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Thioredoxin-interacting protein (TXNIP) was originally named vitamin D3 upregulated protein-1 (VDUP1) because of its ability
to bind to thioredoxin (TRX) and inhibit TRX function and expression. TXNIP is an alpha-arrestin protein that is essential for
redox homeostasis in the human body. TXNIP may act as a double-edged sword in the cell. The balance of TXNIP is crucial.
A study has shown that TXNIP can travel between diverse intracellular locations and bind to different proteins to play
different roles under oxidative stress. The primary function of TXNIP is to induce apoptosis or pyroptosis under oxidative
stress. TXNIP also inhibits proliferation and migration in cancer cells, although TXNIP levels decrease, and function
diminishes in various cancers. In this review, we summarized the main structure, binding proteins, pathways, and the role of
TXNIP in diseases, aiming to explore the double-edged sword role of TXNIP, and expect it to be helpful for future treatment
using TXNIP as a therapeutic target.

1. Introduction

Thioredoxin-interacting protein (TXNIP) was derived from
HL-60 cells stimulated by 1,25-dihydroxyvitamin D3 (1,25-
(OH)2D3) [1]. It was initially named vitamin D3 upregu-
lated protein-1 (VDUP1) and identified as homologous to
VDUP1 using a yeast two-hybrid system [1, 2]. The protein
was renamed TXNIP or thioredoxin-binding protein-2
(TBP-2) for its ability to inhibit thioredoxin (TRX) activity
and expression [2]. The human TXNIP gene is located on
chromosome 1q21.1 with a length of 4174 bp and contains
8 exons [3]. The amino acid sequence of mammalian TXNIP
was 96% consistent with that of mice, and a perfect direct
repeat sequence was found between the TATA and CCAAT
boxes of the mice’s TXNIP promoter, suggesting that TXNIP
may play a fundamental biological function and be indis-
pensable in mammals [1, 4]. What is more, the human
TXNIP is an alpha-arrestin protein with a molecular weight
of 46 kDa [3]. TXNIP has a primary structure of 391 amino

acids and arrestin-like N-terminal (10–152 aa) and C-
terminal (175-298 aa), indicating that its primary function
is to inhibit the biological functions of binding proteins [3,
5]. For instance, the C-terminal directly interacts with the
E3 ubiquitin ligase ITCH to promote proteasome degrada-
tion of TXNIP, as well as the two PPXY motifs at the tail
of TXNIP [6].

TXNIP was initially thought to exist only in the cyto-
plasm. However, several studies found that under oxidative
stress, TXNIP could move to diverse intracellular positions.
Moreover, the intracellular position of TXNIP, such as mito-
chondria and the cell surface, may contribute to its biological
process [7–10]. In addition, a study has shown that TXNIP
is also located in the plasma membrane (PM) [11].

2. The Main Binding Protein of TXNIP

2.1. Thioredoxin (TRX). TRX is a 12 kD protein with redox
activity. In mammalian cells, TRX has two subtypes:
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thioredoxin 1 (TRX1) and thioredoxin 2 (TRX2) [12]. TRX2
is found only in mitochondria, while TRX1 is mainly present
in the cytosol, PM, nucleus, as well as extracellular space
[13]. There are two different antioxidant systems, the cyto-
solic TRX system and the mitochondrial TRX system. The
cytosolic TRX system consists of TRX1, TRX receptor
(TRXR), and peroxiredoxin (PRX). However, the mitochon-
drial TRX system consists of TRX2, TRXR2, and
peroxiredoxin-3 (PRX3) [14, 15]. TXNIP interacts with both
cytosolic TRX1 and mitochondrial TRX2, indicating that the
TRX/TXNIP redox system works in both the cytosol and
mitochondria [5]. TXNIP directly binds to reduced TRX1,
thereby inhibiting TRX1 reducibility, and acts in a redox-
dependent manner, including oxidation, anti-inflammatory,
and anticancer effects [13]. In addition, under oxidative
stress, TXNIP travels into the mitochondria and binds to
TRX2 in the mitochondria, releasing TRX2-bound apoptotic
signal-regulated kinase 1 (ASK1), which activates the ASK1-
mediated apoptosis pathway [8, 16].

In 2006, Patwari et al. [5] confirmed that the binding of
TRX to TXNIP depends on the stable formation between the
32nd cysteine residue (Cys32) of TRX and the 247th cysteine
residue (Cys247) of TXNIP. Moreover, it is critical to combine
TXNIP and TRX through the TXNIP-Cys63-Cys247-TXNIP
intermolecular disulfide bond formed between the two
TXNIPs. Based on this research, Hwang et al. [17] reported
the crystal structure of TRX and TXNIP interaction in 2014.
Through experiments such as coimmunoprecipitation (coim-
munoprecipitation, CO-IP) and magnetic resonance (nuclear
magnetic resonance, NMR), they deeply revealed the interac-
tion between TRX and TXNIP. The disulfide bond between
the two TXNIP molecules broke, allowing TXNIP and TRX
to form an intermolecular disulfide bond and, in the same
breath, an intramolecular disulfide bond between Cys63 and
Cys190 in TXNIP. The disulfide bond conversion mechanism
is affected by the oxidation-reduction state [17].

2.2. Poly-ADP-Ribose Polymerase 1 (PARP1). Poly-ADP-
ribose polymerase 1 (PARP1) is a nuclear protein, that is
affected by the cellular redox state, especially in DNA single-
strand breakage induced by oxidative stress [18, 19]. PARP1
binds to the target protein mainly in two ways: the first is to
serve as a scaffold protein to bind to the target protein directly
or indirectly and make it located in the nucleus; the second is
to transfer the ADP-ribose part to the target protein to medi-
ate the localization and function of the target protein [11].
Under transient stimulation of physiological concentrations
of hydrogen peroxide (H2O2) or tumor necrosis factor
(TNF), TXNIP transfers from the nucleus to the PM, binds
to, and activates the vascular endothelial growth factor recep-
tor 2 (VEGFR2) signal to induce apoptosis [11].

3. The Core Pathway of TXNIP

The core pathway of TXNIP is shown in Figure 1.

3.1. TXNIP and Apoptosis. The primary functions of TXNIP
are to induce apoptosis or pyroptosis under oxidative stress.
TXNIP acts like a supervisor that kills cells if they cannot

tolerate oxidative stress. The interaction between TRX and
ASK1 is dependent on the redox state. ASK-1 only binds
to reductive TRX. Under normal conditions, TRX inhibits
apoptosis signal-regulating kinase 1 (ASK1) kinase activity
and ASK1-dependent apoptosis by directly binding to the
N-terminus of ASK1 [20]. Under oxidative stress, the
TXNIP will be released from the nucleus and bind to
TRX1 in the cytosol and TRX2 in the mitochondria [9]. In
the cytoplasm, overexpressed TXNIP binds to TRX1 and
releases ASK-1, thereby activating the p38 mitogen-
activated protein kinase (p38 MAPK) signaling pathway
[21–23]. Mitochondria is an important organelle for reactive
oxygen species (ROS) production. During oxidative stress,
TXNIP is transferred from the nucleus to the mitochondria,
where it binds to TRX2 and releases ASK-1, leading to apo-
ptosis [8, 23]. In addition, TXNIP can also bind to NLRP3
inflammasomes and induce pyroptosis by stimulating the
secretion of interleukin-1β (IL-1β) dependent on the NLRP3
ASC-Caspase-1 pathway [24].

3.2. TXNIP and Inflammation and Immune Reaction. The
NLRP3 inflammasome is an intracellular polyprotein com-
plex, as one of the components encoding the pattern recog-
nition receptor (PRR) inflammasome. It mainly includes
NOD-like receptor family protein 3 (NLRP3), apoptosis-
associated speck-like protein (ASC), and pro-cysteinyl
aspartate specific proteinase-1 (pro-caspase-1), which play
a crucial role in inflammation and immune response by acti-
vating inflammatory caspase-1 [25]. The formation of the
NLRP3 inflammasome can be divided into three stages: the
initiation stage, activation stage, and oligomerization stage
[26, 27]. The initial stage is mainly the transcription of
NLRP3 inflammatory body components. In most cases
[27], the initiation is NF downstream of pattern recognition
receptor- κB (NF-κB) activation, which provides other
ligands such as TOLL-like receptor (TLR) and NLR (such
as NOD1 and NOD2) [28]. In the activation and oligomeri-
zation stages, NLRP3 is stimulated by danger signals, such as
ROS [24], K+ outflow [29], and crystal deposition [25], and
binds to ASC to recruit pro-caspase-1. The recruited pro-
caspase-1 forms an oligomer, which can be cut into P20
and P10 subunits after self-catalysis. Caspase-1 is composed
of two groups of such subunits; mature caspase-1 mediates
IL-1β and IL-18, which is the critical process of the immune
response. TXNIP was identified as the potential binding
partner of NLRP3 in a yeast two-hybrid system with
leucine-rich repeats (LRRs) as bait [30, 31]. Studies have
shown that under oxidative stress, TXNIP is released from
the oxidized TRX and binds to the NLRP3 inflammasome,
which activates and releases IL-1β and IL-18, thereby,
inducing an inflammatory immune response [24].

3.3. TXNIP and Proliferation and Aging. Studies have shown
that TXNIP gene expression is closely related to the cell cycle
process. Overexpression of TXNIP inhibited the activity of
the cyclin A promoter and induced cell cycle arrest in G0/
G1 [32]. In addition, some cell cycle factors also relate to
TXNIP-mediated cell cycle arrest. P16 primarily binds to
and inhibits cyclin-dependent kinases 4 (CDK4) and
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cyclin-dependent kinases 6 (CDK6) and inhibits G1-S transi-
tion by decreasing phosphorylation of Rb, which controls
growth inhibition properties. When TXNIP is overexpressed
in HTLV-I positive T cells, p16 expression is increased,
which reduces Rb phosphorylation and prevents cells from
entering the S phase [33]. p27kip1, another cell cycle regula-
tor, is also associated with TXNIP-mediated cell cycle arrest
confirmed in the deficient mouse model [34–36]. The stabil-
ity of p27kip1 is regulated by the JAB1 gene [37]. TXNIP
overexpression interacts with JAB1 and inhibits JAB1-
mediated p27kip1 degradation and cell proliferation [34].

4. The Role of TXNIP in Disease

TXNIP-mediated oxidative stress plays an essential regulatory
role in the initiation and development of diabetes, and others.
As a result, many TXNIP-related target drugs have emerged.

4.1. Diabetes and Its Complications. Diabetes is a chronic
metabolic disease caused by various etiologies, mainly man-
ifested by chronic hyperglycemia. Pancreatic β-cells are of
utmost importance in maintaining glucose homeostasis by
sensing blood glucose levels and secreting insulin to regulate
metabolism. Sustained high blood glucose levels can have
deleterious effects on many organ systems. In the pancreas,
high-glucose toxicity leads to impaired insulin gene tran-

scription [38] and irreversibility due to apoptosis β cell loss
[39–45], which leads to the vicious circle of hyperglycemia
deterioration. The main mechanism of TXNIP in diabetes
is shown in Figure 2.

TXNIP levels increased significantly in diabetic patients
and those with chronic hyperglycemia, suggesting that TXNIP
levels are bound up with the development and progression of
diabetes [46]. Isolated intact human islets cultured under low-
glucose and high-glucose conditions were analyzed by oligo-
nucleotide microarray, the expression of the TXNIP coding
gene increased 11 times more than the glucose-induced
expression group [47]. Subsequently, the upregulation of
TXNIP in INS-1 cells and primary human islets was verified,
and it was found that the glucose-induced TXNIP response
was mediated by cis-acting elements, including conserved E-
box repeats in the TXNIP promoter and transacting factor car-
bohydrate response element-binding protein (ChREBP) [48].
Furthermore, it was discovered that an increase in TXNIP
level over time is not only a result of an increase in blood glu-
cose level and/or endoplasmic reticulum (ER) stress, but it is
also a part of the vicious circle [49]. It can stimulate its expres-
sion through the positive feedback loop involving the activa-
tion of ChREBP and amplify the effect of adverse effects
related to cell biology, including oxidative stress and inflam-
mation, eventually leading to β cell death and disease progres-
sion [49].
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Figure 1: The core pathway of TXNIP. TXNIP: thioredoxin-interacting protein; PRAP1: poly-ADP-ribose polymerase 1; H2O2: hydrogen
peroxide; ROS: reactive oxygen species; TNF: tumor necrosis factor; ASK-1: apoptotic signal-regulated kinase 1; TRX1: thioredoxin 1; TXR2:
thioredoxin 2; NLRP3: NOD-like receptor family protein 3; pro-caspase-1: pro-cysteinyl aspartate specific proteinase-1; ASC: apoptosis-
associated speck-like protein.
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Increased TXNIP expression is pertinent to β-cell apo-
ptosis. TXNIP-overexpressing INS-1 cells were found to be
significantly more susceptible to apoptosis than lacZ-
overexpressing control cell lines [48]. The level of TXNIP
protein increased by nearly 10 times that of the normal glu-
cose control group in obese mice. TXNIP induces IL-1β pro-
duction by activating the NLRP3 inflammasome and IL-1β
mRNA transcription, leading to β-cell death [50]. In addi-
tion, increased TXNIP expression can directly control insu-
lin production in the body. It was found that miR-204
expression in INS-TXNIP cells was higher than that in
INS-LacZ cells [51]. Further study founded that TXNIP
induced β cells express miR-204 and reduced insulin pro-
duction by directly targeting and downregulating the insulin
transcription factor MAFA (the newly identified TXNIP-
miR-204-MAFA-insulin pathway) [51].

As a specific complication of diabetes, microangiopathy
is characterized by microcirculatory disturbance and micro-
vascular basement membrane thickening. It involves all tis-
sues and organs of the body, mainly the retina, kidneys,
nerves, and myocardium. When ROS is elevated, it can
induce long-term vascular complications by upregulating
serum and tissue TXNIP levels, activating NF-κB and
NLRP3 inflammasome pathways, and increasing the expres-
sion of inflammatory cytokines. Dimethyl fumarate (DMF)
may destroy ROS-TXNIP and/or ROS-NF-κB pathways
and inhibit the activation of NLRP3 inflammatory corpus-
cles in the diabetic aorta and prevent vascular complications
in diabetic patients [52]. Diabetic retinopathy (DR) is the
leading cause of blindness in the working class worldwide.
TXNIP deficiency inhibits angiogenic responses induced by
VEGF or/and moderately high glucose (MHG) in human
retinal microvascular endothelial cells (HRMECs) and
mouse retinas, by inhibiting the activation of VEGFR2 and
Akt/mTOR pathways in HRMECs, MHG induced ROS gen-
eration [53]. It is reported that mitochondrial autophagy dis-
order and activation of the NLRP3 inflammasome will
accelerate DR [54, 55]. Diabetic nephropathy (DN) is one

of the most severe complications of diabetes and the leading
cause of end-stage renal disease. A study found that TXNIP
leads to dysregulation of renal tubule and mitochondrial
autophagy in DN through activation of the mTOR signaling
pathway, contributing to the progression of DN [56]. But the
activation and regulation of FOXO1/TXNIP-TRX in DN can
protect renal proximal tubular cells from high glucose-
induced injury by reducing the production of ROS [57].

4.2. Cardiovascular Disease. Cardiovascular disease is a
chronic disease closely associated with aging [58]. Athero-
sclerosis (AS) is the main cause of cardiovascular disease.
Endothelial cell (EC) aging related to atherosclerosis is
accompanied by the destruction of endothelial cell integrity
and the functional damage of endothelial cells, leading to
vascular dysfunction and creating conditions for the occur-
rence of cardiovascular diseases [59, 60]. Oxidative stress
[61–63], ER stress [61–63], and inflammation [64, 65] have
become the main harmful factors leading to endothelial cell
dysfunction. When oxidative stress occurs, the vascular wall
will produce excessive ROS, which will damage the structure
and function of ECs and enhance the inflammatory response
of the vascular wall. The activation of the inflammasome in
macrophages [66] and ER [67] has been considered an
essential step in the progression of AS. The main mechanism
of TXNIP in cardiovascular disease is shown in Figure 3.

Under oxidative stress, the increase of TXNIP expression
leads to the cell aging of endothelial cells. Foam cells are the
primary sources of ROS. By using the coculture Transwell
system to detect lipid peroxidation products secreted by
foam cells produced by macrophages after OxLDL exposure,
such as 4-hydroxynonenal (4-HNE) activating nuclear factor
PPAR-δ, translocation of the TXNIP promoter leads to
increased TXNIP expression, which promotes EC aging
[68]. In recent years, micro-RNSs have been regarded as
therapeutic targets and biomarkers for evaluating cardiovas-
cular diseases [69]. The low expression of miR-20b can
downregulate the level of cell aging markers, thus showing
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Figure 2: The main mechanism of TXNIP in diabetes. ROS: reactive oxygen species; TXNIP: thioredoxin-interacting protein; TRX:
thioredoxin; NLRP3: NOD-like receptor family protein 3; DMF: dimethyl fumarate; VEGFER2: vascular endothelial growth factor
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the role of miR-20 in maintaining vascular integrity [70]. The
high expression of miR-20b can inhibit endothelial cell aging,
which may be through TXNIP/NLRP3 axis to inhibit Wnt/β-
catenin path implementation [71]. In addition, a study has
confirmed that depleted GAS5 inhibits TXNIP by upregulat-
ing miR-194-3p, promotes the growth of vascular ECs, and
reduces the formation of atherosclerotic plaque in AS [72].

The production of ROS activates TXNIP-NLRP3, which
is involved in the pathogenesis of the cardiovascular disease
[73]. There is increasing evidence that AS is mediated by
inflammasomes [74]. The risk factors are the plasma levels
of the choline-derived metabolite trimethylamine-N-oxide
(TMAO) [75], the plasma level of hydrogen sulfide (H2S)
in hemodialysis patients [76], and smoking [77, 78]. TMAO
and nicotine have been identified as accelerators [79, 80],
with TMAO inducing oxidative stress in human umbilical
vein endothelial cells (HUVEC), activating the ROS-TXIP-
NLRP3 inflammasome signal transduction, and releasing
inflammatory factors, leading to endothelial dysfunction
[67]. The proatherosclerotic property of nicotine is to
increase the production of ROS, activating the TXNIP/
NLRP3 inflammasome signal and causing macrophage
pyrolysis [81]. H2S produced by cystathionine γ-lyase
(CSE) and passed through the H2S/CSE-TXNIP-NLRP3-
IL-18/IL-1β-NO signaling pathway, on the contrary, inhibits
TXNIP function and plays a role in AS [82].

AS is characterized by a blood flow disorder [83–85]. A
large number of studies show that physiological fluid shear
stress plays a protective role in atherosclerosis because ath-
erosclerosis preferentially occurs in areas with flow disorder
or low shear stress, while areas with stable laminar flow and
physiological shear stress are protected [86, 87]. Mechanical
strain inhibits the expression of TXNIP and increases TRX
activity, which has been confirmed in cardiomyocytes [88].
Furthermore, TXNIP expression is reduced during TRX-
induced cardiomyocyte growth stimulation following pres-
sure overload myocardial hypertrophy [89]. The protective
effect of physiological fluid shear stress on AS is to decrease
TXNIP expression and increase TRX expression, thereby
limiting the proinflammatory events mediated by the TNF-
ASK1-JNK/p38 pathway [90].

4.3. Cancer. TXNIP is considered to be a potential tumor sup-
pressor gene. Many studies have shown that the expression of
TXNIP is at a low level in different types of cancer (such as liver
cancer, breast cancer, and lung cancer), and the overexpression
of TXNIP inhibits the proliferation of cancer cells. The main
mechanism of TXNIP in cancer is shown in Figure 4.

The prognosis and predictive ability of TXNIP in human
breast cancer have been confirmed. The expression of
TXNIP in breast cancer tissues significantly decreases as
the tumor progresses. The miR-373-TXNIP-HIF1α-TWIST
signaling axis as well as EGFRhigh-MYChigh -TXNIPlow sig-
nature shows more aggressive cancer features and can be
used as independent prognostic factors for patients with
breast cancer [91, 92]. TXNIP influences the outcome of
breast cancers through several mechanisms: (1) TXNIP
induces the expression of p27 and inhibits the TXNIP-
ROS-Wnt pathway to inhibit the proliferation of breast can-
cer cells [93, 94]. (2) TXNIP impedes the epithelial-
mesenchymal transition (EMT) and metastasis by downreg-
ulating HIF1-α and subsequently decreasing the expression
of TWIST which is a core factor for tumor EMT and metas-
tasis [91, 95]. (3) TXNIP hampers the glucose uptake by
GLUT-1 inhibition and the Warburg effect, which reduces
the ATP synthesis against high energy demand for protein
synthesis for cell proliferation [93, 96]. (4) TXNIP binds to
TRX protein accordingly increasing the level of ROS within
cancer cells which causes ROS-mediated DNA damage,
inducing cell apoptosis. This effect preferentially occurs in
BRCA1-/- breast cancer cells with a compromised DNA
repair system [97]. (5) Some researchers found that low
TXNIP expression is associated with a worse prognosis in
node-negative breast cancer, and the expression level of
TXNIP is influenced by the ERBB2. [98]. TXNIP levels
within cancer cells can be regulated by many factors. The
expression of TXNIP is strongly, if not entirely, dependent
on the MondoA transcription factor [99]. MondoA binds a
double E-box carbohydrate response element (ChoRE) in
the TXNIP promotor and promotes the expression of
TXNIP, and it is a sensor of a high cellular energy charge.
The high intracellular glucose-6-phosphate drives transloca-
tion of MondoA from the outer mitochondrial membrane
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Figure 3: The main mechanism of TXNIP in cardiovascular disease.
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(OMM) to the nucleus where MondoA binds to the promo-
tor of TXNIP and recruits cofactors that initiate transcrip-
tion [100–102]. Hyperglycemia itself has the ability to
affect the level of TXNIP RNA. Besides the glucose, the
EGFR-My-TXNIP axis can also regulate the expression of
TXNIP. C-Myc binds to an E-box-containing region in the
TXNIP promotor, competing with MondoA to inhibit the
TXNIP expression [103]. Furthermore, micro-RNAs like
miR-146a, miR-148a, as well as miR-373 bind to the 3′
UTR of TXNIP mRNA and participate in the negative regu-
lation of TXNIP expression [104–106].

A study [107] showed that TXNIP expression in human
hepatocellular carcinoma (HCC) specimens and HCC-
derived cell lines is low or absent. Chronic hepatitis B virus
(HBV) infection is a primary cause of the progression of
HCC. The hepatitis B virus X (HBx) protein is a multifunc-
tional protein encoded by the HBx gene. Some studies
claimed that the overexpression of TXNIP strengthens the
migration and invasion of HepG2 cells in the transfer of
HCC related to hepatitis B, suggesting that HBx-mediated
HBV-associated HCC can promote TXNIP expression
[108]. Others showed that the C-terminal truncated X pro-
tein (Ct-HBx) produced by the preferential clustering pat-
tern at the 3′-end of the HBV genome X gene
downregulates TXNIP by activating transcriptional repres-
sor nuclear factor of activated T cells 2 (NFACT2), repro-
gramming glucose metabolism to initiate HCC [109]. In
addition, the miR-519c-3p [110] and M2 macrophage-
derived exosomal miR-27a-3p [111] promote the HCC pro-
gression by downregulating TXNIP, while MAGI2-AS3
inhibits the HCC progression through miR-519c-3p/TXNIP

axis [110]. What is more, in patients with chronic liver dis-
ease, vitamin D3 can stimulate the expression of TXNIP,
which may reduce the carcinogenic effect [107]. It has been
shown that heparin can affect cell growth, differentiation,
invasion, and migration by binding to the ChoRE-b site
one of the TXNIP promoters of TXNIP and promoting the
transcription of TXNIP in HCC cells [112, 113]. Pancreatic
ductal adenocarcinoma (PDAC) is the dominating cause of
pancreatic cancer-specific death [114]. MicroRNAs (miR-
NAs) are involved in developing PDAC by regulating
numerous cellular processes. MiR-224 reverses modulate
TXNIP by directly binding to the TXNIP 3′-untranslated
region, activating the hypoxia-inducible factor 1α (HIF1α)
[115]. Also, TXNIP reexpression or HIF1α depletion elimi-
nated the effects of miR-224 on PDAC cell internal and
external proliferation and migration [115]. In addition,
another study has shown that F-box and WD repeat domain
7 (FBW7) act as negative regulators of glucose metabolism
by regulating the C-Myc/TXNIP axis in pancreatic cancer,
thereby inhibiting the occurrence and development of
tumors [116]. Knocking out the TXNIP gene in a mouse
model is related to helicobacter pylori-associated gastric can-
cer [117]. The expression level of TXNIP was meaningfully
lower in gastric cancer (GC) tissues compared with normal
tissues, TXNIP negatively regulates helicobacter pylor-
related GC by inhibiting TNFα-induced activation of NF-
κB signaling pathway [117]. miR-20b inhibits TXNIP, which
is involved in the PI3K/AKT/mTOR pathway to promote
the GC progression by mediating glucose uptake in cancer
cells [118]. TXNIP may be a therapeutic target of Weining
granule (WNG) for GC [119].

Glucose-6-phophate

EGFR FBW7

GLS1

C-Myc

MondaAHeparin

SFPQ TRAF6

HDAC1

TXNIP
promoter

ROS

NFACT2
WBR5

H4K5 acetylation
H3K4 timethylation

EMT

ERK

Cancer cells
proliferation

Cancer cells
apoptosis

Caspase 3/7

P27

GLUT1

Vitamin D3

MAGI2-AS3
Grapgef5

DNA damage

Wnt

Stromal cell-derived factor 1 or
CXC chemokine receptor type 4

P13/AKT/mTOR

Glucose uptake or
warburg effect

miR-519c-3p miR-629-5p
TNF-α/NF-kB

miR-27a-3p

miR-20b

UHRF1
LHFPL3-AS2

miR-146a
miR-148a

miR-373 miR-224 miR-411-5p/3p

miR-27a-3p
Histone H2A
ubiquitination

RNF2

HBx

HIF1α-TWISTTXNIP

Ct-HBx
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The study has found that inhibition of PI3K/AKT signal-
ing by tyrosine kinase inhibitors (TKI) leads to increased
TXNIP expression in non-small-cell lung cancer (NSCLC)
tissue [120]. MiR-411-5p/3p [121] and miR-629-5p [122]
were upregulated in human NSCLC tissues, and the overex-
pression of both could inhibit the expression of TXNIP, pro-
moting tumor migration and proliferation and preventing
cell apoptosis in NSCLC cell lines, while a study confirmed
LncRNA MAGI2-AS3 could attenuate NSCLC progression
by targeting the miR-629-5p/TXNIP axis [122]. In addition,
the LHFPL3-AS2, a novel lncRNA, is significantly reduced
in NSCLC tissues, resulting in more SFPQ binding to the
TXNIP promoter and leading to TXNIP transcriptional
inhibition, thereby ultimately promoting the migration and
invasion of NSCLC cells [123]. Sodium butyrate (NaBu)
shows promise in cancer therapy. TXNIP induced by NaBu
regulates H4K5 acetylation and H3K4 trimethylation by
increasing WDR5 expression, caspase 3/7 activation, and cell
death [124]. In addition, the study has also demonstrated
that NaBu-induced TXNIP also interacts with TNF
receptor-related factor 6 (TRAF6) through its PPxY motif,
thereby causing the change of TXNIP expression and its
ubiquitination and affecting the migration and proliferation
of the tumor cells in NSCLC [125].

Ubiquitin-like PHD and ring finger domain 1 (UHRF1)
is an indispensable epigenetic regulator in the UHRF family.
In renal cell carcinoma (RCC), UHRF1 recruits histone
deacetylase 1 (HDAC1) into the TXNIP promoter, reducing
TXNIP expression and promoting the progression of RCC
[126]. circRNA also acts as an essential regulator in cancer,
and circRNA rapef5 (crapgef5) targets the expression of
Mir-27a-3p, which targets the 3′UTR in TXNIP to downreg-
ulate the expression of TXNIP, promoting the proliferation
and migration of tumor cells in RCC [127]. TXNIP can also
negatively regulate the progression of bladder carcinogenesis
(BC) by inhibiting the extracellular signal-regulated kinase

(ERK) induced by stromal cell-derived factor 1 or CXC che-
mokine receptor type 4 [128]. RNF2 has highly expressed in
prostate cancer (PCA) tumor tissues. The researchers dis-
covered that RNF2 regulates TXNIP expression through his-
tone H2A ubiquitination, leading to cell cycle arrest,
increased apoptosis, and inhibited cell proliferation [129].
Another study has reported that the protooncogene C-Myc
can activate glutaminase 1 (GLS1) and reduce the activity
of transcription factor MondoA, downregulating the expres-
sion of TXNIP and accelerating the proliferation of PCA
cells [130].

4.4. Brain and Nervous System Diseases. More and more evi-
dence shows that oxidative stress [131–133], mitochondrial
dysfunction [134], changes in calcium homeostasis [135],
and inflammatory response [136] are related to pathological
changes in brain tissue. Studies have shown that TXNIP
increases in neurodegenerative diseases and cerebrovascular
diseases, including Alzheimer’s disease (AD) [137], stroke
[138], and subarachnoid hemorrhage (SAH) [139], which
induces apoptosis and inflammatory of brain cells. In AD,
the main pathological features are neurofibrillary tangles
formed by abnormal accumulation of phosphorylated Tau
in the cytoplasm and senile or neuritic plaques with β -amy-
loid protein as the central core surrounded by neurite or
abnormal neuronal processes [140]. They continue to accu-
mulate in the brain, triggering ER stress and leading to neu-
rodegeneration [141]. The involvement of TXNIP in AD is
mainly related to inflammation [142]. ER stress can promote
the activation of TXNIP/NLRP3 inflammatory bodies in the
hippocampus of the AD brain [141]. Early brain injury (EBI)
is thought to be a main factor in the poor prognosis after
SAH. Apoptosis is the primary pathological mechanism of
EBI. TXNIP induced by protein kinase RNA like ER kinase
(PERK) participates in EBI by promoting apoptosis [143].
Moreover, TXNIP can also participate in EBI after SAH by
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Figure 5: The main mechanism of TXNIP in the brain and nervous system diseases. TXNIP: thioredoxin-interacting protein; TRX:
thioredoxin; NLRP3: NOD-like receptor family protein 3; Nrf2: nuclear factor erythrocyte 2-related factor 2; DI-NBP: Dl-3-n-
butylphthalide.
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mediating inflammation [143]. Bakuchiol (Bak) has been
proven to have multiple organ-protective effects. Bak
reduces blood-brain barrier (BBB) damage, oxidative stress,
and apoptosis by regulating TRX1/TXNIP expression and
AMPK phosphorylation to weaken EBI after SAH [144].
Micro-RNAs like miR-17-5P [145], miR-106b-5p [146],
and miR-20b [147], inhibits TXNIP expression, protecting
brain cells. Thus, upregulation of mir-RNA appears to be a
therapeutic target such as GW0742 [145] and estradiol
[146], to protect brain cells from apoptosis and inflamma-
tion damage. Dl-3-n-butylphthalide (Dl-NBP) treatment
inhibits TXNIP-NLRP3 interaction and NLRP3 inflamma-
some activation by upregulating nuclear factor erythrocyte
2-related factor 2 (Nrf2) [148]. Salidroside treatment can
enhance cognitive ability by regulating the expression of
TRX, TXNIP, and NF-κB proteins [149]. In addition, the
apelin-13/APJ system can show its neuroprotective effect
after SAH in many ways. The authors showed that the com-
bination of exogenous apelin-13 and APJ can reduce ER
stress-mediated oxidative stress and neuroinflammation by
inhibiting the AMPK/TXNIP/NLRP3 signal pathway [150].
The main mechanism of TXNIP in the brain and nervous
system diseases is shown in Figure 5.

5. Conclusions and Future Development

As we all know, TXNIP plays an essential role in the patho-
physiology of various diseases. Researchers found TXNIP is
related to cancers [93, 95, 107, 108, 112–117, 120, 121,
124–131, 151–153], atherosclerosis [69], diabetes and its
complications [47, 53, 54, 57], neurodegenerative diseases,
and cerebrovascular diseases including Alzheimer’s disease
[137, 138], stroke [139], and subarachnoid hemorrhage
[140]. But the role TXNIP played in different diseases is
not necessarily the same. TXNIP acts as a culprit in diseases
like diabetes, neurodegenerative diseases, and cerebrovascu-
lar diseases. The overexpressed TXNIP can lead to the pro-
gression of the diseases. However, TXNIP is indispensable.
It contributes to inhibiting the proliferation and migration
of cancer cells. Low TXNIP concentration inhibits apoptosis,
leading to cancer growth and migration. Thus, the TXNIP is
a double-edged sword for us, and the balance of the TXNIP
is crucial.

Furthermore, the pathophysiological role of TXNIP is
closely associated with the response to ROS. ROS are bypro-
ducts of the normal metabolism of oxygen and present at
low and stationary levels in normal cells [154]. Howbeit,
ROS is nearly omnipresent and is related to plenty of dis-
eases. Such as aging, the oxidative damage initiated by ROS
is a major contributor to the functional decline according
to the free radical theory of aging [155]. Besides, ROS is
largely generated during inflammation, and the generated
ROS will activate TXNIP even in normal cells. Based on that,
we speculate that TXNIP might be involved in every disease
related to ROS production other than the diseases men-
tioned above.

TXNIP can be used as a promising target for treatment.
For cancers, as summarized previously, the concentration of
TXNIP is low in cancers compared with normal cells, and

downregulation of TXNIP indicates a poor prognosis [95].
What is more, TXNIP binds to PARP within the nucleus,
and ROS-activated PARP will bind even tighter with TXNIP,
preventing it from being released. Thus, low-leveled TXNIP
might be a resistant mechanism for tumors to survive the
radiotherapy. Hence, TXNIP may be a good target to treat
cancers by increasing its level within cancer cells.
Researchers found that vitamin D3 and sodium butyrate
can increase TXNIP expression and decrease ubiquitin deg-
radation, respectively, to increase TXNIP levels [125]. Those
two drugs might be used as adjuvant therapies to treat can-
cers. Moreover, novel techniques may provide us with some
inspiration, such as lipid nanoparticles (LNPs). LNPs are
promising in vivo delivery vehicles that are widely used in
many clinical trials. They can be designed to deliver mRNAs
into cancer cells, consequently increasing the TXNIP level in
cancer cells and causing cancer cell death. As for diseases
like diabetes, atherosclerosis, and neurodegenerative dis-
eases, which were caused by overexpressed TXNIP and con-
sequently overactive apoptotic activity, TXNIP may still be
an encouraging target. miRNAs can downregulate gene
expressions by tightly binding to their corresponding
mRNAs and subsequently degrading mRNAs. Ergo, we
may use LNPs to deliver miRNAs into targeted cells to
reduce the TXNIP expression and lower the TXNIP levels
to rescue the cells. However, all of the strategies we men-
tioned above stay at the research level, and whether they
can be used for clinical practice is unknown. Animal exper-
iments and clinical trials should be done to determine their
efficacy and safety.

Except for its role as a treatment target, TXNIP may be a
good candidate as a biomarker. In people with diabetes, a
high serum glucose level can cause endothelial dysfunction.
The TXNIP pathway partially mediates endothelial dysfunc-
tion, and the TXNIP level is associated with the progression
of endothelial dysfunction. As a result, TXNIP may be a
marker for the severity of the injury. TXNIP also has the
capability of being a biomarker to predict prognosis in vari-
ous cancers. Downregulation of TXNIP indicates a poor
prognosis in breast cancers. Furthermore, as TXNIP exists
in nearly every cell and plays almost the same function in
each cell, its expression may also indicate the prognosis of
other cancers. Clinical studies may be done to reveal the
availability of TXNIP as a good marker for the severity of
diseases.
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