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Abstract

Despite the success of genome-wide association studies (GWAS) in detecting a large num-

ber of loci for complex phenotypes such as rheumatoid arthritis (RA) susceptibility, the lack

of information on the causal genes leaves important challenges to interpret GWAS results

in the context of the disease biology. Here, we genetically fine-map the RA risk locus at

19p13 to define causal variants, and explore the pleiotropic effects of these same variants

in other complex traits. First, we combined Immunochip dense genotyping (n = 23,092

case/control samples), Exomechip genotyping (n = 18,409 case/control samples) and tar-

geted exon-sequencing (n = 2,236 case/controls samples) to demonstrate that three pro-

tein-coding variants in TYK2 (tyrosine kinase 2) independently protect against RA: P1104A

(rs34536443, OR = 0.66, P = 2.3x10-21), A928V (rs35018800, OR = 0.53, P = 1.2x10-9),

and I684S (rs12720356, OR = 0.86, P = 4.6x10-7). Second, we show that the same three

TYK2 variants protect against systemic lupus erythematosus (SLE, Pomnibus = 6x10-18), and

provide suggestive evidence that two of the TYK2 variants (P1104A and A928V) may also

protect against inflammatory bowel disease (IBD; Pomnibus = 0.005). Finally, in a phenome-

wide association study (PheWAS) assessing>500 phenotypes using electronic medical

records (EMR) in>29,000 subjects, we found no convincing evidence for association of

P1104A and A928V with complex phenotypes other than autoimmune diseases such as

RA, SLE and IBD. Together, our results demonstrate the role of TYK2 in the pathogenesis

of RA, SLE and IBD, and provide supporting evidence for TYK2 as a promising drug target

for the treatment of autoimmune diseases.

Introduction

Human genetics has the potential to identify biological pathways that lead to complex diseases

such as rheumatoid arthritis (RA). Meta-analyses of multi-ethnic genome-wide association

studies (GWAS) in RA have now identified more than 100 loci associated to risk of disease [1].

Despite the success of GWAS, the associated loci usually include several genes in the region of

linkage disequilibrium (LD), thus providing limited information to incriminate the causal

genes. Cis-eQTL effects of SNPs that are in LD with the index SNPs have been reported in im-

mune cell types, often describing association with variation of expression of several genes in

the locus. Additionally, only a few RA loci harbour missense variants [1,2]. Even then, however,
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it is not clear if these SNPs are responsible for the signal of association, thus illustrating the

challenges of interpreting GWAS findings to provide insights into the disease biology [3,4].

Several studies have described genes in GWAS loci that harbour multiple independent func-

tional mutations associated with a disease, providing genetic evidence for causality and, by ex-

tension, insight into disease pathogenesis [5–18]. This highlights the critical need for detailed

analyses combining dense genotyping and sequencing to pinpoint causal genes with an allelic

series of associated protein-coding functional variants. In addition, this approach has the po-

tential to clarify disease mechanisms and to identify novel therapeutic targets to guide drug dis-

covery [19,20].

Allelic pleiotropy, where one genetic variant influences several distinct phenotypes, is in-

creasingly recognized as a common phenomenon from GWAS findings [21], especially in the

field of immune-mediated diseases [22]. Investigation of pleiotropic effects can inform disease

biology and predict potential adverse events of targets derived from human genetics [20–22].

One approach to comprehensively investigate pleiotropy is through genotype data linked to

clinical data derived from electronic medical records (EMR) [23]. This unbiased approach,

called phenome-wide association study (PheWAS), allows for genotypes of interest to be tested

for association to hundreds of clinically-relevant phenotypes [24]. We and others have demon-

strated the value of this approach in successfully replicating results from GWAS and assessing

pleiotropic effects [25–29].

One locus that has emerged from GWAS in RA is on chromosome 19p13 [2]. This locus

spans 286 kb (LD region r2>0.5) and contains 11 genes, including TYK2 (tyrosine kinase 2), a

member of the Janus kinase (JAK) family of proteins that mediates signalling downstream of

several cytokine receptors [30,31], and intercellular adhesion molecule (ICAM)–coding genes

(ICAM1, ICAM3, ICAM4, ICAM5), which are part of the immunoglobulin superfamily. Based

on the biology of RA alone [32], TYK2 and ICAM genes are equally likely candidate genes re-

sponsible for the signal of association. In support of TYK2, the signal of association is driven by

a low-frequency missense variant in TYK2, with a reported odds ratio (OR) of 0.62, protective

for RA [2]. The variant, rs34536443 (p.P1104A), is predicted to be damaging using function

prediction tools, and has been reported to be loss-of-function (LOF), affecting TYK2 kinase ac-

tivity in primary T cells, fibroblast cell lines and B cell lines [33,34].

Genetic variation in the 19p32/TYK2-ICAM locus has also been associated with several

other autoimmune diseases, including psoriasis, multiple sclerosis (MS), Type 1 diabetes

(T1D), Crohn’s disease (CD), ulcerative colitis, and systemic lupus erythematosus (SLE) [35–

42]. However, the leading signals of association differ in terms of implicated SNPs, effect sizes

and directions of effect (protection vs risk). Whether these differences in association signals in

autoimmune diseases refer to distinct causal variants and/or causal genes, or pleiotropic effects

of the same variants remains unclear.

In the current study, we performed a detailed analysis of the 19p32/TYK2-ICAM locus to

comprehensively investigate the contribution of common and rare protein-coding variants to

RA susceptibility using 1) dense genotyping of the locus with the Immunochip and Exomechip

genotyping platforms and 2) exon sequencing of all 11 genes within this locus. We then used

Exomechip data to investigate the association of TYK2missense variants with two additional

autoimmune diseases, SLE and IBD, both of which have been reported previously to harbour

associations to genetic variants in this locus [35–38,40]. Finally, we linked our findings with

electronic medical records (EMR) to comprehensively assess pleiotropic effects of the RA-asso-

ciated TYK2missense variants.

TYK2 Protein‐Coding Variants, RA, and Pleiotropic Effects
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Results

Three independent TYK2 protein-coding variants protect against RA

To fine-map the 19p32/TYK2-ICAM locus, we first performed a stepwise conditional analysis

using Immunochip genotype data available for 7,222 ACPA+ RA cases and 15,870 controls of

European ancestry (S1 Table) [2]. In this analysis, we applied no minor allele frequency (MAF)

cut-off, in order to investigate all variants at the locus. The strongest signal was at the previous-

ly reported TYK2missense variant rs34536443 (P1104A, minor allele frequency [MAF] =

3.4%, OR = 0.62, P = 2.2x10-14) (Fig 1A and S2 Table) [2]. After conditioning on the P1104A

variant, we observed a significant association at P = 4.0x10-9 with an OR = 0.42, driven by the

rare TYK2missense variant A928V (rs35018800, MAF = 0.8%) (Fig 1B and S2 Table). Condi-

tional on both TYK2 P1104A and A928V variants, we observed a third signal of association at

Fig 1. Results from stepwise conditional analysis of the TYK2 locus.We fine-mapped the TYK2 locus using Immunochip data available for 7,222 ACPA
+ RA cases and 15,870 controls (MAF>0). (A) In the meta-analysis, the best signal of association was at the TYK2missense variant P1104A (rs34536443).
(B) Conditional on P1104A, the best signal of association was at the TYK2missense variant A928V (rs35018800). (C) Conditional on P1104A and A928V
variants, the best signal of association is at the TYK2missense variant I684S (rs12720356). (D) Conditional on the 3 RA-protective variants in TYK2, we
observed no additional signal of association at the locus (best signal is rs3176768, P = 0.01). P-values frommeta-analyses of logistic regressions results
from 6 Immunochip collections are shown. The three TYK2missense variants predicted to be damaging and independently associated with RA risk are
highlighted in green.

doi:10.1371/journal.pone.0122271.g001

TYK2 Protein‐Coding Variants, RA, and Pleiotropic Effects
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P = 5.4x10-4 (OR = 0.87), driven by the TYK2missense variant I684S (rs12720356; MAF = 8%)

(Fig 1C and S2 Table) [2]. After conditioning on TYK2 P1104A, A928V and I684S variants, we

observed no association at P<0.01 (Fig 1D). We used the genotypes from the three TYK2 vari-

ants P1104A, A928V and I684S to build haplotypes. The haplotype model confirmed indepen-

dence of the variants, with the minor alleles of the three variants lying on different haplotypes

(Fig 2A). All three missense variants were predicted to be damaging using Polyphen-2 and

SIFT [43,44].

To replicate the association signals at the three TYK2missense variants, we used Exomechip

genotype data in an independent set of 4,726 RA cases and 13,683 controls of European ances-

try. We also directly sequenced the coding exons of TYK2 in an independent set of 1,118 RA

cases and 1,118 matched controls of European ancestry (S1 Table). In both the Exomechip and

the sequencing data, the effect sizes of the protective haplotypes built using the P1104A,

A928V and I684S variants were highly similar to the effect sizes observed in the Immunochip

data, and were significantly associated with protection from RA (Pomnibus = 4.6x10-8 in Exome-

chip; Pomnibus = 0.0058 in sequencing) (Fig 2B and 2C). Meta-analysis of the Immunochip,

Exomechip and sequencing datasets confirmed replication of the three independent association

signals in TYK2 (S2 Table). While both the P1104A and A928V variants reached genome-wide

significance (PMETA = 2.3x10-21 and PMETA = 1.2x10-9, respectively), we estimated that a sam-

ple size of>20,000 RA cases would be required to observe an association at the I684S variant

at genome-wide significance (P<5x10-8), based on the frequency and estimated effect size of

the variant.

Together, these data implicate TYK2 rather than one of the ICAM (or other) genes in the re-

gion of LD as the most likely causal gene responsible for the signal of association.

Contribution of rare TYK2 protein-coding variants to RA

To comprehensively investigate the contribution of rare protein-coding variants, we analysed

exon-sequencing data available for the 11 genes in the 19p32/TYK2-ICAM locus in 1,118 RA

cases and 1,118 matched controls of European ancestry (S1 and S3 Tables). We restricted the

analysis to protein-coding variants (nonsense or missense) with MAF<0.5%, thus excluding

the TYK2 P1104A, A928Vand I684S variants.

Fig 2. Contribution of 3 independent TYK2 protein-coding variants to protection from RA. (A) Three variants with MAF>0.5% predicted to be
damaging and protecting from RA (P1104A, A928V and I684S) were identified using Immunochip data for 7,222 ACPA+ RA cases and 15,870 controls of
European ancestry. (B) The three variants were genotyped in an independent dataset on the Exomechip (4,726 RA cases, 13,683 controls). (C) The three
variants genotypes were also available from exon sequencing of TYK2 in 1,118 RA cases, 1,118 matched controls of European ancestry. Frequencies of the
independent haplotypes and odds ratios (OR) relative to the most frequent haplotype are shown. Minor alleles of the variants are highlighted in red. H,
haplotypes; F, haplotype frequency; 1, P1104A; 2, A928V; 3, I684S.

doi:10.1371/journal.pone.0122271.g002
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We first performed gene-based association tests for each of the 11 genes (assessing signifi-

cance using 10,000 permutations of case-control status), using 4 different methods: the burden

test (BURDEN, one-sided test), the frequency weighted test (WT, one-sided test), the variable

threshold test (VT, one-sided test), and SKAT-O (two-sided test) [45–47]. Using the one-sided

methods, we performed two tests, to assess the accumulation of rare variants in cases and con-

trols, respectively. We found no gene harbouring rare variants significantly associated with RA

(at P<0.004, 0.05/11 genes), in either gene-based tests including all protein-coding variants or

restricted to variants predicted to be damaging (P>0.01; Fig 3 and S4 Table).

We then performed a sliding-window test. For each position in the protein-coding sequence

of the 11 genes, we extracted all rare missense and nonsense variants in a 500 bp window cen-

tered on the position, and performed a window-based association test using SKAT-O (assess-

ing significance using 1,000 permutations of case-control status; S1 Fig). We only observed a

suggestive association at TYK2 resulting from an accumulation of rare missense variants pre-

dicted to be damaging (7 variants, including 5 singletons) in controls in the protein kinase 1

domain–coding region (P = 0.016) (Fig 3, S1 Fig, S4 and S5 Tables).

We also investigated the contribution of all TYK2 protein-coding variants genotyped in the

Exomechip in our collection of 4,726 RA cases and 13,683 controls. We observed no additional

single variant associated to RA beyond P1104A, A928Vand I684S (P>0.05; S2 Fig), and no ag-

gregate signal of association driven by TYK2 variants with MAF<0.5% using SKAT-O

(P = 0.80).

Together, these results support the finding that the TYK2 protein-coding variants P1104A,

A928V and I684S variants are responsible for the signal of association, and that protein-coding

variants in other genes in the TYK2 locus do not contribute to RA susceptibility.

Pleiotropic effects of RA-associated TYK2 variants in other autoimmune
diseases

Loci implicated in risk of RA are also associated with risk of other autoimmune diseases [1,22].

TYK2 protein-coding variants have been associated with several autoimmune diseases, includ-

ing systemic lupus erythematosus (SLE) and inflammatory bowel disease (IBD) [35–38,40]. In

SLE, the reported association is with the common TYK2missense variant V362F predicted to

be benign (rs2304256, MAF = 23%, OR = 0.70) [35]; in IBD, the reported association is with

Fig 3. TYK2 protein-coding variants identified by exon-sequencing of RA cases and controls.Using dense genotyping, we demonstrate that three
TYK2 protein-coding variants predicted to be damaging, P1104A, A928V, and I684S, protect against RA (highlighted in red). By exon-sequencing in 1,118
RA cases and 1,118 controls, we identified 23 additional missense variants predicted to be damaging (PolyPhen-2 and SIFT), with no strong evidence of
association to RA in gene-based association tests. The TYK2 coding exons, the protein domains, and the minor allele count (MAC) of the rare variants
(MAC<5) in cases and controls are shown.

doi:10.1371/journal.pone.0122271.g003
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the TYK2 variant I684S (OR = 1.12) [36], which we demonstrate as protecting against RA. Ac-

cordingly, we explored whether the three RA-associated TYK2 variants contributed to risk of

SLE and IBD or whether the published variants provide a better genetic explanation for the sig-

nal of association.

Using Exomechip genotype data available for 3,053 SLE cases and 13,687 controls of Euro-

pean ancestry, we observed that the three RA-protecting TYK2 variants P1104A, A928V, and

I684S protected against SLE (Pomnibus = 6x10-18), with effect sizes similar to the effect sizes in

RA (Fig 4A). In this dataset, the TYK2missense variant V362F previously reported to be asso-

ciated with SLE [35,37,40] showed a protective effect (OR = 0.85 [0.79–0.92]) at P = 1.8x10-5.

Importantly, the haplotype analysis highlighted that the V362F association was driven by im-

perfect LD to the three RA-associated missense variants P1104A, A928V, and I684S (Pomnibus,

3df = 6x10-18). Indeed, we found no effect of the haplotype carrying only the minor allele of the

V362F variant (Fig 4A).

We also analysed Exomechip genotype data available for 1,346 IBD cases and 13,687 con-

trols of European ancestry (Fig 4B). Consistent with previous reports in Crohn’s disease, the

TYK2 I684S variant was associated with increased risk of IBD in our dataset (OR = 1.26 [1.10–

1.43], P = 8x10-4) [36]. Interestingly, however, we observed a protective effect of the TYK2

P1104A variant (OR = 0.75 [0.60–0.93], P = 0.008). The point estimate of effect size at the

TYK2 A928V variant was also consistent with protection against IBD (0.64 [0.37–1.1],

P = 0.11), although our analysis was underpowered to detect an association at P< 0.05 at this

SNP. While additional studies are required to definitively fine-map the TYK2 locus in IBD (as

we have done in RA), our data suggest that TYK2 protein-coding variants contribute to

IBD susceptibility.

Using the Exomechip data available for RA, SLE and IBD, we found no additional TYK2

variants associated at P<0.05, in either the disease-specific analyses or a diseases-combined

analysis (based on the hypothesis that independent genetic variants contribute to susceptibility

in all three autoimmune diseases combined) (S2 Fig). Finally, in gene-based association test

(SKAT-0), we observed no aggregate signal of association driven by rare TYK2 protein-coding

variants predicted to be damaging, in either SLE or IBD (P>0.05).

Fig 4. Association of the three RA-associated TYK2missense variants with SLE and IBD.We used Exomechip data from 3,053 SLE cases and 13,687
controls (A) and 1,346 IBD cases and 13,687 controls (B) to built haplotypes using the RA-associated TYK2 variants P1104A, A928V and I684S. In the
haplotype model, we also included the TYK2 SNP V362F, which has previously been reported to be associated with SLE (highlighted in gray). Frequencies of
the independent haplotypes and odds ratios (OR) relative to the most frequent haplotype are shown. Minor alleles of the variants are highlighted in red. H,
haplotypes; F, haplotype frequency; 1, P1104A; 2, A928V; 3, I684S; 4, V362F.

doi:10.1371/journal.pone.0122271.g004
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Comprehensive investigation of pleiotropic effects of RA-associated
TYK2 variants using electronic medical records

We next sought to investigate whether the TYK2 P1104A, A928V and I684S variants protecting

against RA and reported or predicted to be LOF were associated with other clinical diagnoses.

To that end, we used two independent EMR clinical datasets linked to genotype data: 1) 3,005

individuals of European ancestry from the Informatics for Integrating Biology and the Bedside

(i2b2) center [48], and 2) 26,372 individuals of European ancestry from Vanderbilt University

Medical Center’s BioVU EMR-linked DNA biobank [49]. We performed an unbiased PheWAS

for all common EMR-linked binary traits (N = 502 phenotypes), followed by an analysis fo-

cused on clinical traits related to TYK2 biology (N = 30 phenotypes).

In the PheWAS testing the association between the TYK2 variants and the 502 common bi-

nary phenotypes (phenotype frequency>1%), we only observed a significant association

(P<1x10-4) between the P1104A variant and RA (OR = 0.65, PMETA = 2.3x10-5), with an effect

size consistent to the effect size observed in the Immunochip RA case-control cohort (Fig 5A)

[2]. We observed no PheWAS phenotype associated with the I684S or A928V variants at

PMETA<10
–4 (Fig 5B and S3 Fig). (The 502 PheWAS phenotypes tested did not include SLE

and IBD, which both had a frequency<1% in the i2b2 collection.) The list of PheWAS pheno-

types associated at PMETA<0.05 with consistent effect sizes in both EMR datasets (with

PMETA<P BioVU and PMETA<Pi2b2) is shown in S6 Table. Together, these results provided no

evidence of association with strong increased risk (OR�1.3, based on our power calculations;

S4–S6 Figs) between the RA-protecting TYK2 variants and any of the PheWAS phenotypes

tested.

Complete LOF of TYK2 leads to human primary immunodeficiency, which is caused by rare

autosomal recessive null mutations in TYK2 and results in increased risk of severe infections

(bacterial, viral and fungal) [50,51]. To investigate the hypothesis that individuals carrying the

P1104A, A928V or I684S variants might be at increased risk of serious infection due to partial in-

hibition of TYK2, we used a comprehensive set of infection-related ICD9 codes developed and

validated elsewhere [52,53]. We found no group of infection significantly associated with either

of the P1104A, A928V or I684S variants (P<1x10-4) (S7 Table). We observed suggestive evidence

of association between the A928V variant and increased risk of pneumonia (OR = 1.48, P = 0.011

in the BioVU dataset; OR = 2.59, P = 0.079 in the i2b2 dataset; ORMETA = 1.54, PMETA = 0.004 in

meta-analysis), but the signal did not surpass significance thresholds after multiple hypotheses

testing correction

Finally, we tested the association of the P1104A, A928V and I684S variants with two quanti-

tative traits available in the EMR: white blood cell counts (WBC) and low-density lipoprotein

(LDL) levels (Fig 5C and 5D, S3 Fig, and S8 Table). We selected these two phenotypes as a drug,

tofacitinib, targets a pathway related to TYK2—the JAK signalling pathway—and patients treat-

ed with JAK-inhibitors have lower levels of WBCs/neutrophils and elevated levels of LDL choles-

terol [54,55]. We observed only suggestive association of the TYK2 P1104A variant with

increased LDL levels (BETAMETA = +3.4 mg/dL, PMETA = 0.005 in the meta-analysis) (Fig 5C

and S8 Table) and no association of the TYK2 variants withWBC. As a positive control, we

showed significant association toWBC and LDL levels of known associated SNPs from previous

GWAS investigating these two traits [56–60], demonstrating that our analysis using EMR had

the power to detect associations to these traits (Fig 5C and 5D, and S9 Table).

Discussion

Previous studies had identified one TYK2missense variant, P1104A (rs34536443), as associat-

ed with RA susceptibility [2]. Here, through dense genotyping, haplotype analyses and deep
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sequencing, we demonstrate that three independent TYK2missense variants (P1104A, A928V

[rs35018800] and I684S [rs12720356]) unequivocally protect against RA (Figs 1, 2, and 3). In

aggregate, the 3 TYK2 variants account for 0.25% of the phenotypic variance of RA. Together

with the lack of convincing association to protein-coding variants in ICAM genes and other

genes from the 19p32.3 locus, our results provide multiple lines of evidence implicating TYK2,

rather than another nearby gene, as a causal gene involved in RA disease susceptibility.

Fig 5. Investigation of pleiotropic effects of RA-protecting TYK2 variants using electronic medical records.We first tested association of the P1104A
(A) and I684S (B) variants to 502 PheWAS phenotypes with frequency>1% in two independent EMR collections including 3,005 and 26,372 individuals of
European ancestry, respectively. Pvalues of each PheWAS phenotype in meta-analysis of the two EMR collections are shown. We also tested association of
the TYK2 P1104A and I684S variants with low-density lipoproteins (LDL) levels (C), and white blood cell counts (WBC) (D). Effect sizes and confidence
intervals in each EMR collection are shown. Pvalues frommeta-analysis of the two EMR collections are indicated. Association results from SNPs previously
reported to be associated with each quantitative trait (indicated by their respective rsIDs) are also shown.

doi:10.1371/journal.pone.0122271.g005
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TYK2 is a member of the JAK family. The four JAK proteins (JAK1, JAK2, JAK3 and

TYK2) selectively associate with various cytokine receptors [30,31]. While JAK1 and JAK2

have broad functions, JAK3 and TYK2 are primarily important for immune responses. TYK2

associates with receptor chains utilized by a large number of cytokines, including IL6-R, which

is the target of tocilizumab, an anti-IL6R monoclonal antibody used in the treatment of RA

[32,61]. Two of the variants associated with RA in our study, P1104A and I684S, have recently

been shown to affect TYK2 function in primary T cells, fibroblasts and B cell lines and impair

pro-inflammatory cytokines signalling, providing evidence that both variants are LOF muta-

tions and that LOF mutations in TYK2 alter immune-mediated pathways [33,34].

We have previously proposed three features of human genetics that can be applied to drug

discovery [20]: (1) identification of targets that, when perturbed in a manner that mimics trait-

associated alleles, demonstrate efficacy in treating complex human diseases—as illustrated by

recent studies highlighting the increased success rate of targets supported by human genetics

[19]; (2) identification of alternative clinical indications through genetic associations of related

diseases for drug repurposing [62]; and (3) prediction of potential on-target adverse drug

events via pleiotropic associations [7,63]. In the present study, we explored all three features as

it pertains to the TYK2 locus.

First, the observation of multiple independent RA-protecting variants (Figs 1, 2, and 3) pro-

vides an accumulation of evidence that a drug that mimics the effect of TYK2 alleles may be ef-

fective at treating RA (proxy for drug efficacy). This concept is consistent with the overlap

between human genetics and drug discovery in other diseases [62], as exemplified by Mende-

lian randomization studies on variants in PCSK9 and IL6R [7,20,63]. In addition, the recent de-

velopment of drugs inhibiting the TYK2-related proteins JAK1, JAK2 and JAK3 for the

treatment of RA (including the drug tofacitinib, recently approved by the food and drug ad-

ministration [FDA]), further support TYK2 as an appealing candidate drug target [54,64].

Second, the protective effect of the three TYK2 variants in SLE observed in our study (Fig 4A)

highlights that a drug that mimics the effect of the RA-protecting TYK2 alleles may also be effec-

tive at treating SLE, and potentially other autoimmune diseases such as IBD. We note that the

relatively small sample size in IBD (n = 1,346 IBD cases) limits our ability to perform detailed

fine-mapping of the TYK2 locus in IBD, and that additional studies are required.

As a third feature, we used electronic medical records to comprehensively investigate pleiot-

ropy of RA-associated TYK2 variants that could predict potential adverse events, including risk

of serious infections, decreasedWBC or neutrophil counts, or increased LDL levels, which are

major adverse drug events in RA drug development that have been observed in clinical trials of

tofacitinib [54,55,64] (Fig 5 and S3 Fig). In this analysis, we observed no strong evidence of a

phenotype at increased risk in carriers of the TYK2 RA protecting-variants P1104A, A928V or

I684S. However, we did observe several phenotypes with suggestive evidence of association

(PMETA<0.05) and consistent direction of effect in two independent EMR datasets (Fig 5, S6

and S7 Tables), including association of the P1104A variant with increased LDL levels (Beta =

+3.4 mg/dL, PMETA = 0.005), and association of the rare A928V variant with risk of pneumonia

(OR = 1.5, PMETA = 0.004). These observations will require further investigation in very large col-

lections to predict whether serious infections and/or hypercholesterolemia might be a potential

on-target adverse event of a drug mimicking the effect of these alleles.

There are limitations to our study. It is possible that RA-associated TYK2 variants have

pleiotropic associations with other phenotypes (e.g., infection), but that our EMR-based ap-

proach was not able to detect these associations at the level of statistical significance in our

study. For example, EMR diagnostic codes are comprehensive but imprecise, which limits ac-

curate estimations of effect size of associations from EMR data alone. Further, our EMR analy-

sis had limited power to identify individual diagnoses associated with TYK2 LOF, considering
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the sample size and prevalence of the individual diagnoses. However, the use of EMR has been

shown to successfully detect associations with a large spectrum of phenotypes [25]. In the pres-

ent study, we were able to replicate previously published associations (Fig 5 and S9 Table). Of

note, GWAS have not yet proven to be successful at identifying loci contributing to risk of in-

fection with reproducible results, which limits our ability to include infection-related variants

as a positive control in our PheWAS.

In conclusion, although previous studies have nominated TYK2 as a potential therapeutic

target [41,65], our study provides compelling human genetic data demonstrating that TYK2 al-

leles with partial loss-of-function (1) protect against RA, SLE and potentially other autoim-

mune diseases such as IBD; and (2) are tolerated in the general population, as there are no

obvious detrimental associations in our PheWAS. Our results also highlight the potential of in-

vestigating in details the different biological effects of the three TYK2 variants to inform drug

efficacy, toxicity and repurposing at early stages of drug development. In theory, the same ap-

proach linking human genetics with “real life data” like EMR should be applicable to other

complex diseases, thereby providing an estimate of drug efficacy and toxicity at the time of

target validation.

Methods

Samples and ethics statement

A detailed description of the samples included in this study is provided in S1 and S2 Tables,

and in the related Methods sections. Our study was approved by the Institutional Review

Board of Brigham &Women's Hospital. All the enrolled subjects provided written informed

consent for the participation of the study. Blood samples were collected according to protocols

approved by local institutional review boards.

RA case-control Immunochip dataset

To fine-map the TYK2 locus and investigate independent signals of association to RA, we used

7,222 ACPA+ RA cases and 15,870 controls genotyped on the Immunochip platform as part of

the Rheumatoid Arthritis Consortium International (S1 Table) [2]. Quality control and initial

data filtering were performed as described previously [2]. Briefly, genotype calling was per-

formed on all samples as a single project using the GenomeStudio Data Analysis software.

SNPs with low cluster separation, call rate<0.99, or departure from Hardy-Weinberg equilib-

rium (PHWE< 5.7x10−7) were excluded from each of the collections. Samples with a call rate

<0.99 were excluded. Principal component analysis (PCA) was performed using EIGENSOFT

v4.2 [66] with HapMap phase 2 samples as reference populations, and non-Caucasians samples

were excluded. A second PCA was performed to exclude outliers and calculate the principal

components (PCs) to include as covariates in the logistic regressions. We build haplotypes

using BEAGLE, and tested for association of the genotypes and haplotypes with risk of RA,

using PLINK (including 10 PCs as covariates) [67,68].

Autoimmune diseases—case control Exomechip datasets

To replicate association signals to RA, we used an unpublished dataset of 4,726 RA cases and

13,683 controls genotyped on the Exomechip (S1 Table). This dataset included samples collect-

ed from the Dutch Rheumatoid Arthritis Monitoring (DREAM) registry [69], the Informatics

for Integrating Biology and the Bedside (i2b2) cohort [48], the North American Rheumatoid

Arthritis Consortium (NARAC) family cohort [70], the Study of New Onset Rheumatoid
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Arthritis (SONORA) cohort [71], the Veteran's Affairs Rheumatoid Arthritis registry (VARA)

[72].

We also tested the association of TYK2 variants to SLE and IBD using Exomechip genotype

data from 3,053 SLE cases and 1,346 IBD cases (S1 Table). The SLE dataset included samples

from the Autoimmune Biomarkers Collaborative Network (ABCoN) [73], Genentech Clinical

Trials, the Multiple Autoimmune Disease Genetics Consortium (MADGC) [74], the Oklahoma

Medical Research Foundation (OMRF) [75], the University of California San Francisco

(UCSF) [76], and the UK King’s College [77]. The IBD dataset included samples from the Uni-

versity of Dundee [78], the EMerging BiomARKers in Inflammatory Bowel Disease (EM-

BARK) study [79], and Genizon BioSciences, Inc [80].

Extensive quality control and data filtering were performed in each dataset. Samples were

selected by excluding: 1) individuals with<95% complete Exomechip genotype data; 2) indi-

viduals with IBD [Pi-hat>0.125 using 10,000 higher frequency SNPs (MAF>0.05)], 3) non-

European ancestry (>0.10, based on STRUCTURE (v2.3.3) [81] analyses using core sets of dif-

ferent continental groups including>100 subjects from each ancestry (European, East Asian,

Amerindian, South Asian andWest African) and genotypes from>2000 high frequency LD

independent SNPs; and 4) PCA outliers (>5 SD for first 10 principal components). The PCA

was performed in EIGENSOFT 4.2 [66] using 13,682 Exomechip SNPs that 1) were not in LD

(r2<0.01); 2)>99% complete typing data and 3) were enriched for SNPs with minor allele fre-

quencies>0.05 (>50% of SNPs). Independence of the samples from the Exomechip and

Immunochip RA datasets was confirmed using overlapping SNPs.

We build haplotypes using BEAGLE, and tested for association of the genotypes and haplo-

types with risk of RA, SLE and IBD, using PLINK (including 10 PCs as covariates) [67,68].

Exon sequencing

To investigate the contribution to RA of rare protein-coding variants at the TKY2 locus, we

used exon-sequencing data available in 1,420 RA patients and 1,340 controls originating from

Europe or the United States (S2 Table). A total of 10 collections from 5 countries were includ-

ed: the Autoimmune Biomarkers Collaborative Network (ABCoN) [82], the Academic Medical

Center (AMC) and VU University medical center (VUMC), the UK Biological in Rheumatoid

arthritis Genetics and Genomics Study Syndicate (BRAGGSS) [83], the Consortium of Rheu-

matology Researchers of North America (CORRONA) [84], the Informatics for Integrating Bi-

ology and the Bedside (i2b2) center, the Leiden University Medical Center (LUMC) [85], the

Dutch Rheumatoid Arthritis Monitoring registry (DREAM) and the Nijmegen Biomedical

Study (NBS) [69], the French Research in Active Rheumatoid Arthritis (ReAct) [86], and the

Rheumatic Diseases Portuguese Registry (Reuma.pt/ Biobanco-IMM) [87]. DNA libraries were

prepared in sets of 96. The barcoded libraries from each set were then pooled together. Enrich-

ment of the target genomic regions was performed using the NimbleGen Sequence Capture

technology. After target capture, each pool was loaded on two lanes of the HiSeq sequencer.

Reads were then aligned to the reference human genome (NCBI Build37/hg19) using BWA

[88] and duplicate reads were excluded using Picard. In total, 95% of the samples reached an

minimum average coverage of 20X in>70% of target regions, with 96% of the target regions in

the samples passing this initial quality control (QC) covered at> = 20X coverage. Single nucle-

otide polymorphisms (SNPs) were called using Samtools v1.16 [89] and VarScan 2.2.9 [90]

using stringent minimum coverage, mapping quality, and strandness filters. SNPs called from

each sample using both calling algorithms were then merged and additional filters were applied

(number and frequency of the reads supporting the variant, position in the reads). Finally, only

variants passing filters in>50% of the samples were considered high-quality and included in
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the subsequent analysis. Sequencing, initial QC and SNP calling were performed at the Ge-

nome Institute. After applying stringent filters to remove individuals based on sequencing cov-

erage and quality (N = 131 individuals excluded), and population stratification using case-

control principal components (PC)-matching (N = 393 individuals excluded), a final set of

1,118 case-control matched pairs of European ancestry was included in the association tests

(S1 Table). The transition:transversion ratio based on the variants passing QC was 2.5 (vs 2.6

for dbSNP SNPs in target space). MAF correlation of variants called in the sequenced controls

and samples from the Exome Sequencing Project (ESP) was 98%. Concordance between se-

quencing genotype calls and Exomechip data available for 137 samples was calculated to fur-

ther assess the quality of the sequencing data. Overall, we observed 99.7% concordance at 1,718

shared variants polymorphic in the 137 samples set. The variants were annotated using

ANNOVAR [91]. We used PolyPhen-2 and SIFT to predict the function of the missense vari-

ants [43,44]. We then grouped the variants based on the prediction results from both software:

1) benign in both PolyPhen-2 and SIFT (that we considered as benign), 2) benign using one

software and possibly/probably damaging using the other software (that we considered as be-

nign), 3) possibly damaging in both PolyPhen-2 and SIFT or possibly damaging in one soft-

ware and probably damaging using the second software (that we considered as “potentially

damaging”), 4) probably damaging in both PolyPhen-2 and SIFT (that we considered as “po-

tentially damaging”).

Gene-based association tests

We performed gene-based association tests to investigate the contribution of rare variants

(MAF<0.5%) to protection from RA. For each of the 11 genes in the TYK2 locus (defined by

the SNPs in linkage disequilibrium (LD, r2>0.5) to the strongest association to RA (driven by

rs34536443, P1104A) [2], we investigated the overall contribution of 1) all rare (MAF<0.5%)

missense variants, and 2) the rare nonsense variants and the missense variants predicted to be

“potentially damaging” using Polyphen-2 and SIFT [43,44]. We used 3 published “one-sided”

methods: (1) the classic burden test, (2) the frequency-weighted (FW) test and (3) the Vari-

able-threshold (VT) test, all 3 tests implemented in PLINKSEQ [46,47]. We also used SKAT-O

(“two-sided”method) [45]. We performed all 4 tests with 10,000 case-control permutations to

assess empirical P-values.

In addition to the gene-based tests, we performed window-based tests to investigate the con-

tribution of rare variants per 500 bp window of the genes coding sequence, using SKAT-O. and

10,000 case-control permutations to assess empirical P-values. Finally, we used the one-sided

methods (BURDEN, WT, VT) to further assess the contribution of rare variants in the protein

kinase 1 domain of TYK2 in domain-based tests.

Linking haplotypes with clinical diagnoses from Electronic Medical
Records

To comprehensively investigate pleiotropic effects of TYK2 LOF variants, we used two inde-

pendent electronic medical records (EMR) datasets linked to genotype data: 1) EMR data from

3,005 individuals of European ancestry from the Informatics for Integrating Biology and the

Bedside (i2b2) center who received medical care within the Brigham andWomen’s Hospital

(BWH) and Massachusetts General Hospital (MGH) healthcare system linked to Immunochip

genotype data [48,92], and 2) EMR data from 26,372 individuals of European ancestry from

BioVU, the Vanderbilt University DNA biobank [49], linked to Exomechip genotype data (S1

Table). The i2b2 collection was initially optimized for RA genetic studies [48,92], resulting in a

high frequency of patients with ICD9 code = 714 (Rheumatoid arthritis and other
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inflammatory polyarthropathies) and 714.0 (Rheumatoid arthritis) in this collection (S1

Table). The BioVU Exomechip cohort was primarily chosen based on longitudinal exposure in

healthcare system, without a specific emphasis on RA or other autoimmune diseases. Interna-

tional Classification of Diseases 9th Revision (ICD9) codes were grouped into 1,570 clinically

relevant phenotypes using the current version of the PheWAS codes, as described previously

[25]. We restricted our analysis to PheWAS codes referring to ICD9 001–779 (ignoring signs

and symptoms and injuries) and with a prevalence>1% in both EMR datasets, resulting in 502

PheWAS codes. For each PheWAS code, we considered individuals with at least two reported

events as cases.

We first conducted a phenome-wide association study (PheWAS). In each EMR dataset, we

tested for association of TYK2 variants with each PheWAS code in the additive model using lo-

gistic regressions adjusted for age, gender and PCs to correct for population stratification. In

the analysis of the i2b2 EMR dataset, we further adjusted for RA status. We conducted an in-

verse-variance-weighted meta-analysis to combine the results from the two EMR datasets.

We then conducted an association study focused on ICD9 codes related to serious infec-

tions. We used two previously published sets of ICD9 codes for serious infections grouped by

anatomical site and compiled based on expert consensus: 1) a ‘‘comprehensive” set that includ-

ed a wide range of codes to maximize sensitivity; 2) a ‘‘restricted” set including more specific

ICD9 codes [53].

Finally, we tested for association of the TYK2 variants with two quantitative traits available

in the EMR: white blood cell counts (WBC), and low-density lipoprotein (LDL) levels. For

WBC, we defined the primary outcome as the mean of all measurements available for each sub-

ject in the EMR. We tested the association between the TYK2 variants and the mean values, ad-

justed by age, gender, PCs and the number of measurements used to calculate the mean values.

For LDL levels, the primary outcome was defined by each subject’s first LDL measurement in

the EMR as described previously [93]. We excluded subjects with electronic prescription for an

HMG-CoA reductase inhibitor (statin) prior to the LDL measurement to maximize the chance

of selecting subjects prior to any lipid lowering intervention. We tested the association between

the TYK2 variants and the first LDL measurement, adjusted by age at LDL measurement, gen-

der and PCs. We also adjusted for year of LDL measurement, which has been shown to strongly

contribute to the variability in LDL levels [93,94].

Estimation of the statistical power in the PheWAS

To estimate the power to detect a significant association (at P<1x10-4) in the PheWAS based

on the sample size, the frequency of each code and the frequency of the SNPs tested, we used

and R script adapted from the ldDesign R package to query the Genetic Power Calculator on-

line tool [95]. We assessed power for a variant with MAF = 3.4% (corresponding to the

P1104A variant MAF), MAF = 8.7% (corresponding to the I684S variant MAF) and

MAF = 0.7% (corresponding to the A928V variant MAF). We assessed power for a set of code

frequencies and ORs, in the models where 1) the RA-protecting variants increase risk (risk al-

lele frequency [RAF] = 0.034, RAF = 0.087 and RAF = 0.007) or decrease risk (RAF = 0.966,

RAF = 0.913 and RAF = 0.993).

Based on the case:control ratio for each phenotype, the PheWAS approach has significantly

greater power to detect increased risk compared to protection (S4–S6 Figs). Estimations

highlighted the statistical power to detect a significant association (P<1x10-4; P = 0.05/532

phenotypes tested) to the P1104A and I684S variants. For rs34536443, we estimated power to

detect a significant association with: 1) OR�2 at phenotype frequency = 1%, 2) OR�1.4 at phe-

notype frequency = 10% in BioVu. For rs12720356, we estimated power to detect a significant

TYK2 Protein‐Coding Variants, RA, and Pleiotropic Effects

PLOS ONE | DOI:10.1371/journal.pone.0122271 April 7, 2015 14 / 21



association with: 1) OR�1.6 at phenotype frequency = 1%, OR�1.3 at phenotype frequen-

cy = 10% in BioVU (S4 and S5 Figs). However, we estimated limited power to detect a signifi-

cant association to the rare variant A928V (MAF = 0.7%; S6 Fig).

Supporting Information

S1 Fig. Sliding-window test results using exon-sequencing of RA cases and controls. An ac-

cumulation of true rare missense variants (MAF<0.5%) predicted to be damaging was ob-

served in the Protein kinase 1 domain of TYK2. Association results from 500 bp sliding

window tests in SKAT-O restricted to nonsense variants (pink) and missense variants pre-

dicted to be damaging (red) are shown. Variants with MAF>1% (indicated by a star) were ex-

cluded in the test. In TYK2, we further excluded the A928V and A53T variants with 0.5%<

MAF<1% (indicated by a star) that were independently investigated using Exomechip data.

The light blue background highlights the coding sequence region with P<0.05.

(PDF)

S2 Fig. Association to RA, SLE and IBD of all TYK2 variants genotyped on the Exomechip

and predicted to be damaging.Only the 3 variants with MAF>0.5% confirmed to be associat-

ed to RA in our study reached P<0.05, in either the disease-specific analyses or the diseases-

combined analysis.

(PDF)

S3 Fig. Investigation of pleiotropic effects of TYK2 A928V variant (rs35018800) using elec-

tronic medical records. (A) We first tested association of the A928V variant to 502 PheWAS

phenotypes with frequency>1% in two independent EMR collections. Pvalues of each Phe-

WAS phenotype in meta-analysis of the two EMR collections are shown. We also tested associ-

ation of the A928V variant with LDL levels (B), and white blood cell counts (WBC) (C). Effect

sizes and confidence intervals in each EMR collection are shown.

(PDF)

S4 Fig. Estimation of power to detect an association at rs34536443 in the EMR.We estimat-

ed the power to detect an association at P<1x10-4 for a variant with MAF = 3.4%, based on

phenotype frequency in the EMR and estimated OR. (A) Power estimations for a sample size

of 3,005 subjects. (B) Power estimations for a sample size of 26,372 subjects. The left panel

shows results for the minor allele associated with increased risk. The right panel shows results

for the minor allele with a protective effect. The dashed red line indicated a phenotype frequen-

cy of 1%. The barplots highlight the number of cases per phenotype in the EMR collections.

(PDF)

S5 Fig. Estimation of power to detect an association at rs12720356 in the EMR.We estimat-

ed the power to detect an association at P<1x10-4 for a variant with MAF = 8.5%, based on

phenotype frequency in the EMR and estimated OR. (A) Power estimations for a sample size

of 3,005 subjects. (B) Power estimations for a sample size of 26,372 subjects. The left panel

shows results for the minor allele associated with increased risk. The right panel shows results
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