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Archie (1989) and Faith and Cranston
(1991) independently developed a parsi-
mony-based randomization test for assess-
ing the quality of a phylogenetic data ma-
trix. Matrix randomization tests have had
a mixed reception from phylogeneticists
(e.g., Källersjö et al., 1992; Alroy, 1994;
Carpenter et al., 1998; Wilkinson, 1998;
Siddall, 2001). In general, however, these are
well-founded statistical techniques (Manly,
1991) that may be well-suited tophylogenetic
contexts where models or assumptions un-
derlying parametric statistical methods are
either dif�cult to justify or to test. In a ma-
trix randomization test, a test statistic (typ-
ically a measure of data “quality”) is cal-
culated for the original data, and the result
is contrasted against a null distribution of
the test statistic determined by repeated ran-
domization of the data. Randomization is by
random permutation of the assignment of
character states to taxa within each character.
Essentially, each character in the dataset is in-
dependently shuf�ed so that congruence be-
tween characters is reduced to the extent that
would be expected by chance alone. The ran-
dom permutation preserves some features
of the data that are known to affect mea-
sures of data quality, such as the total num-
ber of characters and taxa and the num-
bers of taxa with each character state within
each character (Archie, 1989; Sanderson
and Donoghue, 1989; Faith and Cranston,
1991). Thus the null distribution represents
a distribution that one would expect from
comparable phylogenetically uninformative
data. The simplest parsimony-based matrix

randomization tests use the length of the
most-parsimonious trees (MPTs) as the test
statistic, comparing this for real and ran-
domly permuted data. A corresponding sim-
ple test statistic for the null hypothesis that
the data are indistinguishable from random
is the parsimony permutation tail probabil-
ity or parsimony PTP (Faith and Cranston,
1991). The parsimony PTP is the proportion
of data sets (real and randomly permuted)
that yield MPTs as short or shorter than the
MPTs for the original data.

Slowinski and Crother (1998) used 40 real
data sets in an empirical evaluation of the
utility of the parsimony PTP. Speci�cally,
they compared PTPs with the fraction of
clades supported by bootstrap proportions
exceeding 50%. In addition, they compared
PTPs with the resolution of strict compo-
nent consensus trees. They reported that
data sets that appear to be poorly struc-
tured, based on bootstrap analyses or be-
cause they have a poorly resolved strict
component consensus, tend to have signi�-
cant PTPs, and they concluded that (p. 300)
“the PTP test is too liberal” and is of lim-
ited utility. Peres-Neto and Marques (2000)
expressed concern at the use of one statis-
tical test (the bootstrap) to evaluate another
(parsimony PTP) and presented simulation
studies that attempted to address the per-
formance of the PTP test more directly.
Their simulation studies involved perform-
ing PTP tests on randomly generated data.
Because data are generated randomly, the
null hypothesis is true and the number of
times that the null hypothesis is rejected
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correctly estimates the Type 1 error rate
of the PTP test, that is, the probability of
wrongly rejecting the null hypothesis when
it is true. On the basis of their simula-
tions, Peres-Neto and Marques (2000) re-
ported unacceptably high Type 1 error rates
for the parsimony PTP (e.g., >0.4 for nom-
inal ® D 0.05). These results, if correct,
would undermine the utility of this par-
simony randomization test and led Peres-
Neto and Marques (2000:423) to suggest,
“Perhaps it is time to propose new tools
for assessing character covariation in phy-
logenetic data.” However, we discovered a
mistake in the code they used to generate
the “random” data, which invalidates the
results of their study. Here we report more
accurate Type 1 error rates for the parsi-
mony PTP test, estimated by the simulation
method of Peres-Neto and Marques (2000),
for the range of parameter combinations
they originally considered. Our results in-
dicate that the parsimony PTP is a conser-
vative test of the null hypothesis, thus un-
derlining the potential utility of the test in
phylogenetics.

MATERIALS AND METHODS

Type 1 error rates were estimated by using
the simulation approach of Peres-Neto and
Marques (2000). For a given set of parame-
ters, multiple data sets were generated ran-
domly and tested, and the proportion of tests
yielding results signi�cant at ® D 0.05 was
determined. The range of parameters used in
the simulations followed that of Peres-Neto
and Marques (2000). In the �rst set of simu-
lations, 200 random binary data states were
generated, with the two states (0 and 1) be-
ing equally likely for each of two values of
the number of characters (40 and 80) and
six values of the number of terminal taxa
(increments of 5 up to 30). An all-zero out-
group was added in each random matrix, and
a parsimony PTP test was performed using
1,000 permutations. The outgroup was in-
cluded in tree length estimation but not in the
permutation. The second set of simulations
differed only in the random data consisting
of four equiprobable states (0, 1, 2, 3) that
were treated as unordered. The third set of
simulations explored unequal frequencies of
character states, using a larger sample (1,000)
of randomly generated binary data sets of

40 characters for two cases, equiprobability
of the states, and probabilitiesof 0.65 and 0.35
for states 0 and 1, respectively.

Simulations were carried out in two ways.
First they were run with a corrected ver-
sion of the software employed by Peres-Neto
and Marques (2000), which used Hennig 86
(Farris, 1988) to perform parsimony analysis;
for this, we used the exact (ie) algorithm.They
were also run with independently devel-
oped software using PAUP* (Swofford, 1998)
to perform the parsimony PTP tests with
heuristic searches (10 random addition se-
quences and TBR branch swapping). All
simulations were replicated by using both
systems.

The addition of an all-zero outgroup to the
randomly generated data sets was intended
solely to emulate the original study; we do
not consider this an essential partof the simu-
lation process. Given that the “ingroup” data
were randomly permuted, the unpermuted
outgroup would always be random with re-
spect to the ingroup. Simulations performed
without the addition of an outgroup yield
similar results (not shown).

RESULTS

Results from the parallel tests using differ-
ent software were concordant and have been
combined to increase sample size. Type 1 er-
ror rates of the parsimony PTP, the propor-
tions of tests of randomly generated data
yielding signi�cant results (PTP · 0.05), for
each of the three sets of simulations are
shown in Table 1. The Type 1 error rates are

TABLE 1. Type 1 error rates of the parsimony PTP
measured as the proportions of trials of randomly gen-
erated data sets yielding PTPs · 0.05 by using (A) bi-
nary characters and equiprobable character states, (B)
four-state characters and equiprobable character states,
and (C) 40 binary characters and differing probabili-
ties of states 0 and 1. (A) and (B) used 400 trials; (C)
used 2,000. These results correspond to those reported in
Figures 1–3 of Peres-Neto and Marques (2000).

No. of No. of Probability of
characters characters state 1

Taxa 40 80 40 80 0.5 0.35

5 0.045 0.018 0.013 0.038 0.039 0.031
10 0.033 0.050 0.025 0.038 0.037 0.037
15 0.038 0.033 0.033 0.045 0.035 0.028
20 0.028 0.038 0.035 0.038 0.030 0.036
25 0.053 0.063 0.045 0.040 0.043 0.049
30 0.030 0.045 0.073 0.048 0.033 0.033
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generally low, in contrast to the high values
reported previously. Indeed, it is striking that
the rates are lower than the expectation of
5% in the large majority of the simulations.
There are no obvious differences in the per-
formance of the test across the sampled com-
binations of parameters.

DISCUSSION

The results previously reported by Peres-
Neto and Marques (2000) appear to support
a pessimistic or even nihilistic view of the
parsimony PTP test. However, that view is
illusory and results from an unfortunate er-
ror in the code used to generate random data
in their study. Brie�y, the error made the
probability of assigning a particular charac-
ter state contingent on the state previously
generated. Character data were generated for
each “species” in turn creating sequences of
states that were often more similar or more
different between species than one would ex-
pect by pure chance. The effect of the error
would be expected to increase with numbers
of species, which explains the �nding that re-
jection of the null hypotheses became easier
as the number of species increased (Peres-
Neto and Marques, 2000:Figs. 1 and 2). This
also explains the reported increase in Type 1
error rates with an increase in the proportion
of one of the character states, which increased
the chance of generating similar sequences of
character states.

In direct contrast to the original results,
our estimates indicate that the parsimony
PTP is a relatively conservative test statis-
tic. Over a range of numbers of taxa,
characters, character states, and relative pro-
portions of character states the Type 1 er-
ror rate is mostly <5%. In only 3 of the 36
simulations did it exceed this error rate, and
in each case only marginally so. In none of
the 12 simulations using 2,000 trials did the
error rate exceed 5%, thus suggesting that
the three outliers are attributable to sampling
error.

Our results demonstrate that the parsi-
mony PTP test cannot be considered too lib-
eral because of any unacceptably high Type 1
error rate. The present results also make
more intuitive sense than those reported in
the original study. Indeed, the error in the
original study was discovered because the
current authors were unable to conceive of

any obvious mechanism that would account
for the reported results. We have no rea-
son to expect truly random data to gener-
ate anything greater than the 5% Type 1 er-
ror rate when the statistical test is based on
random permutation. This is because what
constitutes the “real” data is simply a ran-
dom choice from the set of all its possible
permutations.

An interesting aspect of our results that de-
mands explanation is the relatively low error
rates. The reason for this deviation from ex-
pectations is explained by the discontinuous
nature of the distribution of the test statis-
tic. Because parsimony tree lengths are not
continuous, there is no need for a clear break
between the shortest 5% of the tree lengths
and the longest 95% of the tree lengths.
Rather, some tree lengths may be clustered
on the threshold such that<5% of the tree
lengths will be shorter than the threshold. In
such cases, the observed tree length would
need to be among these (<5%) shortest tree
lengths to be signi�cant, the Type 1 er-
ror rate will be <5%, and the test will be
conservative.

To assess this possibility we developed a
revised version of the test that expressly ac-
counts for this source of error. A test on dis-
crete data is not fundamentally distinct from
a test based on continuous data grouped
into discrete bundles. Imagine that mem-
bers of the bundle clustered on the threshold
all have “true” test value (based on an un-
derlying continuous distribution) that range
uniformly from the value associated with a
“conservative” test to that associated with
a “liberal” test (i.e., including and exclud-
ing the entire bundle). The midpoint of this
range now corresponds to the threshold, so
that one half of the members of the bun-
dle are considered to be among the 5%
of values in the tail of the overall distri-
bution. When we applied this method of
calculating the test statistic, the previous
“conservative” nature of the test results dis-
appeared entirely, and the test statistics nom-
inally set at ® D 0:05 clustered very close to
the nominal value. Indeed, the whole dis-
tribution of the test-statistic approximated
very well to the expected uniform dis-
tribution associated with P-values. Note
that we would expect a matrix randomiza-
tion test using test statistics better approxi-
mated by a continuous distribution (such as
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log-likelihoods) to be almost unbiased (i.e.,
not conservative).

Matrix randomization tests such as the
parsimony PTP seem to have two uses or in-
terpretations. In the �rst, the emphasis is on
the failure to reject the null hypothesis as a
justi�cation for discounting phylogenetic re-
lationships based on the data. Passing the test
is seen as a minimum requirement of data if
one is to invest any con�dence at all in the
phylogenetic relationships inferred from it
(e.g., Alroy, 1994; Wilkinson, 1997, 1998). In
the second, the emphasis is on passing the
test as justi�cation for placing con�dence in
the results of what phylogenetic inferences
are based on the data (e.g., Lee, 2001). The
�rst approach is the more conservative and,
we believe, more reasonable. It is not known
how much phylogenetic signal is required
of data for them to pass the parsimony PTP
test or whether this level of signal is suf�-
cient for accurate phylogenies to be expected.
Type 2 error rates remain unexplored. How-
ever, Slowinski and Crother’s (1998) compar-
isons with bootstrapping suggest that pass-
ing the parsimony PTP cannot generally be
assumed toguarantee well-supported phylo-
genetic hypotheses. Certainly, phylogenetic
signals may not be uniformly distributed
across a data matrix, and the fact that a given
data matrix passes the test does not entail
that subsets of it would similarly pass the test
(Faith and Cranston, 1991; Fu and Murphy,
1999). In addition, many data sets with non-
phylogenetic (but nonrandom) structure are
likely to pass the test (Källersjö et al., 1992;
Alroy, 1994). Thus we cannot reasonably in-
fer that the data passing a PTP test support
well-founded inferences or even are “phylo-
genetically well structured” (e.g., Lee, 2001).
Other approaches should be used to inves-
tigate the strength of support for relation-
ships inferred from data that have passed
the parsimony PTP test. From a conserva-
tive perspective, where avoiding ill-founded
hypotheses of relationships is deemed most
important, the possibility that the parsimony
PTP may be slightly conservative is not a
problem. Given that the use of the PTP is
to protect us from poorly founded infer-
ences, the low Type 1 error rate simply means
that a greater degree of protection than the
nominal 5% is being provided, although this
might also imply that the test has lower
power. If the conservativeness of the test is

considered problematic, then the revised ver-
sion of the test we have described can be
used.
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