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C
ars and trucks are susceptible to accidents due to 

rollover. In the United States in 2005, 21.1% of a total 

of 54,718 deaths in vehicle crashes were caused by 

rollover [1]. Signifi cant research has therefore been de-

voted to detecting and preventing rollover through active 

control. Numerous approaches attempt to detect or pre-

dict wheel liftoff using onboard sensing and a combina-

tion of automatic steering and braking to keep the wheels 

on the ground [2]–[4]. Rather than focusing on how to 

keep the wheels on the ground, it is also useful to under-

stand how to control a vehicle while two wheels are in the 

air. This understanding may enable the design of control 

laws that can safely return the vehicle to the ground after 

inadvertent tip-up.

Similar to the Acrobat swing-up problem [5], vehicle roll 

control can be decomposed into a tip-up phase and a bal-

ance phase. During tip-up, energy is pumped into the vehi-

cle roll angle, whereas, during balance, the vehicle is 

stabilized with its center of gravity above the wheels. It is 

desirable to develop a model that can be used for both 

phases of the motion, as well as a control law that can stabi-

lize the vehicle in the balance phase. In fact, movie stunt car 

drivers are known for their ability to drive a car while bal-

anced on two lateral wheels. A Guinness World Record for 

the most cars simultaneously driven on two lateral wheels 

was set in July of 2008, and a video of this record-breaking 

event can be viewed on YouTube [6].

Creating a self-balancing vehicle requires analysis of the 

vehicle dynamics and must be amenable to embedded con-

trol-system implementation. The vehicle balance control 

problem is complicated by the fact that the equations of 

motion are nonlinear and have nonholonomic rolling con-

straints. Related nonlinear control problems include bal-

ancing bicycles and motorcycles [7]–[9]. In [7] it is shown 

that a bicycle model with rear-wheel steering has a non-

minimum phase zero whose location varies linearly with 

velocity. The linearized analysis developed in this article 

reveals a similar zero. The bicycle and nonholonomic 

motorcycle models developed in [8]and [9] separate the 

control problem into tracking control for the motion of the 

center of gravity (cg) and equilibrium balance control for 

the roll angle. In this article we focus on stabilization of the 

roll angle.

Several vehicle models for rollover stability are devel-

oped in [10]–[13]. In [10], a nonlinear 14-degree-of-freedom 

(14DOF) model that includes 6 DOFs for the vehicle body 

and 2 DOFs for each of the four suspensions and wheels is 

developed and compared to a simpler 8DOF model that 

does not include wheel suspension. The 14DOF model cap-

tures the dominant system dynamics but is difficult to use 

for control design since a nondifferentiable tire contact 

model is used. The roll control system developed for trucks 

in [11] incorporates two hydraulic servoactuators on an 

antisway bar mounted to each axle. The actuators improve 

stability by reducing the roll angle during cornering. In 

[12], a simple 3DOF model is used to develop a numerical 

index to indicate impending rollover. As shown in [13], 

scaled-down remote-controlled (RC) vehicles can be used 

to analyze rollover stability and test prototype electronic 

stability control laws.

In this article, we present a control law that uses roll 

angle and rate feedback to stabilize roll angle. This control 

law is tested on an RC vehicle modified for microprocessor 

control. The vehicle model used for the analysis has 11 

DOFs and is simulated in the SimMechanics simulation 

environment of Matlab. We then develop the tire contact 

model, which is a spring-damper system modified to be 

continuous and piecewise differentiable. The contact model 

used in this article is not as sophisticated as the “magic for-

mula” model of [14] but is amenable to control analysis 

while capturing the dominant tire-to-road force character-

istics. Given the nonlinear vehicle and contact models, we 

linearize the equations about the balance equilibrium to 

investigate the vehicle stability properties. A root locus 

analysis then demonstrates that the roll angle of the vehicle 

can be stabilized with a control law that accounts for the 

nonminimum-phase zero in the linearized dynamics. 

Finally, the simulated and experimental results demon-

strate the behavior of the nonlinear dynamic system.

EXPERIMENTAL HARDWARE

Figure 1 shows the remote-controlled vehicle used to test the 

balance control algorithm. The truck, which is manufactured 

by HPI Racing [15], is modified for microprocessor control. 

One of the modifications needed is an improved steering 
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servo system. The original steering servo has backlash due 

to loose tolerances in the steering linkage and does not pro-

vide sufficient torque to hold a desired steering angle. The 

stock servo is therefore replaced with a Hitec HSR-5995TG 

titanium-gear high-torque servo as shown in Figure 2 along 

with a modified linkage to reduce backlash. In addition, 

spacers are placed under the coil suspension springs to 

reduce the displacement and increase the spring preload.

The main sensory and electronic components used to 

implement and test the control law are shown in Figure 3. 

The RC transmitter sends pulse code modulation (PCM) 

signals for the throttle and steering to the receiver. The 

receiver sends the signals to an Atmel AVR Butterfly 

microcontroller, which uses interrupts to detect the pulses 

and calculate the pulse times for each signal. The AVR 

Butterfly receives analog signals from a potentiometer, 

gyro, and accelerometer and converts them to digital sig-

nals. The roll angle is measured using a hinged linkage 

that rolls along the ground next to the vehicle while con-

nected to the chassis through the potentiometer. The 

angular rate is measured directly with the gyro. The AVR 

Butterfly then uses these signals to calculate the control 

and convert it to a PCM value for use by the steering servo 

to balance the vehicle.

NONLINEAR DYNAMIC VEHICLE MODEL

The vehicle is modeled as a rigid body with three transla-

tional and three rotational DOFs located at the vehicle 

center of mass. In addition, a rotational DOF is used for 

each wheel, and a rotational DOF is used for the front steer-

ing angle, which is assumed to be the same for both front 

wheels. Since the total number of DOFs of the model is 11, a 

22-dimensional state space is required for simulation and 

stability analysis. Defining the 11 generalized coordinates 

as q [ R
11,  the nonlinear equations of motion have 

the form

 M 1q 2q$ 1 C 1q, q
# 2 1 N 1q 2 5 J1

T 1q 2Fc1 1 J2
T 1q 2Fc2 ,

where M 1q 2 , C 1q, q
# 2 , N 1q 2  are the mass, Coriolis, and 

gravity terms, respectively, from Lagrange’s equations, and 

J1
T 1q 2Fc1 1 J2

T 1q 2Fc2  is the generalized force from the two 

wheels in contact with the ground. The Jacobian relation-

ships J1
T 1q 2 , J2

T 1q 2  define how the contact forces Fc1 , Fc2  

influence the motion of each generalized coordinate. 

The Mathworks SimMechanics toolbox is used to model 

and simulate the dynamics of the vehicle as well as to com-

pute the Jacobians. Figure 4 shows the top two layers of the 

SimMechanics model definition. The mass properties used 

to represent the vehicle body and wheels are provided in 

Table 1. The experimental vehicle used for this research has 

a suspension system that adds additional DOFs to the 
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Yaw φ

y

x

z

FIGURE 1 Remote-controlled vehicle. The origin of the coordinate 

frame shown is located at the center of gravity of the vehicle. The 

order of the Euler-angle rotations for representing the orientation 

of the vehicle is yaw, pitch, and roll.

FIGURE 2 Modified high-torque steering servo. The original steer-

ing servo has significant compliance and backlash in the drive 

linkage, which can create instability in the closed-loop system 

response. A stiffer steering servo mount and a higher performance 

servo are used to eliminate this problem.

Transmitter Receiver

Sensors Microcontroller RC Servos

FIGURE 3 The main hardware used for the experiments. The roll 

angle and roll rate are measured by the microcontroller. Changes 

in the roll-angle setpoint are transmitted from the user to the 

microcontroller to achieve steering control for obstacle avoid-

ance. A vehicle velocity command for the drive motor is also 

transmitted to the microcontroller. The arrows indicate the direc-

tion of information flow.
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FIGURE 4 Simulink SimMechanics block diagrams. (a) defines the control law, steering saturation, impulsive disturbance, and additive 

noise and (b) defines the vehicle model.
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model. Rather than explicitly modeling the suspension, the 

tires and suspension are viewed as a series combination of 

spring-damper systems in the modified spring-damper tire 

contact model.

Figure 5 shows a free body diagram of the vehicle as it 

rolls near its tilted balance equilibrium configuration. The 

forces acting on the vehicle include gravity and the lateral 

and longitudinal tire contact forces for the two tires in con-

tact with the ground. The equilibrium tilt angle is found 

from a static analysis to be 52.3°. The RC servo that steers 

the front wheels shown in Figure 2 is modeled as a propor-

tional-plus-derivative control system. The transfer function 

of this system has the form

 Gsteer 1s 2 5
b 1s 2
bd 1s 2 5

v2

s2 1 2zvs 1 v2
, (1)

where b is the steering angle output from the RC servo, and 

bd is the desired steering angle input to the servo. The 

desired steering angle is defined by the control law in the 

next section. The coefficients of the transfer function (1) 

are selected so that the step response of this transfer 

function approximates that of the RC servo, with v = 20 

rad/s and z = 0.5. The RC servo has characteristics that are 

not captured by the transfer function, for example, satura-

tion and Coulomb friction.

CONTACT FORCE MODEL

Simulation of the vehicle model requires tire contact forces 

to be computed as a function of the system state. Given the 

orientation and position of the vehicle cg, the position of 

each wheel’s center of gravity is used to calculate the posi-

tion of the contact point shown in Figure 6 as follows. The 

tire’s center of gravity is located at the point P
S

,  and the 

point of contact is located at the point P
S

c . A local coordinate 

frame for the wheel is defined with the origin at P
S

,  and the 

associated rotation matrix is given by Rw 5 3x̂w, ŷw, ẑw 4 , 
where ŷw  is a unit vector along the axis of wheel rotation, 

ẑw is a unit vector in the direction of the steering axis of 

rotation, and x̂w  is a unit vector orthogonal to ŷw  and ẑw . 

Note that the directions of the unit vectors x̂w, ŷw  depend 

on the steering angle b . The vector n̂ is a unit vector normal 

to the ground. The vector ŷw  is available from SimMechan-

ics, while the unit vector ẑw  is calculated from n̂  and 

ŷw  as z
S

w 5 n̂ 2 1 n̂Tŷw 2 ŷw , where ẑw 5 z
S

w / 7 zSw 7 .  Finally, 

x̂w 5 ŷw 3 ẑw  completes the vector triad.

Given the local coordinate frame defined above, the 

tire’s contact point is calculated using Figure 6 as

TABLE 1 Mass properties used in the simulation.

Variable Description Value 

grav Gravity 9.81 m/s2

mc Car body mass 1.561 kg

len Car body length 0.241 m

wid Car body width 0.208 m

height Car body height 0.137 m

Ixx Car body moment of inertia 

about x axis

0.0081 kg-m2

Iyy Car body moment of inertia 

about y axis

0.0100 kg-m2

Izz Car body moment of inertia 

about z axis

0.0132 kg-m2

mw Wheel mass 0.195 kg

r Tire radius 65.0 mm

rc Tire corner radius 3.17 mm

w Wheel width 0.070 m

Ia Wheel axial moment of inertia 0.0005 kg-m2

It Wheel transverse moment of 

inertia 

0.0003 kg-m2

mtot Total car mass 2.341 kg

k Tire and suspension spring 

constant 

350.0 N/m

C Tire and suspension damping 70.0 N/(m/s)

m Tire contact friction coefficient 0.75 

 

mg

Ff

N

FIGURE 5 Free body diagram of the vehicle near its balance equilib-

rium point. The friction and normal forces that arise from tire con-

tact are shown along with the force of gravity acting through the 

vehicle center of mass. The steering angle of the front wheel shown 

is turned inward, which causes the roll angle to increase as the 

vehicle moves forward.

Creating a self-balancing vehicle requires analysis of the vehicle dynamics and 

must be amenable to embedded control-system implementation.
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 P
S

c 5 P
S

1 a1

2
w 2 rcb ŷw 2 1r 2 rc 2 ẑw 2 rc n̂ , (2)

where w is the wheel width, r is the tire radius, and rc is the 

tire corner radius as shown in Figure 6. Differentiating (2), 

the velocity of the tire’s contact point is

 V
S

c 5 P
S

#

1 a1

2
 w 2 rcb  y

#

^w 2 1r 2 rc 2z#^w , (3)

where P
S
#

 is the wheel velocity, yw^
#  

5 S 1v 2  yw
 

^ ,   z
#

^w
 

5 S 1v 2 ẑw , 

and S 1v 2 5 R
#

w Rw
T  is the skew-symmetric angular velocity 

matrix of the wheel in the inertial frame. The distance from 

the contact point to the ground is calculated as d 5 n̂TP
S

c , 

and its time derivative is d
#

5 n̂T V
S

c .

When d , 0 , the normal force and friction force acting 

on the tire must be computed. Figure 7 shows the direction 

of the positive normal force N , which is zero in the configu-

ration shown since the tire is off the ground with  d . 0.  

Assuming d , 0 , the tire is contacting the ground and 

deforming, resulting in a normal force. The magnitude of 

the resultant normal force is assumed to be represented by a 

modified spring and damper system. All tire models used 

in vehicle simulations must have some stiffness and damp-

ing characteristics. Damping is needed to represent energy 

dissipation in the suspension and tires, while stiffness is 

needed for the tires to rebound. Because the expected 

normal force is continuous and differentiable, for d , 0  we 

define the normal force as

 N 5 e 2 kd 2 cd
#

,      d
#

. 0 1restitution 2 , 
 2 kd,  d

#

# 0 1compression 2 .  (4)

Note that damping cd
#

 is not included during compression. 

This omission allows the tire to fall and hit the ground with 

nonzero velocity d
#

 without the normal force  N  changing 

discontinuously from zero when the tire is in the air to the 

nonzero value  2cd
#

 when ground contact occurs.

The normal force N  in (4) is continuous in 1d, d
# 2  but not 

differentiable at the transition between d # 0  and d . 0 . 

To create a differentiable model, we further modify the 

normal force with a smoothing function that satisfies the 

boundary conditions

 s 1x 2 5 e 0, x # 0, 

1, x $ 1, 
 (5)

with s 10 2 5 s r 10 2 5 s r 11 2 5 0  and s 11 2 5 1 . For  0 # x # 1 , 

the cubic polynomial s 1x 2 5 3x2 2 2x3  is used for smooth-

ing. The smoothed contact force is then defined as

 Ns 5 s 1N/D 2N , (6)

where the constant D . 0  defines the transition region for 

the smoothed contact force Ns . 

Use of the smoothed contact force (6) enables the numer-

ical simulations to execute quickly and, after adjustment of

 k ,   c ,  and D , the simulations are visually indistinguish-

able from experimental motions of the vehicle. Next, the 

horizontal component of the contact point velocity V
S

h  is 

calculated to determine the direction of the friction force. 

From (3), V
S

c is projected to the horizontal plane as 

V
S

h 5 3I 2 n̂n̂T 4VSc.  The friction force acting on the tire 

opposes the horizontal component of the velocity as

 F
S

f 5 2mNs

V
S

h

7VSh 7
.  (7)

Finally, the torques resulting from the normal force and 

friction are calculated at the wheel as

w

P

zw
zw
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yw
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Pc

n̂

n̂^

^

yw
^

yw
^nT^

zw^
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r

FIGURE 6 Geometry used to determine the location of the contact 

point given the wheel center of gravity and the axis of rotation. The 

contact point is located by constructing a local coordinate system 

using the wheel rotation axis ŷw  and the surface normal n̂ .

P
S

P
S

S

k
c

c P
S

c
n N

d = nT^

FIGURE 7 Normal force is determined from the contact point and 

ground-penetration distance. The normal force is obtained from a 

unilateral spring-damper model.
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 T
S

Total 5 TNormal

S

 1  T
S

Friction 5 r
S

3 N
S

s 1 r
S

3 F
S

f, 

where r
S

5 P
S

c 2 P
S

.  Hence, the total force and torque vectors 

applied to the vehicle at the contact point of each wheel are 

N
S

s 1 F
S

f  and T
S

Total , respectively.

MODEL ANALYSIS

The nonlinear vehicle system dynamics are linearized about 

the tilted equilibrium to obtain a linear state-space model 

that contains 22 state variables. These states include the 6 

DOFs for the car body and their velocities, the four wheel 

rotations and velocities, and the steering angle and its veloc-

ity. The equilibrium point is found from the geometry and 

system mass properties to be 52.3°. The system is linearized 

at this tilt angle with a nominal vehicle speed of 1.0 m/s. The 

linearization tool available with Simulink is used numeri-

cally to compute sensitivity information. This tool uses finite 

differences to compute the required Jacobian matrices, 

which is facilitated by the smoothing function (5) used in (6).

Several feedback control laws are 

considered to  provide a steering angle 

bd  in (1) that stabilizes the linearized 

system. The linearized model contains 

uncontrollable modes that correspond 

to the rolling wheels and other stable 

motions, and thus the system is stabi-

lizable but not controllable. In addi-

tion, only partial state information can 

be measured with sensors. Linear qua-

dratic Gaussian (LQG) control laws 

designed for the linearized system may 

not be robust to model uncertainty and 

may require more  computation than can be achieved with 

the microcontroller used for the experiments. A classical 

control approach is thus used.

Figure 8 shows a block diagram of the linearized system. 

This diagram shows the vehicle dynamics and steering 

servo dynamics, whose product Gsteer 1s 2Gvehicle 1s 2  is the 

transfer function from the steering-angle command bd to 

the output roll angle c and roll rate c
#

 of the system. The 

control compensator used to stabilize the roll angle is 

 represented by  H 1s 2  in Figure 8. After testing several con-

trol strategies, the chosen compensator is the proportional-

plus-derivative control law bd 5 Kpc 1 KV c
#

, where c is the 

deviation of the roll angle from its equilibrium value. The 

chosen compensator  H 1s 2  is thus a static output feedback 

compensator with inputs c  and c
#

 and with output bd . The 

reason for this choice is that, near the balance equilibrium, 

the vehicle behaves similarly to an inverted pendulum on a 

moving cart system, where the cart motion is created by the 

lateral acceleration resulting from the steering angle. For 

the cart-pole system, proportional-plus-derivative gains 

can stabilize the system [16].

Figure 9 shows a root locus analysis for the linearized 

model H 1s 2Gsteer 1s 2Gvehicle 1s 2  from Figure 8. The root locus 

plots shown in figures 9 and 10 assume a roll-angle gain 

of Kp 5 4  (steering deg)/(roll deg) and a roll angular rate 

gain of KV 5 0.3  (steering deg)/(roll deg/s). The open-

loop poles and zeros of the system transfer function are 

the x’s and o’s in the plot, respectively. The plots show the 

location of the closed-loop poles as the two gains are 

scaled simultaneously by means of a loop gain that varies 

from zero to infinity. A cluster of eight marginally stable 

poles are located at the origin in Figure 9, while all of the 

remaining poles are asymptotically stable except for one, 

which is due to the unstable nature of the equilibrium 

point. This pole, which must be stabilized, is shown in a 

zoomed-in plot in Figure 10.

The zoomed-in plot in Figure 10 shows that it is possi-

ble to stabilize the unstable pole with the selected com-

pensator when the root locus gain is sufficiently large. 

The point shown as “Gain: 1” in Figure 10 is the location of 

one of the complex conjugate closed loop poles that branch 

off the unstable pole location at s 5 6.2. Since the loop gain 
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FIGURE 9 Root locus plot of Gsteer 1s 2Gvehicle 1s 2  H 1s 2 .  The transfer 

function is from the input steering angle to a linear combination of 

roll and roll rate. The nonminimum-phase zero located at s = 1920 

is due to the effect that increasing the steering angle has on 

decreasing the roll angle.
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FIGURE 8 Linearized system dynamics used for root locus analysis. A 22-dimensional 

state-space model of the nonlinear vehicle dynamics is linearized about the equilibrium 

configuration to obtain Gvehicle 1s 2 . The control law and steering servo dynamics are 

added to the vehicle dynamics to obtain a root locus plot for the open-loop transfer func-

tion H 1s 2Gsteer 1s 2Gvehicle 1s 2 .
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is 1.0 at this point, the system is stabilized using the 

output feedback gains mentioned above. Examining the 

eigenvectors corresponding to the marginally stable poles 

reveals that they correspond to rolling of the wheels about 

their axis and motion of the vehicle in the forward direc-

tion. These modes are unimportant in terms of balancing 

the vehicle as it drives.

A noteworthy observation regarding the plot of Figure 9 

is the nonminimum-phase zero. It is likely that this zero is 

responsible for the need for positive proportional-plus-

derivative gains, which cause the steering angle to move in 

the same direction as the roll-angle error to stabilize the 

system. For instance, if the vehicle rolls beyond the 52.3° 

equilibrium angle, the front steering angle must be 

increased to create an acceleration of the vehicle body that 

returns it to the balance point. While other choices for the 

proportional-plus-derivative gains also result in a stable 

linearized closed-loop system, the combination used yields 

stable performance for both the full nonlinear simulation 

and the experimental system.

SIMULATION

The gains used to stabilize the linearized system in the pre-

ceding section are then used in a simulation of the nonlinear 

system. The deviation of the roll angle from its balance 

equilibrium angle and the steering angle are plotted versus 

time in Figure 11. The initial roll angle is set to 40°, so that 

there is a –12.3° error from the 52.3° equilibrium angle. The 

resulting steering angle commanded by the control com-

pensator saturates at the 22.5° limit of the steering hard-

ware. The plot shows that the vehicle roll-angle error is 

reduced to zero. During the simulation, zero-mean white 

noise with a variance of 10-3 (°/s)2 , which approximates the 

noise measured from the sensor, is added to the gyro signal. 

In addition to the initial roll-angle error, the vehicle is ini-

tialized with a forward velocity of 1.0 m/s. The vehicle 

reaches the equilibrium angle at approximately  t 5 0.5 s 

and drives at this angle until  t 5 1.5 s when an impulse 

disturbance of 4.4 N-s is applied to the vehicle. The vehicle 

recovers and returns to the equilibrium angle after roughly 

0.5 s. The heading angle, which is shown in Figure 12 and 

which is not controlled in this simulation, changes as neces-

sary to keep the vehicle balanced as it drives.
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FIGURE 11 Simulation of the nonlinear system with the roll-control 

algorithm. The blue signal is the steering angle, while the red 

signal is the vehicle roll-angle error from equilibrium. Noise is 

injected into the roll feedback signal to replicate experimental con-

ditions. After 1.5 s, an impulsive lateral force is applied to the vehi-

cle to test the ability of the controller to reject disturbances. The 

vehicle recovers and continues to travel forward while maintaining 

the equilibrium roll angle.
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FIGURE 10 Zoomed-in portion of Figure 9. The unstable pole at 

s 5 6.2 is stabilized with a loop gain of 1.0, as shown by the black 

square in the left-half s-plane. When the loop gain is 1.0, the roll-

angle gain is Kp 5 4  (steering deg)/(roll deg) and the roll angular 

rate gain is KV 5 0.3  (steering deg)/(roll deg/s).
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FIGURE 12 Heading angle from the simulation of Figure 11. The 

blue curve shows the change in vehicle heading caused by the 

steering commands. Note the immediate change in direction after 

1.5 s when the impulse is applied.
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TEST RESULTS

The RC transmitter shown in Figure 3 sends PCM signals 

for the throttle and steering to the receiver. The receiver 

sends the signals to the AVR Butterfly microcontroller, 

which uses interrupts to detect the pulses and calculate the 

pulse times for each signal. The AVR Butterfly receives 

analog signals from a potentiometer, gyroscope, and accel-

erometer and converts them to digital signals. The AVR 

Butterfly then uses the sensor signals to calculate the roll 

angle and angular rate. These values are used to implement 

the control law and calculate a PCM signal to be sent to the 

steering servo to balance the vehicle. This steering signal is 

then filtered by a first-order lowpass discrete-time filter 

whose bandwidth is approximately 4 Hz. The filter is 

needed to remove some of the effects of noise in the sensor 

measurements and also to deal with the limited bandwidth 

and torque and speed constraints of the RC steering servo. 

The filtered steering signal is output by the AVR Butterfly 

to the steering servo along with the throttle signal origi-

nally sent by the RC transmitter.

During the experiments, the steering command sent 

from the RC transmitter is interpreted by the microcon-

troller software in two ways as follows. If the vehicle is not 

tilted more than 20° from the horizontal, then the steering 

command is sent directly from the AVR to the steering 

servo. Otherwise, the steering command adds a small bias 

of up to 1/20.5° to the desired equilibrium roll angle. This 

perturbation causes the heading of the vehicle to change 

while it balances on two wheels, which enables obstacle 

avoidance to be controlled manually with the joystick of the 

RC transmitter. Throughout the testing of the vehicle, sensor 

data is logged. Due to memory limitations of the microcon-

troller, two variables are recorded for each test run. 

Figure 13 shows the roll angle and steering angle for 

one test run. As the roll angle begins to increase from the 

equilibrium balance value, the vehicle compensates by 

 increasing the steering angle. The roll angle then dips 

lower than the balance angle, and the vehicle steers in the 

opposite direction to try to stay balanced. This run illus-

trates how the vehicle steers in response to changes in roll 

angle, but ultimately the control law does not stabilize the 

vehicle. The main reason for the failure is that the forward 

speed of the vehicle is controlled manually with the RC 

joystick. The vehicle starts from rest and accelerates to the 

desired speed of 1.0 m/s, which is used for the analysis in 

the simulation described above. In the test run shown, the 

vehicle speed is too fast, and the front steering angle cannot 

correct for the roll error quickly enough. Conversely, if the 

speed is too slow, the steering control cannot create an 

acceleration of the cg that is sufficient to maintain balance. 

For another test run, Figure 14 shows the roll-angle devi-

ation from the equilibrium angle as well as the steering 

angle. The roll angle remains within 61.5° of 47°, while the 

steering angle oscillates with an amplitude of approxi-

mately 6°. Several test runs are conducted with manual dis-

turbances applied to the vehicle. The results demonstrate 

stable performance with a response similar to that shown 

in Figure 14. A video of one of these experiments can be 

viewed on YouTube [17]. This video demonstrates that, in 

addition to balance control, obstacle avoidance can be 

achieved by making adjustments in the roll-angle setpoint. 

These adjustments are sent to the vehicle manually from 

the RC transmitter while the experiment is in progress. 

CONCLUSIONS

A control law that enables a remote-controlled vehicle to 

drive while self-balancing on two wheels is developed. The 

vehicle is modeled as a multibody system with 11 DOFs 

and simulated using the SimMechanics package of Matlab. 

Additionally, an elementary tire-contact force model is 

devised to model tire-to-ground interaction. This tire-force 
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FIGURE 13 Unsuccessful experimental test run. The red curve is 

the roll angle, while the blue curve is the steering angle. The vehi-

cle is released from a tilted position, but the vehicle's forward 

velocity is too fast for the steering angle to compensate for roll as 

the vehicle begins to fall.
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FIGURE 14 Experimental run with vehicle speed approximately 

1.0 m/s. The red curve is the roll-angle error, and the blue curve is 

the steering angle. The steering angle holds the vehicle roll angle 

to within 1/2 2° of its equilibrium value.
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model is sufficiently realistic to simulate the vehicle’s 

motion and allow for a linearized analysis of the vehicle 

stability properties. Consistent with previous research on 

the modeling of bicycles, the linearized analysis in this 

article contains an unstable zero. The analysis demon-

strates that roll angle and rate feedback are sufficient to sta-

bilize the roll angle of the vehicle. Several marginally stable 

modes are left uncontrolled but do not interfere with the 

overall behavior of the system. The vehicle achieved self-

balance while driving the length of a 25-yd hallway.
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