
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
LD
I
*

Ar
tifact *

A
E
C

Preprint Copy — To Appear in PLDI 2015

Type-and-Example-Directed Program Synthesis

Peter-Michael Osera Steve Zdancewic
University of Pennsylvania, USA
{posera, stevez}@cis.upenn.edu

Abstract
This paper presents an algorithm for synthesizing recursive functions
that process algebraic datatypes. It is founded on proof-theoretic
techniques that exploit both type information and input–output
examples to prune the search space. The algorithm uses refinement
trees, a data structure that succinctly represents constraints on the
shape of generated code. We evaluate the algorithm by using a
prototype implementation to synthesize more than 40 benchmarks
and several non-trivial larger examples. Our results demonstrate
that the approach meets or outperforms the state-of-the-art for this
domain, in terms of synthesis time or attainable size of the generated
programs.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory—Semantics; F.4.1 [Math-
ematical Logic and Formal Languages]: Mathematical Logic—
Proof Theory; I.2.2 [Artificial Intelligence]: Automatic Pro-
gramming—Program Synthesis

General Terms Languages, Theory

Keywords Functional Programming, Proof Search, Program Syn-
thesis, Type Theory

1. Synthesis of Functional Programs
This paper presents a novel technique for synthesizing purely
functional, recursive programs that process algebraic datatypes.
Our approach refines the venerable idea (Green 1969; Manna and
Waldinger 1980) of treating program synthesis as a kind of proof
search: rather than using just type information, our algorithm also
uses concrete input–output examples to dramatically cut down the
size of the search space. We exploit this extra information to create
a data structure, called a refinement tree, that enables efficient
synthesis of non-trivial programs.

Figure 1 shows a small example of this synthesis procedure in
action. For concreteness, our prototype implementation uses OCaml
syntax, but the technique is not specific to that choice. The inputs to
the algorithm include a type signature, the definitions of any needed
auxiliary functions, and a synthesis goal. In the figure, we define nat

[Copyright notice will appear here once ’preprint’ option is removed.]

(∗ Type signature for natural numbers and lists ∗)
type nat = type list =
| O | Nil
| S of nat | Cons of nat * list

(∗ Goal type refined by input / output examples ∗)
let stutter : list -> list |>
{ [] => []
| [0] => [0;0]
| [1;0] => [1;1;0;0]
} = ?

(∗ Output: synthesized implementation of stutter ∗)
let stutter : list -> list =
let rec f1 (l1:list) : list =
match l1 with
| Nil -> l1
| Cons(n1, l2) -> Cons(n1, Cons(n1, f1 l2))

in f1

Figure 1. An example program synthesis problem (above) and the
resulting synthesized implementation (below).

(natural number) and list types without any auxiliary functions.
The goal is a function named stutter of type list -> list,
partially specified by a series of input–output examples given after
the |> marker, evocative of a refinement of the goal type. The
examples suggest that stutter should produce a list that duplicates
each element of the input list. The third example, for instance, means
that stutter [1;0] should yield [1;1;0;0].

The bottom half of Figure 1 shows the output of our synthesis
algorithm which is computed in negligible time (about 0.001s).
Here, we see that the result is the “obvious” function that creates
two copies of each Cons cell in the input list, stuttering the tail
recursively via the call to f1 l2.

General program synthesis techniques of this kind have many
potential applications. Recent success stories utilize synthesis in
many scenarios: programming spreadsheet macros by example (Gul-
wani 2011); code completion in the context of large APIs or li-
braries (Perelman et al. 2012; Gvero et al. 2013); and generating
cache-coherence protocols (Udupa et al. 2013), among others. In
this paper, we focus on the problem of synthesizing programs in-
volving structured data, recursion, and higher-order functions in
typed programming languages—a domain that largely complements
those mentioned above.

The Escher system (by Albarghouthi et al. [2013]) and the Leon
system (by Kneuss et al. [2013]) inspires this work and also tackle
problems in this domain, but they do so via quite different methods.
Compared to the previous work, we are able to synthesize higher-
order functions like map and fold, synthesize programs that use
higher-order functions, and work with large algebraic datatypes.

Combining Types and Examples As a proof-search-based synthe-
sis technique, our algorithm relies crucially on the type structure of

PLDI’15 Preprint 1 2015/4/16

the programming language to avoid generating ill-typed terms. It
also uses the proof-theoretic idea of searching only for programs
in β-normal, η-long form (Byrnes 1999), a technique also used by
Gvero et al. 2013.

Our new insight is that it is possible to modify the typing rules
so that they “push” examples towards the leaves of the typing
derivation trees that serve as the scaffolding for the generated
program terms. Doing so permits the algorithm to evaluate candidate
terms early in the search process, thereby potentially pruning the
search space dramatically. Rather than following the naı̈ve strategy
of “enumerate and then evaluate,” our algorithm follows the more
nuanced approach of “evaluate during enumeration.”

Intuitively this strategy is important when searching for programs
that construct algebraic datatypes for the simple reason that it cuts
down the space combinatorially. In the stutter example, suppose
that we’re searching for program terms to fill the Cons branch of the
match, which must be of list type. One set of expressions of this
type has the form Cons(e1, e2), where e1 is a term of type nat
and e2 is a term of type list. If there are N1 well-typed candidates
for e1 and N2 candidates for e2, following the naı̈ve strategy of
“enumerate then evaluate” would call our interpreter on all N1×N2

possibilities. The smarter strategy of “evaluate as you enumerate”
decomposes the problem into two independent sub-problems which
finds the same answer using only N1 +N2 calls to the interpreter.
The challenge is to push examples not just through constructors, but
also through other expressions as well.

Roadmap After walking through the synthesis process in more
detail by example, we introduce an ML-like type system that
incorporates input–output examples to constrain the set of legal
program derivations. The type system can be thought of as a non-
deterministic specification of the synthesis problem, where the goal
is to find a term that has a valid typing derivation. To turn the rules
into an algorithm, we observe that the type system decomposes
naturally into two pieces: a data structure, called the refinement
tree, that reifies the parts of the search space that are shared among
many candidate solutions, and an enumerative search that fills in the
remaining holes.

We then discuss our prototype implementation of this synthesis
procedure: a tool called MYTH, which synthesizes code for a subset
of OCaml. We used this prototype to evaluate the effectiveness of
the approach on more than 40 benchmarks, and several non-trivial
larger examples. Our experiments show that our prototype meets
or out-performs the state-of-the-art for synthesis problems in this
domain in terms of synthesis time or attainable size of the generated
programs.

Throughout our discussion, we demonstrate the close connection
of our synthesis algorithm to the analysis of normal form proofs
in constructive logic. One consequence of this connection is that
we can exploit existing ideas and algorithms from this literature:
for instance, we use the idea of proof relevance (Anderson et al.
1992) to optimize our implementation (Section 4). Moreover, the
type-theoretic foundation developed here may extend naturally to
richer type systems—polymorphic types for generic programs or
linear types for stateful or concurrent programs.

Companion Technical Report and Source Code In the interest
of brevity, we omit the presentation of non-essential components
of our calculus and implementation as well as proofs. Links to
both our expanded technical report with a full account of our
synthesis systems and complete source code to the implementation
and examples can be found on the authors’ websites.

2. Type-and-Example-directed Synthesis
Consider a core ML-like language featuring algebraic data types,
match, top-level function definitions, and explicitly recursive func-

tions. A synthesis problem is defined by: (1) the data type definitions
and top-level let-bindings, (2) a goal type, and (3) a collection of
examples of the goal type. The synthesis task is to find a program of
the goal type that is consistent with the examples.

Type-directed synthesis performs two major operations: refining
the constraints—the goal type and examples—and guessing a term
of the goal type that is consistent with the example values.

Type Refinement As an example, consider searching for solutions
to the stutter example of Figure 1. Already from the goal type
list -> list, we know that the top-level structure must be of the
form let rec f1 (l1:list) : list = ?. When synthesizing
the body of the function, the three examples tell us that in the “world”
(a hypothetical evaluation of stutter) where l1 is [] the expected
answer is [], in the world where l1 is [0] the expected answer is
[0;0], and finally in the world where l1 is [1;0] the expected
answer is [1;1;0;0]. So when synthesizing the body, each input–
output pair is refined into a new example “world” where the output
value is the goal and l1 is bound to the corresponding input value.

Guessing To fill in the body of the function, which must be a term
of type list, we observe that no single list constructor agrees with
the examples (since there are examples starting with both Nil and
Cons). At this point, we can try to enumerate or guess well-typed
terms that involve variables to fill the body, e.g., l1. However, l1
does not agree with all of the examples; for example, in the world
where l1 is [0], we instead require l1 to be [0;0]. Other terms
are either ill-typed or are well-typed but not structurally recursive
(a restriction of the system we discuss further in Section 3.4) so
guessing fails at this point.

Note that while we rule out ill-typed and non-structurally recur-
sive terms, there are still many other well-typed terms that we also
wish to avoid. For example, a term that matches against a constant
constructor, like match Nil with Nil -> e1 | Const -> e2
is equivalent to a smaller term that has no match (in this case e1).
And to make matters worse, there are an infinite number of these
bad terms, obtainable by introducing additional lambdas and ap-
plications. To avoid these sorts of redundant terms, guessing only
generates β-normal forms: terms that can be reduced no further.

Match Refinement With these possibilities exhausted, we next
consider introducing a match expression. We first guess possible
scrutinees to match against: they must have algebraic types and be
terms constructed from variables in the context. The only such term
in this case is l1, so we consider how to complete the term:

match l1 with Nil -> ? | Cons(n1, l2) -> ?

When pattern matching, we distribute the examples according to
how the match evaluates in each example world. In this case, l1
evaluates to Nil in the first world and Cons(_,_) in the other two
worlds. Therefore, we send the first example to the Nil branch and
other two examples to the Cons branch. We are left with two sub-
goals in refined worlds. The Nil case follows immediately: we can
now guess the expression l1 which satisfies the example world []
(because l1 has value [] in this world).

Recursive Functions The Cons case proceeds with another round
of guessing, but the solution requires a recursive call to f1. How
might we generate a recursive function in this type-directed,
example-based style? The answer is that when introducing a recur-
sive function like f1, the input-output examples for the function
itself, interpreted as a partial function, serve as a reasonable approx-
imation of its behavior. Here, the example for f1 in all three worlds
would be the partial function given by all three examples. Given
this information in the context, the guessing procedure can quickly
determine that Cons(n1, Cons(n1, f1 l2)) is a solution for
the Cons branch of the match.

PLDI’15 Preprint 2 2015/4/16

τ : : = τ | τ1 → τ2
e : : = x | C (e1, .. , ek) | e1 e2

| fix f (x : τ1) : τ2 = e | pf
| match e with p1 → e1 | .. | pm → em

p : : = C (x1, .. , xn)
u, v : : = C (v1, .. , vk) | fix f (x : τ1) : τ2 = e | pf
ex : : = C (ex1, .. , exk) | pf
pf : : = v1 ⇒ ex1 | .. | vm ⇒ exm
E : : = x | E I
I : : = E | C (I1, .. , Im) | fix f (x : τ1) : τ2 = I

| matchE with p1 → I1 | .. | pm → Im
Γ : : = · | x : τ,Γ
Σ :: = · | C : τ1 ∗ .. ∗ τn → T ,Σ
σ : : = · | [v/x]σ
X : : = · | σ 7→ ex ++ X

Figure 2. λsyn: syntax.

3. Synthesis Language
With a better intuition of how type-directed synthesis works, let’s
examine the procedure in detail. The formalism λsyn that we
develop for this purpose is a sound, yet highly non-deterministic
synthesis procedure. By using this formalism as a starting point, we
are able to make explicit the connection between program synthesis
and proof search.

3.1 λsyn: A Type-directed Synthesis Language
Figure 2 gives the syntax of λsyn. As described in Section 2, our
target is a core ML-like language featuring algebraic data types and
recursive functions. Consequently, types are user-defined algebraic
data types T and function types τ1 → τ2. The syntax of expressions
e is standard: C ranges over data type constructors, application is
written e1 e2, and we use ML-style pattern match expressions in
which each pattern p binds the subcomponents of the constructor C .
We require that every match is complete; there exists one branch
for each constructor of the data type being matched. A recursive
function f is given by fix f (x : τ1) : τ2 = e , and we write λx : τ1.e
instead when f is not among the free variables of e. Signatures Σ
contain the set of declared constructors, and contexts Γ contain
information about the free variables of the program.

The only new syntactic form is that of partial functions pf ,
written vi ⇒ exi

i<m. Here, and throughout the paper, the overbar
notation eii<m denotes a sequence of m syntactic elements, e1..em.
Thus, the notation for a partial function vi ⇒ exi

i<m denotes a list
of input–output examples v1 ⇒ ex1 | .. | vm ⇒ exm . We interpret
such partial functions to mean that if we supply the argument vi
then the partial function produces the result exi .

Synthesis problems are specified through example values ex
that are made up of constructor values (for data types) and partial
functions (for arrow types). Explicit use of fix values as examples is
not permitted because that would amount to supplying a definition
for the function being synthesized. However, inputs to example
partial functions are allowed to be values, which is useful when
giving examples of higher-order functions. The syntax of input–
output examples reflects this restriction where the domain of a
partial function is unrestricted values v and the range is restricted to
be example values ex .

To keep track of the evolution of variable values during the syn-
thesis process, we tie to each ex an execution environment σ which
maps variables to values. We can think of σ as a substitution where
σ(e) denotes the expression obtained by applying the substitution
σ to e. A pair σ 7→ ex constitutes an example world we described
in Section 2, and X is a list of example worlds, shortened to just
“examples” when we don’t need to distinguish between individual

environments and example values. The goal of the synthesis proce-
dure is to derive a program that satisfies each example world given
in X .

Because there are many list syntactic forms in the formalism, we
use a metavariable convention for their lengths: k for constructor
arity, n for the number of examples |X |, and m for the number of
cases in a match expression or partial function. We use i and j for
generic indices.

3.2 Typechecking and Synthesis
Normal Forms Rather than synthesizing e terms directly, we in-
stead restrict synthesized programs to β-normal form (Byrnes 1999).
Such terms do not contain any β-redexes, ruling out redundant pro-
grams that pattern match against known constructors (and hence
have dead branches) or that apply a known function. To do this,
we split the syntax of expressions into introduction forms I and
elimination forms E . Note that every E is of the form x I1 . . . Ik ,
with a free variable x at its head.

This syntactic split carries through into the type system, where,
as in bidirectional typechecking (Pierce and Turner 2000), the
rules make explicit when we are checking types (I -forms) versus
generating types (E -forms), respectively.1 We can think of type
information flowing into I -forms whereas type informations flows
out of E -forms. This analogy of information flow extends to
synthesis: when synthesizing I -forms, we push type-and-example
information inward. In contrast, we are not able to push this
information into E -forms.

Typechecking for λsyn is divided among four judgments:

Σ ; Γ ` e : τ e is well-typed.
Σ ; Γ ` E ⇒ τ E produces type τ .
Σ ; Γ ` I ⇐ τ I checks at type τ .
Σ ; Γ ` X : τ X checks at type τ .

Figure 3 gives the definition of the last three judgments. Because
the typechecking judgment for regular expressions is both standard
and immediately recoverable from the bidirectional typechecking
system, we omit its rules here. The only new rule typechecks partial
functions:

Σ ; Γ ` vi : τ1
i<n

Σ ; Γ ` exi : τ2
i<n

Σ ; Γ ` vi ⇒ exi
i<n : τ1 → τ2

T PF

A partial function is well-typed at τ1 → τ2 if its domain typechecks
at τ1 and its range typechecks at τ2.

The final judgment typechecks examples X at some goal type τ .
This amounts to typechecking each example world σ 7→ ex ∈ X
which ensures that:

1. The environment is well-typed, written Σ ; Γ ` σ and

2. The example value is well-typed at type τ .

Figure 4 describes our synthesis system as a non-deterministic
relation where complete derivations correspond to synthesized
programs. This relation is broken up into two judgments:

• Σ ; Γ ` τ E
 E (EGUESS): guess an E of type τ .

• Σ ; Γ ` τ . X I
 I (IREFINE): refine and synthesize an I of

type τ that agrees with examples X .

Note that these two judgments are very similar to the bidrectional
typechecking system for this language! We have simply changed

1 This fact is why match is an I -form: when typechecking a match we
check the types of the branches against a given type.

PLDI’15 Preprint 3 2015/4/16

Σ ; Γ ` E ⇒ τ
Σ ; Γ ` I ⇐ τ

T EVAR

x : τ ∈ Γ

Σ ; Γ ` x ⇒ τ

T EAPP

Σ ; Γ ` E ⇒ τ1 → τ2
Σ ; Γ ` I ⇐ τ1

Σ ; Γ ` E I ⇒ τ2

T IMATCH

Σ ; Γ ` E ⇒ T binders (Σ, pi) = Γi
i<m

Σ ; Γi ++ Γ ` Ii ⇐ τ
i<m

Σ ; Γ ` matchE with pi → Ii
i<m ⇐ τ

T IELIM

Σ ; Γ ` E ⇒ τ

Σ ; Γ ` E ⇐ τ

T IFIX

Σ ; f : τ1 → τ2, x : τ1,Γ ` I ⇐ τ2

Σ ; Γ ` fix f (x : τ1) : τ2 = I ⇐ τ1 → τ2

T ICTOR

C : τ1 ∗ .. ∗ τk → T ∈ Σ
Σ ; Γ ` I1 ⇐ τ1 .. Σ ; Γ ` Ik ⇐ τk

Σ ; Γ ` C (I1, .. , Ik)⇐ T

Σ ; Γ ` σ
Σ ; Γ ` X : τ

TENV EMPTY

Σ ; Γ ` ·

TENV CONS

x : τ ∈ Γ Σ ; Γ ` v : τ
Σ ; Γ ` σ

Σ ; Γ ` [v/x]σ

TEX EMPTY

Σ ; Γ ` · : τ

TEX CONS

Σ ; Γ ` σ Σ ; Γ ` ex : τ
Σ ; Γ ` X : τ

Σ ; Γ ` σ 7→ ex ++ X : τ

binders(Σ,C (x1, . . . , xk)) = x1 : τ1, . . . , xk : τk where C : τ1 ∗ . . . ∗ τk → T ∈ Σ

Figure 3. λsyn: typechecking rules.

Σ ; Γ ` τ E
 E

EGUESS VAR

x : τ ∈ Γ

Σ ; Γ ` τ E
 x

EGUESS APP

Σ ; Γ ` τ1 → τ
E
 E

Σ ; Γ ` τ1 . ·
I
 I

Σ ; Γ ` τ E
 E I

I � X

SATISFIES

∀σ 7→ ex ∈ X .σ(I) −→∗ v ∧ v ' ex

I � X

Σ ; Γ ` τ .X I
 I

IREFINE GUESS

Σ ; Γ ` τ E
 E E � X

Σ ; Γ ` τ .X I
 E

IREFINE CTOR

X = σi 7→ C (ex1n , . . . , exkn)
i<n

C : τ1 ∗ .. ∗ τk → T ∈ Σ
proj(X) = X1, . . . ,Xk

Σ ; Γ ` τi .Xj
I
 Ii

j<k

Σ ; Γ ` T .X
I
 C (I1, .. , Ik)

IREFINE FIX

X = σ1 7→ pf1 ; .. ; σn 7→ pfn
X ′ = apply (f , x , σ1 7→ pf1) ++ .. ++ apply (f , x , σn 7→ pfn)

Σ ; f : τ1 → τ2, x : τ1,Γ ` τ2 .X
I
 I

Σ ; Γ ` τ1 → τ2 .X
I
 fix f (x : τ1) : τ2 = I

IREFINE MATCH

Σ ; Γ ` T
E
 E distribute (Σ,T ,X ,E) = (pi ,X ′i)

i<m

binders (Σ, pi) = Γi
i<m

Σ ; Γi ++ Γ ` τ .X ′i
I
 Ii

i<m

Σ ; Γ ` τ .X I
 matchE with pi → Ii

i<m

Figure 4. λsyn: synthesis rules.

perspectives: rather than checking or producing types given a term,
synthesis produces a term given a type.

The EGUESS rules correspond to guessing E -forms. “Guess-
ing” in this context amounts to well-typed term enumeration. Be-
cause the ill-typed terms vastly outnumber the well-typed terms,
restricting enumeration in this manner makes enumeration much
more efficient (Grygiel and Lescanne 2013). Enumeration proceeds
by choosing a particular term shape and then recursively generat-
ing its components. Generating an application (EGUESS APP) con-
sists of generating a function that produces the desired goal type
and then generating a compatible argument. Generating a variable
(EGUESS VAR) requires no recursive generation—we simply choose
any variable from the context of the appropriate type.

In order to enumerate I -forms, the EGUESS judgment calls into
the IREFINE judgment with an empty example list (written ·). In
the absence of examples, the IREFINE judgment also performs well-
typed term enumeration. To see this, ignore all occurrences of ex-
amples X in the IREFINE rules. IREFINE FIX generates a fix by
recursively generating its body, under the additional assumption
of variables f and x . IREFINE CTOR generates a constructor value
by recursively generating arguments to that constructor, and IRE-
FINE MATCH generates a match by recursively generating the dif-

ferent pieces of the match. Because Es are also syntactically con-
sidered I s, IREFINE GUESS generates an E by using the EGUESS
judgment.

Example Propagation When X is non-empty, the IREFINE judg-
ment corresponds to refinement, which is restricted to I -forms. In
addition to generating well-typed terms, the judgment also incorpo-
rates the list of examples X given by the user.

Recall that X is a list of example worlds σ 7→ ex where ex
is the goal example value and σ is the execution environment that
gives values to each of the free variables in Γ. For this to work, we
enforce the following invariant in our system:

Invariant 1. Example-Value Consistency. ∀x : τ ∈ Γ. ∀σ 7→
ex ∈ X . ∃v. Σ ; · ` v : τ and [v/x] ∈ σ.

The invariant that says that each example world gives a value to
each variable in Γ.

Rules IREFINE FIX and IREFINE CTOR perform type-directed
example refinement. Typechecking ensures that X only contains
partial function values in the IREFINE FIX case and constructor
values in the IREFINE CTOR case. This refinement is delegated to

PLDI’15 Preprint 4 2015/4/16

proj(X) = σi 7→ ex1i
i<n , . . . , σi 7→ exki

i<n

where X = σi 7→ C (ex1i , . . . , exki)
i<n

apply(f , x , σ 7→ pf) = [pf /f][vi/x] σ 7→ exi
i<m

where pf = vi ⇒ exi
i<m

binders(Σ,C (x1, . . . , xk)) = x1 : τ1, . . . , xk : τk
where C : τ1 ∗ . . . ∗ τk → T ∈ Σ

distribute(Σ,T ,X ,E) = (p1,X ′1), . . . , (pn ,X ′n)
where

ctors(Σ,T) = C1, . . . ,Cn

∀i ∈ 1, . . . ,n. pi = pattern(Σ,Ci)
∀i ∈ 1, . . . ,n. X ′i = [σ′σ 7→ ex | σ 7→ ex ∈ X ,
σ(E) −→∗ Ci (ex), vbinders(pi , ex) = σ′]

ctors(Σ,T) = C1, . . . ,Cn

where ∀i ∈ 1, . . . ,n. Ci : τ → T ∈ Σ

pattern(Σ,C) = C (x1, . . . , xk)
where C : τ1 ∗ . . . ∗ τk → T ∈ Σ

vbinders(p, e1, . . . , en) = [e1/x1] . . . [en/xn]
where p = C (x1, . . . , xn)

Figure 5. λsyn: auxiliary synthesis functions.

helper functions apply and proj, respectively, which are specified
in Figure 5.

proj assumes that the example values of X consist of construc-
tor values with a shared head C that has arity k . proj creates k
new X s, corresponding to the k arguments that must be synthesized
for C . The example values for Xk which corresponds to the k th
argument are drawn from the k th example values from each of the
example values found in the original X . The environment σi are
copied, unchanged, to each of the new Xk .

apply assumes that the example values of X consist of partial
functions. apply operates over a single example world σ 7→ pf ∈
X and produces a new X ′ that refines the examples for synthesizing
the function body I . If pf = vi ⇒ exi

i<m, then apply produces
m new example worlds, one for each such vi ⇒ exi pair. The
goal example value for each of these worlds is exi . To fulfill our
invariant that the σi has a value for each variable bound in Γ, we
must provide values for f and x . x is simply bound to vi . f is bound
to the entire partial function that generated the example world—this
means that synthesis can use examples of f ’s behavior on any of
the given sample inputs when generating the function body. In
IREFINE FIX, we append the results of applying each example
world in X together to form the final X ′ used to synthesize I .

IREFINE MATCH does not refine examples like IREFINE FIX and
IREFINE CTOR. Instead, IREFINE MATCH distributes the example
worlds in X to each of the branches of the match. This behavior is
delegated to the distribute function, which takes the signature Σ,
the data type T the match covers, the examples to refine X , and the
scrutinee of the match E . distribute generates an Xm for each
branch of the match by distributing the examples X among the m
branches of the pattern match. Intuitively, distribute evaluates
the scrutinee E using each of the σn drawn from the n worlds.
Because E must be a data type T , then it must evaluate to one of
T ’s constructors. distribute then sends that example world to that
constructor’s branch in the match.

Finally, we bridge the refinement and guessing judgments with
IREFINE GUESS. For E -forms, we are unable to push examples
through term generation. This is because the shape of an E does not
tell us anything about its type and correspondingly, how to refine
its examples. However, after generating an E , we can check that
it satisfies each example world. This “satisfies” relation, written

v ' v ′
EQ CTOR

ui ' vi
i<k

C (ui
i<k) ' C (vi

i<k)

EQ REFL

v ' v

EQ PF FIX

v2 = fix f (x : τ1) : τ2 = e
∀i ∈ 1, . . . ,n. e1 vi −→∗ v ∧ v ' exi

vi ⇒ exi
i<n ' v2

EQ PF PF

∀i ∈ 1, . . . ,n. ∃j ∈ 1, . . . ,m. vi ' v ′j ∧ exi ' ex ′j
∀j ∈ 1, . . . ,m. ∃i ∈ 1, . . . ,n. vi ' v ′j ∧ exi ' ex ′j

vi ⇒ exi
i<n ' v ′j ⇒ ex ′j

j<m

e −→ e′
EVAL APP PF GOOD

v ' vj j ∈ 1, . . . ,n

vi ⇒ exi
i<n v −→ exj

EVAL APP PF BAD

∀j ∈ 1, . . . ,n. v 6' exj

vi ⇒ exi
i<n v −→ NoMatch

Figure 6. Selected λsyn evaluation and compatibility rules for
partial functions.

E � X , ensures that for all example worlds σn 7→ exn in X
that σn(E) −→∗ v and v ' exn where σn(E) substitutes the
environment σn into E .

3.3 Evaluation and Compatibility
The synthesis rules require that we evaluate terms and check them
against the goal examples. Figure 6 shows just two of the small-step
evaluation rules. The omitted rules for β-reduction and pattern-
matching are completely standard; they rely on the usual notion of
capture-avoiding substitution.

There are two ways that the interpreter can go wrong: it might
diverge or it might try to use a partial function that is undefined at a
particular input. In the first case, our multi-step evaluation relation
e −→∗ v does not terminate which implies that the synthesis
process itself could diverge. However, in practice, our synthesis
algorithm imposes restrictions on recursion to guarantee termination
which we discuss further in Section 3.4.

The rules governing partial functions are shown in Figure 6.
In the case that the partial function is used at an undefined input,
an exception value NoMatch is raised. NoMatch does not equal
any value, so synthesis fails. At first glance, this seems overly
restrictive as the absence of a particular input in a partial function
might seem to imply that we can synthesize anything for that
case, rather than nothing. However, in the presence of recursive
functions, doing so is unsound. Consider synthesizing the Cons
branch of the stutter function from Section 2 but with the example
set {[] => [], [1;0] => [1;1;0;0]}. If we synthesized the
term f1 l2 rather than Cons(n1, Cons(n1, f1 l2)), then we
will encounter a NoMatch exception because l2 = [0]. This
is because our example set for f1 contains no example for [0].
If we simply accepted f1 l2, then we would admit a term that
contradicted our examples since f1 l2 actually evaluates to []
once plugged into the overall recursive function.

Value compatibility, written v ' u , is also shown in Figure 6.
This relation, which is defined only on closed terms, is used to
determine when a guessed E is compatible with the examples. Due
to the presence of higher-order functions, its definition is a bit
delicate. As usual, two values that have the same head constructor
applied to compatible arguments are compatible (rule EQ CTOR). A
specified function is compatible with a partial function example if

PLDI’15 Preprint 5 2015/4/16

running the function on each of the given inputs produces an output
compatible with the corresponding example output, as shown in
EQ PF F (omitting the symmetric rule). Two partial functions are
compatible if they specify equivalent sets of pairs of input/output
examples. However, a concrete function is compatible only with
itself, via reflexivity.

Compatibility is an approximation to extensional equality, which
is undecidable in general. Our approximation is conservative in that
our use of ' rather than (unattainable) extensional equality only
permits fewer programs to be synthesized, in particular, when higher-
order functions are involved. For example, consider E -guessing a
term (via the IREFINE GUESS rule) involving an function f whose
value is the partial function id => O. If f is applied to some
function value v where v is contextually equivalent, yet syntactically
distinct, from id, evaluation will produce NoMatch rather than O.

3.4 Metatheory
With the definition of λsyn in hand, we give an overview of the
properties of λsyn.

Termination Because synthesis relies on evaluation (through the
compatibility relation), termination of any synthesis algorithm based
on λsyn relies on the termination of evaluation. In the presence of
recursive functions and data types, we must enforce two restrictions
to ensure termination of evaluation:

1. A syntactic structural recursion check that enforces that recur-
sive calls are only made on structurally decreasing arguments.

2. A positivity restriction on data types that prevents recursive
occurrences of a data type to the left of an arrow in the type of
an argument to a constructor.

Both of these restrictions are present in languages that require
totality, e.g., Agda (Norell 2007) and the Coq theorem prover (The
Coq Development Team 2012). We elide the details of the structural
recursion check here to simplify the presentation of λsyn.

Example Consistency Example consistency demands that the
examples that the user provides do not contradict each other. For
example, if the goal type is nat, then the two examples O and S(O)
are contradictory because we cannot synthesize a single I of type
nat that can both be O and S(O) (in the empty context).

Checking for inconsistent examples proves to be difficult because
of the undecidability of function equality in λsyn. For example, con-
sider the partial function id1 => O | id2 => 1 where id1 and
id2 are syntactically distinct implementations of the identity func-
tion. This partial function has contradictory alternatives, however,
we cannot determine that id1 ' id2.

Therefore, in λsyn, we simply assume that the set of examples
that the user provides is not contradictory. If λsyn is supplied with
an contradictory set of examples, then there will be no I that fulfills
the examples. In an implementation of a synthesis algorithm based
on λsyn (such as the one we present in Section 4), this results in the
algorithm not terminating because it can never find a program that
satisfies the examples.

Soundness Soundness of λsyn ensures that synthesized programs
are correct.

Theorem 1. Type Soundness. If Σ ; Γ ` X : τ and Σ ; Γ `
τ .X

I
 I then Σ ; Γ ` I ⇐ τ .

Theorem 2. Example Soundness. If Σ ; Γ ` τ . X
I
 I then

I � X .

Type soundness states that synthesized programs are well-typed,
and example soundness states that synthesized programs agree with
the examples that are given.

Proving type soundness is straightforward: the synthesis rules
erase to typing rules for the language, so we always produce well-
typed programs. Proving example soundness amounts to showing
that the IREFINE rules manipulate the examples soundly. The
example refinement performed by IREFINE FIX, IREFINE CTOR,
and IREFINE MATCH all correspond to single-step evaluation for fix,
constructor, and match expressions, respectively, over the examples.
The base case, IREFINE GUESS, ensures compatibility directly.

Completeness Completeness of λsyn ensures that we are able to
synthesize all programs.

Theorem 3. Completeness of Term Enumeration.

1. If Σ ; Γ ` E ⇒ τ then Σ ; Γ ` τ E
 E .

2. If Σ ; Γ ` I ⇐ τ then Σ ; Γ ` τ . · I I .

In the absence of examples, λsyn can synthesize any well-typed
term. This follows from the fact that the λsyn is simply an inversion
of the inputs and outputs of the standard typing judgment.

Theorem 3 implies that, for any well-typed I , there always
exists an example set X that allows us to synthesize I , namely
the empty set. Therefore, we would like to state that λsyn satisfies
the following property

Claim 1. Completeness of Synthesis. If Σ ; Γ ` X : τ , Σ ; Γ `
I ⇐ τ , I � X , then Σ ; Γ ` τ .X I

 I .

which says that if X and I are well-typed and I satisfies X , then
we can use X to synthesize I . However, it turns out that this claim
does not hold for λsyn. The problem resides in our use of partial
functions as the value for a recursive function during I -refinement.
In the IREFINE FIX case, we end up needing to claim that a partial
function can be substituted for the fix. While the partial function
agrees with the fix on the values that the partial function is defined,
it does not agree on the other, unspecified values (which all raise
NoMatch errors). This makes such a substitution unsound in general
and requires stronger assumptions about how the partial function
and fix are related.

4. Implementation
So far, we have described type-directed synthesis as a logical system,
λsyn, that leverages types and examples in a push-down manner.
This presentation illustrates the close connections between type-
directed program synthesis and bidirectional typechecking and proof
search. However, λsyn itself is not a synthesis procedure on its own.
We now discuss how we translate λsyn into an efficient synthesizer,
MYTH.

4.1 Consistency, Termination, and Determinism
The system described in Figure 4 is highly non-deterministic.
Furthermore, we assume that the examples provided to the system
are consistent. Finally, it relies on evaluation to verify E -guesses,
which may not terminate in the presence of recursive functions. To
move towards an implementation, we must address these issues.

Consistency Because we allow function values in the domain
of partial functions, checking for contradictory example sets is
undecidable (because checking function equality is undecidable in
our system). Therefore, in MYTH, like λsyn, we are unable to detect
upfront whether an input X is consistent.

However, in MYTH, we search the space of programs in (roughly)
increasing program size. For a given set of consistent examples, there
always exists at least one program that satisfies those examples. This
guaranteed program specializes to exactly the examples (e.g., with a
collection of nested pattern matches) and has arbitrary behavior on
all other values.

PLDI’15 Preprint 6 2015/4/16

Therefore one way to detect an inconsistent example set is to sim-
ply generate terms up to the size of the guaranteed program—whose
size is proportional to the size and amount of input examples. If any
of these programs satisfies the example set, then the example set is
consistent. Otherwise, the example set is inconsistent. Thus, the size
of the guaranteed program serves as an upper bound to the synthesis
algorithm.

While this works in theory, in practice the size of the guaranteed
program usually exceeds the size of programs that MYTH can syn-
thesize in a reasonable amount of time. Thus, we avoid introducing
such a check in MYTH; inconsistent example sets simply cause
MYTH to not terminate.

Termination As discussed in Section 3.4, we must add structural
recursion checks to recursive function calls and enforce a positivity
restriction on data types to obtain termination of evaluation. The
structural recursion check is a simpler, more coarse-grained form
of the syntactic check used in the Coq theorem prover (The Coq
Development Team 2012). Recall that our functions (Figure 2) are
all curried, i.e., take only a single argument. We require that this
value passed to a fix be structurally decreasing. Such a structurally
decreasing value can only be obtained by pattern matching on
the fix’s original argument. This is more restrictive than Coq
which performs some compile-time β-reductions to admit more
arguments, but is, nevertheless, sound and serves as a reasonable
over-approximation to ensure termination.

Determinism The non-determinism in λsyn arises from multiple
rules applying at once. For example, we will certainly get into the
situation when both the IREFINE MATCH and IREFINE GUESS rules
are potentially valid derivations since they both apply at base type.
How do we pick which rule to invoke? And how do we choose one
if both are valid derivations? In general, we don’t know a priori how
to proceed.

Our approach is to exhaustively search all of these possibilities
that have an appropriate type and agree with the examples in turn.
This search may not terminate, especially if the user has not provided
sufficient examples, so the procedure is governed by an iterative
deepening strategy dictated by term size. That is, we try to synthesize
a valid program starting with size one and increase the size if the
search fails. This procedure continues until we find the program or
reach a user-defined size limit.

Note that this strategy produces the smallest program that
satisfies the examples. The smallest such program is desirable
because it most likely generalizes to the complete behavior of the
function that we want. This is because smaller programs use more
variables and less constants which are more likely to generalize to
more complex behavior.

Blind search of derivations is straightforward and works well
for small functions but does not scale well to more complicated
code. Our two main modifications to this naı̈ve search strategy are
memoizing term generation and refinement trees, an efficient data
structure for representing λsyn derivations.

4.2 Efficient Contextual Term Generation
We can think of E -guessing as raw E -term enumeration coupled
with evaluation. E -guessing occurs at every step of synthesis
(because IREFINE GUESS applies at any time), so it pays to make
term enumeration as efficient as possible. On top of this, we will
certainly generate the same terms repeatedly during the course of
synthesis. For example, when synthesizing a function that takes an
argument x , we will potentially enumerate expressions containing
x at any point when E -guessing subexpressions within the body of
the function.

Therefore, we define term generation functions:

genE(Σ; Γ; τ ; n) = E and genI(Σ; Γ; τ ; n) = I

gen
x:τ1
E (Σ; Γ; τ ; n)

gen
x:τ1
E (Σ; Γ; τ ; 0) = {}

gen
x:τ
E (Σ; Γ; τ ; 1) = {x}

gen
x:τ1
E (Σ; Γ; τ ; 1) = {} (τ 6= τ1)

gen
x:τ1
E (Σ; Γ; τ ; n) =

⋃
τ2→τ∈Γ

n−1⋃
k=1

(see below)

(genx:τ1
E (Σ; Γ; τ2 → τ ; k) ⊗

app
genI(Σ; Γ; τ2; n− k))

∪ (genE(Σ; Γ; τ2 → τ ; k) ⊗
app

gen
x:τ1
I (Σ; Γ; τ2; n− k))

∪ (genx:τ1
E (Σ; Γ; τ2 → τ ; k) ⊗

app
gen

x:τ1
I (Σ; Γ; τ2; n− k))

Figure 7. Selected relevant E -term generation functions.

that realize term enumeration in λsyn as a collection semantics
that enumerates sets of E -terms E and I -terms I of type τ having
exactly size n.

For performance, we should cache the results of E -guessing at a
particular goal type so that we never enumerate a term more than
once. However, in λsyn we E-guess under a context that grows
as we synthesize under binders, i.e., functions and matches. To
maximize cache hits, we should try to create invocations of genE
and genI that maximize sharing of the contexts Γ. Noting that the
synthesis procedure only extends the context and never shuffles its
contents, we can factor the term generation functions as follows:

genE(Σ; Γ, x :τ1; τ ; n) = gen
x:τ1
E (Σ; Γ; τ ; n)

∪ genE(Σ; Γ; τ ; n)

genI(Σ; Γ, x :τ1; τ ; n) = gen
x:τ1
I (Σ; Γ; τ ; n)

∪ genI(Σ; Γ; τ ; n)

This factorization ensures that for a given goal type and size, two
calls to genE in different contexts Γ, x1 : τ1 and Γ, x2 : τ2 will
still have a cache hit for the shared prefix context Γ.

Here, genx:τ1
E and gen

x:τ1
I are relevant term generation func-

tions. Inspired by relevance logic (Anderson et al. 1992), these
functions require that all gathered terms must contain the relevant
variable x. Figure 7 gives the definition of genx:τ1

E ; the definition of
gen

x:τ1
I follows analogously from the type-directed IREFINE judg-

ment ignoring example refinement. In particular, relevant generation
bottoms out when either the requested term size is zero or one. In
the latter case, we enumerate only the relevant variable x at size one
even though there may be other variables in the context that meet
the goal type. We will enumerate those variables when they become
relevant, i.e., appear at the beginning position of the context.

The only other E -term form is function application which
we enumerate in the recursive case of the gen

x:τ1
E . Enumerating

application terms consists of forming the Cartesian product ⊗
app

of

applications from recursive calls both the genE and genI functions.
In order to respect relevance, we take the union of the terms where
the relevant variable must appear in either side of the application or
both sides. Finally we enumerate these applications by taking all the
ways we can partition the size between the function and argument
expression and all the possible function types that generate our goal
type τ2.

4.3 Refinement Trees
λsyn operates in two distinct modes: E -guessing, which involves
term generation, and I -refinement, which involves pushing down
examples in a type-directed manner. A natural question is whether
we can cache I -refinements in a manner similar to how we cache
E -guesses. The answer is yes, but to do so, we need to introduce

PLDI’15 Preprint 7 2015/4/16

list -> list

fix f1 (l1:list) : list = _

list

match l1

Nil -> _

list

Nil

Cons (n1, l2) -> _

list

Cons (_, _)

nat list

Cons (_, _)

nat list

Figure 8. Example refinement tree for stutter.

a data structure called a refinement tree, which captures all the
possible refinements of the examples that the synthesis procedure
could perform.

Figure 8 gives an example refinement tree generated while
synthesizing stutter with the examples from Figure 1. The tree is
specialized to the case of one match. There are two types of nodes
in the refinement tree:

1. Goal nodes contain goal types and represent places in the synthe-
sis derivation where we can E -guess. In Figure 8, they are boxed.
For example, the top-most node containing list -> list is a
goal node.

2. Refinement nodes represent valid I -refinements. In Figure 8 they
are unboxed, for example, the node containing match l1 is a
refinement node that represents a match on l1. Its two children
represent the synthesis sub-problems for synthesizing its Nil
and Cons branches. Likewise, the children of the refinement
node containing Cons (_, _) represent the sub-problems for
synthesizing each of the arguments to Cons

A refinement tree is a data structure that describes all the possible
shapes (using I -forms) that our synthesized program can take, as
dictated by the given examples. Alternatively, it represents the
partial evaluation of the synthesis search procedure against the
examples. In the figure, match has been specialized to case on l1,
the only informative scrutinee justified by the examples.

When using refinement trees, our synthesis strategy differs
significantly from pure enumeration. It proceeds in three steps:

1. Create a refinement tree from the initial context, goal type, and
provided examples.

2. By IREFINE GUESS, E -guessing is always an alternative deriva-
tion at any point during I-refinement. Therefore, perform E -
guessing at each node (using that node’s context, goal type, and
examples).

3. Bubble successful E -guesses and refined nullary constants
upwards in the tree to try to construct a program that meets
the top-level goal.

We repeat these steps in an iterative deepening fashion governed by
a number of metrics, not just the obvious choice of term size, that
we will discuss in more detail shortly.

In this search, applications of the IREFINE MATCH rule deserve
special attention. A match has the effect of introducing new in-
formation into the context, i.e., additional binders gathered from
destructing values. However, it otherwise does not further the goal
state (note how IREFINE MATCH only distributes the goal examples
among the branches of the match unmodified). If left unchecked, the
search procedure wastes a lot of time matching on values that add
no information to the context. Therefore, we check to see whether a
match might help make progress towards the goal:

Definition 1. match informativeness. An application of the IRE-
FINE MATCH rule is informative if whenever the match contains
at least two branches, at least two branches of the match contain
non-empty sets of goal examples.

In our search, we modify IREFINE MATCH to apply only when
the generated match is informative. This restriction is sufficient to
rule out many unproductive matches, i.e., those matches that send all
the goal examples to a single branch. And, moreover, this restriction
contributes to an important property of refinement trees:

Lemma 1. Finiteness of refinement trees. Given an upper bound
on the size of any match scrutinee, all refinement trees are finite.

Proof sketch. We observe that for successive applications of IRE-
FINE FIX and IREFINE CTOR, the goal examples monotonically
decrease in size as we repeatedly destruct them. So there is always a
point at which refinement bottoms out and can no longer apply these
rules. The same logic applies to IREFINE MATCH, but for examples
in the context. Informativeness ensures that successive matches on
the same (or a less informative) scrutinee are never informative as
they will always send the remaining set of examples to the same
branch.

Because refinement trees correspond to IREFINE derivations
minus applications of IREFINE GUESS, the lemma implies that there
are only a finite number of such derivations possible when the size of
match scrutinees is bounded. Thus, our iterative deepening search
over refinement trees uses the maximum match scrutinee size and
the maximum E -guess term size as metrics. While match depth is
known to be finite according to Lemma 1, we also use it as a final
metric in our search. This is because match expressions potentially
add many new binders which causes the search space to grow very
quickly.

As a concrete example, let’s consider how we would synthesize
the stutter from Section 1 using refinement trees. Initially, we
construct a simple refinement tree with match depth zero. This tree

list -> list

fix f1 (l1:list) : list = _

list

contains three nodes: a goal node corresponding to the initial
goal type of list -> list, a refinement node corresponding to
applying IREFINE FIX, and a goal node corresponding to synthe-
sizing the body of that fix. We then E -guess up to a reasonable
term size limit, say 15, at each of the nodes, but fail to discover any
programs that are compatible with the examples. So we grow the
refinement tree by increasing the match depth, which results in the
tree found in Figure 8. E -guessing over this tree yields a variety
solutions to the various synthesis sub-problems found in the tree.
In particular, the search finds Cons (n1, Cons (n1, f1 l2))
in the Cons branch by E -guessing n1 and f1 12 at their respec-
tive nodes in the refinement tree, yielding the complete stutter
program.

PLDI’15 Preprint 8 2015/4/16

Refinement trees provide a number of benefits:

1. They act as a cache for I -refinement derivations.

2. They separate I -refinement from E -guessing, which in turn
allows us to exploit the finiteness of I-refinement derivations to
search the space of derivations in a more intelligent way.

3. They dramatically reduce the average size of E -guessed terms.
For example, for stutter, rather than trying to enumerate
whole terms up to size 11, we only need to enumerate two
terms of size one and one term of size three.

4.4 Additional Optimizations
In addition to these two main optimizations we also introduce several
other additional optimizations to improve MYTH’s performance.

No match Term Enumeration Because a match statement does
not refine the type of our goal, we could theoretically enumerate a
match at any point during term enumeration. This is potentially
very inefficient, so we disallow match generation during term
enumeration, i.e., IREFINE MATCH only applies when X is non-
empty. Note that we do not lose expressiveness because contextually
equivalent terms can be synthesized by using IREFINE MATCH to
generate an outer match during example refinement.

Short-circuiting A goal node in a refinement tree represents a
position where we can obtain a solution either through I -refinement
and solving synthesis sub-problems or E -guessing a program
directly. In either case, once we find a solution for a particular goal
node, our synthesis procedure ensures that this local solution is valid
for the overall program. Therefore, once we discover a satisfying
expression at a goal node, we no longer E -guess at that node or any
of its children to avoid doing unnecessary work.

Base Type Restrictions IREFINE MATCH allows us to match at
any type, and IREFINE GUESS allow us to guess an E at any type.
This is overly permissive because we can always apply IREFINE FIX
first until the goal is a base type. This is because fix is invertible
in the sense that whenever the fix itself can be synthesized, its
body can also be synthesized. Therefore, in MYTH, we restrict
IREFINE MATCH and IREFINE GUESS to only operate at base type
in order to cut down the search space further. This results in the
synthesis of β-normal, η-long terms without loss of expressiveness
(up to β, η-equivalence).

5. Results
So far, we have shown how to turn λsyn, a non-deterministic
synthesis calculus into a algorithmic synthesis procedure. To assess
the strengths and weaknesses of the approach, we have implemented
a prototype tool, MYTH, in OCaml, and exercised it on a number of
benchmarks and larger examples.

5.1 Search Procedure Tuning
Section 4 defines an iterative deepening search over derivations of
synthesized terms in λsyn controlled by three parameters: match
depth, match scrutinee size, and E -term size. How we explore
them affects both the performance of the search and the synthesized
programs. For example, choosing too large of a maximum E -term
size might cause the algorithm to spend a long time generating terms
when adding a match would be more profitable. Conversely, adding
matches too quickly may over-specialize the synthesized program.
For example, synthesizing stutter starting from a refinement tree
at match depth two yields:

let stutter : list -> list =
fun (l1:list) ->
match l1 with
| Nil -> l1
| Cons (n1, l2) ->
(match n1 with
| O -> Cons (n1, l1)
| S (n2) ->
Cons (n1, Cons (n1, Cons (n2, l2))))

which is discovered before the program in Figure 1 because the size
of the largest E -term in the above program is one versus size three
(for f1 l2) in the desired program.

Thus, our strategy for iterating over these three parameters is
critical for ensuring that we synthesize the best programs—those
whose behavior correctly generalizes the given examples without
overspecialization—in the least amount of time. Nevertheless, the
current implementation of MYTH, uses a relatively naı̈ve strategy:
simply alternate between E -guessing and growing the refinement
tree. An E -guessing round enumerates terms up to a constant maxi-
mum size or a pre-determined timeout (set to 0.25 seconds in the
current implementation), whichever occurs first. A tree growing
round either extends the match depth by one or increases the poten-
tial scrutinee size of all possible matches by five (chosen because
binary function application, f e1 e2, has size five). The first three
rounds grow the match depth, and the last two rounds increase the
scrutinee size. Certainly, there are smarter, more adaptive search
strategies we could adopt, but for the set of examples we’ve explored
so far, this simple strategy is sufficient.

5.2 Benchmarks and Extended Examples
Our benchmark suite exercises the functionality of MYTH on a
number of basic datatypes and scenarios. Each test is a synthesis
problem—a collection of data type definitions, top-level function
definitions, a goal type, and set of examples. MYTH is configured
to report the first function that it synthesizes. Figure 9 summarizes
the results. We categorize each test by its domain and report the
number of examples provided to the synthesizer, the size of the
generated program (in expression AST nodes), and the time taken to
synthesize the program.2 The reported times count only time spent
in the synthesizer which excludes other tasks such as parsing and
typechecking, which take a negligible amount of additional time.

For each test, we developed its corresponding input example
set by starting with a small set of initial examples and iteratively
refining them against MYTH until the tool produced a function that
correctly generalizes the desired behavior implied by the example
set. We manually verified that the final function has the correct
behavior for all inputs. In most cases the function generated by
MYTH was precisely the function that we would have written by
hand. In a handful of cases, the synthesized function’s correctness
was non-obvious, but nevertheless correct. We discuss these tests in
more detail later in this section.

The MYTH benchmark suite focuses on core functional pro-
gramming tasks: manipulation of common inductive data types—
bool, nat, list, and trees—pattern matching, and the creation
and manipulation of higher-order functions. The tests include basic
non-recursive functions (e.g., bool_xor), recursive functions (e.g.,
list_length), generation of higher-order recursive functions (e.g.,
list_fold, tree_map), and use of higher-order functions (e.g.,
list_sum).

Beyond the benchmark suite, we have also included several
examples that use more interesting data types to explore MYTH’s

2 All reported data is generated on a Linux desktop machine with an Intel
i7-4770 @ 3.4 GHz and 16 Gb of ram. Note that MYTH is a single-threaded
application because OCaml cannot natively take advantage of multiple CPU
cores due to the presence of a global interpreter lock.

PLDI’15 Preprint 9 2015/4/16

Test #Ex #N T-Ctx
(sec)

T-Min
(sec)

Booleans
bool band 4 6 0.003 0.002
bool bor 4 6 0.004 0.001

bool impl 4 6 0.004 0.002
bool neg 2 5 0.001 0.0
bool xor 4 9 0.003 0.002

Lists
list append 12 12 0.011 0.003

list compress 13 28 128.339 0.073
list concat 6 11 0.019 0.006
list drop 13 13 1.29 0.013

list even parity 7 13 0.518 0.004
list filter 10 17 4.320 0.067
list fold 9 13 0.504 0.139
list hd 3 5 0.019 0.001
list inc 4 8 0.004 0.00
list last 6 11 0.093 0.00

list length 3 8 0.019 0.001
list map 8 12 0.082 0.008
list nth 24 16 0.96 0.013

list pairwise swap 20 19 10.227 0.007
list rev append 5 13 0.028 0.011

list rev fold 5 12 0.014 0.007
list rev snoc 5 11 0.018 0.006

list rev tailcall 14 12 0.004 0.004
list snoc 8 14 0.07 0.003

list sort sorted insert 7 11 0.009 0.008
list sorted insert 12 24 22.016 0.122

list stutter 3 11 0.018 0.001
list sum 3 8 0.005 0.002
list take 12 15 1.147 0.112

list tl 3 5 0.02 0.001
Nats

nat add 9 11 0.023 0.002
nat iseven 4 10 0.014 0.001
nat max 9 14 0.002 0.011
nat pred 3 5 0.004 0.001

Trees
tree binsert 20 31 9.034 0.374

tree collect leaves 6 15 0.033 0.016
tree count leaves 7 14 0.042 0.008
tree count nodes 6 14 0.037 0.009

tree inorder 5 15 0.036 0.012
tree map 7 15 0.035 0.014

tree nodes at level 24 22 4.917 1.093
tree postorder 9 32 7.929 1.136
tree preorder 5 15 0.023 0.009

Figure 9. Aggregated benchmark suite results. For each test, we
report the number of given examples (#Ex), the size of the result
(#N), and times taken in seconds to synthesize in a populated context
(T-Ctx) and minimal context (T-Min).

limits. Figure 10 showcases our results. Arith is an interpreter
for a small calculator language. The fvs examples calculate the
set of free variables in an untyped lambda-calculus representation.
The small variant includes constructors for variables (both bound
and free), lambdas, and application. medium adds pairs, numeric
constants, and binary operations. The large version adds sums and
pattern matching over them.

Revisiting non-termination, recall from Section 3.4 that we
ensure termination of evaluation through a structural recursion check
and a positivity restriction on data types. The structural recursion
check is necessary because it is easy to generate trivial infinite loops
such as fix f (x:t) : t = f x without the check. Introducing

Test #Ex #N T (sec)
arith 22 47 11.139

dyn app twice 6 11 0.715
dyn sum 25 23 19.420
fvs large 31 75 3.905

fvs medium 22 45 0.751
fvs small 6 16 0.029

Figure 10. Aggregated extended examples results.

an infinite loop by breaking the positivity restriction is more difficult
by comparison. For example, consider the dyn type:

type dyn = Error
| Base of nat
| Dyn of (dyn -> dyn)

which represents an encoding of type dynamic over nats and
functions. The simplest such program (Chlipala 2013) requires
calling the bad function:

let rec bad (d:dyn) : dyn =
match d with
| Error -> Error
| Base (n) -> Error
| Dyn (f) -> f d

with the argument Dyn(bad). However, in MYTH, this requires that
bad is bound in the context already for the synthesizer to create
the offending function call. It is likely that the dyn type can cause
MYTH to go into an infinite loop with another program, but we posit
that the offending program would be much larger, likely out of the
range of programs that MYTH can synthesize.

To explore this hypothesis, we lifted the positivity restriction in
MYTH and wrote a pair of tests involving dyn to see if MYTH goes
into an infinite loop. dyn_app_twice generates a program that
applies the argument of a Dyn twice, and dyn_sum sums two Dyn
values that are nats. In the case that the functions do not receive the
proper types, they return Error. MYTH is able to synthesize correct
programs for both tests which suggests that the positivity restriction
may be unnecessary for the sizes of programs that MYTH currently
synthesizes.

5.3 Analysis
Compared with recent work in the space of synthesizing recursive
functions, most notably Escher (Albarghouthi et al. 2013) and
Leon (Kneuss et al. 2013), our benchmark suite contains programs
of similar complexity (15–30 AST nodes), and MYTH performs at
comparable speeds or faster (negligible time in most cases with some
larger examples taking significantly more time). We benchmark a
larger number of programs than prior work (43 examples versus
the 22 reported by Escher and 23 reported by Leon), and to our
knowledge fvs_large is the largest example of a fully synthesized
recursive function in the literature at 75 AST nodes.

However, we stress that such comparisons should be made with
care: the choice of target language heavily affects the AST size,
and the choice of synthesizing context and number of required
examples (not reported in the Escher work) both affect performance.
Thus, while we discuss Escher and Leon to provide context, we are
not making apples-to-apples comparisons with our own work. We
merely want to show that our type-directed approach can perform
similarly to previous approaches without claiming one approach is
better than the other. Note that our “best” test, fvs_large, benefits
greatly from MYTH’s support of algebraic datatypes, but that is the
point of this work: taking advantage of type structure can be fruitful
for synthesizing larger programs.

Our experience with MYTH also revealed a number of insights
that our formal development did not predict:

PLDI’15 Preprint 10 2015/4/16

Traces and Example Generation Recall from Section 3 that we
evaluate recursive functions currently being synthesizing with the
original input partial function example. This requires that the partial
function specifies for each input–output pair, all the additional input–
output pairs necessary to complete execution of that original call.
This is why in the stutter example we chose the particular exam-
ple set [] => [] | [0] => [0;0] | [1;0] => [1;1;0;0].
Calling stutter [1;0] requires a recursive call to stutter [0].
This in turn requires a recursive call to stutter [].

Developing the example sets for each test with this restriction in
mind proved to be difficult initially. Rather than being completely
oblivious of internal behavior of the function we were synthesizing,
we needed to reason a bit about how it might make its recursive calls
and structure our examples accordingly. Discovering ways to get
around this restriction, e.g., by factoring in the parts of the program
that you have already synthesized, would greatly help in converting
this type-directed synthesis style into a usable tool.

Context Size MYTH relies on top-level function definitions in the
context—it cannot discover helper functions on its own, so we pro-
vide them as inputs to the synthesis process. The list_rev_fold,
list_rev_snoc, and list_rev_append tests have their respec-
tive helper functions in the context. However, because it relies heav-
ily on term generation during E -guessing, MYTH’s performance
depends on the size of the context. In practice, types help rule out
many irrelevant context terms, but there can still be a combinatorial
explosion of possibilities.

To assess the impacts of context size, in addition to testing the
synthesis time in a minimal context (containing only the necessary
type and function bindings), we also tested synthesis time in a larger,
shared context. This shared context contains common functions
for the basic data types: and, or, plus, div2, and append. Other
functions, e.g., inc and is_empty, are implied by constructors and
pattern matching. Our choice of components is similar to that used
by Albarghouthi et al. [2013], but adapted to our typed domain.

These times are listed alongside the minimal times in Figure 9
for easy comparison. Overall, there is a 55% average increase
in runtime in the larger context. In almost all cases, the change
is imperceptible because the time was already small. However,
for a few examples, the runtime explodes, e.g., list_compress,
list_sorted_insert, and tree_binsert. In these cases, the
programs exhibit several levels of nested matches, coupled with
large scrutinee sizes. In a larger context, MYTH enumerates many
more possible matches, many of which are not pruned by our branch
informativeness heuristic.

There are some ways to mitigate this problem that we will
explore in future work, e.g., different parameter search strategies or
optimizing term enumeration and evaluation further. However, these
results demonstrate that the exponentially large search space still
poses a fundamental problem, making some programs difficult or
even impossible to synthesize given our current search strategy and
available computing resources.

Surprising Synthesized Programs In most cases, MYTH pro-
duces the program that we expect. However, in some cases it finds
correct, but less obvious solutions. One frequent pattern is inside-out
recursion, which matches on the results of a recursive call rather
than performing the recursion inside the branches. It turns out that
such a re-factoring saves an AST node, so MYTH favors it in certain
scenarios. A similar property allows MYTH to find programs that
are not so straightforward for people to understand.

let list_pairwise_swap : list -> list =
let rec f1 (l1:list) : list = match l1 with
| Nil -> Nil
| Cons (n1, l2) -> (match f1 l2 with

| Nil -> (match l2 with

| Nil -> Nil
| Cons (n2, l3) ->

Cons (n2, Cons (n1, f1 l3)))
| Cons (n2, l3) -> Nil)

in f1

This program swaps adjacent pairs of elements for lists of even
length, and returns [] for lists of odd length. The call f1 l2 used
as the scrutinee of the second match implicitly computes the length
of l2 (Nil means “even” and Cons means “odd”). Even though we
are working in a small domain, MYTH can still produce some results
that we, as a human beings, would likely not derive on our own.

Prototype Limitations The MYTH prototype has no built-in prim-
itive datatypes (like int or string). We excluded them for simplic-
ity and to focus on algebraic datatypes—other synthesis approaches
such as those discussed in Section 6 are likely more suitable for
numeric or other specialized domains. Our implementation also
relies on a simple, unoptimized interpreter for the subset of OCaml
that we support. Because evaluation is integral to the synthesis pro-
cess, improving the interpreter could help increase performance
significantly. Finally, MYTH notably lacks support richer types, e.g.,
products and polymorphic types. Thankfully, our type-directed style
provides a simple way to integrate them into the system, something
that we will pursue in future work.

6. Related Work and Conclusion
λsyn and MYTH begin to bridge the gap between the worlds of
modern proof search and verification-based program synthesis
techniques. No prior work has tried to synthesize typed functional
programs with recursive data types utilizing types and examples in
the style proposed here. Nevertheless, there is much related work
that considers similar problems in isolation or in conjunction with
other desiderata.

Proof- and Type-theoretic Synthesis At its core, λsyn is a proof
theory-inspired synthesis algorithm. We are certainly not the first
to realize the potential of applying proof theory for program syn-
thesis. Some of the earliest program synthesis work was rooted
in resolution-based theorem proving, using axiomatic specifica-
tions (Green 1969) or even input–output examples (Summers
1976). Recent systems have embraced the availability of computa-
tional power compared to the 70s and explored enumerative, rather
than deductive approaches. Djinn derives Haskell programs from
types (Augustsson 2004) (but not examples) according to a modi-
fication of Gentzen’s LJ (Gentzen 1935). In contrast, Katayama’s
MagicHaskeller [2012] enumerates programs using a set of logical
rules and permitted components, caching them for later lookup. It is
fast, but does not generate programs that branch. Finally, systems
such as Igor2 (Kitzelmann 2010) attempt to combine the best of the
deductive and enumerative worlds. They differ from our work in
that they do not take advantage of type information directly.

Beyond proof theory, many synthesis tools, in particular, auto-
completion systems, take advantage of the specifications that types
provide. Prospector (Mandelin et al. 2005), the type-directed auto-
completion work of Perelman, et al. [2012], and InSynth (Gvero
et al. 2013) all create code snippets by completing chains of library
function calls. InSynth is particularly noteworthy because it also
adapts the type inhabitation problem for synthesis. InSynth performs
a backwards-style proof search similar to MYTH. However, it neither
takes nor refines additional forms of specification, i.e., input–output
examples.

Functional-Recursive Program Synthesis Several other tools
work in the domain of functional-recursive program synthesis. Most
notable are Escher (Albarghouthi et al. 2013) and Leon (Kneuss
et al. 2013). Our investigation into type-directed program synthesis

PLDI’15 Preprint 11 2015/4/16

started with the observation that Escher could benefit from explicit
type information. In that sense, MYTH can be thought of as an
evolution of Escher. Although the two differ in that Escher builds
terms from the bottom-up whereas MYTH builds terms top-down.

Leon, being Scala-based, has type information available but it
too does not push constraints inward. More broadly, Leon focuses on
properties, rather than concrete examples, discharged via counterex-
ample guided inductive synthesis (CEGIS) (Solar-Lezama 2008) and
a SMT solver (Barrett et al. 2008). Other synthesis systems not nec-
essarily focused on functional-recursive programs also use a solver,
e.g., Sketch (Solar-Lezama 2008) and Rosette (Torlak and Bodik
2014). We believe that a solver-based approach is largely orthogonal
to our type-directed synthesis procedure. In particular, λsyn shows
how to push constraints (i.e., types and examples) into the leaves of
an expression. In contrast, solver-based algorithms generally bubble
up constraints until they can be collected and discharged globally.
Combining the two approaches, perhaps with additional insight from
the syntax-guided synthesis efforts of Alur et al. [2013] or Perel-
man et al. [2014], seems like a fruitful way to get the best of both
worlds.

Conclusion λsyn is a core synthesis calculus that combines foun-
dational techniques from proof theory with ideas from modern
example-driven program synthesis. Our prototype, MYTH, is com-
petitive, both in terms of size and complexity, with other general-
purpose functional program synthesizers. While MYTH is only a
prototype, our results show that type-directed program synthesis
is a viable approach to synthesis that takes advantage of the rich
structure present in typed, functional programming languages.

Acknowledgments
We would like to thank Jonathan Frankle, Rohan Shah, David
Walker, the members of the UPenn PL Club, and the anonymous
reviewers for their comments and feedback on our work. This work
was supported by the Expeditions in Computer Augmented Program
Engineering (ExCAPE, NSF Award CCF-1138996).

References
Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid. 2013. Recursive

Program Synthesis. In Proceedings of the 25th Conference on Computer-
Aided Verification.

Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo M. K. Martin, Mukund
Raghothaman, Sanjit A. Seshia, Rishabh Singh, Armando Solar-Lezama,
Emina Torlak, and Abhishk Udupa. 2013. Syntax-guided Synthesis. In
13th International Conference on Formal Methods in Computer-aided
Design.

Alan Ross Anderson, Nuel D. Belnap, and J. Michael Dunn. 1992. Entail-
ment: The logic of relevance and necessity, vol. II. Princeton University
Press, Princeton.

Lennart Augustsson. 2004. [Haskell] Announcing Djinn, version 2004-12-
11, a coding wizard. Mailing List. (2004). http://www.haskell.
org/pipermail/haskell/2005-December/017055.html.

Clark Barrett, Roberto Sebastiani, Sanjit A. Seshia, and Cesare Tinelli. 2008.
Satisfiability Modulo Theories. IOS Press.

John Byrnes. 1999. Proof search and normal forms in natural deduction.
Ph.D. Dissertation. Carnegie Mellon University.

Adam Chlipala. 2013. Certified Programming with Dependent Types: A
Pragmatic Introduction to the Coq Proof Assistant. The MIT Press.

Gerhard Gentzen. 1935. Untersuchungen uber das logische Schließen. II.
Mathematische Zeitschrift 39, 1 (1935), 405–431.

Cordell Green. 1969. Application of Theorem Proving to Problem Solving.
In International Joint Conference on Artificial Intelligence.

Katarzyna Grygiel and Pierre Lescanne. 2013. Counting and Generating
Lambda Terms. Journal of Functional Programming 23 (9 2013), 594–
628. Issue 05.

Sumit Gulwani. 2011. Automating String Processing in Spreadsheets Using
Input-output Examples. In Proceedings of the 38th Annual ACM SIGACT-
SIGPLAN Symposium on Principles of Programming Languages (POPL).

Tihomir Gvero, Viktor Kuncak, Ivan Kuraj, and Ruzica Piskac. 2013.
Complete Completion Using Types and Weights. In Proceedings of the
2013 ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI).

Susumu Katayama. 2012. An Analytical Inductive Functional Programming
System That Avoids Unintended Programs. In Proceedings of the ACM
SIGPLAN 2012 Workshop on Partial Evaluation and Program Manipula-
tion (PEPM ’12). ACM, New York, NY, USA, 43–52.

Emanuel Kitzelmann. 2010. A Combined Analytical and Search-based Ap-
proach to the Inductive Synthesis of Functional Programs. Ph.D. Disser-
tation. Fakul at f ur Wirtschafts-und Angewandte Informatik, Universit at
Bamberg.

Etienne Kneuss, Ivan Kuraj, Viktor Kuncak, and Philippe Suter. 2013.
Synthesis Modulo Recursive Functions. In Proceedings of the 28th ACM
SIGPLAN on Object-oriented Programming Systems, Languages, and
Applications (OOPSLA).

David Mandelin, Lin Xu, Rastislav Bodı́k, and Doug Kimelman. 2005.
Jungloid Mining: Helping to Navigate the API Jungle. In Proceedings of
the 2005 ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI).

Zohar Manna and Richard Waldinger. 1980. A Deductive Approach to
Program Synthesis. ACM Trans. Program. Lang. Syst. 2, 1 (Jan. 1980),
90–121.

Ulf Norell. 2007. Towards a practical programming language based on
dependent type theory. Ph.D. Dissertation. Department of Computer
Science and Engineering, Chalmers University of Technology, SE-412
96 Göteborg, Sweden.

Daniel Perelman, Sumit Gulwani, Thomas Ball, and Dan Grossman. 2012.
Type-directed Completion of Partial Expressions. In Proceedings of the
2012 ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI).

Daniel Perelman, Sumit Gulwani, Dan Grossman, and Peter Provost. 2014.
Test-driven Synthesis. In Proceedings of the 2014 ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI).

Benjamin C. Pierce and David N. Turner. 2000. Local Type Inference. ACM
Trans. Program. Lang. Syst. 22, 1 (Jan. 2000), 1–44.

Armando Solar-Lezama. 2008. Program Synthesis by Sketching. Ph.D.
Dissertation. University of California, Berkeley.

Phillip D. Summers. 1976. A Methodology for LISP Program Construction
From Examples. In Proceedings of the 3rd ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages (POPL).

The Coq Development Team. 2012. The Coq Proof Assistant: Reference
Manual. INRIA, http://coq.inria.fr/distrib/current/refman/.

Emina Torlak and Rastislav Bodik. 2014. A Lightweight Symbolic Virtual
Machine for Solver-aided Host Languages. In Proceedings of the 2014
ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI).

Abhishek Udupa, Arun Raghavan, Jyotirmoy V. Deshmukh, Sela Mador-
Haim, Milo M.K. Martin, and Rajeev Alur. 2013. TRANSIT: Specifying
Protocols with Concolic Snippets. In Proceedings of the 2013 ACM
SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI).

PLDI’15 Preprint 12 2015/4/16

http://www.haskell.org/pipermail/haskell/2005-December/017055.html
http://www.haskell.org/pipermail/haskell/2005-December/017055.html

	Synthesis of Functional Programs
	Type-and-Example-directed Synthesis
	Synthesis Language
	syn: A Type-directed Synthesis Language
	Typechecking and Synthesis
	Evaluation and Compatibility
	Metatheory

	Implementation
	Consistency, Termination, and Determinism
	Efficient Contextual Term Generation
	Refinement Trees
	Additional Optimizations

	Results
	Search Procedure Tuning
	Benchmarks and Extended Examples
	Analysis

	Related Work and Conclusion

