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2 LSV, ENS Cachan & CNRS & INRIA, France

Abstract. We examine some known attacks on the PIN verification
framework, based on weaknesses of the security API for the tamper-
resistant Hardware Security Modules used in the network. We specify
this API in an imperative language with cryptographic primitives, and
show how its flaws are captured by a notion of robustness that extends
the one of Myers, Sabelfeld and Zdancewic to our cryptographic setting.
We propose an improved API, give an extended type system for assur-
ing integrity and for preserving confidentiality via randomized and non-
randomized encryptions, and show our new API to be type-checkable.

1 Introduction

In the international ATM (cash machine) network, users’ personal identification
numbers (PINs) have to be sent encrypted from the PIN Entry Device (PED) on
the terminal to the issuing bank for checking. The PIN is encrypted in the PED
under a key shared with the server or switch to which the ATM is connected. The
PIN is then decrypted and re-encrypted under the key for an adjacent switch,
to which it is forwarded. Eventually, the PIN reaches the issuing bank, by which
time it may have been decrypted and re-encrypted several times. The issuing
bank has no direct control over the intermediate switches, so to establish trust,
the international standard ISO 9564 (ANSI X9.8) stipulates the use of tamper
proof cryptographic Hardware Security Modules (HSMs). These HSMs protect
the PIN encryption keys, and in the issuing banks, they also protect the PIN
Derivation Keys (PDKs) used to derive the customer’s PIN from non-secret
validation data such as their Personal Account Number (PAN). All encryption,
decryption and checking of PINs is carried out inside the HSMs, which have a
carefully designed API providing functions for translation (i.e., decryption under
one key and encryption under another one) and verification (i.e., PIN correctness
checking). The API must be designed so that should an attacker gain access to
a host machine connected to an HSM, he cannot abuse the API to obtain PINs.

In the last few years, several attacks have been published on the APIs in use in
these systems [8,9,10]. Very few of these attacks directly reveal the PIN. Instead,
they involve the attacker calling the API commands repeatedly with slightly
different parameter values, and using the results (which may be error codes) to
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deduce the value of the PIN. High-profile instances of many PINs being stolen
from hacked switches have increased interest in the problem [1,2]. PIN recovery
attacks have been formally analysed, but previously the approach was to take
a particular API configuration and measure its vulnerability to combinations
of known attacks [26]. Other researchers have proposed improvements to the
system to blunt the attacks, but these suggestions address only some attacks,
and are “intended to stimulate further research” [22]. We take a step in that
direction, using the techniques of language-based security [24].

One can immediately see that the current API functions allow an ‘informa-
tion flow’ from the high security PIN to the low security result. However, the
function must reveal whether the encrypted PIN is correct or not, so some flow
is inevitable. The language-based security literature has a technique for dealing
with this: a ‘declassification policy’ [25] permitting certain flows. The problem is
that an intruder can often manipulate input data in order to declassify data in an
unintended way. Again there is a technique for this: ‘robust declassification’ [23],
whereby we disallow ‘low integrity’ data, which might have been manipulated
by the attacker, to affect what can be declassified. However, the functionality of
the PIN verification function requires the result to depend on low-integrity data.
The solution in the literature is ‘endorsement’ [23], where we accept that cer-
tain low integrity data is allowed to affect the result. However, in our examples,
endorsing the low integrity data permits several known attacks.

From this starting point, we propose in this paper an extension to the language-
based security framework for robust declassification to allow the integrity of
inputs to be assured cryptographically by using Message Authentication Codes
(MACs). We present semantics and a type system for our model, and show how it
allows us to formally analyse possible improvements to PIN processing APIs. We
believe our modelling of cryptographically assured integrity to be a novel con-
tribution to language based security theory. In addition, we give new proposals
for improving the PIN processing system.

There is not room here to describe the operation of the ATM network in detail.
Interested readers are referred to existing literature [10,22,26]. In this paper, we
first introduce our main case study, the PIN verification command (�1). We
review some notions of language based security (�2). We describe our modelling
of cryptographic primitives, and in particular MACs for assuring integrity, and
we show why PIN verification fails to be robust (�3). Our type system is presented
(�4), the MAC-based improved API is type-checked (�5), and finally we conclude
(�6). For lack of space we omit all the proofs (see [14]).

The Case Study. We have observed how PINs travelling along the network
have to be decrypted and re-encrypted under a different key, using a translation
API. Then, when the PIN reaches the issuing bank, its correspondence with the
validation data1 is checked via a verification API. We focus on this latter API,
which we call PIN V: it checks the equality of the actual user PIN and the trial
PIN inserted at the ATM and returns the result of the verification or an error
1 This value is up to the issuing bank. It is typically an encoding of the user PAN and

possibly other ‘public’ data, such as the card expiration date or the customer name.
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code. The former PIN is derived through the PIN derivation key pdk , from the
public data offset , vdata, dectab (see below), while the latter comes encrypted
under key k as EPB (Encrypted PIN block). Note that the two keys are pre-
loaded in the HSM and are never exposed to the untrusted external environment.
In this example we will assume only one key of each type (k and pdk) is used.
The API, specified below, behaves as follows:

PIN V(PAN , EPB, len, offset, vdata, dectab) {
x1 := encpdk (vdata);
x2 := left(len, x1 );
x3 := decimalize(dectab, x2 );
x4 := sum mod10(x3 , offset);
x5 := deck (EPB);
x6 := fcheck(x5 );

if (x6 =⊥) then return(′′format wrong′′);
if (x4 = x6 ) then return(′′PIN correct′′);

else return(′′PIN wrong′′)}

The user PIN of length len is ob-
tained by encrypting validation data
vdata with the PIN derivation key
pdk (x1 ), taking the first len hexadec-
imal digits (x2 ), decimalising through
dectab (x3 ), and digit-wise summing
modulo 10 the offset (x4 ). In fact, the
obtained decimalised value x3 is the
‘natural’ PIN assigned by the issuing
bank to the user. If the user wants to
choose her own PIN, an offset is calculated by digit-wise subtracting (modulo
10) the natural PIN from the user-selected one. The trial PIN is recovered by de-
crypting EPB with key k (x5 ), and extracting the PIN by removing the random
padding and checking the PIN is correctly formatted (x6 ). Finally, the equality
of the user PIN (x4 ) and the trial PIN (x6 ) is returned.

The given code specifies a strict subset of the real PIN verification function
named Encrypted PIN Verify [18].

Example 1. Let len=4, offset=4732, dectab=9753108642543210, this last pa-
rameter encoding this mapping: 0 �→ 9, 1 �→ 7, . . . , F �→ 0. Let also x1 =
encpdk(vdata) = A47295FDE32A48B1. Then, x2 = left(4, A47295FDE32A48B1)
= A472 , x3 = decimalize(dectab, A472) = 5165, and x4 = sum mod10(5165, 4732)
= 9897. This completes the user PIN recovery part. Let now (9897, r) denote
PIN 9897 correctly formatted and padded with a random r, as required by ISO1
and let us assume that EPB = {|9897, r|}k . We thus have: x5 = deck ({|9897, r|}k)
= (9897, r), and x6 = fcheck(9897, r) = 9897. Finally, since x6 is different from
⊥ (failure) and x4 = x6 the API returns ′′PIN correct ′′.

2 Basic Language and Security

In this section, we recall a standard imperative language core and some basic
security notions. An expression e is either a variable x or an arithmetic/Boolean
operation on expressions e1 op e2. Denoting Boolean expressions by b, the syntax
of commands is c ::= skip | x := e | c1; c2| if b then c1 else c2 | while b do c.

Memories M are finite maps from variables to values and we write M(x ) to
denote the value associated to x in M. Moreover, e ↓M v denotes the evaluation
of expression e in a memory M giving value v as a result: for example, x ↓M M(x )
and x + x ′ ↓M M(x ) + M(x ′). Moreover, 〈M, c〉 ⇒ M′ denotes the execution of a
command c in a memory M, resulting in a new memory M′. Finally, M[x �→ v ]
denotes the update of variable x to the new value v . For example, 〈M, x := e〉 ⇒
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M[x �→ v ] if e ↓M v . Security APIs are executed on trusted hardware with no
multi-threading, we thus adopt a standard big-step semantics similar to that of
Volpano et al. [28] which can be found in [14].

Security. A security environment Γ maps each variable to a level of confiden-
tiality and integrity. To keep the setting simple, we limit our attention to two
possible levels: high (H) and low (L). For any given confidentiality (integrity)
levels �1, �2, we write �1 	C �2 ( �1 	I �2 ) to denote that �1 is as restrictive or

HL

LL

LH

HH

less restrictive than �2. In particular, low-confidentiality data may
be used more liberally than high-confidentiality ones, thus in this
case L 	C H ; dually, H 	I L. We consider the product of the
above confidentiality and integrity lattices, and we denote with 	
the component-wise application of 	C and 	I (on the right).

Definition 1 (Indistinguishability). Let M|� denote the restriction of mem-
ory M to variables whose security level is at or below level �. M1 and M2 are
indistinguishable at level �, written M1 =� M2, if M1|� = M2|�. Two configura-
tions are indistinguishable, written 〈M1, c〉 =� 〈M2, c〉, if whenever 〈M1, c〉 ⇒ M′

1

and 〈M2, c〉 ⇒ M′
2 then M′

1 =� M′
2. They are strongly indistinguishable, written

〈M1, c〉 ∼=� 〈M2, c〉, if 〈M1, c〉 =� 〈M2, c〉 and 〈M1, c〉 ⇒ M′
1, 〈M2, c〉 ⇒ M′

2.

Noninterference requires that data from one level should never interfere with
lower levels. Intuitively, command c satisfies noninterference if, fixed a level �,
two indistinguishable memories remain indistinguishable even after executing c.
Definition 2 (Noninterference). A command c satisfies noninterference if
∀ �, M1, M2 we have that M1 =� M2 implies 〈M1, c〉 =� 〈M2, c〉.
Noninterference formalizes full security, with no leakage of confidential informa-
tion (� = LL) or corruption of high-integrity data (� = HH). The property
proposed by Myers, Sabelfeld and Zdancewic (MSZ) in [23], called robustness,
admits some form of declassification (or downgrading) of confidential data, but
requires that attackers cannot influence the secret information declassified by a
program c. In our case study of section 1, PIN V returns the correctness of the
typed PIN which is a one-bit leak of information about a secret datum. Robust-
ness will allow us to check that attackers cannot abuse such a declassification
and gain more information than intended.

Consider a pair of memories M1, M2 which are not distinguishable by an in-
truder, i.e., M1 =LL M2. The execution of c on these memories may leak confiden-
tial information violating noninterference, i.e., 〈M1, c〉 �=LL 〈M2, c〉. Robustness
states that if the behaviour of the command c is not distinguishable on M1 and
M2 then the same must happen for every pair of memories M′

1, M′
2 the attacker

may obtain starting from M1, M2. To characterize these memories note that:
(i) they are still indistinguishable by the intruder, i.e., M′

1 =LL M′
2, as he is

deterministic and starts from indistinguishable memories; (ii) they only differ
from the initial ones in the low-integrity part, i.e., M1 =HH M′

1, M2 =HH M′
2,

given that only low-integrity variables can be modified by intruders. Following
MSZ, we require that attackers start from strongly indistinguishable, terminat-
ing configurations to avoid they ‘incompetently’ self-corrupt their observations.
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Definition 3 (Robustness). Command c is robust if ∀M1, M2, M
′
1, M

′
2 s.t.

M1 =LL M2, M′
1 =LL M′

2, M1 =HH M′
1, M2 =HH M′

2, it holds 〈M1, c〉 ∼=LL

〈M2, c〉 implies 〈M′
1, c〉 =LL 〈M′

2, c〉.
This notion is a novel simplification of that of MSZ, who allow a malicious user
to insert untrusted code at given points in the trusted code. In security APIs
this is not permitted: an attacker can call a security API any number of times
with different parameters but he can never inject code inside it, moreover, no
intermediate result will be made public by the API. This leads to a simpler model
where attackers can only act before and after each security API invocation, with
no need of making their code explicit. Memory manipulations and multiple runs
performed by attackers are covered by considering all =HH memories.

Example 2. We write x� to denote a variable of level �. Consider a program P in
which variable xLL stores the user entered PIN, yHH contains the real one, and
zLL := (xLL = yHH ) , i.e., zLL says if the entered PIN is the correct one or not.
This program is neither noninterferent nor robust.

To see this latter fact, consider the memories on the
M1 M2

yHH : 1234
xLL : 1111

yHH : 5678
xLL : 1111

M′
1 M′

2

yHH : 1234
xLL : 1234

yHH : 5678
xLL : 1234

right. It clearly holds that M1 =HH M′
1, M2 =HH M′

2

and M1 =LL M2, M′
1 =LL M′

2, but the execution of
P in the first two memories leads to indistinguishable
results in zLL, false/false, thus 〈M1, P 〉 ∼=LL 〈M2, P 〉,
while for the second ones we get true/false, and so
〈M′

1, P 〉 �=LL 〈M′
2, P 〉. Intuitively, the attacker has ‘guessed’ one of the secret

PINs and the program is revealing that his guess is correct: the attacker can
tamper with the declassification mechanism via xLL.

3 Cryptographic Primitives

In order to model our API case-study, we now extend arithmetic and Boolean
expressions with confounder generation new(), symmetric cryptography encx (e),
decx (e), Message Authentication Codes (MACs) macx (e), pairing pair(e1, e2)
and projection fst(e), snd(e). We extend standard values as, e.g., Booleans and
integers, with confounders r ∈ C and cryptographic keys k ∈ K. On these
atomic values we build cryptographic values and pairs ranged over by v : more
specifically, {|v |}k and 〈v〉k respectively represent the encryption and the MAC
of v using k as key, and (v1, v2) is a pair of values. We will often omit the brackets
to simplify the notation, e.g., we will write {|v1, v2|}k to indicate {|(v1, v2)|}k.

Based on this set of values we can easily give the semantics of the special
expressions mentioned above. For example, we have encx (e) ↓M {|v |}k whenever
e ↓M v and x ↓M k . Moreover, decx (e ′) ↓M v if e ′ ↓M {|v |}k and x ↓M k ; otherwise
decx (e ′) ↓M⊥, representing failure, and analogously for the other expressions.
Confounder generation new() ↓M r extracts a ‘random’ value, noted r ← C ,
from a set of values C . In real cryptosystems, the probability of extracting the
same random confounder is assumed to be negligible, if the set is suitably large,
so we symbolically model random extraction by requiring that extracted values
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are always different. Formally, if r , r ′ ← C then r �= r ′. Moreover, similarly to
[3,4], we assume C to be disjoint from the set of atomic names used in programs.
Full semantics of expressions can be found in [14].

To guarantee a safe use of cryptography we also assume that every expression
e different from enc, dec, mac, pair, and that every Boolean expression, except the
equality test: (i) always fails when applied to special values such as confounders,
keys, ciphertexts, and MACs (even when occurring in pairs), producing a ⊥;
(ii) never produces those values. This is important to avoid “magic” expres-
sions which encrypt/decrypt/MAC messages without knowing the key like, e.g.,
magicdecrypt(e) ↓M v when e ↓M {|v |}n. However, we permit equality checks as
they allow the intruder to track equal encryptions, as occurs in traffic analysis.

Security with cryptography. We now rephrase the notions of noninterference
and robustness in order to accommodate cryptographic primitives. In doing so,
we extend [13] in a non-trivial way by (i) accounting for integrity primitives such
as MACs; (ii) removing the assumption that cryptography is always randomized
via confounders. This latter extension is motivated by the fact that our case
study does not always adopt randomization in cryptographic messages. Notice,
however, that non-randomized encrypted messages are subject to traffic analysis,
thus confidentiality of those messages cannot be guaranteed except in special
cases that we will discuss in detail.

In order to extend the indistinguishability notion of definition 1 to crypto-
graphic primitives we assume that the level of keys is known a-priori. We believe
this is a fair assumption, since in practice it is fundamental to have information
about a key’s security before using it. Since we have only defined symmetric key
cryptography we only need trusted (of level HH ) and untrusted keys (of level
LL). The former are only known by the HSMs while the latter can be used by
the attackers. This is achieved by partitioning the set K into KHH and KLL.

As the intruder cannot access (or generate, in case of MACs) cryptographic
values protected by HH keys, one might state that such values are indistinguish-
able. However, an attacker might detect occurrences of the same cryptographic
values in different parts of the memory, as occurs in some traffic analysis attacks.

Example 3. Consider the program zLL := (xLL = yLL), which writes the result
of the equality test between xLL and yLL into

M1 M2

xLL : {|1234|}k

yLL : {|1234|}k

xLL : {|9999|}k

yLL : {|5678|}k

zLL. Given that it only works on LL variables it
can be considered as an intruder-controlled pro-
gram. Consider the memories M1 and M2, with
k ∈ KHH . An attacker cannot distinguish {|1234|}k from {|9999|}k and {|1234|}k
from {|5678|}k . However, running the above intruder-program on these memories,
he respectively obtains zLL = true and zLL = false, i.e., the resulting memories
clearly differ. The intruder has in fact detected the presence of two equal cipher-
texts in the first memory which allows him to distinguish M1 and M2.

Patterns and indistinguishability. This ability of the attacker to find equal
cryptographic values in the memories is formalized through the notion of pattern
inspired by Abadi et al. [4,5] and already adopted for modelling noninterference
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[13,20]. Note that we adopt patterns to obtain a realistic notion of distinguisha-
bility of ciphertexts in a symbolic model, and not to address computational
soundness as is done, e.g., in [4,5,6].

Patterns p extend values with the new symbol �v representing messages
encrypted with a key not available at the observation level �. More precisely,
we define a function p�(v) which takes a value and produces the correspond-
ing pattern by replacing all the encrypted values v protected by keys of level
�′ �	 � with �v , and leaving all the other values unchanged. For example,
for {|1234|}k in the example above we have pLL({|1234|}k) = �{|1234|}k

while
pHH({|1234|}k) = {|1234|}k . Function p�(v) descends recursively into subvalues.
For example, if k ′ ∈ KLL we have pLL({|{|10|}k , 20|}k ′) = {|�{|10|}k

, 20|}k ′. In
case of MACs, we just descend into subvalues, i.e., p�(〈v〉k ) = 〈p�(v)〉k , i.e., we
assume that all messages inside MACs are public.

Notice that, in �v , v is the whole (inaccessible) encrypted value, instead of
just a confounder as used in previous works [4,5,13,20]. In these works, each new
encryption includes a fresh confounder which can be used as a ‘representative’
of the whole encrypted value. Here we cannot adopt this solution since our
confounders are optional. To disregard the values of counfounders, once the
corresponding ciphertext has been accessed (i.e., when knowing the key), we
abstract them as the constant ⊥.

Given a bijection ρ : �v �→ �v , that we call hidden values substitution, we
write pρ to denote the result of applying ρ to the pattern p, and we write Mρ
to denote the memory in which ρ has been applied to all the patterns of M. On
hidden values substitutions we always require that keys are correctly mapped.
Formally ρ(�{|v |}k

) = �{|v ′|}k
.

Definition 4 (Crypto-indistinguishability). Let p�(M) denote M|� in which
all of the values v have been substituted by p�. M1 and M2 are indistinguishable
at �, written M1 ≈� M2, if there exists ρ such that p�(M1) = p�(M2) ρ .

Example 4. Consider again M1 and M2 of example 3. We observed that they
differ at level LL because of the presence of two equal ciphertexts in M1. Since
k ∈ KHH we obtain the values of xLL and yLL below. It is impossible to find a
hidden values substitution ρ mapping the first pLL(M1) pLL(M2)

xLL : �{|1234|}k

yLL : �{|1234|}k

xLL : �{|9999|}k

yLL : �{|5678|}k

memory to the second, as �{|1234|}k
cannot be

mapped both to �{|9999|}k
and �{|5678|}k

. Thus
we conclude that M1 �≈LL M2. If, instead,
M1(yLL) were, e.g., {|2222|}k we might use ρ = [�{|9999|}k

�→ �{|1234|}k
, �{|5678|}k

�→ �{|2222|}k
] obtaining pLL(M1) = pLL(M2)ρ and thus M1 ≈LL M2.

Noninterference and robustness. Security notions of section 2 naturally
extend to the new cryptographic setting by substituting =� with ≈� everywhere.
We need to be careful that memories do not leak cryptographic keys, i.e., that
keys disclosed at level � are all of that level or below, and that variables intended
to contain keys really do contain keys. This will be achieved in section 4 via a
notion of memory well-formedness.
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Formal analysis of an API attack on PIN V. We now illustrate how the
lack of integrity of the API parameters can be exploited to mount a real attack
leaking the PIN, and we show how this is formally captured as a violation of
robustness. We consider the case study of section 1 and concentrate on two
specific parameters, the dectab and the offset , which are used to respectively
calculate the values of x3 and x4. A possible attack on the system works by
iterating the following two steps, until the whole PIN is recovered [9]:
1. The intruder picks a decimal digit d, changes the dectab function so that values
previously mapped to d now map to d + 1 mod 10, and then checks whether the
system still returns ′′PIN correct ′′. Depending on this, the intruder discovers
whether or not digit d is present in the user ‘natural’ PIN contained in x3;
2. when a certain digit is discovered in the previous step by a ′′PIN wrong ′′

output, the intruder also changes the offset until the API returns again that the
PIN is correct. This allows the intruder to locate the position of the digit.

Example 5. In example 1 we let len=4, dectab=9753108642543210, offset=4732,
x1= A47295FDE32A48B1, EPB={|9897, r|}k. With these parameters the API
returns ′′PIN correct ′′. The attacker first chooses dectab ′=9753118642543211,
where the two 0’s have been replaced by 1’s. The aim is to discover whether or not
0 appears in x3. Invoking the API with dectab ′ we obtain the same intermediate
and final values, as decimalize(dectab′, A472) = decimalize(dectab, A472) = 5165.
This means that 0 does not appear in x3. The attacker proceeds by replac-
ing the 1’s of dectab by 2’s: with dectab ′′=9753208642543220 he obtains that
decimalize(dectab′′, A472)=5265 �= decimalize(dectab, A472)=5165, reflecting the
presence of 1’s in the original value of x3. Then, x4=sum mod10(5265, 4732)
=9997 instead of 9897 returning ′′PIN wrong′′.

The intruder now knows that digit 1 occurs is in x3. To discover its position
and multiplicity, he now tries variations of the offset so to ‘compensate’ for the
modification of the dectab. In particular, he tries to decrement each offset digit
by 1. For example, testing the position of one occurrence of one digit amounts
to trying the following offset variations: 3732, 4632, 4722, 4731. Notice that, in
this specific case, offset value 4632 makes the API return again ′′PIN correct′′.
The attacker now knows that the second digit of x3 is 1. Given that the offset is
public, he also calculates the second digit of the user PIN as 1 + 7 mod 10 = 8.

The above attack is based on the lack of integrity of the input data, which allows
an attacker to influence the declassification mechanism. We now show that this
is formally captured as a violation of robustness. We adopt a small trick to
model the PIN derivation encryption of x1: we write vdata as a ciphertext, e.g.,
{|A47295FDE32A48B1|}pdk, and we model the first encryption as a decryption
x1 := decpdk(vdata). The reason for this is that we have a symbolic model for
encryption that does not produce any low level bit-string encrypted data. Notice
also that this model is reasonable, as the high-confidentiality of the encrypted
value is ‘naturally’ protected by the HH PIN derivation key.

Consider now the four memories below, that only differ in the value of EPB
and dectab. It clearly holds that M1 ≈HH M′

1, M2 ≈HH M′
2 and M1 ≈LL M2,
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M′
1 ≈LL M′

2, the last two using ρ = [�{|1234,r′|}k
�→ �{|9897,r|}k

]. Since parameters
are all at level LL, these memories could be built by an attacker sniffing all
encryptions arriving at the verification facility. If we execute PIN V in M1 and
M2 we obtain ′′PIN wrong′′ in both cases as for memory M2, the encrypted
PIN is wrong, and for memory M1, the encrypted PIN M1 M2

dectab ′′

{|9897, r|}k

dectab ′′

{|1234, r′|}k

M′
1 M′

2

dectab
{|9897, r|}k

dectab
{|1234, r′|}k

is correct but the dectab′′ will change the value of de-
rived PIN. It follows 〈M1, PIN V〉 ≈LL 〈M2, PIN V〉. In
M′

1 and M′
2 the dectab is the correct one. Thus, exe-

cuting PIN V gives, respectively, ′′PIN correct′′ and
′′PIN wrong′′ and so 〈M′

1, PIN V〉 �≈LL 〈M′
2, PIN V〉,

breaking robustness. To overcome this problem, in-
tegrity of the input must be established.

4 Type System

We now give a new type system to statically check that a program with crypto-
graphic primitives satisfies robustness and, if it does not declassify any informa-
tion, noninterference. We will then use it to type-check a MAC-based variant of
the PIN verification and PIN translation API.

We refine integrity levels by introducing the notion of dependent domains used
to track integrity dependencies among variables. Dependent domains are denoted
D : D̃ where D ∈ D is a domain name. Intuitively, the values of domain D : D̃ are
determined by the values in the set of domains D̃. For example, PIN : PAN can
be read as ‘the PIN value relative to the account number PAN’: when the PAN
is fixed, the value of the PIN is also fixed. A domain D : ∅, also written D, is
called integrity representative and it can be used as a reference for checking the
integrity of other domains. In fact, integrity representatives cannot be modified
by programs and their values remain constant at run-time.

The integrity level associated to a dependent domain D : D̃, written [D : D̃], is
higher than H , i.e., [D : D̃] 	I H . In some cases, e.g., in arithmetic operations,
we necessarily loose information about the precise result domain D : D̃ and we
only record the fact the value is determined by domains D̃, written • : D̃. The
resulting integrity preorder is [D : D̃1] 	 [• : D̃1] 	I [• : D̃2] 	I H 	I L with
D̃1 ⊆ D̃2. We write δI to note the new integrity levels L, H, [D : D̃], [• : D̃], and
δC to note the usual confidentiality levels L, H . We also write C in place of [•], to
denote a constant value with no specific domain. Based on new levels δ = δCδI ,
we can give the type syntax:

τ ::= δ | cKμ
δ (τ) κ | encδ κ | mKδ(τ) | (τ1, τ2)

Type δ is for generic data at level δ; types cKμ
δ (τ) κ and mKδ(τ) respectively

refer to encryption and MAC keys of level δ, working on data of type τ ; κ
is a label that uniquely identifies one key type and label μ indicates whether
the ciphertext is ‘randomized’ via confounders (μ = R) or not (μ missing); we
only consider untrusted and trusted (constant) keys, respectively of level LL and
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Table 1. Security Type System - Cryptographic expressions with trusted keys

(enc-r)
Δ(x) = cKR

HC(τ ) κ Δ � e : τ

Δ � encR
x (e) : encLC�LI(τ) κ

(mac)
Δ(x) = mKδ(τ ) Δ � e : τ

Δ � macx (e) : LL � L(τ )

(dec-μ)
Δ(x) = cKμ

HC(τ ) κ Δ � e : encδCC�LI(τ) κ LC(τ ) = H

Δ � decμ
x (e) : τ

(enc-d)
Δ(x) = cKHC(τ ) κ Δ � e : τ CloseDDdet(τ )

Δ � encx (e) : encLC�LI(τ) κ

HC; encδ κ is the type for ciphertexts at level δ, obtained using the unique key
labelled κ; pairs are typed as (τ1, τ2).

A security type environment Δ : x �→ τ maps variables to security types.
The security environment Γ can be derived from Δ by just ‘extracting’ the level
of the types as follows: L(δ) = L(Kδ(τ) κ) = L(encδ κ) = δ and L((τ1, τ2)) =
L(τ1) � L(τ2). Notice that we write Kδ(τ) κ to indifferently denote encryption
and MAC key types. We also write LC(τ) and LI(τ) to respectively extract the
confidentiality and integrity level of type τ .

The subtype preorder ≤ extends the security level preorder 	 on levels δ with
encδCδI κ ≤ δCL. Moreover, from now on, we will implicitly identify low-integrity
types at the same security level, i.e., we will not distinguish τ and τ ′ whenever
L(τ) = L(τ ′) = δCL, written τ ≡ τ ′. This reflects the intuitions that we do not
make any assumption on what is stored into a low-integrity variable. We do not
include high keys in the subtyping and we also disallow the encryption (and the
MAC) of such keys: formally, in Kδ(τ) κ and (τ1, τ2) types τ, τ1, τ2 �= KHC(τ) κ.
We believe that transmission of high keys can be easily accounted for but we
leave this extension as future work.

Closed key types. In some typing rules we will require that types transported
by cryptographic keys are ‘closed’, meaning that they are all dependent domains
and all the dependencies are satisfied, i.e., all the required representatives are
present. As an example, consider cKμ

HC(τ) κ with τ = (H [D], H [D′ : D]). Types
transported by the key are all dependent domains and are closed: the set of
dependencies is {D}, since [D′ : D] depends on D, and the set of representatives
is {D}, because of the presence of the representative [D]. If we instead con-
sider τ ′ = (H [D], H [D′ : D], H [D′ : D′′]) we have that the set of dependencies
is {D, D′′} and the set of representatives is {D}, meaning that the type is not
closed: not all the dependencies can be found in the type. We write CloseDD(τ)
to denote that τ is closed and only contains dependent domains. When it ad-
ditionally does not transport randomized ciphertexts we write CloseDDdet(τ).
We will describe the importance of this closure conditions when describing the
typing rules.

Typing cryptography and MACs. Expressions are typed with judgment
Δ � e : τ , derived from the rules in Table 1. For lack of space we only report
rules for trusted cryptographic operations; full type-system can be found in [14].
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Table 2. Security Type System - Commands

Δ(x) = δCH Δ � e : δ′CH pc � δCH

Δ, pc � x := declassify(e)

Δ(x) = τ Δ � e : τ pc � L(τ ) � LH

Δ, pc � x := e

Δ(x) = mKHC(L[D], τ ) Δ � z : L[D] Δ � e : LL Δ � e ′ : LL Δ(y) = τ
IRs(L[D], τ ) = {D} CloseDD(L[D], τ ) Δ, pc � c1 Δ, pc � c2 pc � L(τ ) � LH

Δ, pc � if macx (z, e) = e ′ then (y := e; c1) else c2;⊥MAC

Rule (enc-r) is for randomized encryption: We let encR
x (e) and decR

x (e) denote,
respectively, encx (e, new()) and fst(decx (e)), i.e., an encryption randomized via
a fresh confounder and the corresponding decryption. The typing rule requires
a trusted key HC. The integrity level of the ciphertext is simply the least upper
bound of the levels of the key and the plaintext; the confidentiality level, instead,
is L, meaning that the resulting ciphertext preserves secrecy even when written
on an public/untrusted part of the memory.

Rule (dec-μ) is for (trusted) decryption and gives the correct type τ to the
obtained plaintext, if the confidentiality of the plaintext is at least H . This is to
avoid that indistinguishable ciphertexts are decrypted and then written on low
variables, breaking noninterference in a trivial way.

Rule (enc-d) is the most original one. It encodes a way to guarantee secrecy
even without confounders, i.e., with no randomization. The idea comes from for-
mat ISO0 for the EPB, which intuitively combines the PIN with the PAN before
encrypting it in order to prevent codebook-attacks. Consider, for example the ci-
phertext {|PAN, PIN|}k. Since every account, identified by the PAN, has its own
PIN, the PIN can be thought of as at level [PIN : PAN] (‘the PIN is fixed relative
to the PAN’). Thus equal PANs will determine equal PINs, which implies that
different PINs will always be encrypted together with different PANs, produc-
ing different EPBs. This avoids, for example, allowing an attacker to build up
a codebook of all the PINs. Intuitively, the PAN is a sort of confounder that is
‘reused’ only when its own PIN is encrypted. The rule requires CloseDDdet(τ)
which intuitively ensures that the ciphertext is completely determined by the
included integrity representative (e.g., the PAN), playing the role of confounder.
As in (enc-r) integrity is propagated and confidentiality of the ciphertext is L.

Rule (mac) is for the generation of MACs. Here, the confidentiality level of the
key does not contribute to the confidentiality level of the MAC, which just takes
the one of e. This reflects the fact that we only use MACs for integrity and we
always assume the attacker knows the content of MACs. The reason why we force
integrity to be low is technical and, more specifically, is to forbid declassification
of cryptographic values, which would greatly complicate the proof of robustness.
By the way, this is not limiting as there are no good reasons to declassify what
has been created to be low-confidentiality.

Typing rules for commands. As in existing approaches [23] we introduce
in the language a special expression declassify(e) for explicitly declassifying the
confidentiality level of an expression e to L. This new expression has no oper-
ational import, i.e., declassify(e) ↓M v iff e ↓M v . Declassification is thus only
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useful in the type-system to isolate program points where downgrading of secu-
rity happens, in order to control robustness.

Judgments for commands have the form Δ, pc � c where pc is the program
counter level. It is a standard way to track what information has affected control
flow up to the current program point [23]. For example, when entering a while
loop, the pc is raised to be higher or equal to the level of the loop guard expres-
sion. This prevents such an expression to allow flows to lower levels. In Table 2
we report the rule for declassification plus the only two that differ from [23].

The first rule lets a high integrity expression to be declassified, i.e., assigned
to some high-integrity variable independent of its confidentiality level, when also
the program counter is at high-integrity and the assignment to the variable is
legal (pc 	 δCH). The high-integrity requirement is for guaranteeing robustness:
no attacker will be able to influence declassification. Assignments (second rule)
are only possible at or above the pc level and at lower integrity levels (dependent
domains) if LI(pc) = H . This makes sense since we never move our observation
level below LH and is achieved by requiring pc 	 L(τ) � LH .

The third rule is peculiar of our approach: it allows the checking of a MAC
with respect to an integrity representative z. The rule requires that the first
parameter z is typed at level L[D]; the second parameter e and the MAC value
e ′ are typed LL. If the MAC succeeds, variable y of type τ is bound to the
result of e through an explicit assignment in the if-branch. Notice that such
an assignment would be forbidden by the type-system, as it is promoting the
integrity of an LL expression to an unrestricted type τ (as far as pc is high
integrity). This can however be proved safe since the value returned by the LL
expression matches an existing MAC, guaranteeing data integrity and allowing
us to ‘reconstruct’ their type from the type of the MAC key.

Side conditions IRs(L[D], τ) = {D} and CloseDD(L[D], τ) ensure that the MAC
contains only values which directly depend on the unique integrity representative
given by variable z. The ‘then’ branch is typed without any particular restriction,
while the ‘else’ one is required to end with a special failure command ⊥MAC which
just aims at causing non-termination of the program (it may be equivalently
thought of as a command with no semantics, which never reduces, or a diverging
program as, e.g., while true do skip). This is needed to prevent the attacker from
breaking integrity and robustness by just calling an API with incorrect MACs.
In fact, we can assume the attacker knows which MACs pass the tests and
which do not (unless he is trying brute-force/cryptanalysis attacks on the MAC
algorithm, that we do not account for here) and by letting the else branch fail
we just disregard those obvious, uninteresting, information flows.

Security results. We now prove that well-typed programs satisfy robustness
and, in case they do not declassify any information, noninterference. Our re-
sults hold under some reasonable well-formedness/integrity assumptions on the
memories: (i) variables of high level key-type really contain keys of the appro-
priate level, and such keys never appear elsewhere in the memory; (ii) values
of variables or encrypted messages at integrity H , or below, must adhere to the
expected type; for example, the value of a variable typed as high integrity pair is
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expected to be a pair; (iii) values for dependent domains [D : D̃] are uniquely de-
termined by the values of the integrity representatives D̃, e.g., when they appear
together in an encrypted message or a MAC or when they have been checked
in an if-MAC statement; (iv) confounders are used once: there cannot be two
different encrypted messages with the same confounder.

Condition (iii) states, for example, that if a MAC is expected (from the type
of its key) to contain the PAN, of level [PAN] and the relative PIN, of level
[PIN : PAN], encrypted with another key, all of the possible MACs with that key
will respect a function f[PIN:PAN], pre-established for each memory. For example,
let us assume f[PIN:PAN](pani) = pini. We have that all of these MACs are well-
formed: 〈pan1, {|pin1|}k〉k′ , 〈pan2, {|pin2|}k〉k′ , . . . , 〈panm, {|pinm|}k〉k′ , as they
all respect f[PIN:PAN].

Our first result states that a well-typed program run on well-formed memory,
noted Δ � M, always returns a well-formed memory:

Proposition 1. If Δ, pc � c, Δ � M and 〈M, c〉 ⇒ M′ then Δ � M′.

From now on, we will implicitly assume that memories are well-formed. The next
result states that when no declassification occurs in a program, then noninter-
ference holds. This might appear surprising as MAC checks seem to potentially
break integrity: an attacker might manipulate one of the MAC parameters to
gain control over the MAC check. In this way he can force the execution of one
branch or the other, however recall that by inserting ⊥MAC at the end of the
else branch we force that part of the program not to terminate. Weak indistin-
guishability will thus consider such an execution equivalent to any other, which
means it will disregard that (uninteresting) situation.

The next lemmas are used to prove the main results. The first one is peculiar to
our extension with cryptography: if an expression is typed below the observation
level �, we can safely assign it to two equivalent memories and still get equivalent
memories. We cannot just check the obtained values in isolation as, by traffic
analysis (modelled via patterns), two apparently indistinguishable ciphertexts
might be distinguished once compared with others.

Lemma 1 (Expression �-equivalence). Let M1 ≈� M2 and let Δ � e : τ and
e ↓Mi vi. If L(τ) 	 � or L(Δ(x)) �	 � then M1[x �→ vi] ≈� M2[x �→ vi].

Lemma 2 (Confinement). If Δ, pc � c then for every variable x assigned to
in c and such that Δ(x ) = τ it holds that pc 	 L(τ) � LH.

Theorem 1 (Noninterference). Let c be a program which does not contain
any declassification statement. If Δ, pc � c then c satisfies noninterference.2

We can now state our final results on robustness. We will consider programs
that assign declassified data to special variables assigned only once. This can
be easily achieved syntactically, e.g., by using one different variable for each de-
classification statement, i.e., x1 := declassify1(e1), . . . , xm := declassifym(em), and
avoiding placing declassifications inside while loops. These special variables are
2 For technical reasons this results does not hold for level LH (see [14] for details).
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only assigned here. We call this class of programs Clearly Declassifying (CD).
We do this to avoid, one more time, that attackers ‘incompetently’ hide flows
by resetting variables after declassification has happened.

Theorem 2 (Robustness). c ∈ CD and Δ, pc � c imply c satisfies robustness.

5 A Type-Checkable MAC-Based API

We now discuss PIN V M a MAC-based improvement of PIN V, which prevents
the attack of section 3, and several others from the literature. We show PIN V M
is type-checkable using our type system, and we also show where the original API
fails to type-check. The new API initially checks a MAC of all the parameters.

PIN_V_M(PAN ,EPB ,len ,offset ,vdata ,dectab ,MAC){
if (macak(PAN, EPB, len, offset, vdata, dectab)==MAC)

then EPB ′ := EPB;len′ := len;offset′ := offset;

vdata′ := vdata;dectab′ := dectab;
PIN_V(PAN ,EPB’,len’,offset ’,vdata ’,dectab ’);

else ret := ”integrity violation”;⊥MAC}

Intuitively, the MAC check
guarantees that the param-
eters have not been manip-
ulated. Some form of ‘legal’
manipulation is always possi-
ble: an intruder can get a dif-
ferent set of parameters, e.g.,
eavesdropped in a previous PIN verification and referring to a different PAN,
and can call the API with these parameters and the correct MAC validating
their integrity. This is actually captured by our notion of dependent domains by
typing all the MAC checked variables as dependent on the PAN.

We show typing in detail: all the parameters PAN, EPB, len, offset, vdata,
dectab, MAC are of type LL, since we assume the attacker can read and modify
them. The important element is the mac key ak which has type mKHC(L[PAN], τ)
with type τ = encL[•:PAN] κek, L[LEN : PAN], L[OFFS : PAN], encL[•:PAN] κpdk,
L[DECTAB : PAN]. Note that IRs(L[PAN], τ) = {PAN} and CloseDD(L[PAN], τ),
meaning that L[PAN] and τ are all domains which only depends on representative
PAN. All the checked variables are typed according to the above tuple, e.g.,
PAN ′ with L[PAN], EPB ′ with encL[•:PAN] κek and so on. Key ek is typed as
cKR

HC(H [PIN : PAN]) κek and key pdk as cKR
HC(H [HEX : PAN]) κpdk. The result

of the API will be stored in the ret variable whose type is LL.
To complete the typing of the MAC we need to type the two branches. The

else branch is trivial: the assignment to ret is legal and then it is followed by the
MAC-fail command. The other one amounts to checking the original API with
the new high integrity types. What happens is that x1 is typed H [HEX : PAN]
by rule (dec-μ) and x2, . . . , x4 are typed H [• : PAN] as results of arithmetic
operations. x6 (which is modelled as decR

k (EPB)) is typed H [PIN : PAN] by rule
(dec-μ). Thus, x7 := declassify(x4 = x6 ), which we explicitly add to the code, can
be typed LH as x4 = x6 types H [• : PAN] ≤ HH . Theorem 2 guarantees that
PIN V M is robust. In the original version of the API, without the MAC check, x4

and x6 would only be typeable with low integrity, and hence the declassification
would violate robustness.

PIN translation API. This API is used to decrypt and re-encrypt a PIN
under a different key and, possibly, a different format. In [14] we specify a
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MAC-based extension of the API for specifically translate from ISO-1 to ISO-
0 and we type-check it. ISO-0 is not randomized and pads the PIN with data
derived from the PAN. We thus use our (enc-d) typing rule to prove its security.

6 Conclusions

We have presented our extensions to information flow security types to model de-
terministic encryption and cryptographic assurance of integrity for robust declas-
sification. We have shown how to apply this to PIN processingAPIs. Most previous
approaches to formalising cryptographic operations in information flow analysis
have aimed to show howa programthat is noninterfering when executed in a secure
environment can be guaranteed secure when executed over an insecure network
by using cryptography, see e.g., [7,13,16,20,27]. They typically use custom crypto-
graphic schemes with strong assumptions, e.g. randomised cryptography and/or
signing of all messages. This means they are not immediately applicable to the
analysis of PIN processing APIs, which have weaker assumptions on cryptography.
[11] presents what seems to be the only information flow model for deterministic
encryption, that shows soundness of noninterference with respect to the concrete
cryptography model. However, it does not treat integrity. Gordon and Jeffreys’
type system for authenticity in security protocols could be used to check corre-
spondence assertions between the data sent from the ATM and the data checked
at the API [17]. However, this would not address the problem of declassification,
robustness or otherwise. Keighren et al. have outlined a framework for information
flow analysis specifically for security APIs [19], though this also currently models
confidentiality only. The formal analysis of security APIs has usually been carried
out by Dolev-Yao style analysis of reachability properties in an abstract model of
the API, e.g., [12,21,29]. This typically covers only confidentiality properties.

We plan in future to refine our framework on further examples from the PIN
processing world and elsewhere, and to model other cryptographic primitives
which can be used to assure integrity such as (unkeyed) hash functions and
asymmetric key digital signatures. We have also begun to investigate practical
ways to implement our scheme in cost-effective way [15].
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