Therefore, it infers the proactive activity of

notifying the human that he/she is ready to leave. Note that,

in state s2.0′ (which is the state s2.0 plus applied robot action), the

same predicates are true as in s3.0. This is eligible and expected as

the robot’s proactive acting is doing part of the human’s action

plan based on HIRR. Therefore, a state s2.0′ would not evolve into

s3.0 (which is identical), but into states s4.0 or s4.1 where the

human is outdoors. Note that, once the human has left the house,

proactive interaction from our system with him/her is not

possible. That is why there is no intention recognized in s4.0,

s4.1. Note also that these states are quite undesirable (Des(s4.0) =

0.0 and Des(s4.1) = 0.4), as the user is outdoors while the weather

conditions are unpleasant (rain) or even dangerous (hail). The

algorithm for HIRR neither does any prediction of future states

nor reasons about desirability/preference. Therefore, it is

ignorant of the upcoming undesirable situation and cannot

act on it.

4.3 Equilibrium maintenance only

We again consider the use case described in Figure 4 but now

using EqM only for achieving proactive agent activity. This

means we test an implementation of the EqM algorithm as

described in Section 3.2. Table 3 lists the opportunities for

acting inferred in the respective state and the proactive agent

activity to be enacted, i.e., the chosen opportunity. The outcome

of EqM depends very much on the size of the prediction,K. In our

system run, we set K = 2. (See Grosinger et al. (2019) for a

discussion on the choice of the look-ahead horizon K.) We let

TABLE 2 The state evolution and the proactive agent activity inferred in each state when using HIRR only.

State Intention recognized Proactive agent activity
chosen—HIRR

s0 ? —

s1.0 Hiking Gather water bottle

s2.0′ Hiking Tell the human that he/she is ready to leave the house

s3.0 ? —

TABLE 3 The state evolution and the proactive agent activity inferred in each state when using EqM only. Note that αwarn refers to warning the human
of risk of bad/harmful weather conditions, αclean refers to cleaning the dishes, i.e., putting them in the dishwasher, and αgather(any) refers to
gathering any object for the human.

State Opportunities inferred Proactive agent activity
chosen

s0 Opp3,4,5,6(αgather(any), s, 1) = 0.01 Clean dishes in 1 step

Opp3,4(αclean, s, 1) = 0.4

s1.0 Opp0(αgather(any), s, 0) = 0.01 Clean dishes now

Opp0(αclean, s, 0) = 0.4

Opp1,2(αgather(any), s, 1) = 0.01

Opp1,2(αgather(any), s, 2) = 0.01

s2.0 Opp5,6(αgather(any), s, 2) = 0.01 Warn for hail, effect seen in 2 steps

Opp5(αwarn, s, 2) = 1.0

Opp6(αwarn, s, 2) = 0.6

s3.0 Opp5,6(αgather(any), s, 1) = 0.01 Warn for hail, effect seen in 1 step

Opp5(αwarn, s, 1) = 1.0

Opp6(αwarn, s, 1) = 0.6
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EqM infer opportunities for acting that are current (k = 0), one-

time step in the future (k = 1), and two-time steps in the

future (k = 2).

The state evolution starts from state s0. The following

opportunities are inferred: EqM does not infer to act in the

current state, s0, because the human is having breakfast and the

state is very desirable, Des(s0) = 1.0. However, when projecting

the state one-time step into the future, EqM observes that the

upcoming possible states will be less desirable, Des(s1.0) = 0.6 and

Des(s1.1) = 0.6, because there will be dirty dishes from the

breakfast. Therefore, EqM infers the opportunities for the

robot to put the dishes in the dishwasher in the future,

i.e., one step from now. There are no opportunities for acting

in two-time steps.When the human gathers the backpack, state s0
evolves to s1.0. The state is not very desirable, Des(s1.0) = 0.6,

because there are dirty dishes from the breakfast. EqM infers the

opportunity for the robot to put the dirty dishes in the

dishwasher now, in the current state s1.0. Note that, what

before in s0 had been an opportunity for acting in the future

is now an opportunity for acting in the present.When the human

gathers the compass, the state evolves into s2.0. The state is

desirable again, Des(s2.0) = 1.0, because the dishes are not

dirty anymore. This means either the robot has enacted the

opportunity of putting the dishes in the dishwasher in the

previous state or putting the dishes in the dishwasher has

happened through uncontrollable action as part of the free-

run, i.e., the human has put the dishes in the dishwasher. In

s2.0, there are no opportunities to consider the current state or

take a look-ahead of k = 1. However, when EqM projects the state

two steps into the future, it appears that the possible states are

very undesirable, Des(s4.0) = 0.0, and quite undesirable,

Des(s4.1) = 0.4. This is because the human will be outdoors

and the weather will be very bad (rain) or even dangerous (hail).

EqM, therefore, infers an opportunity for the robot to act now to

prevent the future very undesirable outcome. More concretely,

the robot proactively goes to the human and warns the human

now to prevent him/her to be outdoors in the hail later. In case

the warning is not heeded, in s3.0, the same opportunity for acting

is inferred, only that now the look-ahead is a one-time step

instead of two.

4.4 Human intention recognition and
reasoning and equilibrium maintenance

As before, we consider the use case described in Figure 4 but

now using both HIRR and EqM for achieving proactive agent

activity. This means we have a system as described in Section 3.3.

Table 4 lists the opportunities inferred by HIRR and the

opportunities inferred by EqM, in the respective state, and

marks which of them is chosen to be enacted. In s0, there are

no opportunities by HIRR since the human intention cannot be

unambiguously determined yet which yields zero opportunities

for proactive acting (Section 3.1). EqM, on the other hand, does

infer opportunities for acting in state s0. The one opportunity

with the greatest degree, and hence, the one chosen, is an

opportunity to clean the dishes in one-time step from now,

Opp3,4(αclean, s0, 1).In s1.0, there is an opportunity coming from

HIRR since the human intention is recognized as “hiking.”

Hence, there is an opportunity to gather the water bottle,

Opp0(αgather(wb), s1.0, 0). The degree and the type of

opportunity are computed according to Algorithm 3.

Moreover, EqM produces opportunities in s1.0. The

opportunity from EqM which has the highest degree is

cleaning the dishes now—this is the opportunity from s0, now

being of type Opp0 (to be applied now), while it was an

opportunity for the future, Opp3,4, in s0. HIRR’s opportunity

to gather the water bottle now is chosen to be enacted. How to

TABLE 4 The state evolution and the proactive agent activity inferred in each state when using bothHIRR and EqM. (Note that αwarn refers to warning
the human of risk of bad/harmful weather conditions, αclean refers to cleaning the dishes, i.e., putting the dishes in the dishwasher, αgather(any)
refers to gathering any object for the human, and αleave refers to informing the human that he/she is ready to leave the house.)

State Proactive acting—HIRR Proactive acting—EqM Chosen proactive action

s0 Opp3,4,5,6(αgather(any), s, 1) = 0.01 Clean dishes in 1 step

Opp3,4(αclean, s, 1) = 0.4

s1.0 Opp0(αgather(wb), s, 0) = 0.5 Opp0(αgather(any), s, 0) = 0.01 Gather water bottle now

Opp0(αclean, s, 0) = 0.4

Opp1,2(αgather(any), s, 1) = 0.01

Opp1,2(αgather(any), s, 2) = 0.01

s2.0 Opp0(αleave, s, 0) = 0.5 Opp5,6(αgather(any), s, 2) = 0.01 Warn for hail, effect seen in 2 steps

Opp5(αwarn, s, 2) = 1.0

Opp6(αwarn, s, 2) = 0.6

s3.0 Opp0(αleave, s, 0) = 0.5 Opp5,6(αgather(any), s, 1) = 0.01 Warn for hail, effect seen in 1 step

Opp5(αwarn, s, 1) = 1.0

Opp6(αwarn, s, 1) = 0.6
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choose between the opportunities from HIRR and EqM is

determined by Algorithm 4.

The human now has the backpack (gathered by the human

him-/herself) and the water bottle (gathered by the robot). The

state evolution advances to the next state s2.0′ . Note that in state

s2.0′ (which is the state s2.0 plus applied robot action), the same

predicates are true as in s3.0 (Section 4.2). HIRR recognizes going

on a hike as the intention of the human and proposes the

opportunity to inform the human that he/she is ready to leave

the house as all belongings for the hike have been packed. EqM

proposes opportunities for warning the human about undesirable

(rain) or possibly dangerous weather conditions (hail) as the

human is predicted to be outdoors in the future, two-time steps

from now. The opportunity coming from EqM (warning the

human) has a higher degree, 0.6, than the opportunity coming

from HIRR (“ready-to-go” message for the human) which has a

degree of 0.5. Therefore, the combined system of HIRR and EqM

chooses to dispatch the robot activity of warning the human.

In s3.0, since the conditions have not changed, HIRR infers

the opportunity to confirm the human that they have gathered all

necessary items and hence are ready to leave the house for going

hiking. The warning of EqM has not been heeded in the previous

state by the human, hence, EqM again infers to warn the human

for the future unpleasant/dangerous weather, only now just one-

time step into the future instead of two.

5 Discussion and conclusion

In this article, we have analyzed two approaches to

proactivity: HIRR, which infers proactive actions by

recognizing the human’s intended plans and taking over the

next action in these plans, and EqM, which infers opportunities

for acting by reasoning about possible future states and about

what states are preferable. We have then defined a third approach

that combines these two types of proactivity and have illustrated

the three approaches in a sample use case. Our analysis shows

that each approach can generate some proactive behaviors but

not others. HIRR focuses on helping humans toward achieving

their intentions, whereas EqM focuses on preventing humans to

end up in undesirable situations. EqM does not consider humans’

intentions and therefore cannot generate proactive behavior to

support the human to achieve them; HIRR, on the other hand,

does not reason about how the state will evolve and about the

overall desirability of future states and therefore cannot generate

proactive behavior based on the predicted benefit of actions. The

combined system can take into account both humans’ intentions

and the desirability of future states.

A major aim of this article is to clarify that there are several

ways to achieve proactive behavior and to show that a combined

scheme may be needed. The next step will be to explore possible

ways to achieve this combination. The admittedly naive way we

proposed can be considered as a base case, which serves as an

example. Many smarter and tighter forms of combination can be

explored, and more work will be needed to do that. For instance,

in our approach, HIRR and EqM independently propose

proactive actions, and one of those is selected. This can be

called late integration. Future work might investigate early

forms of integration, where reasoning on human intentions,

on available robot’s actions, on future states, and on

preferences among those states is done in an integrated

fashion. This tighter integration of HIRR and EqM will

require a shared formulation for the two.

Our current framework is built on state descriptions that only

consider the physical world. In future work, it will be interesting

to include the inner world of humans. We plan to explore the use

of techniques from the area of epistemic logic and epistemic

planning to model the intentions, knowledge, and beliefs of

human agents. The Des function and benefit of acting can

then also take into account the preferences of mental states

and how to bring preferable epistemic states about.

While we considered a single human in this article, both

HIRR and EqM can in principle consider multiple humans: one

would then have to track separately the single actions of each

person and infer their intentions. If the humans are collaborating,

HIRR could consider all of the humans’ actions together to infer

the collective intention. EqM can fuse the single humans’

preferences in one overall Des function. Besides considering

multiple humans, our system might also consider multiple

proactive robots. New challenges may be posed about how to

coordinate them but also opportunities may arise for solving

tasks jointly.

The results of EqM, as well as the results of the combined

system HIRR + EqM, strongly depend on the models of the

dynamics of the system Σ, which determines the prediction of the

state evolution (free-run), and on the modeling of preferences

(Des function). To see this, consider the example in Section 4. In

state s1.0, the opportunity of HIRR, to gather the water bottle, is

chosen over the opportunity of EqM, to clean the dishes. If the

desirability function modeled a stronger undesirability of dirty

dishes, then the degree of the opportunity by EqM would have

been higher and hence this opportunity would have been chosen

to be enacted. Furthermore, consider a slightly modified state

dynamics that differs from the one in Figure 4. In these modified

state dynamics, the states at time 4 have weather conditions ‘sun’

and ‘clouds’ (instead of ‘rain’ and ‘hail’). In this use case, EqM

would only infer to clean the dishes in state s1.0, but it would not

support the human preparing for the hike because it is not

reasoning on the human’s intention. HIRR, on the other hand,

could provide a lot of support to the human to achieve his or her

intention and would achieve a very desirable final outcome: the

human out on a hike with all his or her belongings gathered.

In this article, we have simply assumed that both Σ and Des

are given. Future work, however, might explore the use of

machine learning to learn probabilistic models of state

evolution. Moreover, hybrid techniques (model-based and
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data-driven) are conceivable which should take into account

inferring the human’s intentions as this is an indicator of what

the human will do next and thereby how the state will change.

When eliciting and reasoning on preferences, ideally, the

proactive agent should take into account the dynamic change

of preferences, weigh personal against common, long-term

against short-term preferences, and reason on the uncertainty

of what is desirable.

Furthermore, the experiments reported in Section 4 are

simple illustrative examples, which have been run using

console inputs and outputs to replace physical sensing and

actuation. Given the promising results, the next step will be to

connect our system to a real Pepper robot (Pandey and Gelin,

2018), conduct a user study in a real domestic environment, and

quantitatively evaluate the results. Since our system is based on

general models, we also plan to test it on a variety of physical

robot systems or interactive agents in diverse domains.
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