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Type-2 Fuzzy Sets Made Simple
Jerry M. Mendel and Robert I. Bob John

Abstract—Type-2 fuzzy sets let us model and minimize the ef-
fects of uncertainties in rule-base fuzzy logic systems. However,
they are difficult to understand for a variety of reasons which we
enunciate. In this paper, we strive to overcome the difficulties by:
1) establishing a small set of terms that let us easily communicate
about type-2 fuzzy sets and also let us define such sets very pre-
cisely, 2) presenting a new representation for type-2 fuzzy sets, and
3) using this new representation to derive formulas for union, in-
tersection and complement of type-2 fuzzy sets without having to
use the Extension Principle.

Index Terms—Type-2 fuzzy logic systems, type-2 fuzzy sets.

I. INTRODUCTION

I T IS KNOWN that type-2 fuzzy sets let us model and min-
imize the effects ofuncertaintiesin rule-based fuzzy logic

systems (FLSs),1 e.g., [33]. Unfortunately, type-2 fuzzy sets are
more difficult to use and understand than are type-1 fuzzy sets;
hence, their use is not yet widespread. In this paper we make
type-2 fuzzy sets easy to use and understand in the hope that
they will be widely used.

There are (at least) four sources of uncertainties in type-1
FLSs: (1) The meanings of the words that are used in the
antecedents and consequents of rules can be uncertain (words
mean different things to different people). (2) Consequents may
have a histogram of values associated with them, especially
when knowledge is extracted from a group of experts who do
not all agree. (3) Measurements that activate a type-1 FLS may
be noisy and therefore uncertain. (4) The data that are used to
tune the parameters of a type-1 FLS may also be noisy. All of
these uncertainties translate into uncertainties about fuzzy set
membership functions. Type-1 fuzzy sets are not able to directly
model such uncertainties because their membership functions
are totally crisp. On the other hand, type-2 fuzzy sets are able to
model such uncertainties because their membership functions
are themselves fuzzy. Membership functions of type-1 fuzzy sets
are two-dimensional, whereas membership functions of type-2
fuzzy sets are three-dimensional. It is the new third-dimension of
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1The effects of uncertainties can be minimized by optimizing the parameters
of the type-2 fuzzy sets during a training process. The additional parameters of
type-2 fuzzy sets over those in type-1 fuzzy sets provide the former with addi-
tional design degrees of freedom that make it possible to minimize the effects
of uncertainties.

type-2 fuzzy sets that provides additional degrees of freedom
that make it possible to directly model uncertainties.

Type-2 fuzzy sets are difficult to understand and use because:
(1) the three-dimensional nature of type-2 fuzzy sets makes
them very difficult to draw; (2) there is no simple collection of
well-defined terms that let us effectively communicate about
type-2 fuzzy sets, and to then be mathematically precise about
them (terms do exist but have not been precisely defined2 );
(3) derivations of the formulas for the union, intersection, and
complement of type-2 fuzzy sets all rely on using Zadeh’s
Extension Principle [44], which in itself is a difficult concept
(especially for newcomers to FL) and is somewhat ad hoc, so
that deriving things using it may be considered problematic;
and, (4) using type-2 fuzzy sets is computationally more com-
plicated than using type-1 fuzzy sets. In this paper, we focus
on overcoming difficulties 1–3, because doing so makes type-2
fuzzy sets easy to use and understand. Difficulty 4 is the price
one must pay for achieving better performance in the face of
uncertainties, and is analogous to using probability rather than
determinism.3 We only touch on it very briefly in this paper.

Even in the face of these difficulties, type-2 fuzzy sets and
FLSs have already been used for (this list is in alphabetical order
by application):

classification of coded video streams [29], co-channel
interference elimination from nonlinear time-varying com-
munication channels [28], connection admission control
[30], control of mobile robots [42], decision making [43],
[2], equalization of nonlinear fading channels [20], [32],
[25], [27], extracting knowledge from questionnaire sur-
veys [15], [30], forecasting of time-series [17], [32], [26],
function approximation [15], learning linguistic member-
ship grades [12], pre-processing radiographic images [13],
relational databases [3], solving fuzzy relation equations
[41], and transport scheduling [10].

They seem to be applicable when: (1) the data-generating system
is known to be time-varying but the mathematical description of
the time-variability is unknown (e.g., as in mobile communica-
tions); (2) measurement noise is nonstationary and the mathe-
matical description of the nonstationarity is unknown (e.g., as
in a time-varying SNR); (3) features in a pattern recognition ap-
plication have statistical attributes that are nonstationary and the
mathematical descriptions of the nonstationarities are unknown;
(4) knowledge is mined from a group of experts using question-
naires that involve uncertain words; and (5) linguistic terms are
used that have a nonmeasurable domain.

2This has been rectified in [33, Ch. 3]; however, it has not been rectified in
any journal article.

3Free software is available on the Internet for implementing and designing
type-2 FLSs at the following URL: http://sipi.usc.edu/~mendel/software.
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Before providing a summary of the coverage of this paper,
we provide a brief history of type-2 fuzzy sets and FLSs. [44]
introduced the concept of a type-2 fuzzy set as an extension
of an ordinary fuzzy set, i.e., a type-1 fuzzy set. [34] studied
the set theoretic operations of type-2 fuzzy sets and properties
of membership grades of such sets; they also examined type-2
fuzzy sets under the operations of algebraic product and alge-
braic sum [35]. [37] provided more detail about the algebraic
structure of type-2 fuzzy sets. [14], [15], Karnik and Mendel ex-
tended the works of Mizumoto and Tanaka and obtained prac-
tical algorithms for performing union, intersection, and com-
plement for type-2 fuzzy sets. They also developed the concept
of the centroid of a type-2 fuzzy set and provided a practical
algorithm for computing it for interval type-2 fuzzy sets [15],
[19]. Dubois and Prade [4]–[6] discussed fuzzy valued logic and
gave a formula for the composition of type-2 relations as an ex-
tension of the type-1 sup-star composition; but their formula is
only for the minimum -norm. A general formula for the ex-
tended sup-star composition of type-2 relations was given by
[15], [16], and [20]. Based on this formula, [14]–[16] and [20]
established a complete type-2 FLS theory. [8] studied rules and
interval sets for higher-than-type-1 FL. [23], [24], [26] devel-
oped a complete theory for interval type-2 FLSs. They did this
for different kinds of fuzzifiers, and showed how such FLSs can
be designed, i.e., how the free parameters within interval type-2
FLSs can be tuned using training data. [12] developed a type-2
learning system that used training data to learn the membership
grades of a type-2 fuzzy system. For additional discussions on
the use of interval sets in fuzzy logic, see [8], [38], [40], [7],
[22], [36], [31], [21], and [1]. There are also some articles about
type-2 fuzzy sets that have appeared in the Japanese literature,
but are only in Japanese. Two examples are [9] and [39].

In Section II, we define a small set of terms that let us easily
communicate about type-2 fuzzy sets, and let us define such sets
in a mathematically precise way. One of these terms—footprint
of uncertainty—enables us to graphically depict type-2 fuzzy
sets in two-dimensions. In Section III, we provide a new rep-
resentation for general type-2 fuzzy sets, one that re-expresses
them in terms of much simpler type-2 fuzzy sets. In Section IV,
we apply this new representation to the derivation of formulas
for the union, intersection, and complement of type-2 fuzzy sets
without having to use the Extension Principle. In Section V, we
draw conclusions.

II. TYPE-2 FUZZY SETS: DEFINITIONS

In this section, we define type-2 fuzzy sets and some impor-
tant associated concepts. By doing this, we provide a simple col-
lection of mathematically well-defined terms that will let us ef-
fectively communicate about type-2 fuzzy sets. This material is
used extensively in the rest of this paper.

Imagine blurring the type-1 membership function depicted in
Fig. 1(a) by shifting the points on the triangle either to the left
or to the right and not necessarily by the same amounts, as in
Fig. 1(b). Then, at a specific value of, say , there no longer
is a single value for the membership function ; instead, the
membership function takes on values wherever the vertical line
intersects the blur. Those values need not all be weighted the
same; hence, we can assign an amplitude distribution to all of

Fig. 1. (a) Type-1 membership function and (b) blurred type-1 membership
function, including discretization atx = x .

Fig. 2. Example of a type-2 membership function. The shaded area is the FOU.

those points. Doing this for all , we create a three-di-
mensional membership function—a type-2 membership func-
tion—that characterizes a type-2 fuzzy set.

Definition 1: A type-2 fuzzy set, denoted , is characterized
by a type-2 membership function , where and

, i.e.,

(1)

in which . can also be expressed as

(2)
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Fig. 3. Example of a vertical slice for the type-2 membership function depicted
in Fig. 2.

where denotes union4 over all admissible and . For dis-
crete universes of discourseis replaced by .

In Definition 1, the first restriction that
is consistent with the type-1 constraint that ,
i.e., when uncertainties disappear a type-2 membership function
must reduce to a type-1 membership function, in which case the
variable equals 5 and . The second
restriction that is consistent with the fact that
the amplitudes of a membership function should lie between or
be equal to 0 and 1.

Example 1: Fig. 2 depicts for and discrete. In
particular, and .

Definition 2: At each value of , say , the 2-D plane
whose axes are and is called avertical sliceof

. A secondary membership functionis a vertical slice of

. It is for and ,
i.e.,

(3)

in which . Because , we drop the
prime notation on , and refer to as a secondary
membership function; it is a type-1 fuzzy set, which we also
refer to as asecondary set.

Example 1 (Continued):The type-2 membership function
that is depicted in Fig. 2 has five vertical slices associated with
it. The one at is depicted in Fig. 3. The secondary mem-
bership function at is

.
Based on the concept of secondary sets, we can reinterpret a

type-2 fuzzy set as the union (see footnote 4) of all secondary

4Recall that the union of two setsA andB is by definition another set that
contains the elements in eitherA orB. When we view each element of a type-2
fuzzy set as a subset, then the unions in (2) conform to the classical definition
of union, since each element of that set is distinct. At a specific value ofx and
u only one term is activated in the union.

5In this case, the third dimension disappears.

sets, i.e., using (3),we can re-express in a vertical-slice
manner, as

(4)

or, as

(5)

Definition 3: Thedomainof a secondary membership func-
tion is called theprimary membershipof . In (5), is the
primary membership of , where for .

Definition 4: The amplitude of a secondary membership
function is called asecondary grade. In (5), is a
secondary grade; in (1), is a
secondary grade.

If and are both discrete (either by problem formulation,
as in Example 1, or by discretization of continuous universes of
discourse), then the right-most part of (5) can be expressed as

(6)

In this equation, also denotes union. Observe thathas been
discretized into values and at each of these valueshas been
discretized into values. The discretization along each
does not have to be the same, which is why we have shown a
different upper sum for each of the bracketed terms. If, however,
the discretization along each is the same, then

.
Example 1 (Continued):In Fig. 2, the union of the five sec-

ondary membership functions at is .
Observe that the primary memberships are

and

and, we have only included values in for which
. Each of the spikes in Fig. 1 represents at a specific

-pair, and its amplitude is a secondary grade.
Definition 5: Uncertainty in the primary memberships of a

type-2 fuzzy set, , consists of a bounded region that we call
thefootprint of uncertainty(FOU). It is the union of all primary
memberships, i.e.,

FOU (7)

The shaded region in Fig. 1 is the FOU. Other examples of
FOUs are given in Fig. 4. The termfootprint of uncertaintyis
very useful, because it not only focuses our attention on the un-
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certainties inherent in a specific type-2 membership function,
whose shape is a direct consequence of the nature of these un-
certainties, but it also provides a very convenient verbal descrip-
tion of the entire domain of support for all the secondary grades
of a type-2 membership function. It also lets us depict a type-2
fuzzy set graphically in two-dimensions instead of three dimen-
sions, and in so doing lets us overcome the first difficulty about
type-2 fuzzy sets-their three-dimensional nature which makes
them very difficult to draw. The shaded FOUs imply that there
is a distribution that sits on top of it—the new third dimension of
type-2 fuzzy sets. What that distribution looks like depends on
the specific choice made for the secondary grades. When they
all equal one, the resulting type-2 fuzzy sets are calledinterval
type-2 fuzzy sets. Such sets are the most widely used type-2
fuzzy sets to date.

Definition 6: For discrete universes of discourse and
, an embedded type-2 set has elements, where

contains exactly one element from , namely
, each with its associated secondary grade,

namely , i.e.,

(8)

Set is embedded in , and, there are a total6 of .
Definition 7: For discrete universes of discourseand ,

an embedded type-1 set has elements, one each from
, namely , i.e.,

(9)

Set is the union of all the primary memberships of setin
(8), and, there are a total of .

Example 2: Fig. 5 depicts one of the possible 1250 em-
bedded type-2 sets for the type-2 membership function that
is depicted in Fig. 2. Observe that the embedded type-1
set that is associated with this embedded type-2 set is

.
Definition 8: A type-1 fuzzy set can also be expressed as a

type-2 fuzzy set. Its type-2 representation is or
, for short. The notation means that

the secondary membership function has only one value in its
domain, namely the primary membership , at which the
secondary grade equals 1.

III. A N EW REPRESENTATION FORTYPE-2 FUZZY SETS

So far we have emphasized the vertical-slice representation
(decomposition) of a type-2 fuzzy set as given in (5). In this sec-
tion, we provide a new (canonical) representation for a type-2
fuzzy set that is in terms of so-calledwavy slices. This repre-
sentation makes very heavy use of embedded type-2 fuzzy sets
(Definition 6). Before we state and prove this new representa-
tion, we state and prove the following preliminary result:

6For continuous type-2 fuzzy sets, there are an uncountable number of em-
bedded type-2 fuzzy sets, and this concept is not very useful.

Fig. 4. FOUs. (a) Gaussian MF with uncertain standard deviation. (b) Gaussian
MF with uncertain mean. (c) Sigmoidal MF with inflection uncertainties.
(d) Granulated sigmoidal MF with granulation uncertainties.

Fig. 5. Example of an embedded type-2 set associated with the type-2
membership function depicted in Fig. 2.

Theorem 1: Consider the general FOU that is depicted in
Fig. 6. We call each point along the line anode. Each node
along the -axis is contained in exactly

(10)

embedded (type-2 or type-1) sets, where .
Proof: All embedded sets start with an element along the

-axis, and each element along that axis fans out into exactly
embedded sets. Note that

(11)
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Fig. 6. Example of a FOU on discretizedx- andu-axes. HereN = 6.

Next, consider elements along the-axis. The elements
along the -axis fan into all the elements along the-axis
after which each element along the-axis fans out into exactly

embedded sets. This means that there are a total of

embedded sets for each node along the-axis.
Note that

(12)

Continuing in this way for the - , and -axes, we obtain
the result in (10).

Next, we present a new decomposition for a type-2 fuzzy set
that we refer to as aRepresentation Theorem.

Theorem 2 (Representation Theorem):Let denote theth
type-2 embedded set for type-2 fuzzy set, i.e.,

(13)

where (see Definition 6 and Fig. 6)

(14)

Then can be represented as the union of its type-2 em-
bedded sets, i.e.,

(15)

where7

(16)

7The summation in (15) is still a classical union. Duplicated elements (there
will be many of them because the embedded type-2 fuzzy sets contain many
duplicated elements) only count once, as in any union.

Fig. 7. (a) Vertical-slice representation for~A in (19). (b) Six embedded type-2
fuzzy sets, each connected by a line fromx to x .

Proof: We prove this theorem by demonstrating that (6)
can be re-expressed so that it contains exactly all of the terms
on the right-hand side of (15). Theorem 1 is the key to doing
this. What we do is to repeat term 1 in (6) times, term 2 in
(6) times, , and term in (6) times [using the fact,
e.g., that (where denotes union)], i.e.,

(17)

We must now demonstrate that (17) can be reorganized as
in (15). We do this by proving that (17) has exactly the same
number of terms (elements) as does (15). The actual construc-
tion of the is discussed below in Comment 1.

Note that, according to Definition 6, each has exactly
elements. Hence, in (15) has exactly
elements (many of which are duplicated). In (17),has

elements; but, from (10), it follows that:

(18)

which proves that in (17) has exactly the same number of
elements as in (15).

Comment 1: In order to implement (15), one needs a
constructive method for specifying each. Note that is the
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solution to the following combinatorial assignment problem:
Determine all possible combinations
such that , where

, and . A computer
program can be written to map into . For
the purposes of this paper, we do not need such a program,
because we only use (15) for theoretical derivations and not for
computational purposes. Its use for computational purposes
would be terribly inefficient since it contains an enormous
amount of redundancy.

Comment 2:Theorem 2 expresses as a union of simpler
type-2 fuzzy sets, the . They are simpler because their sec-
ondary membership functions are singletons. Whereas (5) is a
vertical slice representation of, (15) is awavy slicerepresen-
tation of .

Example 3: Consider the following type-2 fuzzy set:

(19)

The vertical-slice representation of is depicted in Fig. 7.
Observe that , and .
Hence, there are six embedded type-2 sets, namely

(20a)

(20b)

(20c)

(20d)

(20e)

(20f)

It is very easy to see (refer to footnote 3) that
.

IV. A PPLICATIONS

In this section, we apply the Representation Theorem to the
derivation of formulas for union, intersection and complement
of type-2 fuzzy sets, without having to use the Extension Prin-
ciple.

A. Union of Type-2 Fuzzy Sets

Consider two type-2 fuzzy sets and , where

(21)

and

(22)

Fig. 8. Two representative embedded type-2 fuzzy sets. The filled circles and
rectangular flags denote the primary memberships and secondary grades for~A ,
whereas the crosses and triangular flags denote the primary memberships and
secondary grades for~B . The solid and dashed curves are associated with the
embedded type-1 fuzzy sets,A andB , respectively.

From Representation Theorem 2, it follows that:8

(23)

This demonstrates that to evaluate we need to evaluate
the union of type-2 embedded sets, i.e., we need to evaluate

, a calculation to which we turn next.
Two representative embedded type-2 fuzzy sets are depicted

in Fig. 8. Each embedded type-2 set has only one node on its
- or -axes. The rectangular and triangular flags denote the

secondary grades at each node, and are merely meant as a pneu-
monic for those grades.

Next, recall (as explained in Section II) that a type-1 fuzzy set
can be interpreted as a type-2 fuzzy set all of whose secondary
grades equal unity (i.e., all flags equal 1). In fact, a type-1 fuzzy
set is an instance of a type-2 fuzzy set. It is a crisp version of
a type-2 fuzzy set. Given that this is the case, it seems sensible
to consider using the type-1 definitions for union, intersection,
and complement as a starting point and generalizing them to a
fuzzytype-1 fuzzy set—a type-2 fuzzy set. Next, we show that
by taking this approach we do not directly need to use, or make
any reference to, the Extension Principle.

8This equation involves summations and union signs. As in the type-1 case,
where this mixed notation is used, the summation sign is simply shorthand for
lots of+ signs. The+ indicates the union between members of a set, whereas
the union sign represents the union of the sets themselves. Hence, by using both
the summation and union signs, we are able to distinguish between the union of
sets versus the union of members within a set.
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Recall, from Definition 7, that and are the embedded
type-1 fuzzy sets that are associated withand , respec-
tively. In the type-1 case

(24)

which (see Definition 8) can be expressed as a type-2 set, as
follows:

(25)

Observe that in this representation, the “flag” (i.e., secondary
grade) at each point is unity.

In the type-2 case, where the flags start out being different
at each and points, we need to keep track of them as we
perform . Call the flag (see Fig. 8, e.g., for ) at ,
which occurs when , and the flag at , which
also occurs when . Let be some operation
(defined below) on the two flags that produces a new flag that
uniquely identifies . Call this new flag , i.e.,

(26)

In analogy to (25), we nowdefine as follows:

(27)

This is a very plausible way to define the union of embedded
type-2 fuzzy sets, since it reduces to our accepted type-1 defini-
tion of union when all flags equal unity. It also establishes the
constraint that , which forces the type-2 result in
(27) to reduce to the type-1 result in (25) when all uncertainties
disappear.

Next, we demonstrate that an appropriate choice foris a
-norm. We begin by requiring to have the following four

properties:

1) ;
2) ;
3) ;
4) .

Property 1) is intuitive, because it should not matter in which
order we handle the flagsand . Property 2) is also intuitive,
because is another flag, which means that it is a sec-
ondary grade for a secondary membership function, and all sec-
ondary grades must be bounded according to Definition 1. We
have already justified Property 3). Property 4) involves flags that
each have zero values. Such flags (which are perfectly permis-
sible) allow secondary membership functions to have zero (i.e.,
vacuous) secondary grades at specific values of primary mem-
berships. Property 4 requires that a vacuous flag in one fuzzy
set must remain vacuous in any fuzzy set derived from it, which
again seems plausible. It is now obvious, from the properties of
a -norm, that:

Lemma 1: Under the four properties just stated, is a
-norm.

Comment 3:No doubt, one could require a different Property
4, e.g., and , in which case would be
a -conorm. We find such a requirement formuch less plau-
sible than our Property 4, and so recommend choosingas a
-norm.

Comment 4:People already familiar with the Extension Prin-
ciple will claim that (27) is exactly what would be obtained by
applying the existing formula for the union of two type-2 fuzzy
sets to and ,and theywouldbecorrect (whenisa -norm).
However, we have reached (27) without needing to know any-
thing about the Extension Principle, and would have reached
that point even if the Extension Principle didn’t exist.

We are now ready to state the main result of this section.
Theorem 3: Theunionof two type-2 fuzzy sets and is

given as

(28)

where

(29)

and is a -norm (e.g., minimum, product, etc.). Equation (28)
can also be expressed as

(30)

Comment 5:Equation (28) is thewavy-sliceexpression for
, and although it is veryeasy to derive,aswe demonstrate in

the proof below, it is not recommended for computing purposes
because it can contain an enormous number of terms. Equation
(30), on the other hand, which is avertical-sliceexpression for

, is very practical for computing purposes.
Proof: Substitute (27) into (23) to obtain (28). Equa-

tion (29) follows from Lemma 1 applied to
. To obtain (30), we first rewrite (28) as

(31)

Doing this has immediately led to a vertical-slice representa-
tion for . All that remains is to simplify the upper limits
in each of the summations of (31). This is very easy to do. Con-
sider the first term in (31). According to Definition 6,

and ; but, at there are at
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most (e.g., see (6)) terms from and terms
from . Hence, we are permitted to simplify to and

to in this first term. In the second term of (31), we
are permitted to simplify to and to .
Continuing in this manner, we obtain (30).

Comment 6:Here, we connect our result in (30) with the al-
ready existing formula for the union of two type-2 fuzzy sets,
given in [34]. Because the union of and is another type-2
fuzzy set, it follows from the discrete version of the first expres-
sion in (5) that:

(32)

where, from the Extension Principle [34], one obtains the fol-
lowing expression for [a derivation of (33) is given in
Appendix A so that readers who are unfamiliar with the appli-
cation of the Extension Principle to the derivation of (32) can
see exactly how it is done]:

(33)

Another way to express (33) is in terms of the secondary mem-
bership functions of and and , as

(34)

where denotes the so-calledjoin operation. The use of the no-
tation to indicate the join between the secondary
membership functions and is, of course, a short-
hand notation for the operations in the middle of (34).

Equation (30) is exactly the same as the combination of (32)
and (33), because each term of (30) is the same as (33). Whereas
(33) was derived from the Extension Principle, we have been
able to obtain this same result without it. Since we have reached
the same results as obtained by using the Extension Principle,
our results also serve to validate the use of the Extension Prin-
ciple.

Note, also, that if the fourth property for is changed, then
our result in (30) remains unchanged, but (33) is no longer valid
because it is in terms of a-norm, since the Extension Prin-
ciple is in terms of a-norm. In this sense, our derivation of the
union is also more general than the one that uses the Extension
Principle.

Comment 7:Each of the terms in (30) is a join operation,
so that we can describe the union ofand as the union of
joins. The term “join” is very useful in that it lets us linguisti-
cally describe .

B. Intersection of Type-2 Fuzzy Sets

Because the derivation of the intersection of two type-2 fuzzy
sets and is so similar to the derivation of the union of those
two sets, we merely state the sequence of formulas and then

summarize the results in Theorem 4 whose proof we leave to
the readers

(35)

(36)

(37)

(38)

Theorem 4: The intersectionof two type-2 fuzzy sets and
is given as

(39)

where is given in (29). Equation (39) can also be
expressed as

(40)

Comment 8:Here, we connect our result in (40) with the al-
ready existing formula for the intersection of two type-2 fuzzy
sets, given in [34]. Because the intersection ofand is an-
other type-2 fuzzy set, it follows from the discrete version of the
first expression in (5) that:

(41)

where, from the Extension Principle [34], one obtains the fol-
lowing expression for [the derivation of (42) is so sim-
ilar to the one given for the union that we have not included it
here]:

(42)

Another way to express (42) is in terms of the secondary mem-
bership functions of and and , as

(43)

where denotes the so-calledmeetoperation. The use of the
notation to indicate the meet between the sec-
ondary membership functions and is, of course, a
shorthand notation for the operations in the middle of (43).
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Equation (40) is exactly the same as the combination of (41)
and (42), because each term of (40) is the same as (42). Whereas
(42) was derived from the Extension Principle, we have been
able to obtain this same result without it. This, again, serves
to validate the use of the Extension Principle. The rest of the
discussion in the last paragraph of Comment 6 applies here as
well.

Comment 9:Each of the terms in (40) is a meet operation,
so that we can describe the intersection ofand as the union
of meets. The term “meet” is very useful in that it lets us
linguistically describe .

C. Complement of Type-2 Fuzzy Sets

Our final application of the Representation Theorem is to
compute the complement of.

Theorem 5: The complement of type-2 fuzzy setis given
as

(44)

where is given by (16). Equation (44) can also be expressed
as

(45)

Proof: From (15), we see that

(46)

which demonstrates that to evaluatewe need to evaluate the
complement of type-2 embedded sets, i.e., we need to evaluate

. In the type-1 case

(47)

which can be expressed as a type-2 fuzzy set, as follows:

(48)

We nowdefine as follows:

(49)

Substituting (49) into (46), we obtain (44).
To obtain (45), we first rewrite (44) as

(50)

Using exactly the same arguments that we did at the end of the
proof of Theorem 3, we conclude that (50) can be re-expressed
as in (45).

Comment 10:Because the complement of is another
type-2 fuzzy set, it follows again from the discrete version of
the first expression in (5) that:

(51)

where, from the Extension Principle [34], one obtains the fol-
lowing expression for [we leave the derivation of (52) to the
reader]:

(52)

in which denotes the so-callednegationoperation. The use of
the notation to indicate the negation of the secondary
membership function is yet another shorthand notation,
but this time for the operations in the middle of (52).

Equation (45) is exactly the same as the combination of (51)
and (52), because each term of (45) is the same as (52). Whereas
(52) was derived from the Extension Principle, we have been
able to obtain this same result without it, which again serves to
validate the use of the Extension Principle.

Comment 11:Each of the terms in (45) is a negation oper-
ation, so that we can describe the complement ofas the union
of negations. The term “negation” is very useful in that it lets
us linguistically describe .

D. Interval Type-2 Fuzzy Sets

Interval type-2 fuzzy sets are the most widely used type-2
fuzzy sets because they are simple to use and because, at
present, it is very difficult to justify the use of any other kind
(e.g., there is no best choice for a type-1 fuzzy set, so to
compound this nonuniqueness by leaving the choice of the
secondary membership functions arbitrary is hardly justifiable9

). When the type-2 fuzzy sets are interval type-2 fuzzy sets,
all secondary grades (flags) equal 1 [e.g., in (21) and (22),

and ]. In this case we can treat em-
bedded type-2 fuzzy sets as embedded type-1 fuzzy sets [e.g.,
(27) is the same as (25)] so that no new concepts are needed
to derive the union, intersection, and complement of such sets.
After each derivation, we merely append interval secondary
grades to all the results in order to obtain the final formulas
for the union, intersection, and complement of interval type-2
fuzzy sets. Closed-form formulas exist for these operations,
and their derivations can be found, e.g., in [33, Ch.. 7].

V. CONCLUSION

We have established a small set of terms (type-2 member-
ship function, secondary membership function, vertical-slice,
primary membership, secondary grade, footprint of uncertainty,
embedded type-2 fuzzy set, embedded type-1 fuzzy set, and
wavy-slice) that let us easily communicate about type-2 fuzzy
sets. They also let us define such sets very precisely. We have

9This is analogous to using a uniform probability density function (pdf) when
all that is known is that something is random, but the precise nature of the un-
derlying pdf is unknown.
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also presented a new Representation Theorem for type-2 fuzzy
sets and have shown how it can be used to derive formulas for
the union, intersection, and complement of type-2 fuzzy sets
without having to use the Extension Principle. In doing so , we
believe that we have made type-2 fuzzy sets much easier to un-
derstand and to work with, which was our stated goal.

The centroid of a type-2 fuzzy set has been defined by [15]
and [19]10 . All centroid formulas start with a formula for the
centroid of a type-1 fuzzy set to which the Extension Principle
is applied. Computational procedures are then provided for ac-
tually computing the centroid of a type-2 fuzzy set. These proce-
dures all wind up computing centroids of all possible embedded
type-2 fuzzy sets that are associated with the original type-2
fuzzy set. It is the totality of all such centroids that make up
the centroid of the type-2 fuzzy set. Using the new Represen-
tation Theorem of this paper, we could immediatelydefinethe
centroid of a type-2 fuzzy set, in a very rigorous way, as the cen-
troid of all of its embedded type-2 fuzzy sets. By this approach,
we reach exactly the same result as was reached by invoking the
Extension Principle, but without having to use it.

We await other applications of our Representation Theorem.

APPENDIX A
DERIVATION OF THE UNION OF TWO TYPE-2 FUZZY SETS

USING THE EXTENSION PRINCIPLE

In this Appendix, we review the statement of the Extension
Principle and present a version of it that we then use to obtain the
union of two type-2 fuzzy sets. We leave the derivations of the
intersection of two type-2 fuzzy sets as well as the complement
of a type-2 fuzzy set to the reader.

A. The Extension Principle

Let be type-1 fuzzy sets in ,
respectively. Then, Zadeh’s Extension Principle [44] allows us
to induce from the type-1 fuzzy sets a type-1
fuzzy set on , through , i.e., , such
that

if
(A-1)

where denotes the set of all points
such that .

As is well known, to implement (A-1) we first find
the values of for which ,
after which we compute and

at those values. If more than one
set of satisfy then we repeat this
procedure for all of them and choose the largest of the minima
as the choice for .

Zadeh defined the Extension Principle using minimum
-norm and maximum-conorm (for the supremum operation).

Other -norms and-conorms can be used as described, e.g., in
[34] and [6].

10See, also [33].

When we need to extend an operation of the form
to an operation , where the

are type-1 fuzzy sets, we do not extend the individual oper-
ations, like multiplication, addition, etc., involved in. Instead,
we use the following definition, which derives directly from
(A-1) when the maximum operation is used for the union and a
general -norm is used instead of the minimum operation

(A-2)

B. Derivation of the Union of Two Type-2 Fuzzy Sets

Using a discrete version of (5), (32) can be re-expressed as

(A-3)

where

(A-4)

and , which plays the role of in (A-2), is a -conorm func-
tion of the secondary membership functions, and ,
which are type-1 fuzzy sets. is a -conorm function because
the union of two type-1 fuzzy sets is equivalent to the-conorm
(e.g., maximum) of their membership functions. Note that the
right-hand side of (A-4) plays the role of in the Ex-
tension Principle. Following the prescription of the right-hand
side of (A-2), we see that:

(A-5)

When is the maximum operation, then , so
that when (A-5) is substituted into (A-3) for we obtain

(A-6)

which is (33).
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