
Type-based Analysis of Key Management
in PKCS#11 cryptographic devices∗

Matteo Centenaro Riccardo Focardi Flaminia L. Luccio

DAIS, Università Ca’ Foscari Venezia, Italy
{mcentena,focardi,luccio}@dsi.unive.it

June 21, 2013

Abstract

PKCS#11, is a security API for cryptographic tokens. It is known to be vulner-
able to attacks which can directly extract, as cleartext, the value of sensitive keys.
In particular, the API does not impose any limitation on the different roles a key
can assume, and it permits to perform conflicting operations such as asking the
token to wrap a key with another one and then to decrypt it. Fixes proposed in the
literature, or implemented in real devices, impose policies restricting key roles and
token functionalities. In this paper we define a simple imperative programming
language, suitable to code PKCS#11 symmetric key management, and we develop
a type-based analysis to prove that the secrecy of sensitive keys is preserved under
a certain policy. We formally analyse existing fixes for PKCS#11 and we propose
a new one, which is type-checkable and prevents conflicting roles by deriving dif-
ferent keys for different roles. We develop a prototype type-checker for a software
token emulator written in C and we experiment on various working configurations.

1 Introduction
PKCS#11, also known as Cryptoki, defines a widely adopted API for cryptographic
tokens [22]. It provides access to cryptographic functionalities while, in principle,
providing some security properties. More specifically, the value of keys stored on a
PKCS#11 device and tagged as sensitive should never be revealed outside the token,
even when connected to a compromised host. Unfortunately, PKCS#11 is known to be
vulnerable to attacks that break this property [6, 11, 13].

An application initiates a session with a PKCS#11 compliant device by first sup-
plying a PIN, and then accessing the functionalities provided by the token. There may
be various objects stored in the token, such as cryptographic keys and certificates. Ob-
jects are referenced via handles to permit, e.g., that a cryptographic key is used without

∗This work is a revised and extended version of [8] and has been partially supported by the Miur Prin
Project “Security Horizons”.

1

necessarily knowing its value: we can ask a token to encrypt some data just providing a
handle to the encryption key. The value of a key is one of the attributes of the enclosing
object. There are other attributes to specify the various roles a key can assume: each
different API call can, in fact, require a different role. For example, decryption keys
are required to have attribute CKA DECRYPT set, while key-encrypting keys, i.e., keys
used to encrypt other keys, must have attribute CKA WRAP set.

The attacks on PKCS#11 we consider in this paper are at the API level [2, 4, 5, 6,
10, 11, 13, 21], i.e., the attacker is assumed to control the host on which the token is
connected and to perform any sequence of (legal) API calls. The crucial functionalities
of PKCS#11 are the ones for exporting and importing sensitive keys (CKA SENSITIVE),
called C WrapKey and C UnwrapKey. The former performs the encryption of a key
under another one, giving as output the resulting ciphertext, and the latter performs
the corresponding decrypt and import into the token. They allow for exporting and
reimporting keys, in an encrypted form. Note that, having a wrapping key (CKA WRAP)
which can also be used for decryption (CKA DECRYPT) is dangerous and leads to the
following simple ‘wrap-decrypt’ API-level attack:

h2 := C GenerateKey({CKA SENSITIVE, CKA WRAP, CKA DECRYPT});
wrapped := C WrapKey(h1 , h2);
leak := C Decrypt(wrapped , h2);

First, we ask the token to generate a new key with attributes CKA SENSITIVE, CKA WRAP

and CKA DECRYPT set, referenced by the handle h2 . Then, we use this key to wrap an
existing sensitive key referenced by the handle h1 . Finally, we ask the token to decrypt
the resulting ciphertext using again the freshly generated key. Since it is the same key
used for wrapping, we obtain the value of the sensitive key in the clear.

A recent work [6] has shown that the state of the art in PKCS#11 security tokens
is rather poor: many existing commercially available devices are vulnerable to attacks
similar to the above one; the secured ones, instead, prevent the attacks by completely
removing wrapping functionalities. However, it has been shown that the API can be
‘patched’ without necessarily cutting down so much on its functionalities [6, 13]: this
can be done by (i) imposing a policy on the attributes so that a key cannot be used for
conflicting operations; (ii) limiting the way attributes can be changed so to avoid that
conflicting attributes are set at two different instants; (iii) either adding a wrapping
format which binds attributes to wrapped keys [13, 18], or limiting very carefully the
usage of imported keys to a subset of non-critical functions [6].

In our opinion, formal tools to reason about the security of different implementa-
tions of PKCS#11 APIs, such as Tookan [6], are fundamental to help developers and
hardware producers to detect and better understand the causes of the bugs affecting the
implementations, and they are very important for the testing of new patches.

Our contribution. In this paper we (i) define a simple imperative programming lan-
guage, suitable to code PKCS#11 APIs for symmetric key management; (ii) formalize
a Dolev-Yao attacker and API security in this setting; (iii) present a type system to
statically enforce API security; (iv) propose a new fix for PKCS#11 based on key-
diversification; (v) apply the type system to validate our new fix and one previously

proposed in [6, 7]; (vi) develop a prototype type-checker for a software token emulator
written in C and we experiment on various working configurations. We only consider
functions for encryption/decryption of data and wrap/unwrap of keys as these are the
most relevant ones for what concerns API-level attacks.

The language is, by itself, an original contribution as PKCS#11 is typically mod-
elled following a ‘black-box’ approach: each API function takes some input values and
a (representation of a) device, and returns new values possibly modifying the device
state. This is done in one step, disregarding the internal single steps (see, e.g., [13]).
Our target is to perform a language-based analysis of the API specification, and this
requires that APIs are specified as sequences of internal commands and lower level
calls to the device. The attacker is modelled in a classic Dolev-Yao style: he can per-
form any cryptographic operation once he knows the corresponding key. He can also
execute any API call passing, as parameters, values that he knows, and incrementing
his knowledge with the returned value. API security requires that sensitive keys that
are not already known by the attacker, and always-sensitive keys (special sensitive keys
that have been generated inside the token) will never be disclosed to the attacker.

Our type system statically enforces API security by checking that keys can only
be wrapped using trusted keys and every key has a clear, unambiguous role. Typing
is parametrized with respect to a policy dictating the possible attributes that can be
simultaneously set on a key and the ones that are set when unwrapping/importing a
new key in a device. We prove that type-checked APIs are secure against a Dolev-
Yao attacker. Using the proposed type system we analyse the Secure Templates fix
proposed in [6, 7], and we prove it secure. We then propose a new patch, based on
key-diversification, a standard cryptographic technique to derive a new key from a
known one. Our idea, is to explicitly require that keys for different roles will always
be different. To the best of our knowledge, key-diversification has previously never
been adopted as a systematic mechanism to secure key management of cryptographic
tokens. We prove that this new patch type-checks.

In order to investigate to which extent the proposed theory scales to real settings,
we develop a type-checker for Opencryptoki,1 a software emulator of a PKCS#11 de-
vice written in C. We describe our experience and we illustrate how we had to adapt
the theory and instrument the code in to allow the type-checking of a real, working im-
plementation. We experiment on various configurations and attacks. As expected, all
flawed token configurations do not type-check, while for type-checked code we could
not find any working attack. This prototype should be thought as a proof-of-concept
that this kind of analysis might be useful in practice and could possibly be adapted to
validate real device firmware.

Related work. The most established work on formal analysis of PKCS#11 is [13].
In this paper, it is given a model of a fragment of PKCS#11 and a model-checking
procedure to look for possible attack sequences. Interesting abstractions to reduce
state explosion and to analyse unbounded fresh data have been given in [18]. In [6],
the theory has been engineered into Tookan, a tool for the analysis of real devices. The
tool is able to build a formal model of a real token, perform model-checking, and try

1http://sourceforge.net/projects/opencryptoki/

the theoretical attacks on a real device. Once the model is extracted from the token, it
is also possible to try new fixes are check again for existing attacks.

Our present contribution extends this line of research by exploring a language-
based, static analysis technique that allows for proving the security of PKCS#11 APIs
and their fixes. We in fact intend to integrate this type-based analysis in Tookan. The
contribution is also in the line of other type-based analyses on different settings: For
what concerns Bank APIs in [9] it is studied the security of PIN managements Hard-
ware Security Modules, and it is given a type system to prove their security; in [14] we
have given a type system for the security of rechargeable disposable RFID tickets.

A recent line of research [16, 17] investigates models of PKCS#11 based on first-
order linear time logic extended by past operators. The motivation is, again, to check
the security of the PKCS#11 configuration. In particular, it is shown that specific con-
figurations preserve key security: keys can be configured as non-extractable to avoid
them of being wrapped under other keys [16]. Since non-extractable keys have already
been shown to be secure, in this work we implicitly assume that any key is extractable.
If the device implements PKCS#11 v2.20 it is also possible to require that a key is only
wrapped under security officer CKA TRUSTED keys [17]. This results are important and
hold for implementations that are compliant with the standard. We have shown, how-
ever, that this is not always the case for commercial devices [6] (see, in particular, at-
tack a4).2 Our starting point is to allow variations in how the standard is implemented,
in particular for what concerns assigning attributes to keys, and devise techniques to
prove that these implementations achieve the desired security goals. Our approach is
‘language-based’ which makes it appealing for application to the firmware of real de-
vices, as we discuss in Section 5. Note also that v2.20 of the standard is available only
on a small subset of commercial devices. For this reason we do not base our analysis
on the CKA TRUSTED attribute. However, our usage of CKA ALWAYS SENSITIVE (devi-
ating a bit from the standard) is very close to CKA TRUSTED and we are confident that
our results would easily scale to PKCS#11 v2.20. We leave the formal comparison
with [16, 17] as a future work.

In [19] Keighren, Aspinall, and Steel propose a type system to check information
flow properties for cryptographic operations in security APIs. There seem to be many
differences with our contribution: (i) the target property is different: Here we consider
confidentiality of sensitive keys while in [19] the authors investigate noninterference,
a much stronger property. In this sense their result is more in the line of [9]; (ii)
their model is very general and allows for reasoning on cryptographic operations so
that the wrap/decrypt attack is modelled as a forbidden information flow from secret to
public. No language is given to express internal commands. Our language allows for
specifying PKCS#11 key management APIs at a fine granularity, and the same attack
is prevented by avoiding conflicting roles for the same key. This is why we can avoid
the complex treatment of noninterference and only focus on key confidentiality; (iii)
Keighren, Aspinall, and Steel only consider confidentiality and do not treat integrity
(or trust) that is one of the crucial ingredients of our analysis: only trusted keys should
be used to wrap sensitive keys. A formal comparison will be the subject of future work.

A recent line of research [3] shows that type-systems can be effective on real im-

2http://secgroup.ext.dsi.unive.it/tookan

plementations of cryptographic protocols. We believe that this direction is really inter-
esting and important but in this paper we take a different approach. Instead of checking
the whole implementation, we extract from the real code of a PKCS#11 software sim-
ulator written in C the relevant fragments that correspond to API specification, and we
type check them against a dynamically enforced policy. While this solution is far from
proving correctness of the actual implementation, as it assumes correctness of big parts
of code, it is very manageable and amenable for implementation onto the firmware of
real hardware tokens.

Some recent work has focused on strong information flow guarantees for general-
purpose programs with cryptographic primitives [15, 20]. These techniques have been
applied to a different setting, an interesting future work would be to study whether they
could be applied to the problem of type-based analysis of key management APIs.

Paper structure. The paper is organized as follows. In Section 2 we introduce the
simple imperative language for PKCS#11 key management, the attacker model and the
notion of API security; in Section 3 we present the type system statically enforcing
API security; in Section 4 we type-check known implementations of PKCS#11 key
management APIs, and we propose our new fix based on key-diversification, which
we prove to be secure. In Section 5 we describe the prototype implementation of a
type-checker for a software PKCS#11 token, and we apply it to check various working
configurations. We conclude in Section 6.

2 A language for PKCS#11 key management
In this section we first introduce a simple imperative language suitable to specify
PKCS#11 key management APIs. We then formalize the attacker model and define
API security. The language allows for performing symmetric key encryption, decryp-
tion and key diversification. It provides abstract commands to generate, retrieve and
store a key and its attributes on a device. While retrieving a key it is possible to per-
form a check on the presence of specific attributes. There core operations are expressive
enough to model interesting key management APIs.

Values. We let C and G, with C∩G = ∅, respectively be the set of atomic constant and
fresh values. The former is used to model any public data, including non-sensitive keys;
the latter models the generation of new fresh values such as sensitive keys. We associate
to G an extraction operator g ← G, representing the extraction of the first ‘unused’
value g from G. Extracted values are always different: two, even non-consecutive,
extractions g ← G and g′ ← G are always such that g 6= g′. We let val range over the
set of all atomic values C ∪ G and we define values v as follows:

v ::= val | enc(v , v ′) | dec(v , v ′) | kdf(v , v ′)

where enc(v , v ′) and dec(v , v ′) denote value v respectively encrypted and decrypted
under key v ′, and kdf(v , v ′) represents a new key obtained via diversification from
a value v and a key v ′. Key diversification may be implemented in many different

ways. For example, using the encryption scheme, we can directly obtain kdf(v , v ′)
as enc(v , v ′). We explicitly represent decrypted values in order to model situations in
which a wrong key is used to decrypt an encrypted value: for example, the decryption
under v ′ of enc(v , v ′) will give, as expected, value v ; instead, the decryption under v ′

of enc(v , v ′′), with v ′′ 6= v ′ will be explicitly represented as dec(enc(v , v ′′), v ′). This
allows us to model a cryptosystem with no integrity check, as the one used in PKCS#11
for symmetric keys: decrypting with a wrong key never gives a failure.

Expressions. Our language is composed of a core set of expressions for manipulating
the above values. Expressions are based on a set of variables V ranged over by x, and
have the following syntax:

e ::= x | enc(e, x) | dec(e, x) | kdf(val , x)

The explicit tag val will simplify typing for key diversification. A memory M : x 7→ v
is a partial mapping from variables to values and e ↓M v denotes that the evaluation
of the expression e in memory M leads to value v . Let e ↓M v and M(x) = v ′. The
semantics of expressions follows:

x ↓M M(x) if M(x) is defined

enc(e, x) ↓M enc(v , v ′)

dec(e, x) ↓M
{

v ′′ if v = enc(v ′′, v ′)
dec(v , v ′) otherwise

kdf(val , x) ↓M kdf(val , v ′)

Templates. Properties and capabilities of keys are described by templates, ranged
over by T , represented as a set of attributes. When a certain attribute is contained in
a template T we will say that the attribute is set, it is unset otherwise. A key can be
sensitive, and a sensitive key can also be always-sensitive if it has been generated (as a
sensitive key) by a secure device. These two properties are described by the attributes S
(sensitive), and A (always-sensitive). Four attributes identify the capabilities of a key:
data encryption (E) and decryption (D), wrap (W) and unwrap (U), i.e., encryption
and decryption of other keys. Formally, a template T is a subset of {S,A,E,D,W,U}
under the constraint S 6∈ T implies A 6∈ T , i.e., non-sensitive keys can never be
always-sensitive.

APIs and tokens. An API is specified as a set A = {a1, . . . , an} of functions, each
one composed of simple sequences of assignment commands:

a ::= λx1, . . . , xk.c
c ::= x := e | x := f | return e | c1; c2
f ::= getKey(y, T) | genKey(T) | setKey(y,T)

We only consider API commands in which return e can only occur as the last com-
mand. Internal functions f represent operations that can be performed on the under-
lying devices. Note that these functions are used to implement the APIs and are not

directly available to the users. Intuitively, getKey retrieves the plaintext value of a key
stored in the device, given its handle y; if the key template ‘matches’, i.e., is a su-
perset of, the given one T , the key is returned; genKey generates a key with template
T ; finally, setKey imports a new key with plaintext value y and template T . The first
function fails (i.e., is stuck) if the given handle does not exist or refers to a key with
a template that is not a superset of T , i.e., a key that does not have all the attributes
in T set. A call to an API a = λx1, . . . , xk.c, written a(v1, . . . , vk), binds x1, . . . , xk
to values v1, . . . , vk, executes c and outputs the value given by return e . Notice that
the language does not have if-then-else branches since attribute check performed in
getKey is enough for modelling common APIs. However there is no technical reason
that prevents modelling branches in case they would be needed.

Example 1 (PKCS#11 C WrapKey command). The language introduced is suitable to
implement PKCS#11 commands. Each API command will be modeled as a procedure
reading inputs from pre-defined variables and returning a value as output. The follow-
ing is a possible specification of the wrap command. It takes the handles of a key to be
wrapped and the one pointing to the wrapping key (whose flagsW and S have to be set,
as it has to be a sensitive wrapping key) returning an encrypted byte-stream. For the
sake of readability, we will always write a(x1, . . . , xk) c in place of a = λx1, . . . , xk.c
to specify an API function:

C WrapKey(h key, h w)
w := getKey(h w, {S,W});
k := getKey(h key, {});
return enc(k,w);

Device keys are modelled by the handle-map H : g 7→ (v , T), a partial mapping
from the atomic (generated) values to pairs of keys and templates. Each key has a
handle to be referred with, and a template. Notice that we do not distinguish between
one or many devices: we consider all keys available to the API as a unique ‘universal’
PKCS#11 token. This corresponds to a worst-case scenario in which attackers can
simultaneously access all existing tokens. Notice, also, that this does not limit the
multiple presence of the same key value under different handles or templates, as for
example, with H(g) = (v , T) and H(g′) = (v , T ′).

An API command c working on a memory M and handle-map H is denoted by
〈M,H, c〉. Semantics is reported in Table 1, where ε denotes the empty API. We explain
the first rule for assignment x := e: it evaluates expression e on M and stores the results
in variable x , noted M[x 7→ v]. In case x is not defined in M the domain of M is
extended to include the new variable, otherwise the value stored in x is overwritten.
Other rules are similar in spirit. Notice that genKey and setKey also modify the handle-
map. The last rule is for API calls on an handle-map H: parameter values are assigned
to variables of an empty memory Mε, i.e., a memory with no variables mapped to
values (recall memories are partial functions); then, the API commands are executed
and the return value is given as a result of the call. This is noted a(v1, . . . , vk) �H,H

′
v

where H′ is the resulting handle map. Notice that at this API level we do not observe
memories that are, in fact, used internally by the device to execute the function. The
only exchanged data are the input parameters and the return value.

e ↓M v

〈M,H, x := e〉 → 〈M[x 7→ v],H, ε〉

H(M(y)) = (v , T ′) T ⊆ T ′

〈M,H, x := getKey(y, T)〉 → 〈M[x 7→ v],H, ε〉

g, g′ ← G
〈M,H, x := genKey(T)〉 → 〈M[x 7→ g],H[g 7→ (g′,T)], ε〉

g ← G
〈M,H, x := setKey(y,T)〉 → 〈M[x 7→ g],H[g 7→ (M(y),T)], ε〉

〈M,H, c1〉 → 〈M′,H′, ε〉
〈M,H, c1; c2〉 → 〈M′,H′, c2〉

〈M,H, c1〉 → 〈M′,H′, c′1〉
〈M,H, c1; c2〉 → 〈M′,H′, c′1; c2〉

a = λx1, . . . , xk.c 〈Mε[x1 7→ v1 . . . xk 7→ vk],H, c〉 → 〈M′,H′, return e〉 e ↓M′
v

a(v1, . . . , vk) �H,H′ v

Table 1: API Semantics

Example 2 (Semantics of C WrapKey). To illustrate the semantics, we now show the
transitions of the C WrapKey command specified above. Suppose that the device as-
sociates the handle g to (v , {A,S,E,D}) and g′ to (v ′, {S,W,U}). We consider a
memory M where all the variables are set to zero except for h key and h w which
store respectively g and g′, i.e., M = Mε[h key 7→ g, h w 7→ g′]. Then it follows,

〈M,H,w := getKey(h w, {S,W}); k := getKey(h key, {}); return enc(k,w)〉
→ 〈M[w 7→ v ′],H, k := getKey(h key, {}); return enc(k,w)〉
→ 〈M[w 7→ v ′, k 7→ v],H, return enc(k,w)〉

which gives C WrapKey(g, g′) �H,H enc(v , v ′) meaning that the value returned invok-
ing the wrap command is thus the encryption of v under v ′. Obviously, this is safe as
long as v ′ is not known outside the device, otherwise a user knowing the raw value of
the key used to wrap could retrieve v by simply computing dec(enc(v , v ′), v ′).

Attacker Model. We now formalize the attacker in a classic Dolev-Yao style. In
particular, the attacker knowledge K(V) deducible from a set of values V is defined as
the least superset of V such that v , v ′ ∈ K(V) implies

(1) enc(v , v ′) ∈ K(V);

(2) kdf(v , v ′) ∈ K(V);

(3) if v = enc(v ′′, v ′) then v ′′ ∈ K(V);

(4) if v 6= enc(v ′′, v ′) then dec(v , v ′) ∈ K(V).

Given a handle map H, representing tokens, and an APIA = {a1, . . . , an}, the attacker
can invoke any API function giving any of the known values as a parameter. The
returned value is then added to the knowledge. Formally, an attacker configuration is
represented as 〈H, V 〉 and evolves as follows:

a ∈ A v1, . . . , vk ∈ K(V) a(v1, . . . , vk) �H,H
′
v

〈H, V 〉 A 〈H′, V ∪ {v}〉

We assume that the attacker initially knows all the constant atomic values C that we
note V0 and we consider an initial empty handle map H0. This could be thought as a
limitation as it does not allow to have keys pre-shared among different tokens. How-
ever this is not the case since we model many devices through a unique handle map.
Thus, when a fresh key is generated it is implicitly shared among an arbitrary num-
ber of tokens. In the following, we use the standard notation ∗A to note multi-step
reductions.

API security. The main property required by PKCS #11: “Sensitive keys cannot be
revealed in plaintext off the token” [22, page 30], is modelled by requiring that sensitive
keys, that are not already known by the attacker, should never be learned by the attacker.
In fact, note that PKCS#11 allows for importing keys in the clear as sensitive: if these
keys are known and imported by the attacker we cannot prove any security property
about them. We also formalize the intuitive property that always-sensitive keys and
all keys derived from them, are never known by the attacker. This will be useful to
guarantee that such keys have not been imported by the attacker and can be trusted.

Formally, sensitive keys are the ones that only appear in the handle map with the
attribute sensitive set. Always-sensitive keys additionally have the always-sensitive
attribute set.

Definition 1 (Sensitive and always-sensitive values). Let val be an atomic value and
H a handle-map such that val 6∈ dom(H). If val is such that for all g, H(g) = (val , T)
implies S ∈ T we say that val is sensitive in H. If we additionally have that for all g,
H(g) = (val , T) implies A ∈ T we say that val is always-sensitive in H.

Example 3. Suppose that handle-map H associates the handle g to (v , {A,S,E,D})
and g′ to (v , {S,W,U}), i.e., the same value v is stored in the device under two differ-
ent handles g and g′. By Definition 1 we have that v is sensitive but not always-sensitive
in H since S is set in both the occurrences of v while A is only set under handle g.

The definition of API security follows.

Definition 2 (API Security). Let A be an API. We say that A is secure if for all reduc-
tions 〈H0, V0〉 ∗A 〈H, V 〉 ∗A 〈H′, V ′〉 and for all atomic values val we have

1. val 6∈ K(V) and val is sensitive in H imply val 6∈ K(V ′);

2. val is always-sensitive in H implies val , kdf(v , val) 6∈ K(V) ∪ K(V ′), for all
values v.

Example 4. Consider the example of an attack described in the introduction:

h2 := C GenerateKey({CKA SENSITIVE, CKA WRAP, CKA DECRYPT});
wrapped := C WrapKey(h1 , h2);
leak := C Decrypt(wrapped , h2);

where C WrapKey is specified as in Example 1, and

C GenerateKey(T)
x := genKey(T);
return x;

C Decrypt(data, h)
k := getKey(h, {D});
return dec(data, k);

Notice that we are slightly abusing the syntax, since templates cannot be passed as
parameters. Thus, the definition of C GenerateKey(T) should be read as a family of
definitions, one for each template T .

Suppose now 〈H0, V0〉 ∗A 〈H, V 〉 with H = [h1 7→ (v1 , {A,S})] and v1 6∈ K(V),
i.e., after some transitions the device contains a sensitive and always-sensitive key v1
which is not known by the attacker. The first API call generates a new key v2 with S,W
and D set, then we wrap and decrypt key v1 under this new key. These two operations
succeed since S, W and D are respectively set on the newly generated key. Formally:

〈H, V 〉
 A 〈H[h2 7→ (v2 , {S ,W ,D})],V 〉 (C GenerateKey)
 A 〈H[h2 7→ (v2 , {S ,W ,D})],V ∪ {enc(v1 , v2)}〉 (C WrapKey)
 A 〈H[h2 7→ (v2 , {S ,W ,D})],V ∪ {enc(v1 , v2), v1}〉 (C Decrypt)

The attack is successful and v1 ∈ K(V ′) with V ′ = V ∪{enc(v1, v2), v1}. We conclude
that the API is insecure since the above reduction violates item 1 of Definition 2.

To illustrate item 2 of the definition, consider the attacker trying to import a key as
always-sensitive through the code setKey(v, {A,S}). Since v is known to the attacker,
this would lead to a configuration 〈H[h 7→ (v , {A,S})],V 〉 with v ∈ K(V), which
breaks item 2 of Definition 2. In fact, key v is always-sensitive, meaning that it should
be unknown to the attacker during all if its life-cycle. While it is acceptable that a
sensitive key is imported into the token, always-sensitive keys should only be generated
by the token.

3 Type system
We enforce the security of an API through a type system requiring that (i) every
key has a clear, unambiguous role, and (ii) keys can only be wrapped using trusted
keys. This latter idea is, in fact, suggested in PKCS#11 v2.20 [22]: two new at-
tributes are introduced: CKA TRUSTED and CKA WRAP WITH TRUSTED. Keys with
CKA TRUSTED set can only be added by the security officer in a protected environment
so that no attack on those keys is possible. Keys with the CKA WRAP WITH TRUSTED
attribute (that we do not model here) set can only be wrapped via such security offi-
cer keys. Intuitively, this prevents keys with CKA WRAP WITH TRUSTED set to be

Figure 1: Subtyping relation

wrapped under compromised keys. In fact, here it is like we were assuming that
CKA WRAP WITH TRUSTED is always set.

Our type system generalizes this idea of trusted keys by also including the ones
generated by the device (always-sensitive). Even in this case, in fact, we are guaranteed
that their value has never appeared as plain-text outside the device. This will allow us to
propose and analyse configurations in which always-sensitive keys can be exchanged
by users. This is not allowed for trusted security officer keys. In the following we
will then use the word trusted to refer to a key that is guaranteed to be unknown to
the attacker. We will use the attribute always-sensitive to capture this fact, but we
could easily extend the analysis to incorporate the above discussed attribute trusted.
We consider the following types.

ρ ::= Any | Data | TData |Wrap | Seed | Un
τ ::= ρ |Wrap[ρ]

Intuitively, Any is the top type including all possible data and keys; type Data and
TData are, respectively, for secret and trusted keys used to encrypt and decrypt data;
Wrap is for trusted wrapping keys, i.e., keys used to encrypt other keys, and Seed is for
trusted keys used to derive other keys via diversification; Wrap[ρ] is for trusted wrap-
ping keys transporting keys of type ρ, obtained via diversification from some (trusted)
seed; finally, Un represents untrusted values.

Types are related by a subtyping relation ≤ depicted in Figure 1. Subtyping cap-
tures the fact that values and keys of one type can be given a bigger, supertype without
breaking security. For example untrusted values of type Un can be promoted to secret
keys of type Data, as this increases the secrecy level and will force programs to be
more protective on those values, which is safe from a security perspective. At the same
time, trusted keys of type TData, Wrap and Seed can be regarded as secret keys of
type Data or Any, since this will restrict such keys to operate on untrusted values only.
In fact, it is safe to increase the level of secrecy and decrease the level of trust. We will
prove that subtyping does not compromise security in Lemma 1, below.

A 6∈ T, S ∈ T ¬data(T) ∨ wrap(T)

` T : Any

A 6∈ T, S ∈ T data(T) ¬wrap(T)

` T : Data

A,S ∈ T data(T) ¬wrap(T)

` T : TData

A,S ∈ T ¬data(T) wrap(T)

` T : Wrap

A,S ∈ T data(T)⇔ wrap(T)

` T : Seed

A,S 6∈ T
` T : Un

Table 2: Typing templates

Typing keys. We now describe how PKCS#11 key templates are converted to key
types. Key templates represent the ‘types’ of the keys stored in the devices. Attributes
describe how keys are supposed to be used and which security properties the device
enforces on them.

First we notice that attribute sensitive (S) indicates that the key should be regarded
as secret. If, additionally, always-sensitive (A) is set we know that the key is trusted. In
fact, the always-sensitive PKCS#11 attribute cannot be set by a user when generating
or unwrapping a key (see [22], Table 15 footnotes 4 and 6). This attribute is meant to
be automatically managed by the tamper resistant token whenever a key is generated
as sensitive. Data and wrapping keys are instead determined by attributes E, D, and
W , U , respectively. We require that these pairs of attributes cannot coexist on data and
wrapping keys, so to disambiguate key roles. Intuitively, trusted keys that are neither
typed Wrap, nor typed Data are considered of type Seed, while sensitive keys with
mixed roles, e.g., E plus W , are given type Any.

Formally, we let data(T) be E ∈ T ∨D ∈ T and wrap(T) be W ∈ T ∨ U ∈ T .
Types for keys are derived through the judgment ` T : τ formalized in Table 2. It is
easy to see that any possible template is associated to exactly one type: non-sensitive
keys are typed as Un; sensitive but not always-sensitive keys are typed Data if they
only have E or D set, and Any otherwise; always-sensitive keys are typed TData if
they only have E or D set, Wrap if they only have W or U set and Seed otherwise.
Notice that no wrapping untrusted keys are allowed, in fact sensitive non-data keys are
typed as Any.

The following lemma states that subtyping does not compromise the security of
keys: non-sensitive keys can be regarded as sensitive and always-sensitive keys can be
regarded as just sensitive ones. Intuitively, it is safe to increase the level of secrecy and
decrease the level of trust.

Lemma 1 (Subtyping preserves security). Let ` T : ρ and ` T ′ : ρ′ with ρ ≤ ρ′. Then
S ∈ T implies S ∈ T ′ and A ∈ T ′ implies A ∈ T .

Proof. S ∈ T implies that ρ 6= Un meaning that ρ′ 6= Un. Since Un is the only
type for non-sensitive templates we have the thesis. Let A ∈ T ′. We have ρ′ ∈
{Wrap,TData,Seed} which implies ρ ∈ {Wrap,TData,Seed} giving the thesis.

Security policy. As we have already discussed in the introduction, PKCS#11 secu-
rity tokens present different flaws, it is thus very important to fix them by imposing
some extra security policies on them. In [6] it has been observed that real devices often
limit the allowed templates of keys, in order to have more control on their usage. It is
possible that different operations such as key generation and key import restrict tem-
plates in different ways. At the level of static analysis, we abstract away the exact point
where restrictions happen, and we let T be the set of all permitted templates of keys.

Another very important aspect is to be clear about which keys are wrapped and
unwrapped as the standards do not add any information about the template when en-
crypting a key with another one (one solution to this is, in fact, to add wrapping formats
[12], solution which is however out of the standard). Types are useful here, as we can
just establish a default type transported by wrapping keys. As we will see, thus this is
limiting, it is however possible to rise the number of transported types via key diversi-
fication.

A security policy is thus defined as a pair (T, ρ), where T is the set of all permitted
templates of keys, and ρ is the default type for wrapped keys.

Example 5 (Security policy). An example of security policy that separates key roles is
T = {{W,U, S,A}, {E,D}, {E,D, S}, {E,D, S,A}} with ρ = Data. Notice that it
is not possible to generate keys which are, at the same time, wrapping and decryption
keys (W andD never occur together). The policy allows for wrapping and unwrapping
data keys of type ρ = Data. In Section 5.6 we will show that this simple role separation
is not enough to provide API security.

Expressions. In order to type expressions and commands we introduce a typing en-
vironment Γ : x 7→ τ which maps variables to their respective types. Type judgment
for expressions is noted Γ `ρ e : τ meaning that expression e is of type τ under Γ and
assuming ρ as the default type for wrapped keys.

Typing rules are reported in Table 3. Rules [var] and [sub] are standard and derive
types directly from Γ (for variables) or via subtyping. Rules [kdf-w] and [kdf-d] state
that given a seed x we can derive a new wrapping key of type Wrap[ρ′] as kdf(wρ′ , x),
and a new data key as kdf(d, x). Notice that we use values wρ′ and d as tags to di-
versify keys, we can thus consider them as constant values established a-priori to this
purpose. We do not assume any secrecy on them: security of this operation is given
by the trusted seed x. Rule [kdf-un] allows for diversification from untrusted seeds,
always generating an untrusted key. Rules [enc] and [dec] are for data encryption and
decryption, and only work on untrusted values. Rules [wrap] and [unwrap] are more
interesting: given a wrapping key we can wrap/unwrap other keys of type ρ, the de-
fault wrapping type specified in the security policy. Rules [wrap-div] and [unwrap-div]
are similar but work on type ρ′ given by the above rule [kdf-w]: diversification is in
fact useful to obtain keys that can wrap keys of various types, as we will see in the
case studies of Section 4. Finally, rules [enc-any] and [dec-any] are conservative rules
for cryptographic operations using generic keys of type Any. The former states that
it is safe to encrypt with such keys as far as the default import type is a supertype of
Un, otherwise we would be able to encrypt a broken key and then unwrap/import it as

[var]
Γ(x) = τ

Γ `ρ x : τ

[sub]
Γ `ρ e : τ ′ τ ′ ≤ τ

Γ `ρ e : τ

[kdf-w]
Γ `ρ x : Seed

Γ `ρ kdf(wρ′ , x) : Wrap[ρ′]

[kdf-d]
Γ `ρ x : Seed

Γ `ρ kdf(d, x) : Data

[kdf-un]
Γ `ρ x : Un v = wρ′ , d

Γ `ρ kdf(v , x) : Un

[enc]
Γ `ρ x : Data Γ `ρ e : Un

Γ `ρ enc(e, x) : Un

[dec]
Γ `ρ x : Data Γ `ρ e : Un

Γ `ρ dec(e, x) : Un

[wrap]
Γ `ρ x : Wrap Γ `ρ e : ρ

Γ `ρ enc(e, x) : Un

[unwrap]
Γ `ρ x : Wrap Γ `ρ e : Un

Γ `ρ dec(e, x) : ρ

[wrap-div]
Γ `ρ x : Wrap[ρ′] Γ `ρ e : ρ′

Γ `ρ enc(e, x) : Un

[unwrap-div]
Γ `ρ x : Wrap[ρ′] Γ `ρ e : Un

Γ `ρ dec(e, x) : ρ′

[enc-any]
Γ `ρ x : Any Γ `ρ e : Un Un ≤ ρ

Γ `ρ enc(e, x) : Un

[dec-any]
Γ `ρ x : Any Γ `ρ e : Un

Γ `ρ dec(e, x) : Any

Table 3: Typing expressions

[assign]
Γ(x) = τ Γ `ρ e : τ

Γ `T,ρ x := e

[seq]
Γ `T,ρ c1 Γ `T,ρ c2

Γ `T,ρ c1; c2

[getkey]
Γ(x) = LUB(T ,T) Γ `ρ y : Un

Γ `T,ρ x := getKey(y,T)

[genkey]
Γ(x) = Un T ∈ T

Γ `T,ρ x := genKey(T)

[setkey]
Γ(x) = Un ` T : τ Γ `ρ y : τ T ∈ T

Γ `T,ρ x := setKey(y,T)

[return]
Γ `ρ e : Un

Γ `T,ρ return e

[function]
Γ `ρ x1 : Un . . . Γ `ρ xk : Un Γ `T,ρ c

Γ `T,ρ λx1, . . . , xk.c

[API]
∀a ∈ A Γ `T,ρ a

Γ `T,ρ A

Table 4: Typing APIs

trusted in the device. The latter allows for decryption if the resulting value is consid-
ered of type Any. In Section 4 we will see an example of application of these extremely
conservative rules.

APIs. We now type APIs via the judgment Γ `T,ρ c meaning that c is well-typed
under Γ and the policy T, ρ. The judgment is formalized in Table 4. Rules [assign]
and [seq] are standard, and they amount to recursively type the expression and the
sequential sub-part of a program, respectively. Rule [getkey], instead, approximates the
type of the obtained key by getting the least upper bound of all types for templates T ′

matching T , i.e., such that T ⊆ T ′. If no such a template exists, the least upper bound
is undefined.

LUB(T,T) =
⊔
{τ ′ | ∃T ′ ∈ T.T ⊆ T ′∧ ` T ′ : τ ′}

Rule [genkey] checks that the template for the new key is in the set of the admitted
template T, while [setkey] additionally checks that the type of the imported value is
consistent with the given template. Rules [return] and [function] state that the return
value and the parameter of an API call must be untrusted. In fact they are the interface

to the external, possibly malicious users. Finally, by rule [API] we have that an API is
well-typed if all of its functions are well-typed.

Example 6 (Typing rule [getkey]). We now illustrate which type is assigned to an ex-
tracted key while using the [getkey] rule, and we want to enphasize how this is strictly
related to the policy that is chosen. Let us first assume that T contains all the possible
templates of keys, i.e., T = {T ⊆ {S,A,E,D,W,U} | S 6∈ T ⇒ A 6∈ T}. Then,
for any possible template T we have that the type of the obtained key is LUB(T,T) =
Any. Intuitively, with this T we cannot derive any precise information about keys.
By restricting the allowed templates we obtain a more refined and interesting typ-
ing. E.g., with T′ = {{W,U,A, S}{E,D, S}} we have LUB({W},T′) = Wrap
and LUB({E},T′) = Data. Here, checkingW and E respectively identifies Wrap and
Data keys. Intuitively, this happens because T′ clearly separates data and wrapping
keys.

3.1 Type soundness
We give a notion of value well-formedness in order to track the value integrity at run-
time. The judgment is based on a mapping Θ : val 7→ ρ from atomic values to types,
excluding Wrap[ρ] that is derived for diversified non-atomic keys. Tags wρ′ and d
for key diversification are implicitly assumed to be untrusted, i.e., Θ(wρ′) = Θ(d) =
Un. Rules are given in Table 5 and follow very closely the ones of Table 3 used for
expressions.

Definition 3 (Well-formedness). Γ,Θ `T,ρ M,H if

• Γ,Θ `T,ρ M, i.e., M(x) = v , Γ(x) = τ implies Θ `ρ v : τ ,

• Θ `T,ρ H, i.e., H(v ′) = (v , T), ` T : τ implies Θ `ρ v : τ and T ⊆ T. If
additionally, v ∈ G and v 6∈ dom(H) then there exists v ′′ such that H(v ′′) =
(v , T ′) , ` T ′ : τ ′ and Θ(v) = τ ′.

We now prove that if we only give the attacker untrusted values, all the values
he will be able to derive (according to Section 2) will also be untrusted. Intuitively,
having type Un is a necessary condition for a well-formed value to be deducible by the
attacker. The following holds:

Proposition 1. Let V be a set of values such that v ∈ V implies Θ `ρ v : Un. Then,
v ′ ∈ K(V) implies Θ `ρ v ′ : Un.

Proof. By induction on the length of the derivation of values in K(V). For length 0
we trivially have that v ∈ V which gives the thesis. We assume the proposition holds
for length i and we prove it for length i + 1. We consider the case enc(v1, v2) ∈
K(V) because of v1, v2 ∈ K(V). By rule [enc] and observing that Un ≤ Data we
obtain the thesis. The other cases are analogous except for v ′ ∈ K(V) because of
enc(v ′, v ′′) ∈ K(V) and v ′′ ∈ K(V). By induction we know that Θ `ρ enc(v ′, v ′′) :
Un and Θ `ρ v ′′ : Un. We now have to consider all the typing rules that can derive
Θ `ρ enc(v ′, v ′′) : Un. Among them, the only ones admitting Θ `ρ v ′′ : Un are [enc]
and [enc-any]. In both cases we have Θ `ρ v ′ : Un, from which the thesis.

[atom]
Θ(val) = ρ′

Θ `ρ val : ρ′

[sub]
Θ `ρ v : τ ′ τ ′ ≤ τ

Θ `ρ v : τ

[kdf-w]
Θ `ρ v : Seed

Θ `ρ kdf(wρ, v) : Wrap[ρ]

[kdf-d]
Θ `ρ v : Seed

Θ `ρ kdf(d, v) : Data

[kdf-un]
Θ `ρ v , v ′ : Un

Θ `ρ kdf(v ′, v) : Un

[enc]
Θ `ρ v : Data Θ `ρ v ′ : Un

Θ `ρ enc(v ′, v) : Un

[dec]
Θ `ρ v : Data Θ `ρ v ′ : Un v ′ 6= enc(v ′′, v)

Θ `ρ dec(v ′, v) : Un

[wrap]
Θ `ρ v : Wrap Θ `ρ v ′ : ρ

Θ `ρ enc(v ′, v) : Un

[unwrap]

v ′ 6= enc(v ′′, v)
Θ `ρ v : Wrap Θ `ρ v ′ : Un

Θ `ρ dec(v ′, v) : ρ

[wrap-div]
Θ `ρ v : Wrap[ρ′] Θ `ρ v ′ : ρ′

Θ `ρ enc(v ′, v) : Un

[unwrap-div]

v ′ 6= enc(v ′′, v)
Θ `ρ v : Wrap[ρ′] Θ `ρ v ′ : Un

Θ `ρ dec(v ′, v) : ρ′

[enc-any]
Θ `ρ v : Any Θ `ρ v ′ : Un Un ≤ ρ

Θ `ρ enc(v ′, v) : Un

[dec-any]

v ′ 6= enc(v ′′, v)
Θ `ρ v : Any Θ `ρ v ′ : Un

Θ `ρ dec(v ′, v) : Any

Table 5: Value well-formedness

Next lemma proves that we can never type a value with two types that are not
related via subtyping. As a consequence, we have that untrusted values can never be
typed as trusted and trusted values can never be typed as Un.

Lemma 2. Θ `ρ v : τ and Θ `ρ v : τ ′ implies τ ≤ τ ′ or τ ′ ≤ τ .

Proof. By induction on the derivation of Θ `ρ v : τ . Base case is [atom] and trivially
gives τ = τ ′ = Θ(v). Case [sub] is easily proved by induction, observing that τ ′′ ≤ τ ′
and τ ′′ ≤ τ imply τ ≤ τ ′ or τ ′ ≤ τ . This observation is also helpful when we
have [sub] as the last rule for deriving Θ `ρ v : τ ′. We show one more case of the
inductive step. Suppose Θ `ρ kdf(wρ, v) : Wrap[ρ] because of [kdf-w]. We have two
possibilities for τ ′ 6= τ : [kdf-d] and [kdf-un]. The former, however, is ruled out by the
different tag in the value. Consider then [kdf-un]. By induction we know that v should
be typed with two related types, which is not the case since Seed and Un are not in the
subtyping relation. This gives a contradiction and excludes also this case. We conclude
that τ ′ = τ . Other cases follow similarly.

This last lemma states that evaluating an expression of type τ on a well-formed
memory, gives a value of type τ .

Lemma 3. Let Γ `ρ e : τ and e ↓M v . If Γ,Θ `T,ρ M then it holds Θ `ρ v : τ .

Proof. By induction on the derivation of Γ `ρ e : τ . Base case is [var], i.e. when e
is x . Thesis directly follows by memory well-formedness Γ,Θ `T,ρ M. The inductive
step mainly amounts to using inductive hypothesis and apply the corresponding rule
for deriving Θ `ρ v : τ . The only exception is decryption as its behaviour depends on
the correctness of the key. Consider for example [dec]. We have Γ `ρ dec(e, x) : Un
because of Γ `ρ x : Data and Γ `ρ e : Un. We have two cases depending whether or
not decryption will be successful, i.e., whether or not we have e ↓M enc(v ′, v ′′) and
x ↓M v ′′. If this is not the case (key is wrong), thesis is directly obtained by applying
the corresponding typing rule [dec] for values. If instead decryption succeeds, we have
that dec(e, x) ↓M v ′. By induction hypothesis we know that Θ `ρ v ′′ : Data. Now, in
Table 5 the only rules for encrypted values that type the key v ′′ with a type related to
Data (Lemma 2) are [enc] or [enc-any], both of which prove the plaintext to be of type
Un as required.

Consider now [unwrap]. We have Γ `ρ dec(e, x) : ρ because of Γ `ρ x : Wrap
and Γ `ρ e : Un. Again, the interesting case in when decryption succeeds and we have
e ↓M enc(v ′, v ′′), x ↓M v ′′ and dec(e, x) ↓M v ′. By induction hypothesis we know
that Θ `ρ v ′′ : Wrap. Now, in Table 5 the only rules for encrypted values that type
the key v ′′ with a type related to Wrap (Lemma 2) are [wrap] or [enc-any]. The former
requires the plaintext to be of type ρ as required, the latter type the plaintext as Un but
can only be applied when Un ≤ ρ which, by subtyping, gives the thesis. Other cases
follow analogously.

We now give a subject-reduction result stating that well-typed programs remain
well-typed at run-time and preserve memory and handle-map well-formedness.

Theorem 1. Let Γ,Θ `T,ρ M,H and Γ `T,ρ c . If 〈M,H, c〉 → 〈M′,H′, c′〉 then

(i) if c′ 6= ε then Γ `T,ρ c′;

(ii) ∃Θ′ ⊇ Θ such that Γ,Θ′ `T,ρ M′,H′.

Proof. Proof of item (i) is by easy induction on the structure of c. In fact almost all
commands reduce to ε. Item (ii) is again by induction on the structure of c. Assignment
is easily proved by applying Lemma 3. Function getKey(y,T) assigns the retrieved
value v to a variable x typed as LUB(T ,T). We thus need to prove that Θ `ρ v :
LUB(T ,T). Let H(M(y)) = (v , T ′) with ` T ′ : τ . From Θ `T,ρ H we know
Θ `ρ v : τ and T ′ ⊆ T. By the semantics of getKey(y,T) we know that T ⊆ T ′.
Thus τ ≤ LUB(T ,T) and by subtyping Θ `ρ v : LUB(T ,T), giving the thesis.

Cases genKey and setKey are easily proved by observing that the returned handle
and the new key are fresh names that we add to Θ, with suitable types, in order to type
the new memory (this is why we have a potentially bigger Θ′ in the thesis). Template
T is checked to be included in T, and the type of the imported key value is checked
to be the same as the one derived from the template. Inductive step for sequential
composition is trivially proved.

Next lemma proves that values learned by the attacker from well-typed APIs can
always be typed Un.

Proposition 2. Let Let Γ `T,ρ A and 〈H1, V1〉 ∗A 〈H, V 〉 with Θ1 `T,ρ H1 and
Θ1 `ρ v : Un for each v ∈ V1. Then, ∃Θ ⊇ Θ1 such that Θ `T,ρ H and Θ `ρ v : Un
for each v ∈ V .

Proof. Proof is by induction on the length of reduction 〈H1, V1〉 ∗A 〈H, V 〉. Base
case is length 0, meaning that H1 = H and V1 = V . It is enough to take Θ = Θ1.

For the inductive case we have 〈H1, V1〉 ∗A 〈Hn, Vn〉 A 〈H, V 〉. By inductive
hypothesis there exists Θ such that Θ `T,ρ Hn and Θ `ρ v : Un for each v ∈ Vn.
We consider the last step 〈Hn, Vn〉 A 〈H, V 〉. By definition, this is due to a call
to a function a ∈ A. In particular, we have a(v1, . . . , vk) �Hn,H v with v1, . . . , vk ∈
K(Vn) and V = Vn ∪ {v}. This, in turns, happens because a = λx1, . . . , xk.c and
〈Mε[x1 7→ v1 . . . xk 7→ vk],Hn, c〉 → 〈M′,H, return e〉 with e ↓M′

v . From Γ `T,ρ A
we have Γ `T,ρ a which requires Γ `ρ x1 : Un . . . Γ `ρ xk : Un and Γ `T,ρ c. By
Proposition 1, since v1, . . . , vk ∈ K(Vn) we have that Θ `ρ v1 : Un . . .Θ `ρ vn : Un.
Since x1, . . . , xk are the only variables in the domain of M0 = Mε[x1 7→ v1 . . . xk 7→
vk], we easily obtain that Γ,Θ `T,ρ M0. We have proved that Γ,Θ `T,ρ M0,H and
Γ `T,ρ c, thus by Theorem 1 we obtain Γ `T,ρ return e and ∃Θ′ ⊇ Θ such that
Γ,Θ′ `T,ρ M′,H. Now, Γ `T,ρ return e requires Γ `ρ e : Un, by Lemma 3 we have
Θ′ `ρ v : Un which gives the thesis.

We can now state the main result of the paper: well-typed APIs are secure, accord-
ing to Definition 2.

Theorem 2. Let Γ `T,ρ A. Then A is secure.

Proof. Let 〈H0, V0〉 ∗A 〈H, V 〉 ∗A 〈H′, V ′〉. Consider Θ0 such that Θ0(val) = Un
for each val ∈ V0. Since H0 is empty we trivially obtain Θ0 `T,ρ H0. By applying

Proposition 2 twice, we obtain that there exist Θ′ ⊇ Θ ⊇ Θ0 such that Θ `T,ρ H,
Θ′ `T,ρ H′, Θ `ρ v : Un for each v ∈ V and Θ′ `ρ v : Un for each v ∈ V ′.

Item 1 of Definition 2. Let val 6∈ K(V) with val sensitive in H. Since V0 contains
all constant atomic names and V0 ⊆ V we have that val ∈ G. By definition, sensitive
values cannot be in dom(H) so by Θ `T,ρ H we obtain that there exists v ′′ such that
H(v ′′) = (val , T) , ` T : τ and Θ(val) = τ . Since val is sensitive in H we know that
S ∈ T which implies τ 6= Un. Given that Θ′ ⊇ Θ we also have Θ′(val) = τ 6= Un.
From Proposition 1 we obtain that val 6∈ K(V ′) which gives the thesis.

Item 2 of Definition 2. Let val be always-sensitive in H. Thus, H(g) = (val , T)
implies A ∈ T which implies ` T : τ with τ ∈ {Wrap,TData, Seed}, i.e., all
templates of val are typed with one of Wrap,TData, Seed. By Θ `T,ρ H we have
that Θ `ρ v : τ with τ one of Wrap,TData, Seed. This, by Lemma 2, implies
Θ 6`ρ val : Un. From Proposition 1 we obtain that val 6∈ K(V). Since Θ′ ⊇ Θ implies
Θ′ `ρ v : τ with τ one of Wrap,TData, Seed, again by Lemma 2 and Proposition 1
we obtain Θ′ 6`ρ val : Un and val 6∈ K(V ′).

Consider now kdf(v , val). Since we have proved Θ 6`ρ val : Un and Θ′ 6`ρ val :
Un, we have that Θ 6`ρ kdf(v , val) : Un and Θ′ 6`ρ kdf(v , val) : Un, given that the
only typing rule that would give Θ `ρ kdf(v , val) : Un is [kdf-un] which requires
Θ `ρ val : Un (and similarly for Θ′). As before, by Proposition 1 we obtain that
kdf(v , val) 6∈ K(V) and kdf(v , val) 6∈ K(V ′).

4 Type-based analysis
In this section we consider different implementations of (a subset of) PKCS#11 APIs
and we analyse them using our type-based approach. We only consider the functions
for encryption/decryption of data and wrap/unwrap of keys.

RSA PKCS#11 Standard. We show that an implementation of PKCS#11 that ex-
actly follows the standard, fails to type-check, as expected, since it is known to be
vulnerable to attacks. This is useful to show how these attacks can be prevented by
statically requiring a precise unambiguous role for each key, as done by our type sys-
tem.

The API is defined in the RSA standard, which specifies what are the input pa-
rameters and the result of each function. C Encrypt takes a byte-stream and a handle
to a key having the encrypt (E) flag set, and returns an encrypted byte-stream. Simi-
larly, C Decrypt takes a byte-stream and decrypts it using the key pointed by the given
handle, with the decrypt (D) flag set; it then returns to the user the decrypted message:

C Encrypt(data, h key)
k := getKey(h key, {E})
return enc(data, k);

C Decrypt(data, h key)
k := getKey(h key, {D});
return dec(data, k);

C WrapKey takes the handle of a key to be wrapped and the one pointing to the wrap-
ping key, having the wrap (W) flag set, and returns an encrypted byte-stream. The

unwrap command (C UnwrapKey) reads a byte-stream, decrypts it using a key having
the unwrap (U) flag set, imports the resulting key in the device and returns a handle
to it. The standard allows the user to specify the template for the new key. In this
example, we assume the key is imported as sensitive (S).

C WrapKey(h key, h w)
w := getKey(h w, {W})
k := getKey(h key, {});
return enc(k,w);

C UnwrapKey(data, h w)
w := getKey(h w, {U})
k := dec(data, w);
return setKey(k, {S});

The standard does not impose any rule on the usage of encrypt, decrypt, wrap and
unwrap attributes. Thus the policy is the most permissive one, i.e., T is the set of all
the possible templates T . In Section 1 we have seen an attack that exploits C Decrypt

and C WrapKey. We now show that the latter does not type-check, confirming that
we cannot prove the security of the API. Command return enc(k,w) requires Γ `ρ
return enc(k,w) : Un. Command k := getKey(h key, {}) requires that Γ `ρ k : Any.
Typing w := getKey(h w, {W}) requires w to have type LUB({W},T) = Any since
the permissive policy allows for templates with mixed roles such as {S,E,D,W,U}.
Since there is no rule for typing expressions of type Any with key of type Any we can
never obtain Γ `ρ return enc(k,w) : Un, giving a contradiction.

Secure Templates. We now analyse and prove the security of a fix proposed in [6,
7]. Note that, it is the first proposed patch that does not require the addition of any
cryptographic mechanisms to the standard. The idea is to limit the set of admissible
attribute combinations for keys in order to avoid that they ever assume conflicting roles
at creation time. This is configurable at the level of the specific PKCS#11 operation.
For example, different secure templates can be defined for different operations such as
key generation and unwrapping.

More precisely, the fix includes three templates for the key generation command:
a wrap and unwrap one for importing/exporting other keys, here mapped into {A,S,
W,U} with type Wrap; an encrypt and decrypt template for cryptographic operations,
here encoded as {S,E,D} with type Data and an empty template, corresponding to
{}, i.e., Un. The unwrap command is instead allowed to set either an empty template
or one which has the unwrap and encrypt attributes set and the wrap and decrypt ones
unset. This is a mixed-role template that corresponds to type Any that we pick as the
default unwrapping type ρ.

We use the policy T such that T ∈ T and {W} ∈ T implies T = {A,S,W,U},
moreover {D} ∈ T implies T = {S,E,D}, i.e., wrapping and decryption keys are
respectively encoded with the unique templates {A,S,W,U},{S,E,D}. With such
a policy, whenever a getKey expression queries a handle for a decryption key ({D})
then the type returned is Data, since the only matching template is {S,E,D}. When
we query for an encryption key ({E}) then the type returned is Any since, for example,
{S,E,U} ∈ T. When querying for a wrapping key ({W}) the result will be typed
as Wrap since the only template satisfying the query is {A,S,W,U}. Finally, when
querying for an unwrapping key ({U}) the results is Any since, again, {S,E,U} ∈ T.
We now show that the standard API as defined above type-checks under the above more

restrictive policy. Recall that we let ρ = Any, i.e., the type for wrapped key is Any.

C Encrypt(data, h key)
k := getKey(h key, {E}) (Γ(k) = Any)
return enc(data, k); (Γ `ρ enc(data, k) : Un)

C Decrypt(data, h key)
k := getKey(h key, {D}) (Γ(k) = Data)
return dec(data, k); (Γ `ρ dec(data, k) : Un)

C WrapKey(h key, h w)
w := getKey(h w, {W}) (Γ(w) = Wrap)
k := getKey(h key, {}); (Γ(k) = Any)
return enc(k,w); (Γ `ρ enc(k,w) : Un)

C UnwrapKey(data, h w)
w := getKey(h w, {U}) (Γ(w) = Any)
k := dec(data, w); (Γ(k) = Any)
return setKey(k, {S,E,U}); (Γ `ρ setKey(k, {S,E,U}) : Un)

By Theorem 2 we have that this fix is secure and never leaks sensitive and always-
sensitive keys. It strongly limits, however, the set of possible templates, and this could
be an issue if an application in use on a given system fails to obey such requirements.
On the other hand, compatibility with other devices is not broken, since the imple-
mentation of the above functions is the same as in the standard. However, even if
interoperability is guaranteed, the usage of an unsafe token would obviously expose
the keys to attacks.

Finally, notice that the patch is presented here in an extended version: originally, it
allowed the generation of sensitive keys only, we instead let non-sensitive keys to be
accepted by the policy.

Key Diversification. We present a novel fix to PKCS#11. The idea is to use key
diversification to avoid the same key to be used for conflicting purposes. This ensures
that the same key will never be used for encrypting and decrypting both data and other
keys. The fix is completely transparent to the user as far as all the devices implement
it. It must be noted, in fact, that a key wrapped by a token implementing this patch
cannot be correctly imported by one acting as described by the standard, i.e., not using
key diversification (and vice versa). The same holds for encrypted data. To the best of
our knowledge, this is the only patch that correctly enforces the security of sensitive
keys and, at the same time, is transparent to existing applications.

We define a policy that allows for templates typed as Seed, Any, Data, Un. For-
mally T = {T | ` T : ρ and ρ ∈ {Seed,Any,Data,Un} }. We now specify the fixed
functions and the typing for each variable/expression.

C Encrypt(data, h key)
k := getKey(h key, {A,S}) (Γ(k) = Seed)
dk := kdf(d, k); (Γ(dk) = Data)
return enc(data, dk); (Γ `ρ enc(data, dk) : Un)

C Decrypt(data, h key)
k := getKey(h key, {A,S}) (Γ(k) = Seed)
dk := kdf(d, k); (Γ(dk) = Data)
return dec(data, dk); (Γ `ρ dec(data, dk) : Un)

Notice, in particular, that Γ `ρ getKey(h key, {A,S}) : Seed since LUB({A,S},T) =
Seed. In fact, Seed is the only type in T with A set (we have excluded from the policy
Wrap and TData).

Key diversification allows to choose at run-time the wrapping and unwrapping of
different kind of keys: different instances of each command will be provided, each of
them using a different tag when diversifying the seed retrieved from the device. Since
the code is exactly the same, we just parametrize it on the tag value wρ′ . With Tρ′
we identify a template such that LUB(Tρ′ ,T) = ρ′. For ρ′ = Seed,Any,Data we
respectively have Tρ′ = {A,S}, {S}, {S,E,D}. Wrap and unwrap are specified and
typed as follows:

C WrapKeywρ′ (h key, h w)
w := getKey(h w, {A,S}) (Γ(w) = Seed)
k := getKey(h w, Tρ′) (Γ(k) = ρ′)
dk := kdf(wρ′ , w); (Γ(dk) = Wrap[ρ′])
return enc(k, dk); (Γ `ρ enc(k, dk) : Un)

C UnwrapKeywρ′ (data, h w)
w := getKey(h w, {A,S}) (Γ(w) = Seed)
dk := kdf(wρ′ , w); (Γ(dk) = Wrap[ρ′])
k := dec(data, dk); (Γ(k) = ρ′)
return setKey(k, Tρ′); (Γ `ρ setKey(k, Tρ′) : Un)

Since the API type-checks, by Theorem 2 we have that it is secure and never leaks
sensitive and always-sensitive keys. Notice that, since it is possible to exchange seeds
we have that new wrapping keys can be easily shared between users. Notice also that,
in practice, the parameter wρ′ needs to be somehow fixed, in order to have a single
implementation of wrap and unwrap commands. The way this value is picked is not
relevant, since we prove that all these instances are secure even if they coexist on the
device. For example, it might be derived at run-time from the CKA UNWRAP TEMPLATE

attribute which specifies, for each wrapping key, the template to be assigned to the
unwrapped key.

5 Prototype implementation
We now investigate in which extent the formal framework developed so far scales to
a real setting. Given that we do not have access to actual device firmware, we have
performed our experiments on the Opencryptoki software simulator.3 Opencryptoki
is a fully-fledged open-source implementation of a PKCS#11 token for Linux. It is
completely written in C. We have implemented a type-checker that is able to verify

3http://sourceforge.net/projects/opencryptoki/

the Opencryptoki implementation of wrap, unwrap, encrypt and decrypt operations.
This has required some modification of the source code in order to both incorporate the
security policy, and make the code more suitable to be type-checked. Moreover, typing
rules have been slightly revisited in order to work on the real code. As discussed
below, we do not aim at type-checking the whole C implementation but we extract
from the actual code the interesting fragments which performs checks on attributes
and implement calls to the relevant key management operations, which are then type-
checked against the (dynamically) enforced policy. In summary we have:

1. coded the set T of allowed templates in C as an array of PKCS#11 key templates;

2. modified the source code so to enforce that key templates only belong to T. If
this is violated the error CKR TEMPLATE INCONSISTENT is returned;

3. adapted our type-checking to the finer granularity of cryptographic operations.
Opencryptoki, as many existing real devices, implements encryption and de-
cryption in two phases: initialisation of the cipher and the actual cryptographic
operation;

4. defined coarser-grained key management operations that include cryptographic
ones. This simplifies the handling of situations in which the actual loading of the
key from the memory happens in low-level, mechanism-dependent functions;

5. implemented a prototype type-checker in Python that parses the policy, looks
for predefined calls to cryptographic and key-management functions, and type-
checks them with respect to the enforced policy. Type-checking is fully auto-
matic;

6. run experiments with various policies and attacks. As expected, all flawed poli-
cies did not type-check, while for type-checked code we could not find any work-
ing attack.

These experimental results seem to suggest that our type-based analysis scales with
not much effort to real settings. If implemented on the firmware or middlewere of real
hardware this would allow manufacturers to easily re-profile their devices in secure,
type-checkable ways. Our experience as consultants let us believe that this is an impor-
tant feature since there is no generic secure configuration which works well with any
existing application.

Even if our type-checker parses and analyses the actual C source code, we want
to point out that our experiments do not aim at verifying the whole source code and
that we do not perform any smart data-flow analysis. We are only interested in validat-
ing the fragment dealing with key-management, and our typing is based on reasonable
assumptions on lower level calls. For example, we assume that our policy enforce-
ment code is correct and cannot be bypassed. More importantly, we assume that the
cryptographic and key-management functions that we type-check are the only ones
manipulating keys and ciphertexts. Validating these assumptions is out of the scope of
current research and is probably part, to some extent, of the standard firmware/middle-
ware development life-cycle. Our prototype should be thought as a proof-of-concept
that this kind of analysis might be useful in practice.

We now describe in more detail the above steps.

5.1 Security policy
Recall that a policy is expressed as a pair (T, ρ), where T is the set of all permit-
ted templates of keys, and ρ is the default type for wrapped keys. The set T of
allowed templates has been directly coded in C in order to make it enforceable by
Opencryptoki. Table 6 reports an example. Types CK ULONG, CK ATTRIBUTE and
CK BBOOL are all defined in the PKCS#11 standard and correspond to unsigned longs,
attributes and booleans, respectively. T is coded as T , an array of elements of type
ALLOWED TEMPLATE containing the size of the template, the template and a flag in-
dicating whether or not the template is valid for unwrapped keys (see below). In the
example of Table 6 we have three admissible templates starting at lines 13, 25 and 35.

Each template is defined as an array of attributes (type CK ATTRIBUTE), as re-
quired by the standard. Attributes are triplets: the first element is the attribute name,
the second is a pointer to the value, the third is the size of the value. For exam-
ple, {CKA WRAP, &yes, sizeof(CK BBOOL)} encodes the fact that attribute
CKA WRAP should be set. Attributes that are neither set or unset, as in the second
template of Table 6 which only defines the values of 4 attributes, are not constrained,
meaning that they can be freely set or unset. We thus have that T corresponds to
T = {{W,U, S,A}, {E,D}, {E,D, S}, {E,D, S,A}}. Notice, in particular, that
{E,D, S,A} comes from the second template by setting S and A. Notice also that
{E,D,A} is not a valid template as non-sensitive keys can never be always-sensitive,
as explained in Section 2.

The last element is unwrap of ALLOWED TEMPLATE is an extension with re-
spect to the theoretical framework. It allows for more granularity when enforcing the
policy on the token. In particular, only the templates with is unwrap set to true are
permitted when unwrapping a key. From this information we can easily derive the
second component of the policy ρ as the greatest lower bound of the set of admissible
unwrap templates. In this case, in fact, we are guaranteed that unwrapped keys will
never be given a template whose type is not derivable from ρ. If the greatest lower
bound does not exist, we let ρ be the default type Data meaning that only data keys
can be wrapped and unwrapped, similarly to what happens in PKCS#11 v2.20 when
CKA WRAP WITH TRUSTED is set (see Section 6 for more details). This default type for
ρ can be changed by the user, if needed. In this specific example we obtain ρ = Data.
In fact, only {E,D, S} can be used when unwrapping a key and it is typed as Data.

5.2 Policy enforcement
Policy is enforced by checking the attributes of any newly generated/imported key. This
is done by searching into T (coded as in Table 6) an admissible template that matches,
on the defined attributes, the one of the actual key template tmpl assigned to the key.
As discussed in previous section, attributes that are not defined can be freely set or
unset. When performing an unwrap, only the templates admissible for that operation
are checked. Policy enforcement is implemented by the following fragment of code:

1 t y p e d e f s t r u c t ALLOWED TEMPLATE {
2 CK ULONG l e n ; / / s i z e o f t e m p l a t e
3 CK ATTRIBUTE tmpl [6] ; / / t e m p l a t e
4 CK BBOOL * i s u n w r a p ; / / i s an unwrap t e m p l a t e ?
5 } ALLOWED TEMPLATE;
6
7 CK BBOOL yes = TRUE;
8 CK BBOOL no = FALSE ;
9

10 CK ULONG T l e n = 3 ; / / number o f t e m p l a t e s i n T
11 ALLOWED TEMPLATE T [] = {
12 {
13 6 , / / l e n g t h o f t h e t e m p l a t e
14 {
15 {CKA WRAP, &yes , s i z e o f (CK BBOOL) } ,
16 {CKA UNWRAP, &yes , s i z e o f (CK BBOOL) } ,
17 {CKA ENCRYPT, &no , s i z e o f (CK BBOOL) } ,
18 {CKA DECRYPT, &no , s i z e o f (CK BBOOL) } ,
19 {CKA SENSITIVE , &yes , s i z e o f (CK BBOOL) } ,
20 {CKA ALWAYS SENSITIVE , &yes , s i z e o f (CK BBOOL) }
21 } ,
22 &no / / t h i s i s NOT an unwrap t e m p l a t e
23 } ,
24 {
25 4 , / / l e n g t h o f t h e t e m p l a t e
26 {
27 {CKA WRAP, &no , s i z e o f (CK BBOOL) } ,
28 {CKA UNWRAP, &no , s i z e o f (CK BBOOL) } ,
29 {CKA ENCRYPT, &yes , s i z e o f (CK BBOOL) } ,
30 {CKA DECRYPT, &yes , s i z e o f (CK BBOOL) }
31 } ,
32 &no / / t h i s i s NOT an unwrap t e m p l a t e
33 } ,
34 {
35 6 , / / l e n g t h o f t h e t e m p l a t e
36 {
37 {CKA WRAP, &no , s i z e o f (CK BBOOL) } ,
38 {CKA UNWRAP, &no , s i z e o f (CK BBOOL) } ,
39 {CKA SENSITIVE , &yes , s i z e o f (CK BBOOL) } ,
40 {CKA ALWAYS SENSITIVE , &no , s i z e o f (CK BBOOL) } ,
41 {CKA ENCRYPT, &yes , s i z e o f (CK BBOOL) } ,
42 {CKA DECRYPT, &yes , s i z e o f (CK BBOOL) }
43 } ,
44 &yes / / t h i s IS an unwrap t e m p l a t e
45 }
46 } ;

Table 6: Example of key-separation T coded in C

i n t i ;
/ / l oop over a l l t e m p l a t e s i n t h e p o l i c y u n t i l one matches
f o r (i =0 ; i<T l e n && ((mode==MODE UNWRAP && ! T [i] . i s u n w r a p)

| | ! t e m p l a t e c o m p a r e (T [i] . tmpl , T [i] . l en , tmpl)) ; i ++) ;
i f (i == T l e n) / / no match ing t e m p l a t e i n t h e p o l i c y

re turn CKR TEMPLATE INCONSISTENT ;

5.3 Finer granularity of cryptography
Cryptographic operations are implemented by first initialising the cypher with the
cryptographic key, and then performing the actual operation. So far, to uniformly
treat data encryption and key wrapping we have specified cryptographic operations
as single steps, enc(e, x) and dec(e, x), respectively. When implementing the typing
we need to express these as the composition of two more refined steps: enc(e, x) as
enc init(x); encrypt(e), and dec(e, x) as dec init(x); decrypt(e).

As far as the two steps are executed one after the other no change is needed in the
typing. In this case it is convenient to still use the existing typing rules for enc(e, x)
and dec(e, x). However, PKCS#11 APIs exhibit two different calls corresponding to
the two more refined steps: C EncryptInit and C Encrypt for encryption and
C DecryptInit and C Decrypt for decryption. To type-check these APIs we
need to refine our typing rules so to separately deal with enc init(x), encrypt(e) and
dec init(x), decrypt(e).

The needed typing rules are easy to derive by observing that data encryption and
decryption are always applied on expressions of type Un. We require this constraint
when typing encrypt(e) and decrypt(e). In order to type enc init(x), dec init(x) it is
enough to consider the typing rules for enc(u, x) and dec(u, x) where u is a special
variable that we type as Un, and such that the cryptographic expression is also typed
Un. This latter fact is always true for enc(u, x) but needs to be checked for dec(u, x). In
fact, it is unsafe to initialise decryption with a key that might decrypt sensitive values,
since we have no control on when decryption will happen.

5.4 Coarser granularity of key-management
In order to type-check the C source code without making any complex data-flow analy-
sis, we have identified calls to internal functions that can been expressed as a sequence
of commands in our specification language (plus the refined cryptographic operations
above). During this task, we have realised that the actual loading of the keys from the
memory happens in low-level, mechanism-dependent functions. Type-checking would
then require to track calls all the way down. By taking an abstraction step, instead, we
have been able to directly type-check the top level call.

Intuitively, we have to ‘merge’ key-management with cryptographic operations.
For example, enc init(x) is done by passing the handle instead of the actual key value.
Thus, we consider a new function enc init h(h, T) taking the key handle and the
template we want to check before performing the operation. In this specific exam-
ple, it would typically be {E} checking that the handle corresponds to an encryp-
tion key. This new, more complex operation can be implemented in our language

New function Definition
enc init h(h, T) x = getKey(h, T);

enc init(x);
dec init h(h, T) x = getKey(h, T);

dec init(x);
enc h(h1, T1, h2, T2) x = getKey(h1, T1);

y = getKey(h2, T2);
return enc(x, y);

dec h(e,Tset , h, T) y = getKey(h, T);
k = dec(e, y);
h2 = setKey(k,Tset);
return h2

Table 7: Cryptographic functions ‘merged’ with key-management

CK RV C E n c r y p t I n i t (ST SESSION HANDLE * s S e s s i o n ,
CK MECHANISM PTR pMechanism ,
CK OBJECT HANDLE hKey)

{
CK ATTRIBUTE TYPE TKey [] = {CKA ENCRYPT} ;
CK ULONG TKeyLen = 1 ;

. . . .

r c = e n c r m g r i n i t (s e s s , &s e s s−>e n c r c t x , OP ENCRYPT INIT ,
pMechanism , hKey , TKey , TKeyLen) ;

Table 8: Fragment of C EncryptInit calling encr mgr init

as x = getKey(h, T); enc init(x); and can be type-checked accordingly. We have a
similar function for initialising decryption and two functions for key encryption and
decryption (wrap and unwrap) working as expected, and summarised in Table 7.

In Table 8 we show a fragment of the actual C code for C EncryptInit. Variable
Tkey contains the template we want to check. Function encr mgr init implements
enc init h(hKey,TKey). There are extra parameters dealing with sessions and mech-
anism that we ignore in the analysis. The parameters TKey, TKeyLen have been
added so to make the template check more explicit. In the original code the check
of the attribute C EncryptInit was hidden inside encr mgr init, based on the
OP ENCRYPT INIT parameter.

5.5 The type-checker
We have developed a Python prototype that parses the policy coded as described in
Sections 5.1 and 5.2. Then, it looks for predefined cryptographic and key-management

functions such as the above described encr mgr init, parses the relevant parame-
ters (handles and templates), looks for template initialisations and applies the typing
rules. As explained before, we only need to implement typing rules for enc(e, x) and
dec(e, x) since initialisation of encryption and decryption can be typed as a special
case of those general rules. In this first version of the prototype we did not implement
the key-diversification fix as we preferred to focus on standard PKCS#11 implementa-
tions of the APIs enhanced with our policy enforcement. The type-checker is based on
pycparser,4 a Python module for parsing C source code.

5.6 Experiments
We illustrate our approach with two examples of flawed policies, discussing real attacks
and fixes.

Plain PKCS#11. Let us start with a ‘clean’ Opencryptoki token in which we allow
any key template. This is coded by letting T contain exactly one empty template.
Recall, in fact, that only the attributes that are explicitly set or unset are checked when
generating/importing a key. If nothing is set no constraint is enforced.

CK ULONG T l e n = 1 ;
ALLOWED TEMPLATE T [] = {
{

0 ,
{ } ,
&yes

}
} ;

This is the standard configuration and the token is vulnerable to all known API level
attacks on key management. We consider the simple wrap-decrypt discussed in the
introduction. To exemplify, we have installed in the token a sensitive key labelled as
‘SecKey’. The challenge is to extract it in the clear. Running a C implementation of
the attack we obtain:

$. / s imple−wrap−d e c r y p t 12345
Found 1 key l a b e l l e d as SecKey
Cannot r e a d t h e s e n s i t i v e v a l u e (CKR ATTRIBUTE SENSITIVE)
==== Simple wrap−d e c r y p t ====
Wrapped key : 873 fa34795c13b3b
Key v a l u e : [a f2c85298a39c685]
$

The program first tries to directly read the key value, but this is not possible since
the key is sensitive. Next it generates a fresh wrap/decrypt key that is used to wrap-
and-then-decrypt the sensitive key. We finally obtain the sensitive key in the cleartext:
af2c85298a39c685. In order to check that this is really the value of the key it is
enough to use it to perform an encryption of a fixed cleartext both in software and on
the token, and check that the result is the same.

4http://code.google.com/p/pycparser/

Since the token is flawed we expect it not to type-check. The type-checker cor-
rectly parses the set of allowed templates, showing all the possible 48 combinations
of attribute values (16 of the 64 possible combinations are not considered given that
always sensitive cannot be set on non sensitive keys). Then, the type-checker tries to
infer ρ but it fails, since there is no greater lower bound for the set of all possible tem-
plates. In fact, there are conflicting key roles. The tool uses a default type ρ = Data.
Let us now see why type-checking fails. This is the output:

== Typing ’ e n c r m g r i n i t (. . . TKey) ’ i n ’ C E n c r y p t I n i t ’
TKey : { CKA ENCRYPT } : Any

OK
== Typing ’ d e c r m g r i n i t (. . . TKey) ’ i n ’ C D e c r y p t I n i t ’

TKey : { CKA DECRYPT } : Any
[TYPE−CHECK FAILED] bye !

The tool is able to type-check the call to encr mgr init in C EncryptInit (see
Table 8). The relevant parameter is the template of the encryption key Tkey that is
initialized as {CKA ENCRYPT}, which in our formalism is {E}. When we retrieve the
key we have to apply rule getkey of Table 4 and the type is computed as LUB({E},T)
giving type Any. This reflects the intuition that without restricting the allowed tem-
plates we cannot establish the type of encryption keys.

Nevertheless, encr mgr init type-checks. In Section 5.3 we have discussed
that enc init(x) can be type-checked as enc(u, x) with u of type Un. We can thus apply
rule enc-any of Table 3, since we have picked ρ = Data. It is in fact safe to encrypt
untrusted values under any key as far as they are never unwrapped and imported as
trusted in the device.

The problem arises with C DecryptInit. In fact, dec init(x) needs be type-
checked as dec(u, x) and we require it to be of type Un. From Table 3 the only ap-
plicable rule would be dec which however requires x to be typed as Data. In fact we
cannot safely decrypt with any key if we have no control on how the decrypted value
will be dealt with. Intuitively, this rules out the wrap-decrypt attack where, matter of
factly, decryption is exploited to leak sensitive keys.

Simple key-separation fix. The above problem can be solved by clearly separating
the key roles. We use the definition of T coded in Table 6. We report below the output
of the successful type-checking:

=== P o l i c y p a r s e d from p o l i c y . h (l e n g t h 4) :
{ CKA SENSITIVE , CKA ALWAYS SENSITIVE , CKA WRAP, CKA UNWRAP }
{ CKA ENCRYPT, CKA DECRYPT }
{ CKA SENSITIVE , CKA ENCRYPT, CKA DECRYPT }
{ CKA SENSITIVE , CKA ENCRYPT, CKA ALWAYS SENSITIVE , CKA DECRYPT }
=== Unwrap p o l i c y p a r s e d from p o l i c y . h (l e n g t h 1) :
{ CKA SENSITIVE , CKA ENCRYPT, CKA DECRYPT }
=== You have t h e f o l l o w i n g wrapped key t y p e : Data
== Typing ’ e n c r m g r i n i t (. . . TKey) ’ i n ’ C E n c r y p t I n i t ’

TKey : { CKA ENCRYPT } : Data
OK

== Typing ’ d e c r m g r i n i t (. . . TKey) ’ i n ’ C D e c r y p t I n i t ’
TKey : { CKA DECRYPT } : Data

OK
== Typing ’ key mgr wrap key (. . . Twrapping , TKey) ’ i n ’ C WrapKey ’

Twrapping : { CKA WRAP } : Wrap
TKey : { CKA ENCRYPT, CKA DECRYPT } : Data

OK
== Typing ’ key mgr unwrap key (. . . Tunwrapping , TKey) ’ i n ’ C UnwrapKey ’

Tunwrapping : { CKA UNWRAP } : Wrap
TKey : { } : Data

OK

The generated templates T = {{W,U, S,A}, {E,D}, {E,D, S}, {E,D, S,A}} cor-
respond to the ones already discussed in Section 5.1. This time the type-checker is able
to derive ρ = Data which is the type of the only possible template for unwrapping
{E,D, S}. All the functions type-check. Intuitively, checking the presence of attribute
CKA ENCRYPT or CKA DECRYPT is now enough to type the key as Data. Simi-
larly, checking CKA WRAP or CKA UNWRAP is enough to type the key as Wrap. Since
ρ = Data, it is also necessary to check that wrapped keys have that type. This is done
in key mgr wrap key by checking template {CKA ENCRYPT, CKA DECRYPT}
before wrapping keys. This is not necessary when unwrapping as the unwrapping pol-
icy only allows to import {CKA SENSITIVE, CKA ENCRYPT, CKA DECRYPT},
i.e., Data keys.

Running the wrap-decrypt attack, it now fails:

$. / s imple−wrap−d e c r y p t 12345
Found 1 key l a b e l l e d as SecKey
Cannot r e a d t h e s e n s i t i v e v a l u e (CKR ATTRIBUTE SENSITIVE)
==== Simple wrap−d e c r y p t ====
Cannot g e n e r a t e key (CKR TEMPLATE INCONSISTENT)
Something went wrong . Maybe t h e c o n f l i c t i s d e t e c t e d
$

The token enforces the policy and disallows the generation of a key with both CKA WRAP
and CKA DECRYPT set.

Unwrap to nonsensitive. We conclude by showing that even a tiny change in the pol-
icy may open a flaw in the token. We modify the set of allowed templates by changing
line 39 of Table 6 into

{CKA SENSITIVE , &no , s i z e o f (CK BBOOL) } ,

Type-checking fails as follows:

=== P o l i c y p a r s e d from p o l i c y . h (l e n g t h 4) :
{ CKA SENSITIVE , CKA ALWAYS SENSITIVE , CKA WRAP, CKA UNWRAP }
{ CKA ENCRYPT, CKA DECRYPT }
{ CKA SENSITIVE , CKA ENCRYPT, CKA DECRYPT }
{ CKA SENSITIVE , CKA ENCRYPT, CKA ALWAYS SENSITIVE , CKA DECRYPT }
=== Unwrap p o l i c y p a r s e d from p o l i c y . h (l e n g t h 1) :
{ CKA ENCRYPT, CKA DECRYPT }
=== You have t h e f o l l o w i n g wrapped key t y p e : Un
== Typing ’ e n c r m g r i n i t (. . . TKey) ’ i n ’ C E n c r y p t I n i t ’

TKey : { CKA ENCRYPT } : Data
OK

== Typing ’ d e c r m g r i n i t (. . . TKey) ’ i n ’ C D e c r y p t I n i t ’
TKey : { CKA DECRYPT } : Data

OK
== Typing ’ key mgr wrap key (. . . Twrapping , TKey) ’ i n ’ C WrapKey ’

Twrapping : { CKA WRAP } : Wrap
TKey : { CKA ENCRYPT, CKA DECRYPT } : Data

[TYPE−CHECK FAILED] bye !

Notice that policy for unwrap has changed and consequently the derived ρ is now Un. It
is in fact possible to unwrap keys without setting the attribute CKA SENSITIVE. This
breaks the typing of C WrapKey as it tries to wrap Data keys that, in turn cannot be
typed as Un. Intuitively, this suggests an attack where a sensitive Data key is wrapped
and then unwrapped as non-sensitive, making it possible to directly read its value. We
have implemented this attack and tried it on the token:

$. / unwrap−to−n o n s e n s i t i v e 12345
found 1 key l a b e l l e d as SecKey
Cannot r e a d t h e s e n s i t i v e v a l u e (CKR ATTRIBUTE SENSITIVE)
==== wrap and t h e n unwrap t o non−s e n s i t i v e ====
Wrapped key : 2C0163E5D2892CA8
Unwrapping as n o n s e n s i t i v e . . . SUCCESS
D i r e c t l y r e a d i n g t h e v a l u e o f unwrapped key . . . SUCCESS
Key v a l u e : [a f2c85298a39c685]
$

The very same attack fails when the token is configured as in Table 6 giving

Unwrapping as n o n s e n s i t i v e . . . FAILED
*** Cannot unwrap key (CKR TEMPLATE INCONSISTENT)

6 Conclusions
We have presented a type system to statically enforce the security of PKCS#11 key
management APIs. We believe that a formal tool working at the language-level might
help developers and hardware producers to better understand the crucial issues and
limits affecting the design and implementation of this standard. For example, we have
shown that C Decrypt and C WrapKey commands cannot be both type-checked if im-
plemented as prescribed by the standard [22]. More precisely, it has been shown that
the requirements on the templates of the keys used to perform such operations are not
enough restrictive to avoid keys having conflicting purposes. Thus, failing to type-
check corresponds, in this case, to the intuitive problematic issue, well understood by
developers and hardware producers, of conflicting roles assigned to a single key.

We have also presented a new fix to PKCS#11, based on key diversification: Intu-
itively, the token avoids conflicting roles for one key by diversifying it depending on
the actual role. We have type-checked both this new fix and the ‘secure templates’ one
[6, 7], formally proving their security.

Starting from version 2.20, RSA added the new attribute CKA WRAP WITH TRUSTED

to the standard. This attribute could potentially be used to prevent the API-level attacks
discussed in this work. However, a big limitation is that trusted keys, i.e., keys whose

CKA TRUSTED attribute is set, may be imported into a token only by a security officer,
a special privileged user operating in a protected environment. Moreover, in order to
prevent attacks on a sensitive key, it is required that its CKA WRAP WITH TRUSTED at-
tribute is set, meaning that it can only be wrapped under a key imported by the security
officer. Here we have generalised this idea of wrapping keys only under trusted keys.
We have used the always-sensitive attribute, even if the standard does not foresee any
special usage for it, in order to show that what is important is ‘trust’, and not who has
imported the key: a key that has always been sensitive (and has never been known by
the attacker) can be considered trusted the same as one imported by the security of-
ficer. So, intuitively, in our model the always-sensitive and trusted attributes collapse
into the A attribute. This allows for dynamically exchanging new always-sensitive,
trusted keys, wrapped under the one initially imported by the security officer.

Quite surprisingly, in [22] RSA does not discuss any security implication of the
two new attributes and does not provide any guideline about how to correctly use
them to prevent attacks (in fact, attacks are not mentioned even in the most recent
draft of the standard [23]). There are, instead, many problematic issues that need
to be considered [17]. We give a partial list here: (i) trusted keys should be non-
extractable, i.e., not wrappable even under another trusted key. This is to avoid they
are unwrapped with a different template and then leaked; (ii) a sensitive key with at-
tribute CKA WRAP WITH TRUSTED set might be wrapped under a trusted key and then
unwrapped with CKA WRAP WITH TRUSTED unset, making it attackable; (iii) trusted
keys should not have conflicting roles (such as wrap and decrypt). While this might
seem easy, we believe it is not a good idea to leave the security officer the freedom
of freely configuring such crucial keys. Our type-based analysis solves all the above
issues by enforcing a controlled usage of roles and templates for keys.

We have implemented the analysis in the Opencryptoki software token5. This has
required minor modifications of the source code and the introduction of more refined
cryptographic operations whose typing rules can be easily derived from the ones in the
formal framework. We have obtained an enhanced token parametrized with respect to
the security policy. The user can re-profile the token for a specific application by pick-
ing a different policy. If the new configuration type-checks then the token should rule
out, to some extent, key-management API level attacks. Our implementation assumes
that big parts of code behave correctly, thus there could be ways to circumvent our
enhancements. Nevertheless, our experiment shows that developing a real type-based
analysis with formal foundations for PKCS#11 cryptographic devices is promising and
effective. In [6, 7] we have extended Opencryptoki with the secure template patch. The
extension to public-key cryptography and the implementation of the key diversification
fix are left as a future work.

The proposed model does not account for attacks based on timing, termination,
power consumption, and does not capture indirect or partial information leakage. More-
over, cryptography is modelled symbolically, so the type-system does not automatically
enforce computational security. We leave the study of these aspects as a future work.
We have been recently working on an extension of the imperative language to a more
general API setting that also allows for asymmetric key cryptography and is not specif-

5http://sourceforge.net/projects/opencryptoki/

ically targeted to PKCS#11. Results will be presented at [1].

Acknowledgements. We would like to thank Pedro Adão and the anonymous re-
viewers for their helpful comments and suggestions.

References
[1] P. Adão, R. Focardi, and F. L. Luccio. Type-Based Analysis of Generic Key

Management APIs. In IEEE Computer Security Foundation Symposium, 2013.
To appear.

[2] R. Anderson. The correctness of crypto transaction sets (discussion). In Revised
Papers from the 8th International Workshop on Security Protocols, pages 128–
141, London, UK, 2001. Springer-Verlag.

[3] K. Bhargavan, C. Fournet, M. Kohlweiss, A. Pironti, and P. Strub. Implement-
ing tls with verified cryptographic security. In IEEE Symposium on Security &
Privacy (Oakland), 2013.

[4] M. Bond. Attacks on cryptoprocessor transaction sets. In Proceedings of the
3rd International Workshop on Cryptographic Hardware and Embedded Systems
(CHES’01), volume 2162 of LNCS, pages 220–234, Paris, France, 2001. Springer.

[5] M. Bond and R. Anderson. API level attacks on embedded systems. IEEE Com-
puter Magazine, 34(10):67–75, October 2001.

[6] M. Bortolozzo, M. Centenaro, R. Focardi, and G. Steel. Attacking and fixing
PKCS#11 security tokens. In Proceedings of the 17th ACM Conference on Com-
puter and Communications Security (CCS’10), pages 260–269. ACM, 2010.

[7] M. Bortolozzo, M. Centenaro, R. Focardi, and G. Steel. CryptokiX: a crypto-
graphic software token with security fixes. In Proceedings of the 4th International
Workshop on Analysis of Security APIs (ASA’10), Edinburgh, UK, July 2010.

[8] M. Centenaro, R. Focardi, and F.L. Luccio. Type-based Analysis of PKCS#11
Key Management. In POST, volume 7215 of Lecture Notes in Computer Science,
pages 349–368. Springer, 2012.

[9] M. Centenaro, R. Focardi, F.L. Luccio, and G. Steel. Type-Based Analysis of PIN
Processing APIs. In Proceedings of the 14th European Symposium on Research in
Computer Security (ESORICS’09), volume 5789 of LNCS, pages 53–68. Springer,
2009.

[10] R. Clayton and M. Bond. Experience using a low-cost FPGA design to crack DES
keys. In Cryptographic Hardware and Embedded System (CHES’02), volume
2523 of LNCS, pages 579–592. Springer, 2003.

[11] J. Clulow. On the security of PKCS#11. In 5th International Workshop on Cryp-
tographic Hardware and Embedded Systems (CHES’03), volume 2779 of LNCS,
pages 411–425. Springer, 2003.

[12] S. Delaune, S. Kremer, and G. Steel. Formal analysis of PKCS#11. In Pro-
ceedings of the 21st IEEE Computer Security Foundations Symposium (CSF’08),
pages 331–344, Pittsburgh, PA, USA, June 2008. IEEE Computer Society Press.

[13] S. Delaune, S. Kremer, and G. Steel. Formal analysis of PKCS#11 and proprietary
extensions. Journal of Computer Security, 18(6):1211–1245, November 2010.

[14] R. Focardi and F.L. Luccio. Secure recharge of disposable RFID tickets. In The
8th International Workshop on Formal Aspects of Security & Trust (FAST’11),
volume 7140 of LNCS, pages 85–99. Springer, 2011.

[15] C. Fournet, J. Planul, and T. Rezk. Information-flow types for homomorphic
encryptions. In Proc. of the 18th ACM conference on Computer and communica-
tions security (CCS’11), pages 351–360. ACM, 2011.

[16] S.B. Fröschle and N. Sommer. Reasoning with Past to Prove PKCS#11 Keys
Secure. In The 8th International Workshop on Formal Aspects of Security &
Trust (FAST’10), volume 6561 of LNCS, pages 96–110. Springer, 2010.

[17] S.B. Fröschle and N. Sommer. Concepts and Proofs for Configuring PKCS#11.
In The 8th International Workshop on Formal Aspects of Security & Trust
(FAST’11), volume 7140 of LNCS. Springer, 2011.

[18] S.B. Fröschle and G. Steel. Analysing PKCS#11 key management APIs with
unbounded fresh data. In Joint Workshop on Automated Reasoning for Security
Protocol Analysis and Issues in the Theory of Security, (ARSPA-WITS’09), vol-
ume 5511 of LNCS, pages 92–106, York, UK, 2009. Springer.

[19] G. Keighren, D. Aspinall, and G. Steel. Towards a Type System for Security
APIs. In Joint Workshop on Automated Reasoning for Security Protocol Analysis
and Issues in the Theory of Security, (ARSPA-WITS’09), pages 173–192, 2009.

[20] R. Küsters, T. Truderung, and J. Graf. A framework for the cryptographic verifi-
cation of java-like programs. In Prof. of the IEEE 25th Computer Security Foun-
dations Symposium (CSF’12), pages 198–212. IEEE Computer Society, 2012.

[21] D. Longley and S. Rigby. An automatic search for security flaws in key manage-
ment schemes. Computers and Security, 11(1):75–89, March 1992.

[22] RSA Security Inc., v2.20. PKCS #11: Cryptographic Token Interface Standard.,
June 2004.

[23] RSA Security Inc., Draft v2.30. PKCS #11: Cryptographic Token Interface Stan-
dard., July 2009. Available at http://www.rsa.com/rsalabs/node.
asp?id=2133.

