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TWO-WEIGHT, WEAK-TYPE NORM INEQUALITIES FOR
FRACTIONAL INTEGRALS, CALDERÓN-ZYGMUND

OPERATORS AND COMMUTATORS

D. CRUZ-URIBE, SFO AND C. PÉREZ

Abstract. We give Ap-type conditions which are sufficient for the two-weight,
weak-type (p, p) inequalities for fractional integral operators, Calderón-Zygmund
operators and commutators. For fractional integral operators, this solves a problem
posed by Sawyer and Wheeden [28]. At the heart of all of our proofs is an inequality
relating the Hardy-Littlewood maximal function and the sharp maximal function
which is strongly reminiscent of the good-λ inequality of Fefferman and Stein [13].

1. Introduction

Let M be the Hardy–Littlewood maximal operator. Given a pair of weights (u, v)
and p, 1 < p < ∞, it is well known that the weak-type inequality

(1.1) u({x ∈ Rn : Mf(x) > t}) ≤ C

tp

∫
Rn

|f |pv dx

holds if and only if (u, v) ∈ Ap: there exists a positive constant K such that for all
cubes Q,

(1.2)

(
1

|Q|

∫
Q

u dx

)(
1

|Q|

∫
Q

v−p′/p dx

)p/p′

≤ K.

For other classical operators, however, the Ap condition is not sufficient for the weak
(p, p) inequality. In fact, of the operators we are interested in, a necessary and
sufficient condition for the weak (p, p) inequality is known only for fractional integral
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2 D. CRUZ-URIBE, SFO AND C. PÉREZ

operators. (See Sawyer [27].) This result is interesting and important, but it has the
drawback that the condition involves the fractional integral operator.

Sufficient, Ap-type conditions can also be gotten from sufficient conditions for the
strong (p, p) inequality. Neugebauer [18] showed that

(1.3)

(
1

|Q|

∫
Q

ur dx

)1/rp(
1

|Q|

∫
Q

v−rp′/p dx

)1/rp′

≤ C, r > 1,

is sufficient for the strong (p, p) inequality for the maximal operator, for Calderón-
Zygmund operators and commutators. Sawyer and Wheeden [28] showed that for
0 < α < n,

(1.4) |Q|α/n

(
1

|Q|

∫
Q

ur dx

)1/rp(
1

|Q|

∫
Q

v−rp′/p dx

)1/rp′

≤ C, r > 1,

is sufficient for the strong-type (p, p) inequality for fractional integral operators. (Ad-
ditional sufficient conditions are found in [20], [21] and [24]. We give precise defini-
tions of these operators in Section 2 below.)

In general, sufficient conditions for the weak (p, p) inequality which are derived from
strong (p, p) conditions are not sharp. The purpose of this paper is to show that for
the operators we consider, there are conditions which are weaker than (1.3) and (1.4)
which are sufficient for the weak-type inequality. Roughly, it suffices to strengthen
the Ap condition (1.2) by introducing a “power bump” on the left-hand term alone,
rather than on both terms as in (1.3) and (1.4).

Our first result is for fractional integral operators. It solves a problem posed by
Sawyer and Wheeden [28].

Theorem 1.1. Given a pair of weights (u, v), p, 1 < p < ∞, and α, 0 < α < n,
suppose that for some r > 1 and for all cubes Q,

(1.5) |Q|α/n

(
1

|Q|

∫
Q

ur dx

)1/rp(
1

|Q|

∫
Q

v−p′/p dx

)1/p′

≤ C < ∞.

Then the fractional integral operator Iα satisfies the weak (p, p) inequality

(1.6) u({x ∈ Rn : |Iαf(x)| > t}) ≤ C

tp

∫
Rn

|f |pv dx.

Our second result is for Calderón-Zygmund operators.
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Theorem 1.2. Let T be a Calderón-Zygmund operator. Given a pair of weights
(u, v) and p, 1 < p < ∞, suppose that for some r > 1 and for all cubes Q,

(1.7)

(
1

|Q|

∫
Q

ur dx

)1/rp(
1

|Q|

∫
Q

v−p′/p dx

)1/p′

≤ C < ∞.

Then T satisfies the weak (p, p) inequality

(1.8) u({x ∈ Rn : |Tf(x)| > t}) ≤ C

tp

∫
Rn

|f |pv dx.

Remark 1.3. Though for clarity we have stated Theorem 1.2 for Calderón-Zygmund
operators, it is true for a much larger class of operators. To be precise: if there exists
some δ, 0 < δ < 1, and a constant Cδ such that for every f ∈ C∞

0 (Rn),

(1.9) M#(|Tf |δ)(x)1/δ ≤ Cδ Mf(x),

then (1.7) implies (1.8).

Alvarez and Pérez [3] showed that inequality (1.9) holds for Calderón-Zygmund op-
erators. In this case it can be thought of as extending the classical estimate

(1.10) M#(Tf)(x) ≤ CrM(|f |r)(x)1/r,

where T is a regular singular integral operator and r > 1, (see Garćıa-Cuerva and
Rubio de Francia [14, p. 204].) In some sense, (1.9) contains more information than
(1.10) since the latter does not suffice to prove Theorem 1.2.

Alvarez and Pérez also showed that inequality (1.9), and so Theorem 1.2, hold for
the following operators: weakly strongly singular integral operators (see C. Fefferman
[12]), some pseudo-differential operators in the Hörmander class (see Hörmander [15]),
and a class of oscillatory integral operators related to those introduced by Phong and
Stein [25]. They used (1.9) to generalize Coifman’s theorem [7] relating the Lp norm
of singular integral operators and the maximal function.

Remark 1.4. For Calderón-Zygmund operators we have been able to prove stronger
results; see [11]. By different methods we showed that we may replace the “power
bump” in (1.7) by a “bump” in the scale of Orlicz spaces. More precisely, we replace
the Lr norm by the L(log L)p−1+δ norm with δ > 0. However we are unable to extend
these results to the broader class of operators discussed in the previous remark.

Remark 1.5. Conditions (1.5) and (1.7) are sufficient for the fractional maximal op-
erator and the Hardy-Littlewood maximal operator to be bounded from Lp′

(u−p′/p)
to Lp′

(v−p′/p). (See [21], [22].) We conjecture that the boundedness of the corre-
sponding maximal operator is itself sufficient for inequalities (1.6) and (1.8) to hold.
In particular we believe that the Orlicz space conditions given in [21] and [22] are
sufficient.
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Our last result is about (linear) commutators. These operators are defined by

Ck
b f(x) =

∫
(b(x)− b(y))kK(x, y)f(y) dy,

where K is a kernel satisfying the standard estimates and b is a locally integrable
function. (See Section 2 for a precise definition.)

Since commutators have a greater degree of “singularity” than the corresponding
Calderón-Zygmund operators, we need a slightly stronger condition. Roughly, we
need to “bump” the right-hand term as well, but it suffices to do so in the scale of
Orlicz spaces. Recall that if B is an increasing Young function and if Q is any cube,
we define the mean Luxemburg norm of a measurable function f with respect to B
by

‖f‖B,Q = inf

{
λ > 0 :

1

|Q|

∫
Q

B

(
|f |
λ

)
dx ≤ 1

}
.

(For more information on Orlicz spaces, see Section 2 below.)

Theorem 1.6. Let T be a Calderón-Zygmund operator and b a function in BMO.
Given a pair of weights (u, v), p, 1 < p < ∞, and k ≥ 0, suppose that for some r > 1
and for all cubes Q,

(1.11)

(
1

|Q|

∫
Q

ur dx

)1/rp

‖v−1/p‖Ck,Q ≤ C < ∞,

where Ck(t) = tp
′
log(e + t)kp′

. Then the commutator Ck
b satisfies the weak (p, p)

inequality

(1.12) u({x ∈ Rn : |Ck
b f(x)| > t}) ≤ C

tp

∫
Rn

|f |pv dx.

When k = 0, C0
b = T , and so in this case Theorem 1.6 reduces to Theorem 1.2.

Remark 1.7. As a corollary to Theorem 1.6 we get a new proof of the one-weight,
strong (p, p) norm inequality for commutators, which was first proved in a more
general form by Alvarez, Bagby, Kurtz and Pérez [2] and Segovia and Torrea [29]. If
w ∈ Ap then w and w−p′/p both satisfy the reverse Hölder inequality and so inequality
(1.11) holds for some r > 1 and for p ± ε. The strong-type inequality follows by
interpolation.

The proofs of Theorems 1.1, 1.2 and 1.6 all follow the same outline. Each relies on our
so-called principal lemma, Theorem 3.4 below, which relates the Hardy-Littlewood
maximal operator and the Fefferman-Stein sharp maximal operator via an inequality
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strongly reminiscent of a good-λ inequality. To apply Theorem 3.4 we use three re-
sults which relate the given operator, the sharp maximal operator and the maximal
operator. For Calderón-Zygmund operators this is inequality (1.9). Similar inequal-
ities hold for fractional integral operators and commutators: see Lemmas 4.4 and
6.1.

The remainder of this paper is organized as follows: in Section 2 we give a number
of definitions and lemmas needed in later sections. The heart of the paper is Section
3, where we prove Theorem 3.4. Finally, in Sections 4, 5 and 6 we prove Theorems
1.1, 1.2 and 1.6.

Throughout this paper all notation is standard or will be defined as needed. All cubes
are assumed to have their sides parallel to the coordinate axes. Given a cube Q, l(Q)
will denote the length of its sides and for any r > 0, rQ will denote the cube with
the same center as Q and such that l(rQ) = rl(Q). We will denote the collection of
all dyadic cubes by ∆ and by ∆(Q) the collection of all dyadic subcubes relative to
the (not necessarily dyadic) cube Q. By weights we will always mean non-negative,
locally integrable functions which are positive on a set of positive measure. Given a
Lebesgue measurable set E and a weight w, |E| will denote the Lebesgue measure of
E and w(E) =

∫
E

w dx. Given 1 < p < ∞, p′ = p/(p− 1) will denote the conjugate
exponent of p. Finally, C will denote a positive constant whose value may change at
each appearance.

2. Preliminary Ideas

In this section we give a number of definitions and lemmas needed in later sections.

The main operators. First we define the operators in Theorems 1.1, 1.2 and 1.6.

Fractional integral operators: Given α, 0 < α < n, define the fractional integral
operator of order α by

Iαf(x) =

∫
Rn

f(y)

|x− y|n−α
dy.

For more information, see Stein [31, pp. 117-120].

Calderón-Zygmund operators: Given a kernel K on Rn×Rn—i.e. a locally integrable,
complex-valued function defined off the diagonal—we say that it satisfies the standard
estimates if there exist δ, 0 < δ ≤ 1, and C finite such that for all distinct points x
and y in Rn, and all z such that |x− z| < 1

2
|x− y|:

(1) |K(x, y)| ≤ C|x− y|−n;
(2) |K(x, y)−K(z, y)| ≤ C|x− z|δ/|x− y|n+δ;
(3) |K(y, x)−K(y, z)| ≤ C|x− z|δ/|x− y|n+δ.
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A bounded linear operator T : C∞
0 (Rn) → D′(Rn) (here D′ is the space of distribu-

tions) is said to be associated with a kernel K if

〈Tf, g〉 =

∫
Rn

∫
Rn

K(x, y)g(x)f(y) dxdy

for all f and g in C∞
0 (Rn) with supp(f) ∩ supp(g) = ∅. T is said to be a Calderón-

Zygmund operator if its associated kernel satisfies the standard estimates and it
extends to a bounded linear operator on L2. For more information, see Coifman and
Meyer [8] and Christ [6].

Important examples of such operators are the Calderón-Zygmund singular integral
operators:

Tf(x) = p. v.

∫
Rn

k(x− y)f(y) dy,

where k ∈ L1
loc(R

n \{0}) and K(x, y) = k(x−y) satisfies the standard estimates. For
more information see Garćıa-Cuerva and Rubio de Francia [14, p. 192].

Commutators: Given a Calderón-Zygmund operator T and a function b in BMO,
let Mb denote multiplication by b. We define the linear operators Ck

b by C0
b = T ,

C1
b = [Mb, T ] = MbT −MbT , and for k > 1, Ck

b = [Mb, C
k−1
b ]. If f ∈ C∞

0 (Rn) then

Ck
b f(x) =

∫
(b(x)− b(y))kK(x, y)f(y) dy, x 6∈ supp(f).

Commutators were introduced by Coifman, Rochberg and Weiss [9], who showed they
are bounded on Lp, 1 < p < ∞.

Maximal operators. Key to the proofs of our results are a number of maximal
operators. For completeness we give their definitions here.

The maximal operator: Given a locally integrable function f and α, 0 ≤ α < n, define

Mαf(x) = sup
Q3x

1

|Q|1−α/n

∫
Q

|f | dy.

If α = 0 this is the Hardy-Littlewood maximal operator and we write Mf for M0f ;
if 0 < α < n this is the fractional maximal operator of order α. We use the Hardy-
Littlewood maximal operator to control Calderón-Zygmund operators and commu-
tators, and the fractional maximal operator to control fractional integral operators.
(See inequality (1.9) and Lemmas 4.4 and 6.1.)

We define the dyadic maximal and fractional maximal operators Md and Md
α simi-

larly except the supremums are restricted to dyadic cubes containing x. Given δ > 0
we define the δ-maximal operator by Mδf(x) = M(|f |δ)(x)1/δ. We define Md

δ simi-
larly. From the context there should be no confusion between the fractional maximal
operator and the δ-maximal operator.
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The sharp maximal operator: Given a locally integrable function f and a cube Q, let
fQ denote the average of f over Q:

fQ =
1

|Q|

∫
Q

f dx.

Define the sharp maximal function of f by

M#f(x) = sup
Q3x

1

|Q|

∫
Q

|f(y)− fQ| dy.

The sharp maximal function was introduced by Fefferman and Stein [13]. Again,
define the dyadic sharp maximal function M#,d by restricting the supremum to
dyadic cubes. Given δ > 0, define the sharp δ-maximal function by M#

δ f(x) =

M#(|f |δ)(x)1/δ, and define M#,d
δ similarly.

Orlicz spaces. In Section 6 we will need the following facts about Orlicz spaces.
(For further information see Bennett and Sharpley [4] or Rao and Ren [26].) A
function B : [0,∞) → [0,∞) is a Young function if it is convex and increasing, and
if B(0) = 0 and B(t) →∞ as t →∞.

Given a Young function B, define the mean Luxemburg norm of f on a cube Q by

‖f‖B,Q = inf

{
λ > 0 :

1

|Q|

∫
Q

B

(
|f |
λ

)
dy ≤ 1

}
.

When B(t) = tp, 1 ≤ p < ∞,

‖f‖B,Q =

(
1

|Q|

∫
Q

|f |p dx

)1/p

;

that is, the Luxemburg norm coincides with the (normalized) Lp norm. There is
another characterization of the Luxemburg norm, due to Krasnosel’skĭı and Rutickĭı
[17, p. 92] (also see Rao and Ren [26, p. 69]) which we will need:

(2.1) ‖f‖B,Q ≤ inf
s>0

{
s +

s

|Q|

∫
Q

B

(
|f |
s

)
dx

}
≤ 2‖f‖B,Q.

Given three Young functions A, B and C such that for all t > 0,

(2.2) A−1(t)C−1(t) ≤ B−1(t),

then we have the following generalized Hölder’s inequality due to O’Neil [19]: for any
cube Q and all functions f and g,

(2.3) ‖fg‖B,Q ≤ 2‖f‖A,Q‖g‖C,Q.
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Define the maximal operator MB by

MBf(x) = sup
Q3x

‖f‖B,Q.

The dyadic maximal operator Md
B is defined in similarly, except the supremum is

restricted to dyadic cubes containing x. It follows from an inequality due to Stein [30]
that for k ≥ 1, if Bk(t) = t log(e+t)k−1, then Mkf ≈ MBk

f , where Mk = M ·M · · ·M
is the k-th iterate of the maximal function. (See Carozza and Passarelli di Napoli [5]
and the references given there.)

The Calderón-Zygmund Decomposition. Our proofs depend heavily on the
Calderón-Zygmund decomposition and a generalization of it to Orlicz space norms.
To be precise and to establish notation, we state the result here. For a proof see
[22]; this is an adaptation of the classical proof given in Garćıa-Cuerva and Rubio de
Francia [14, p. 137].

Lemma 2.1. Given a Young function B, suppose f is a non-negative function such
that ‖f‖B,Q tends to zero as l(Q) tends to infinity. Then for each t > 0 there exists
a disjoint collection of dyadic cubes {Ct

i} such that for each i, t < ‖f‖B,Ct
i
≤ 2nt,

{x ∈ Rn : Md
Bf(x) > t} =

⋃
i

Ct
i ,

and
{x ∈ Rn : MBf(x) > 4nt} ⊂

⋃
i

3Ct
i .

Moreover, the cubes are maximal: if Q is a dyadic cube such that Q ⊂ {Md
Bf(x) > t},

then Q ⊂ Ct
i for some i.

To recapture the classical lemma, let B(t) = t and note that if f ∈ Lq for some q,
1 ≤ q < ∞, then

‖f‖B,Q =
1

|Q|

∫
Q

f dx → 0 as |Q| → ∞.

More generally, to apply Lemma 2.1 it suffices to assume that f is bounded and has
compact support.

3. The Principal Lemma

In this section we prove our principal lemma: an inequality linking the sharp maximal
function and the Hardy-Littlewood maximal function. In spirit, though not in detail
it resembles the good-λ inequality of Fefferman and Stein [13]. (Also see Garćıa-
Cuerva and Rubio de Francia [14, pp. 161-3] and Journé [16, p. 41].)
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To state the principal lemma we first need a definition and a lemma.

Definition 3.1. Given r > 1 and a weight u, define the set function Ar
u on measurable

sets E ⊂ Rn by

Ar
u(E) = |E|1/r′

(∫
E

ur dx

)1/r

= |E|
(

1

|E|

∫
E

ur dx

)1/r

.

(The second equality holds provided |E| > 0.)

Lemma 3.2. For any r > 1 and weight u, the set function Ar
u has the following

properties:

(1) If E ⊂ F then Ar
u(E) ≤

(
|E|
|F |

)1/r′

Ar
u(F );

(2) u(E) ≤ Ar
u(E);

(3) If {Ej} is a sequence of disjoint sets and
⋃

j Ej = E then∑
j

Ar
u(Ej) ≤ Ar

u(E).

Proof. Condition (1) follows immediately from Definition 3.1, and Condition (2) is
just Hölder’s inequality. Condition (3) also follows from Hölder’s inequality:

∑
j

|Ej|1/r′

(∫
Ej

ur dx

)1/r

≤

(∑
j

|Ej|

)1/r′ (∑
j

∫
Ej

ur dx

)1/r

= |E|1/r′
(∫

E

ur dx

)1/r

.

�

Remark 3.3. The key property is Condition (1), which plays the same role that the
A∞ condition plays in the proof of weighted good-λ inequalities. (See, for example,
Journé [16, p. 41].) If Au were another set function which satisfied Conditions (2)
and (3) of Lemma 3.2, satisfied

(3.1) Au(E) ≤ φ(|E|/|F |)Au(F ), φ(t) → 0 as t → 0,

and for some r > 1 satisfied (for technical reasons in the proof) Au(E) ≤ CAr
u(E),

we could immediately derive corresponding conditions governing weak-type norm
inequalities for the operators we are interested in.

Originally, we had hoped to replace the “power bumps” in (1.5), (1.7) and (1.11) by
Orlicz space conditions. Intuitively, the appropriate set function would be A(E) =
|E|‖u‖B,E, where B is some Young function—for example, B(t) = t log(e+ t)δ, δ > 0.
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For such B, Conditions (2) and (3) hold; we will show this in the course of proving
Lemma 5.1 below. However, Condition (1) fails.

Remark added in proof. The first author and A. Fiorenza have characterized the class
of Young functions B for which A(E) = |E|‖u‖B,E satisfies (3.1). This class includes
Orlicz functions which grow slower than tr for any r > 1. These results will appear
in [10].

We can now state and prove our principal lemma.

Theorem 3.4. Given a non-negative function f ∈ Lq for some q, 1 ≤ q < ∞,
r, 1 < r ≤ q′, a weight u, and δ > 0, then there exists ε > 0 such that for each
t > 0 there exists a subcollection {Qt

j} of dyadic cubes from the Calderón-Zygmund

decomposition of f δ at height tδ, {Ctδ

i }, with the property that(
1

|Qt
j|

∫
Qt

j

|f δ − (f δ)Qt
j
| dx

)1/δ

> ε1/δt,

and such that for all p ≥ q/r′,

(3.2) sup
t>0

tpu({x ∈ Rn : Md
δ f(x) > t}) ≤ C sup

t>0
tp
∑

j

Ar
u(Q

t
j).

The constants ε and C depend only on r, p and n.

As a corollary to the proof we have the following stronger inequality.

Corollary 3.5. With the same hypotheses and notation as Theorem 3.4, we have
that

(3.3) sup
t>0

tp
∑

i

Ar
u(C

tδ

i ) ≤ C sup
t>0

tp
∑

j

Ar
u(Q

t
j).

Remark 3.6. In our applications of these results we always have f ∈ Lq for any q > 1,
so we can get any value of p ≥ 1. If r can be taken close to 1 then we can get any
p > 0.

Proof. First note that it will suffice to prove this result for δ = 1. For arbitrary δ > 0,
Md

δ f(x) > t is equivalent to Md(f δ)(x) > tδ, so the general case follows if we replace
f by f δ and t by tδ.

Second, we may assume that u is bounded and has compact support. To see that the
general case follows, fix a weight u and let uk = min(u, k)χB(0,k). Since uk is bounded,
inequalities (3.2) and (3.3) hold with u replaced by uk. Since limn uk = supn uk = u,
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if we take the limit as n tends to infinity we may exchange limit and supremum and
apply the monotone convergence theorem to get the desired result.

Fix p, q/r′ ≤ p < ∞, and fix f . For each t > 0, let Ωt = {x ∈ Rn : Mdf(x) > t}.
Now fix N = 2n + 1 (the reason for this choice will be clear below); by the Calderón-
Zygmund decomposition, Lemma 2.1, ΩNt =

⋃
k CNt

k and Ωt =
⋃

i C
t
i . By maximality,

for each k, CNt
k ⊂ Ct

i for some i. By Lemma 3.2, Conditions (2) and (3),

tpu(ΩNt) = tp
∑

k

u(CNt
k )

≤ tp
∑

k

Ar
u(C

Nt
k )

= tp
∑

i

∑
CNt

k ⊂Ct
i

Ar
u(C

Nt
k )

≤ tp
∑

i

Ar
u(ΩNt ∩ Ct

i ).

Fix ε < N−pr′
; again the reason for this choice will be clear below. Divide the indices

i into two sets: i ∈ F if
1

|Ct
i |

∫
Ct

i

|f − fCt
i
| dx ≤ εt,

and i ∈ G if the opposite inequality holds. The cubes {Ct
i : i ∈ G} are the cubes in

the conclusion of the theorem, and we relabel them {Qt
j}.

If i ∈ F then we claim that

Ar
u(ΩNt ∩ Ct

i ) ≤ ε1/r′
Ar

u(C
t
i ).

By Lemma 3.2, Condition (1), it will suffice to show that

|ΩNt ∩ Ct
i | ≤ ε|Ct

i |.

By the maximality of the Calderón-Zygmund decomposition, if x ∈ ΩNt ∩ Ct
i then

Mdf(x) = Md(fχCt
i
)(x).

Hence,

ΩNt ∩ Ct
i = {x ∈ Ct

i : Md(fχCt
i
)(x) > Nt}

= {x ∈ Ct
i : Md(fχCt

i
)(x)− fCt

i
> Nt− fCt

i
}

⊂ {x ∈ Ct
i : Md(|f − fCt

i
|χCt

i
)(x) > t}.
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Since the dyadic maximal operator is weak-type (1, 1) with constant 1, (see Journé
[16, p. 10]), and since i ∈ F ,

|ΩNt ∩ Ct
i | ≤

1

t

∫
Ct

i

|f − fCt
i
| dx ≤ ε|Ct

i |.

Therefore, we have shown that

tp
∑

k

Ar
u(C

Nt
k ) ≤ tp

∑
i

Ar
u(ΩNt ∩ Ct

i )(3.4)

≤ tp
∑
i∈F

Ar
u(C

t
i ) + tp

∑
i∈G

Ar
u(C

t
i )

≤ ε1/r′
tp
∑

i

Ar
u(C

t
i ) + tp

∑
j

Ar
u(Q

t
j).(3.5)

Therefore, if we take the supremum of (3.5) over 0 < t < M and the supremum of
(3.4) over 0 < t < M/N , we get

sup
0<t<M/N

tp
∑

k

Ar
u(C

Nt
k ) ≤ sup

0<t<M
ε1/r′

tp
∑

i

Ar
u(C

t
i ) + sup

0<t<M
tp
∑

j

Ar
u(Q

t
j);

equivalently,

sup
0<t<M

tp
∑

i

Ar
u(C

t
i ) ≤ ε1/r′

Np sup
0<t<M

tp
∑

i

Ar
u(C

t
i ) + Np sup

0<t<M
tp
∑

j

Ar
u(Q

t
j).

To get the desired inequality we need to re-arrange terms; to do this we need to show
that for each M > 0,

sup
0<t<M

tp
∑

i

Ar
u(C

t
i ) < ∞.

But for fixed t, by Condition (3) of Lemma 3.2 and the definition of Ar
u,

tp
∑

i

Ar
u(C

t
i ) ≤ tpAr

u(Ωt)

= tp|Ωt|1/r′
(∫

Ωt

ur dx

)1/r

.

Let B be the support of u; by assumption |B| < ∞. Further, u is bounded. Therefore,

≤ |B|1/r‖u‖∞tp|Ωt|1/r′
.

Since f ∈ Lq, by the weak (q, q) inequality for the dyadic maximal operator,

≤ |B|1/r‖u‖∞tp−q/r′‖f‖q/r′

q .
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Therefore, since p− q/r′ ≥ 0,

sup
0<t<M

tp
∑

i

Ar
u(C

t
i ) < |B|1/r‖u‖∞Mp−q/r′‖f‖1/r′

q < ∞.

Thus we can re-arrange terms; since ε < N−pr′
, we get

sup
0<t<M

tpu({x ∈ Rn : Mdf(x) > t}) ≤ sup
0<t<M

tp
∑

i

Ar
u(C

t
i )

≤ Np

1− ε1/r′Np
sup

0<t<M
tp
∑

j

Ar
u(Q

t
j).

Since this holds for all M > 0, if we take the limit as M tends to infinity we get
inequalities (3.2) and (3.3). �

4. Fractional Integral Operators

In this section we prove Theorem 1.1. The proof depends on three lemmas; the first
two are due to Sawyer and Wheeden [28].

Lemma 4.1. Given a non-negative function f and α, 0 < α < n, there exists a
constant Cα, depending only on α and n, such that for any cube Q0,∑

Q∈∆(Q0)

|Q|α/n

∫
Q

f dx ≤ Cα|Q0|α/n

∫
Q0

f dx.

Definition 4.2. Given α, 0 < α < n, and z ∈ Rn, define the translated dyadic
fractional integral operator Id

α,z by

Id
α,zf(x) =

∑
Q+z∈∆

Q3x

|Q|α/n−1

∫
Q

f dy.

If z = 0 we write Id
α for Id

α,0.

Lemma 4.3. Given a weight u, α, 0 < α < n, and p, 1 < p < ∞, then there exists
a constant C such that for every function f ,

sup
t>0

tpu({x ∈ Rn : |Iαf(x)| > t}) ≤ C sup
z∈Rn

sup
t>0

tpu({x ∈ Rn : |Id
α,zf(x)| > t}).

Lemma 4.4. Given α, 0 < α < n, there exists a constant Dα such that for any
function f , dyadic cube Q0 and x ∈ Q0,

1

|Q0|

∫
Q0

|Id
αf − (Id

αf)Q0| dx ≤ DαMd
αf(x).
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Proof. By the definition of Id
α, for x ∈ Q0,

Id
αf(x) =

∑
x∈Q∈∆
Q⊂Q0

|Q|α/n−1

∫
Q

f dx +
∑
Q∈∆
Q0⊆Q

|Q|α/n−1

∫
Q

f dx;

hence,

1

|Q0|

∫
Q0

Id
αf dx =

1

|Q0|
∑
Q∈∆
Q⊂Q0

|Q|α/n

∫
Q

f dx +
∑
Q∈∆
Q0⊆Q

|Q|α/n−1

∫
Q

f dx.

Therefore, by Lemma 4.1,

1

|Q0|

∫
Q0

|Id
αf − (Id

αf)Q0 | dx ≤ 2

|Q0|
∑
Q∈∆
Q⊂Q0

|Q|α/n

∫
Q

|f | dx

≤ 2Cα|Q0|α/n−1

∫
Q0

|f | dx

≤ 2CαMd
αf(x).

�

Proof of Theorem 1.1. By Lemma 4.3 it will suffice to prove inequality (1.6) with Iα

replaced by Id
α,z and with a constant independent of z. In the proof that follows it

will be clear that all the constants are independent of z, so in fact it will suffice to
prove inequality (1.6) for Id

α.

Since Id
α is a positive operator, by a standard argument we may assume that f is

non-negative, bounded and has compact support. Fix p, 1 < p < ∞; then Id
αf ∈ Lq,

where q > 1 is such that p ≥ q/r′, so we can apply Theorem 3.4 to it. Let δ = 1.
Then there exists ε > 0 such that for each t > 0 there exists a sequence of disjoint
dyadic cubes {Qt

j} such that

(4.1)
1

|Qt
j|

∫
Qt

j

|Id
αf − (Id

αf)Qt
j
| dx > εt

and (by the Lebesgue differentiation theorem)

sup
t>0

tpu({x ∈ Rn : |Id
αf(x)| > t}) ≤ sup

t>0
tpu({x ∈ Rn : Md(Iαf)(x) > t})

≤ C sup
t>0

tp
∑

j

Ar
u(Q

t
j).

Fix t; then by Lemma 4.4, for each j,

Qt
j ⊂ {x ∈ Rn : Md

αf(x) > εD−1
α t}.
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By an argument analogous to that for the dyadic maximal operator (cf. Lemma 2.1),
we can write the right-hand side as the union of disjoint dyadic cubes {P t

k} such that
for each k,

|P t
k|α/n−1

∫
P t

k

f dx > εD−1
α t.

Further, the P t
k’s are maximal with this property; in particular, for each j there exists

k such that Qt
j ⊂ P t

k. Therefore, by Lemma 3.2, Condition (3),

tp
∑

j

Ar
u(Q

t
j) =tp

∑
k

∑
Qt

j⊂P t
k

Ar
u(Q

t
j)

≤tp
∑

k

Ar
u(P

t
k)

≤(ε−1Dα)p
∑

k

|P t
k|

(
1

|P t
k|

∫
P t

k

ur dx

)1/r(
|P t

k|α/n−1

∫
P t

k

f dx

)p

.

By Hölder’s inequality and inequality (1.5),

≤C
∑

k

|P t
k|αp/n

(
1

|P t
k|

∫
P t

k

ur dx

)1/r(
1

|P t
k|

∫
P t

k

v−p′/p dx

)p/p′ ∫
P t

k

fpv dx

≤C
∑

k

∫
P t

k

fpv dx

≤C

∫
Rn

fpv dx.

The constant is independent of t, so if we take the supremum over all t > 0 we get
inequality (1.6).

�

Remark 4.5. At the cost of a more complex argument similar to that for Calderón-
Zygmund operators (cf. Lemma 5.1 below) we could dispense with the dyadic frac-
tional integral operator and prove Theorem 1.1 directly for Iα. The key inequality is
the non-dyadic analogue of Lemma 4.4 due to Adams [1]: M#(Iαf)(x) ≤ CMαf(x).

5. Calderón-Zygmund Operators

In this section we prove Theorem 1.2. The proof is similar to that of Theorem 1.1,
but is complicated by the fact that we cannot pass to an equivalent dyadic operator.
To compensate we need the following lemma which is also needed in the proof of
Theorem 1.6.
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Lemma 5.1. Let B be a Young function. Suppose that for some function f ∈ Lq,
1 ≤ q < ∞, and for some t > 0 there exists a constant µ, 0 < µ ≤ 1, and a collection
of dyadic cubes {Qj} such that for each j,

|Qj ∩ {x ∈ Rn : MBf(x) > t}| ≥ µ|Qj|.

Then there exists a constant ν > 0, depending on n and µ, and a subcollection {Pk}
of the Calderón-Zygmund decomposition with respect to B of f at height νt, {Cνt

i },
such that for each j, Qj ⊂ 3Pk for some k.

If we replace MB by Md
B in the hypothesis then we can strengthen the conclusion by

finding Pk’s such that Qj ⊂ Pk and by letting µ = ν.

Proof. We first consider the non-dyadic case. By Lemma 2.1,

Et = {x ∈ Rn : MBf(x) > t} ⊂
⋃
i

3Cγt
i ,

where γ = 4−n. If we had Qj ⊂ 3Cγt
i for some i we would be done, but this need not

be the case, even if µ = 1. However, for each j there is a collection of indices Aj such
that

Qj ∩ Et ⊂
⋃

i∈Aj

3Cγt
i and 3Cγt

i ∩Qj 6= ∅, i ∈ Aj.

There are two possibilities: first, there exists i ∈ Aj such that l(Qj) ≤ l(3Cγt
i ). Then

Qj ⊂ 9Cγt
i and by inequality (2.1),

2‖f‖B,9Cγt
i

≥ inf
s>0

{
s +

s

|9Cγt
i |

∫
9Cγt

i

B

(
|f |
s

)
dx

}

≥ 9−n inf
s>0

{
s +

s

|Cγt
i |

∫
Cγt

i

B

(
|f |
s

)
dx

}
= 9−n‖f‖B,Cγt

i

> 9−nγt.
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Alternatively, l(Qj) > l(3Cγt
i ) for all i ∈ Aj. But then for each i ∈ Aj, 3Cγt

i ⊂ 3Qj,
and so

2|3Qj|‖f‖B,3Qj
≥ inf

s>0

{
s|3Qj|+ s

∫
3Qj

B

(
|f |
s

)
dx

}

≥
∑
i∈Aj

inf
s>0

{
s|Cγt

i |+ s

∫
Cγt

i

B

(
|f |
s

)
dx

}
=

∑
i∈Aj

|Cγt
i |‖f‖B,Cγt

i

> 3−nγt
∑
i∈Aj

|3Cγt
i |

≥ 3−nγt|Qj ∩ Et|
≥ 9−nµγt|3Qj|.

So in either case, for each j there exists a cube Q̄j containing Qj such that

‖f‖B,Q̄j
>

µγt

2 · 9n
.

Now by the same argument that is used to prove the Calderón-Zygmund decom-
position, Lemma 2.1, we can show that there exists a subcollection {Pk} of {Cνt

i },
ν = 1

2
µγ36−n = 1

2
µ144−n, such that for each j, Qj ⊂ Q̄j ⊂ 3Pk for some k. This

completes the proof for MB.

The proof in the dyadic case is very similar, but is simplified considerably by the fact
that if two dyadic cubes intersect then one is contained in the other. �

Proof of Theorem 1.2. By a standard argument, we may assume that f ∈ C∞(Rn)
and has compact support. Fix p, 1 < p < ∞; then Tf ∈ Lq, where q > 1 is such
that p ≥ q/r′. Hence, we may apply Theorem 3.4 to it. Fix δ < 1. Then there exists
ε > 0 such that for each t > 0 there exists a sequence of disjoint dyadic cubes {Qt

j}
such that (

1

|Qt
j|

∫
Qt

j

||Tf |δ − (|Tf |δ)Qt
j
| dx

)1/δ

> ε1/δt

and

sup
t>0

tpu({x ∈ Rn : |Tf(x)| > t}) ≤ sup
t>0

tpu({x ∈ Rn : Md
δ (Tf)(x) > t})

≤ C sup
t>0

tp
∑

j

Ar
u(Q

t
j).
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As we noted in the Introduction, T satisfies inequality (1.9). Therefore, for each j,

Qt
j ⊂ {x ∈ Rn : M#

δ (Tf)(x) > ε1/δt} ⊂ {x ∈ Rn : Mf(x) > βt},

where β = C−1
δ ε1/δ.

By Lemma 5.1 (with µ = 1), for each t > 0 there exists a sequence of disjoint dyadic
cubes {P t

k} such that for each j, Qt
j ⊂ 3P t

k for some k, and such that

1

|P t
k|

∫
P t

k

|f | dx > ρt,

where ρ > 0 depends only on β and n. Then by Lemma 3.2, Condition (3), for each
t > 0,

tp
∑

j

Ar
u(Q

t
j) =tp

∑
k

∑
Qt

j⊂3P t
k

Ar
u(Q

t
j)

≤tp
∑

k

Ar
u(3P

t
k)

≤ρ−p
∑

k

|3P t
k|

(
1

|3P t
k|

∫
3P t

k

ur dx

)1/r(
1

|P t
k|

∫
P t

k

|f | dx

)p

.

By Hölder’s inequality and inequality (1.7),

≤C
∑

k

(
1

|3P t
k|

∫
3P t

k

ur dx

)1/r(
1

|3P t
k|

∫
3P t

k

v−p′/p dx

)p/p′ ∫
P t

k

|f |pv dx

≤C
∑

k

∫
P t

k

|f |pv dx

≤C

∫
Rn

|f |pv dx.

The constant is independent of t, so if we take the supremum over all t > 0 we get
inequality (1.8). This completes our proof.

�

6. Commutators

In this section we prove Theorem 1.6. The proof depends on Theorem 1.2 and the
following analogue of inequality (1.9) for commutators.
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Lemma 6.1. Given a Calderón-Zygmund operator T , a function b in BMO, constants
δ0 and δ1, 0 < δ0 < δ1 < 1, and k ≥ 1, there exists a constant K, depending on the
BMO norm of b, such that for every function f ∈ C∞

0 (Rn) and any x ∈ Rn,

M#,d
δ0

(Ck
b f)(x) ≤ K

k−1∑
i=0

Md
δ1

(Ci
bf)(x) + KMk+1f(x).

This result is found in [23, 24]. As given there, the non-dyadic maximal operator
appears in the first term on the right-hand side, but it is immediate from the proof
that it is still true with the dyadic maximal operator there.

Proof of Theorem 1.6. When k = 0, Theorem 1.6 reduces to Theorem 1.2, so we
may fix k ≥ 1. By a standard argument we may assume that f ∈ C∞(Rn) and has
compact support. Fix p, 1 < p < ∞; then Ci

bf ∈ Lq, where 0 ≤ i ≤ k and q > 1
is such that p ≥ q/r′. Hence, we may apply Theorem 3.4 to Ck

b f . Fix δ0 and δ1,
0 < δ0 < δ1 < 1. There there exists ε > 0 such that for each t > 0 there exists a
sequence of disjoint dyadic cubes {Qt

j} such that(
1

|Qt
j|

∫
Qt

j

||Ck
b f |δ0 − (|Ck

b f |δ0)Qt
j
| dx

)1/δ0

> ε1/δ0t

and

sup
t>0

tpu({x ∈ Rn : |Ck
b f(x)| > t}) ≤ sup

t>0
tpu({x ∈ Rn : Md

δ0
(Ck

b f)(x) > t})

≤ C sup
t>0

tp
∑

j

Ar
u(Q

t
j).

By Lemma 6.1, for each j and t,

Qt
j ⊂

k−1⋃
i=1

{x ∈ Rn : Md
δ1

(Ci
bf)(x) > βt}

∪ {x ∈ Rn : Md
δ1

(Tf)(x) > βt}
∪ {x ∈ Rn : Mk+1f(x) > βt}

≡

(
k−1⋃
i=1

F βt
i

)
∪ F βt

0 ∪ F βt
k ,

where β = ε1/δ0K−1(k + 1)−1. For each j and t we cannot have that |Qt
j ∩ F βt

i | <

(k + 1)−1|Qt
j| for all i. Hence, for some i, |Qt

j ∩ F βt
i | ≥ (k + 1)−1|Qt

j|; if this is the
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case we write Qt
j ∈ F

βt
i . Thus,

sup
t>0

tp
∑

j

Ar
u(Q

t
j) ≤

k∑
i=0

sup
t>0

tp
∑

Qt
j∈F

βt
i

Ar
u(Q

t
j).

To complete the proof we will show that each term of the outer sum on the right-hand
side is dominated by C

∫
Rn |f |pv dx. There are three cases.

Case 1: cubes in Fβt
k . As we noted in Section 2, there exists a constant β′ > 0 such

that

{x ∈ Rn : Mk+1f(x) > βt} ⊂ {x ∈ Rn : MBf(x) > β′t},

where B(t) = t log(e+t)k. Therefore, by Lemma 5.1 (with µ = (k+1)−1), there exists
a constant ν > 0 such that, for each t > 0 there exists a collection of disjoint dyadic
cubes {P t

l } such that for each j, Qt
j ⊂ 3P t

l for some l and such that ‖f‖B,P t
l

> νt.
We now proceed exactly as we did at the end of the proof of Theorem 1.2. Since
Ck(t) = tp

′
log(e+t)kp′

, C−1
k (t) ≈ t1/p′

log(e+t)−k, and so t1/pC−1
k (t) ≤ B−1(t). Then,

by Lemma 3.2, Conditions (2) and (3), the generalized Hölder’s inequality (2.3) and
inequality (1.11),

sup
t>0

tp
∑

Qt
j∈F

βt
k

Ar
u(Q

t
j) ≤ sup

t>0
tp
∑

l

Ar
u(3P

t
l )

≤ C sup
t>0

∑
l

|3P t
l |

(
1

|3P t
l |

∫
3P t

l

ur dx

)1/r

‖f‖p
B,P t

l

≤ C sup
t>0

∑
l

(
1

|3P t
l |

∫
3P t

l

ur dx

)1/r

‖v−1/p‖p
Ck,P t

l

∫
P t

l

|f |pv dx

≤ C sup
t>0

∑
l

(
1

|3P t
l |

∫
3P t

l

ur dx

)1/r

‖v−1/p‖p
Ck,3P t

l

∫
P t

l

|f |pv dx

≤ C sup
t>0

∑
l

∫
P t

l

|f |pv dx

≤ C

∫
Rn

|f |pv dx.

Case 2: cubes in Fβt
0 . Given t > 0, let s = (βt)δ1 . Again by Lemma 5.1 (the dyadic

case), if Qt
j ∈ Fβt

0 then for some i, Qt
j ⊂ Cs

i , where {Cs
i } is the Calderón-Zygmund
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decomposition of |Tf |δ1 at height s. Hence, by Lemma 3.2, Conditions (2) and (3),

sup
t>0

tp
∑

Qt
j∈F

βt
0

Ar
u(Q

t
j) ≤ sup

t>0
tp
∑

i

Ar
u(C

s
i ).

By Corollary 3.5 there exists ε > 0 and a subcollection {Q̄t
j} of {Cs

i } such that if

x ∈ Q̄t
j then M#,d

δ1
(Tf)(x) > β′′t, where β′′ = ε1/δ1β, and such that

sup
t>0

tp
∑

i

Ar
u(C

s
i ) ≤ C sup

t>0
tp
∑

j

Ar
u(Q̄

t
j).

We can now argue exactly as we did in the proof of Theorem 1.2 to get

sup
t>0

tp
∑

Qt
j∈F

βt
0

Ar
u(Q

t
j) ≤ C

∫
Rn

|f |pv dx.

Case 3: cubes in Fβt
i , 1 ≤ i ≤ k − 1. Fix i; then arguing exactly as we did in Case

2, by Corollary 3.5 there exists ε > 0 and a collection of disjoint dyadic cubes {Q̄t
j}

such that if x ∈ Q̄t
j then M#

δ1
(Ci

bf)(x) > β′′t, where β′′ = ε1/δ1β, and such that

sup
t>0

tp
∑

Qt
j∈F

βt
i

Ar
u(Q

t
j) ≤ C sup

t>0
tp
∑

j

Ar
u(Q̄

t
j).

We now apply Lemma 6.1 and repeat the argument at the beginning of this proof.
When we do so we reduce the degree of the highest order commutator appearing from
i to i− 1. Therefore, after repeating our argument a finite number of times, we will
reduce to collections of cubes satisfying conditions such as those in Case 1 and Case
2. Repeating those arguments will then give us the desired inequality.

�
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