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Type-2 innate lymphoid cells control the
development of atherosclerosis in mice
Stephen A. Newland1, Sarajo Mohanta2, Marc Clément1, Soraya Taleb3, Jennifer A. Walker4, Meritxell Nus1,

Andrew P. Sage1, Changjun Yin2, Desheng Hu5, Lauren L. Kitt1, Alison J. Finigan1, Hans-Reimer Rodewald6,

Christoph J. Binder7, Andrew N.J. McKenzie4, Andreas J. Habenicht2 & Ziad Mallat1,3

Type-2 innate lymphoid cells (ILC2) are a prominent source of type II cytokines and are found

constitutively at mucosal surfaces and in visceral adipose tissue. Despite their role in limiting

obesity, how ILC2s respond to high fat feeding is poorly understood, and their direct influence

on the development of atherosclerosis has not been explored. Here, we show that ILC2 are

present in para-aortic adipose tissue and lymph nodes and display an inflammatory-like

phenotype atypical of adipose resident ILC2. High fat feeding alters both the number of ILC2

and their type II cytokine production. Selective genetic ablation of ILC2 in Ldlr�/� mice

accelerates the development of atherosclerosis, which is prevented by reconstitution with

wild type but not Il5� /� or Il13� /� ILC2. We conclude that ILC2 represent a major innate

cell source of IL-5 and IL-13 required for mounting atheroprotective immunity, which can be

altered by high fat diet.
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C
ardiovascular disease is the leading cause of death
worldwide, increasing in incidence year on year and was
accountable for one in four deaths globally in 2010 (ref. 1).

Atherosclerosis is the major cause of cardiovascular disease where
deposits of low-density lipoproteins in the arterial wall lead to
the infiltration of immune cells, inflammation and growth of
fibro-fatty plaques. This process can culminate in occlusion of the
artery following plaque disruption and thrombosis2.

Plaque maturation is influenced by the populations of innate
and adaptive immune cells infiltrating the lesion, their activation
state and how they communicate with non-immune cells in the
surrounding arterial tissue3–5. Hypercholesterolaemia and high
fat diet (HFD) also trigger systemic immune responses that
modulate the atherosclerotic process, which may explain the
profound impact of spleen-dependent responses on several
aspects of the atherosclerotic immune response6–8.

Innate lymphoid cells (ILC) are a rare cell population that are
closely related to T and B lymphocytes, but which do not express
recombined antigen receptors such as the T-cell receptor and
B-cell receptor. Early research identified many different subtypes
including conventional natural killer (NK) cells9, lymphoid tissue
inducer cells10,11, nuocytes12 and natural helper cells13. ILC can
be assigned to one of three groups, ILC1, ILC2 or ILC3 (ref. 14).
These mirror the T helper (Th)1, Th2 and Th17 paradigm of
T-cell biology and share effector cytokines and transcription
factors. Th1 cells promote atherogenesis4, which is also the case
for ILC1-related NK cells15. However, the impact of Th2 and
Th17 bias on the atherosclerotic process is more complex; they
may either enhance or limit the disease4,16.

ILC2 were initially identified as an innate source of IL-13
during helminth infection12. Subsequently they have been
observed secreting large quantities of type II cytokines (IL-5,
IL-13, IL-9), regulating innate and adaptive immune responses in
several inflammatory settings (reviewed in ref. 17), modulating
wound healing/tissue repair18, and influencing adipose tissue
function and metabolic homeostasis19. Furthermore, there is
growing evidence that some type II cytokines are protective in
mouse models of atherosclerosis. For example, IL-13 has been
shown to protect from lesion development and promote plaque
stability by increasing collagen deposition, and skewing the
macrophage infiltrate towards an alternative activated
phenotype20. IL-5 on the other hand may be protective via
increasing titres of natural IgM antibodies specific for modified
LDL epitopes21. Finally, the atheroprotective cytokines IL-33
(ref. 22) and IL-25 (ref. 23) can drive expansion of ILC2
(refs 24,25) and these cells may provide a crucial component of
the protective mechanism. However, IL33 and IL-25 activate may
other cellular responses independently of ILC2, and type II
cytokines are also secreted by other cell types and may act on
atherosclerosis independently of ILC2.

Two recent studies suggested that ILC2 expansion in mice may
have an athero-protective role23,26. However, the results were
based on pharmacologic expansion of an ILC2 population,
sometimes in immunodeficient mice, and were confounded by
dramatic alterations in plasma cholesterol levels after treatment,
or by alterations in other immune cell populations. Another study
showed that total deficiency of Id3, which leads to increased
atherosclerosis in mice, may reduce IL-5 production by ILC2
(after exogenous IL-33 stimulation)27. However, no direct
relationship was provided to link the ILC2 and atherosclerosis
phenotypes27. Thus, the role of naturally occurring ILC2 and the
mechanisms through which they may regulate atherosclerosis are
still unknown.

Thus, the focus of this work is in defining how ILC2 respond to
hypercholesterolaemia, and how atherosclerosis develops in an
environment where this cell type is absent. Our results show that

ILC2 control the development of atherosclerosis, in part through
production of type 2 cytokines.

Results
Characterization of ILC2 in atherosclerosis-prone mice.
We first addressed the frequency of ILC2 in atherosclerosis-sus-
ceptible apolipoprotein e-deficient (Apoe� /� ) mice fed
normal chow diet. A typical overview of a transverse section
of the aorta reveals several aortic and para-aortic structures
(Supplementary Fig. 1A) where ILC2 may accumulate. Those
structures include the atherosclerotic plaque, the aortic adventitia
and associated tertiary lymphoid structures (ATLO), the para-
aortic lymph nodes (PaLN), the para-aortic adipose tissue (PaAT)
and fat-associated lymphoid clusters (FALCs). We therefore
examined and quantified the presence of ILC2 in each of those
structures using flow cytometry and immunofluorescence. Our
analyses first revealed the presence of ILC2 (Lin� ICOSþ

CD25þ CD127þ ) in PaLN and PaAT of chow-fed Apoe� /�

mice (Fig. 1a), which is consistent with the previously reported
presence of ILC2 in secondary lymphoid organs (GATA3þ

ICOSþCD3� cells in Supplementary Fig. 1B,C) and their
tropism for adipose tissue (for example, peri-gonadal WAT)
(Fig. 1a)28. The percentage of ILC2 among CD45þ cells in PaAT
was smaller than in peri-gonadal WAT (Fig. 1b), but was
substantially higher than the percentage of ILC2 in PaLN
(Fig. 1b), and mesenteric lymph nodes (MLN) (Fig. 1b) of the
same animals. Supplementary Fig. 1D shows the absolute number
of ILC2 recovered from different locations in 420-week-old
Apoe� /� mice.

The phenotype, activation state and function of ILC2 may
change dependent on the tissue where they reside and the
cytokine microenvironment29–31. We found that Lin� ICOSþ

CD25þ CD127þ ILC2 of peri-gonadal WAT (GWAT) were
mostly KLRG1þST2þ (Fig. 1a,b) and were comparable to
natural ILC2 (ref. 29), whereas ILC2 of MLN and PaLN were in
large majority KLRG1þST2� or ST2low (Fig. 1a,b), similar to a
recently described population of inflammatory ILC2 with reduced
ability to produce IL-5 and IL-13 (ref. 29). Interestingly, the ILC2
population in para-aortic fat differed significantly from that of
peri-gonadal fat, and comprised a population expressing low
amounts of ST2 on their surface (Fig. 1c). The number of PaAT
ILC2 remained relatively constant during aging (Supplementary
Fig. 1E). ILC2 were also found in ATLO of 80-week-old
Apoe� /� mice with advanced atherosclerosis (Supplementary
Fig. 2A,B).

Recent studies showed that inflammatory stimuli promote the
formation of FALCs within WAT32. FALCs have been detected
mostly in peri-gonadal, mesenteric and mediastinal WAT, with
the pericardium accumulating a substantial number of clusters32.
However, whether FALCs may also accumulate in the para-aortic
region is still unknown. Given the role of inflammation in FALC
formation, we reasoned that those clusters may be more prevalent
in old animals (for example, 80 weeks). Indeed, we detected
FALCs in the para-aortic WAT of both old WT and Apoe� /�

mice (Fig. 1d,e, Supplementary Fig. 1A). As reported for other
locations, para-aortic FALCs were rich in CD3þ T cells, B220þ

B cells, CD138þ plasma cells (Fig. 1f), PNAþKi67þ germinal
centre-like B cells and Foxp3þ Tregs (Supplementary Fig. 2C),
accumulated a few ILC2 (Fig. 1g), no follicular dendritic cells
(CD35 staining in Fig. 1f) and were supplied with blood vessels,
lymph vessels, high endothelial venules and ERTR7þ conduits
(Supplementary Fig. 2C). The number and size of peri-aortic
FALCs were significantly greater in Apoe� /� mice compared to
WT mice (Fig. 1e), supporting a role for vascular inflammation in
promoting para-aortic FALC formation.
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Thus, besides their presence in WAT and secondary
lymphoid organs, ILC2 are also present in para-aortic fat
of athero-prone mice, where they display an inflammatory
phenotype, distinct from the natural ILC2 phenotype of distant
WAT and more similar to the inflammatory phenotype of lymph
node ILC2.

High fat feeding alters ILC2 numbers and cytokine production.
Mice fed a defined HFD for a period of weeks to months develop
accelerated atherosclerosis. We therefore hypothesized that high
fat feeding may alter the accumulation and function of ILC2
systemically, and observed the ILC2 populations in the bone
marrow (BM), spleen and peripheral lymph nodes of low-density
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Figure 1 | ILC2 in para-aortic adipose tissue and FALCs of atherosclerotic mice. Flow cytometric analysis (a) and quantification (b,c) of ILC2 present in

the para-aortic adipose tissue (AT) show a phenotype similar to KLRG1hi ST2� ILC2 (iILC2-like) in the lymph node in contrast to KLRG1þ ST2þ ILC2

(nILC2-like) prevalent in the peri-gonadal WAT. Mean fluorescence intensity (MFI) for ST2 expression in ILC2 is shown in c. Bars represent mean values.

(d) Oil red O and Haematoxylin show that FALCs are present in the para-aortic ATof aged Apoe� /� mice (78–80 weeks of age n¼ 10, scale bar 100mm)

(e) and that Apoe� /� FALCs are greater in both number and size compared to WT (f). Immunoflorescence staining demonstrates that para-aortic FALCs

are rich in CD3þ Tcells, B220þ B cells and CD138þ plasma cells. CD35þ follicular dendritic cells were absent from these structures (scale bar 50mm).

Additionally, para-aortic FALC-resident CD3� GATA3þ ICOSþ ILC2 cells were also detected (g, scale bar 10mm). Representative images shown. Graph

data points represent individual mice. Statistical significance was determined by Mann–Whitney U-test.
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lipoprotein receptor-deficient (Ldlr� /� ) mice, a second athero-
sclerosis-susceptible strain, that had been maintained on HFD for
8 weeks. Flow cytometric analysis of ILC2 populations (Fig. 2a)
demonstrated that although there was no difference in the
proportion of precursor cells in the BM (Fig. 2b), the mature
ILC2 were significantly under-represented (2–3-fold loss) in MLN
and PaLN of mice maintained on HFD (Fig. 2b).

To examine any change in functional capability associated with
the suppression of this population, Lin� ICOSþ ILC2 cells were
sorted from the spleens and MLN of conventional chow- and
HFD-fed mice (purity495%, Supplementary Fig. 2D). Not only
were fewer cells recovered from the organs of HFD mice
(Supplementary Fig. 2E and consistent with Fig. 2b) but, during
ex-vivo expansion with IL-7 and IL-33, they also secreted
substantially less IL-5 and IL-13 (Fig. 2c). To confirm that the
alteration of type II cytokine production occurred in vivo,
we repeated the experiments and performed QPCR analysis on
cell-sorted ILC2 isolated from the spleens of Ldlr� /� mice that
had been maintained on chow or HFD for 8 weeks. ILC2 were
also cell-sorted from the aortas (two pools of three mice each)
and GWAT for comparison (Fig. 2d). QPCR analysis indicated a

significant decrease of GATA3 and IL-13 transcripts (Fig. 2d) and
a similar trend observed with IL-5 (Fig. 2d), in spleen-derived
ILC2 of mice on HFD compared to chow diet. Interestingly,
GWAT-derived ILC2 showed no significant change, whereas
aorta-derived ILC2 tended to upregulate their expression of
GATA3, IL-5 and IL-13 after HFD (Fig. 2d). This is a strong
indication that HFD differentially alters ILC2 phenotype in the
periphery, and that continuous production of type II cytokines by
aortic-ILC2 may be critical to maintain a counter-regulatory
pathway, and limit the progression of aortic inflammation in
face of a sharp decline of type II cytokine production by
peripheral ILC2.

Expansion of ILC2 reduces atherogenesis. Similarly to others26,
we hypothesized that reconstitution of ILC2 cells by treating
with IL-2 during HFD would replenish an atheroprotective
environment. To minimize off-target effects of IL-2 on other
CD25-expressing cells such as Tregs, we used T- and B-cell-
deficient Apoe� /� /Rag2� /� mice maintained on HFD for 8
weeks. The mice received three weekly injections of IL-2/Jes6-1
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complex, which increases IL-2 biological activity33, for the
duration of the experiment. Following this treatment, flow
cytometry demonstrated ILC2 populations were significantly
expanded in spleen and BM compared to PBS-treated controls
(Fig. 3a). In addition to ILC2 expansion in peripheral lymphoid
tissue, clusters of ICOSþ KLRG1þ (Fig. 3b) ILC2 cells were
observed in the adventitia of the aorta adjacent to the aortic
sinus by immunofluorescence. The adventitia has been suggested
as a source of precursor cells, which may influence plaque

architecture34 and the presence of expanded ILC2 in this tissue
may suggest a direct localized effect. Whether these ILC2 have
expanded in situ (as recent publications may suggest35) or have
migrated into the tissue from the periphery remains to be
investigated.

Further phenotypic changes occurred during this IL-2/Jes6-1
treatment, namely an expanded population of IL-5þ ILC2
(Lin� ICOSþ ), associated eosinophilia and decreased CD11bþ

Ly6G� Ly6Chi inflammatory monocytes (Supplementary Fig. 3A).
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There was also an increase in splenic NK cells (Supplementary
Fig. 3A). This treatment resulted in a significant decrease in the
area of atherosclerotic plaques at the aortic sinus (Fig. 3c) and a
similar trend was also observed at the aortic arch although this
was not statistically significant. In contrast to a recent study
where IL-2/Jes6-1 treatment of Ldlr� /� /Rag2� /� mice led to a
substantial reduction of plasma VLDL-cholesterol levels26,
our treatment of Apoe� /� /Rag2� /� mice with IL-2 was
successful in reducing the effect of HFD on the progression of
atherosclerosis, without any change in plasma lipid levels
(Supplementary Fig. 3B). However, as reported in previous
work26, IL-2 treatment was not without a number of off-target
effects, the most common of which was an increase in splenic
fibrosis in the IL-2 treated group, which was severe in some mice
(Supplementary Fig. 3C). Additionally, weight gain upon HFD
feeding was slower in the group receiving IL-2 compared to
controls (Supplementary Fig. 3D).

Selective genetic ILC2 ablation exacerbates atherosclerosis.
Artificial expansion of ILC2 does not inform about the true role
of the endogenous ILC2 population that develops during the
course of atherogenesis. To allow the specific depletion of ILC2 in
an otherwise replete immune system, Staggerer/RoraFlox-Cd127Cre

mice (which are selectively deficient in ILC2, hereafter known as
ILC2KO (ref. 36)) were used as donors in a BM transplant model
into atherosclerosis prone Ldlr� /� recipients. Given recent
observations that in steady-state conditions tissue resident ILC2
are not replenished from circulating ILC2 (ref. 35), we validated
the ability for BM ILC2 from Thy1.1 congenic mice to
reconstitute lymphatic and tissue compartments. Thy1.2þ

recipient mice were irradiated and reconstituted with Thy1.1þ

BM. Following a 4-week recovery period, spleen, MLN and
GWAT were collected and the proportion of Thy1.1þ donor
ILC2 was determined by flow cytometry. We found that donor
ILC2Thy1.1 fully reconstituted the lymphatic compartments
(0% Thy1.2þ ILC2) as well as the majority of the GWAT
tissue resident ILC2 (5% Thy1.2þ ) (Fig. 4a). Therefore, BM
transplants are an effective method for replacing host with donor
BM-derived ILC2. This was then repeated using either WT or
ILC2KO BM followed by recovery and HFD for 9 weeks. To
ensure the BM graft was effective and very few endogenous
ILC2 remained, IL-33 was given to recipients 24 h before organ
collection. Subsequent flow cytometry analysis demonstrated that
recipients of ILC2KO BM had significantly decreased ILC2 in BM
and peripheral MLN compared to ILC2WT recipients (Fig. 4b).
Quantification of serum cytokines also demonstrated decreased
IL-5 and IL-13 (Fig. 4c). Moreover, gene expression analysis on
aorta and PaAT confirmed a substantial reduction of IL-5 and
IL-13 expression in tissues recovered from ILC2KO mice (Fig. 4d).
The extent of lipid accumulation in aortas of ILC2KO mice was
significantly increased in the aortic arch (Fig. 4e) and aortic sinus
(Fig. 4f) compared to ILC2WT recipients, despite no change in
plasma lipid levels (Supplementary Fig. 4A).

As discussed above, ILC2 are a potent source of the type II
cytokines IL-5 and IL-13, which are known to be atheroprotective
through differing mechanisms. It was therefore logical to
investigate whether the increase of disease severity in the ILC2KO

model could be accounted for by deficiencies in these pathways.
The potential expansion and maintenance of B1a B cells and
associated increase in natural IgM antibodies by ILC2-derived
IL-5 were investigated by flow cytometry in ILC2KO BM
recipients. Although pooled results from a number of experi-
ments suggested that B1a B cells were less abundant in the spleen
and MLN of ILC2KO recipient mice (Supplementary Fig. 4B),
there was considerable variation between biological replicates and

not all repeats followed the same trend. Furthermore, there was
no associated decrease in natural IgM isotypes in the serum of
ILC2KO recipient mice after 8 weeks of HFD (Supplementary
Fig. 4B) or difference in plaque IgM deposits (Supplementary
Fig. 4C). Thus, changes in B1a B-cell subset are unlikely to
account for the effect of ILC2 deletion on atherosclerosis although
this remains to be clarified.

ILC2 alter plaque composition. To examine if ILC2 deletion
impacts immune cell accumulation and activation in vivo,
we analysed plaque composition. The number of CD3þ T cells in
lesions of ILC2KO recipients was reduced (Supplementary
Fig. 5A) indicating that the increase in lesion size was unlikely
to be driven by T-cell activation. However, immune-fluorescent
labelling of MOMA2þ myeloid cells in the aortic sinus revealed a
larger lipid-containing core of foam cells in the absence of ILC2
(Fig. 5a). Interestingly, the expression of Arg1 was significantly
decreased (Fig. 5b). There was no difference in the proportion
of a-smooth muscle actin-expressing cells in plaques or the
deposition of collagen throughout the plaque detected by Sirius
red staining (Supplementary Fig. 5B). It is usual for larger, more
advanced plaques in this model to contain more collagen
deposits, and this absence of increased collagen deposition in
the larger plaques of ILC2KO mice coupled with less Arg1
expression might indicate disrupted tissue repair mechanisms.
The macrophage phenotype was therefore further investigated by
flow cytometry. Here, we observed a significant decrease in
CD11bþ F4/80þArg1þ and CD11bþ F4/80þ Arg1þ iNOSþ

macrophage population in the aorta and peri-aortic adipose tissue
of ILC2KO mice and an expansion of CD11bþ F4/80þ iNOSþ

macrophages (Fig. 5c). This shows that, although ILC2 are a rare
population of cells, in mouse models of atherosclerosis they
perform a critical role in preventing plaque development and
their ablation alters macrophage phenotype and increases disease
severity.

ILC2-derived IL-5 and IL-13 are required for atheroprotection.
We designed reconstitution experiments to address the specific
roles of ILC2-derived IL-5 or IL-13 in the control of athero-
sclerosis. BM transplantation experiments were performed in
Ldlr� /� mice which received mixed BM transplants of ILC2WT,
ILC2KO, 80% ILC2KO with 20% IL-5þ (ILC2-deficient mice
reconstituted with IL-5 sufficient ILC2) or 80% ILC2KO with 20%
IL-5KO (ILC2-deficient mice reconstituted with IL-5-deficient
ILC2; 80% of all other cell types are still capable of IL-5
production). After recovery, mice were put on HFD for 8 weeks.
Reproducing the original observation, ILC2KO mice showed
increased atherosclerosis of the aortic arch (Fig. 6a). Additionally,
ILC2KO mice reconstituted with IL-5þ ILC2 did not develop
increased atherosclerosis compared to ILC2WT mice (Fig. 6a),
further supporting the requirement for a competent ILC2
population to limit atherogenesis. Crucially however, recipients of
ILC2KO/IL-5� BM, which are replete with IL-5-deficient ILC2,
developed severe atherosclerosis comparable to the full ILC2
knockout condition (Fig. 6a). However, absence of ILC2-derived
IL-5 did not alter lesion size in the aortic sinus (Supplementary
Fig. 5C), suggesting the involvement of other pathways.
Therefore, complementing the observations with ILC2 sourced
IL-5, we examined the function of ILC2-derived IL-13 in a
separate set of experiments by reconstituting BMT recipients with
80% ILC2KO and either 20% IL-13þ or 20% IL-13KO. As was
observed with the ILC2-specific IL-5 deficiency, the inability of
ILC2 to produce IL-13 significantly increased atherosclerosis in
the aortic arch (Fig. 6a). Furthermore, there was a significant
increase in lesion size in the aortic sinus of ILC2KO IL-13�
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recipients (Fig. 6b). Although no significant change in MOMA2þ

expression was detected (Fig. 6c), Arg1 expression was decreased
(Fig. 6c) as previously observed in ILC2KO recipients. We also
found a significant reduction of collagen deposition in lesions of
ILC2KO IL-13� recipients (Fig. 6d), indicating impaired vascular
healing. ILC2-derived cytokines (IL-5 and IL-13) are therefore
vital components controlling the progression of atherosclerosis,
particularly IL-13 which may alter macrophage phenotype,
and its absence leads to larger and potentially more vulnerable
plaques.

Discussion
Here, we show that ILC2 constitute a major atheroprotective cell
type. High fat feeding reduces the frequency of ILC2 in the
periphery and profoundly alters their protective phenotype,
concomitant with an acceleration of atherosclerosis. Using
mice specifically deficient in ILC2, we show that endogenous
ILC2 perform a central role in controlling the progression
of atherosclerosis and this effect is in part dependent on
ILC2-derived IL-5 and IL-13. Remarkably, production of IL-5
and IL-13 by other cell types is unable to compensate for the
lack of those ILC2-derived cytokines, particularly IL-13, and
their atheroprotective effects. IL-5-dependent atheroprotection
was limited to the thoracic aorta and could not be attributed to

changes in macrophage phenotype or B1-dependent natural IgM
production. IL-13-dependent atheroprotection was associated
with important changes in collagen deposition and macrophage
phenotype, suggestive of alternative activation. However, the
direct links between changes of macrophage phenotype and
atheroprotection were not addressed. Future studies should try to
understand the differential impact of HFD on peripheral versus
aortic ILC2, and define their distinct contributions to limiting
vascular inflammation and atherosclerotic lesion development.

Previous studies suggested a potential role for ILC2 in the
modulation of atherosclerosis23,26. However, those studies used
immune-compromised animals and relied on non-physiological
exogenous and chronic administration of cytokines (that is, IL-2
and IL-25) that are not specific for the ILC2 population, and that
can promote ILC2-independent immune responses. Moreover,
those studies failed to provide any direct evidence of the
involvement of ILC2 in atherosclerosis and were confounded by
profound alterations of hepatic and lipid metabolism26 following
chronic exogenous cytokine administration. We also found that
chronic administration of IL-2/anti-IL2 complexes in immune-
compromised animals reduced atherogenesis but in agreement
with previous findings, the effect was associated with several
adverse side effects. Most probably, the amount of IL-2/IL-2 mAb
used in murine models is not physiologically relevant and further
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work is required to titrate the dose of cytokine required to protect
against atherosclerosis without inducing undesirable side effects.

It is interesting to note, however, that low dose IL-2 therapy is
reported to be safe in humans and has been successful in several
clinical trials of immune-mediated diseases (reviewed in ref. 37)
where exogenous IL-2 was used to expand Tregs. Remarkably,
low-dose IL-2 in humans also increases the production of
IL-5 (ref. 38) and this is attributed to the dose-dependent
expansion of ILC2.

Thus, augmentation of ILC2 and ILC2-derived IL-5 or IL-13
on top of Treg expansion might constitute a potentially attractive
double-hit therapy to limit accelerated atherosclerosis.

Methods
Mice. All work was conducted under UK Home Office project license regulations
after approval by the Ethical Review Committee of the University of Cambridge.

Mice used in this investigation were Ldlr� /� (Jackson Labs 002207),
Apoe� /� /Rag2� /� (Jackson Labs), and IL5� /� were from Manfred Kopj
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(ETH Zurich). IL-13gfp/gfp (ref. 12) and Staggerer/RoraFlox-CD127Cre mice were
from A. McKenzie and H. Rodewald36,39. All mice were on the C57/Bl6
background apart from Thy1.1þ and Thy1.2þ mice which were Balb/c.

Bone marrow transplants. Eight-week-old female recipient mice were maintained
over night with Baytril before irradiation with two doses of 5.5 Gy (separated by
4 h) followed by reconstitution with 1� 107 sex-matched donor BM cells. Mice
were then maintained on Baytril for a 4-week recovery period before organ
collection (Thy1.1þ /Thy1.2þ ) or fed either normal chow (SAFE diet 105)
or Western High Fat Diet (Dietex, FAT 21%, Cholesterol 0.15%) for 8–9 weeks
(ILC2KO, ILC2KO IL-5KO and ILC2KO and IL-13KO experiments).

In vivo ILC2 expansion. To expand ILC2 in Apoe� /� /Rag2� /� , IL-2
(Preprotech) was complexed with monoclonal antibody Jes6-1 (Bio legend
#503701) at a ratio of 5:1, incubating at 37 �C for 30min (ref. 40). Mice received
1 mg of complex IL-2 three times a week for 8 weeks. During this period mice were
maintained on HFD (Western RD).

ILC2 isolation. The ILC2 population was expanded in mice with three daily
injections of IL-33 (1mg) intraperitoneally before spleens and lymph nodes were
collected. Cell suspensions were prepared for flow sorting following standard
protocols. ILC2 cells were sorted from the Lineage-negative ICOS-positive
population and maintained in vitro. Ex vivo sorted ILC2 cells were plated at a
density of 5� 104 cells per well in RPMI (10% FCS Pen/Strep 50 mM 2-ME)
supplemented with IL-7 and IL-33 (10 ngml� 1 each).

Molecular biology. RNA was extracted from ex vivo stimulated macrophages
using RNEasy kit (Qiagen) following the manufacturer’s instructions followed by
cDNA synthesis of 1 mg total RNA using (Qiagen). For ILC2KO BMT aorta and
PaAT single cell suspensions were produced and RNA extracted using RNEasy
microþ kit (Qiagen) followed by cDNA synthesis using SMART v4 Ultra low
input RNA kit (Clontec), with 11 cycles of PCR.

For ILC2 isolation and QPCR, 100 Lin� ICOSþ CD25þ ILC2 were directly
sorted into SMART v4 lysis buffer (SMART v4 Ultra low input RNA kit, Clontec)
and cDNA amplified as per instructions (14 cycles of PCR). For QPCR, a 1:50
dilution of cDNA pools was used with MESAGreen (Eurogentec) and cycled on a
Lightcycler 480 (Roche). Primer sequences are as follows: GATA3 (For 50-AAA
GAA GGC ATC CAG ACC CG-30 Rev 50-TTG AAG GAG CTG CTC TTG
GG-30), IL-5 (For 50-CAA GCA ATG AGA CGA TGA GGC-30 Rev 50-CCC ACG
GAC AGT TTG ATT CTT C-30), IL-13 (For 50-TGT GTC TCT CCC TCT GAC
CC-30 Rev 50-CAG GGC TAC ACA GAA CCC G-30), Arg1 (For 50-TGA AGA
GCT GGC TGG TGT GGT-30 Rev 50-GCT TCC AAC TGC CAG ACT GTG
GTC-30), Fizz1 (For 50-TCA AGG AAC TTC TTG CCA ATC-30 Rev 50-ACC CAG
TAG CAG TCA TCC CAG-30).

Flow cytometry. The following antibodies were used, brackets denote clone.
Lineage cocktail comprises of CD3e (2c11), CD4 (RM4-5), CD19 (1D3), CD11b
(M170) CD11c (N418) Gr1 (RB6-8C5) NK1.1 (PK136), FceRI (MAR-1) and
Ter119, all FITC conjugated and used at a final concentration of 0.1 mgml� 1.
ILC2 panel: ICOS-APC (C398.4A), ST2-e710 (RMST2-2), CD127 e450 (A7R34),
CD25� Bv786 (3C7) KLRG1-PE Cy7 (2F1) were diluted to 0.2 mgml� 1 and
incubated in the presence of 24G2 Fc receptor blocking. ILC2 were defined by flow
cytometry as Lin� ICOSþ CD127þ CD25þ KLRG1þ ST2 variable. Macrophage
phenotyping: CD11bþ F4/80þ Arg1þ /iNOSþ . CD11b-PE (M1/70 0.1 mgml� 1),
F4/80 Pacific Blue (BM8 0.1 mgml� 1), iNOS Alexa647 (Polyclonal, Insight bio-
technology 0.2 mgml� 1) Arginase-1 (Polyclonal N-20, Santa Cruz Biotechnology
0.2 mgml� 1), Chicken anti-Goat AF488 (ThermoFisher Scientific). Cells were
washed and run on a LSR- Fortessa (BD Biosciences). Subsequent data were
analysed with FloJo X analysis software (FreeStar Ashland, OR, USA).

Histology and immunohistochemistry and morphometry. Tissues were collected
into 1% PFA overnight before washing into PBS. Quantification of atherosclerosis
was performed using Oil red O staining as previously described41. Briefly, en face
wholemount staining was performed on aorta cleaned of all peri-aortic adipose
tissue and adventitia. A 0.5% working solution of Oil Red O (Sigma #O0625)
dissolved in isopropyl alcohol was used, diluted to a working stock of 60% in
distilled water. Aorta were rinsed with distilled water before a wash in 70%
isopropyl alcohol. Whole aorta were immersed in working solution for 45min
followed by a wash in 70% isopropyl alcohol and 5 further washes in distilled water.
For aortic sinus, OCT embedded frozen sections from PFA fixed hearts were air
dried and washed in PBS followed by 60% isopropyl alcohol. Sections were then
stained in freshly prepared Oil Red O working solution for 15min, briefly washed
in isopropyl alcohol before counterstaining with haematoxylin. Sections were
then washed twice in Scott’s solution before mounting in aqueous mountant
(CC/Mount, Sigma). Plaque collagen content was determined using Sirius Red
staining under polarized light. Lesion size/collagen was quantified using Fiji42.

To delineate ATLOs and para-aortic FALCs, tissues were prepared as
described5,43. Thus, 10mm fresh frozen cross-sections were prepared and every

tenth serial section at 100mm intervals was stained with Oil Red O/haematoxylin
and number of para-aortic lymphoid clusters and their sizes were quantified. Very
small clusters (o 200 mm in size) and clusters around perivascular nerve and
ganglia were discarded from morphometry analyses. Immunofluorescence staining
was performed as previously described43, using marker antibodies. For ILC2 cells
staining the following antibodies were used. Rabbit anti-human CD3e (F7.2.38,
DAKO 2 mgml� 1), rat anti-mouse GATA3 (KT77, Abcam 2 mgml� 1), Armenian
hamster anti-mouse ICOS (C398.4A, Biolegend 2 mgml� 1), rat IgG2a isotype for
GATA3 (R35-95, BD, 2 mgml� 1) and Armenian hamster IgG Biotin (A19-3, BD,
2 mgml� 1). DAPI was used to stain DNA. Secondary antibodies were used as
previously described44. For macrophage phenotype staining the following
antibodies were used: MOMA2 (Abserotech MCA519G, 2 mgml� 1), rabbit anti
mouse iNOS AF647 (Polyclonal, Insight biotechnology 5 mgml� 1), goat anti
mouse Arginase-1(Polyclonal N-20, Santa Cruz 5 mgml� 1), and chicken anti goat
AF488 (Thermofisher).

Cytokine quantification. In vitro expressed cytokine quantification was performed
using IL-5 and IL-13 Duoset ELISA kit (R and D Systems) following the
manufacturer’s instructions. Serum IL-5 and IL-13 were detected by enhanced
sensitivity CBA FlexSet (BD Biosciences), diluted 1:20.

Statistical analysis. Statistical analyses were performed using the GraphPad
Prism 4 software (Graph Pad Software, San Diego, CA, USA). An unpaired t-test
was used to analyse parametric data sets whereas for non-parametric data the
Mann–Whitney U-test was applied. Tests performed and calculated two-tailed
P-values are indicated in the individual figure legends.

Data availability. The data that support the findings of this study are available
from the corresponding author on reasonable request.
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