
Type-based Proxy Re-encryption and its
Construction

Qiang Tang

Faculty of EWI, University of Twente, the Netherlands
q.tang@utwente.nl

Abstract. Recently, the concept of proxy re-encryption has been shown
very useful in a number of applications, especially in enforcing access con-
trol policies. In existing proxy re-encryption schemes, the delegatee can
decrypt all ciphertexts for the delegator after re-encryption by the proxy.
Consequently, in order to implement fine-grained access control policies,
the delegator needs to either use multiple key pairs or trust the proxy
to behave honestly. In this paper, we extend this concept and propose
type-based proxy re-encryption, which enables the delegator to selec-
tively delegate his decryption right to the delegatee while only needs one
key pair. As a result, type-based proxy re-encryption enables the dele-
gator to implement fine-grained policies with one key pair without any
additional trust on the proxy. We provide a security model for our con-
cept and provide formal definitions for semantic security and ciphertext
privacy which is a valuable attribute in privacy-sensitive contexts. We
propose two type-based proxy re-encryption schemes: one is CPA secure
with ciphertext privacy while the other is CCA secure without ciphertext
privacy.

1 Introduction

In a proxy re-encryption scheme [5,15], a delegator (say, Alice) and a delegatee
(say, Bob) generate a proxy key that allows a semi-trusted third party (say, the
proxy) to convert ciphertexts encrypted under Alice’s public key into ciphertexts
which can be decrypted by Bob. Recently, proxy re-encryption has been shown
very useful in a number of applications such as access control in file storage [1],
email forwarding [19], and law enforcement [13].

Motivation. We have the following observations on the existing proxy re-encryption
schemes and their applications. One is that, with respect to one key pair of the
delegator, the proxy is able to re-encrypt all the ciphertexts so that the delega-
tee can obtain all the plaintexts. The other is that, in many applications, it is
likely that the delegator only wishes a specific delegatee to see a subset of his
messages. In order to implement fine-grained access control policies, the delega-
tor can choose a different key pair for each possible subset of his messages and
choose a proxy to delegate his decryption right. However, this approach is infea-
sible in practice. Alternatively, the delegator can choose to trust the proxy to

enforce his policies by re-encrypting the pre-defined subset of his ciphertexts to
the specific delegatee. This approach is also infeasible because of the strong trust
requirement on the proxy. For example, if the proxy colludes with a malicious
delegatee (or, the proxy is compromised), then all messages of the delegator will
be compromised.

In fact, the delegator might have more concerns about the delegation in prac-
tical applications. An observation is that, with a public key encryption scheme, if
Alice encrypts a message for Bob using his public key, then Alice can stay anony-
mous. However, with a proxy re-encryption scheme, this kind of anonymity might
not be trivially achieved. For example, in the schemes in [11], Bob can (at least)
tell whether messages are from the same user or not.

Contribution. In this paper, we propose the concept of type-based proxy re-
encryption which enables the delegator to selectively delegate his decryption
right to delegatees. In a type-based proxy re-encryption scheme, the delegator
categorizes his messages (ciphertexts) into different subsets and is capable of
delegating the decryption right of each subset to a specific delegatee. The ci-
phertexts for the delegator are generated based on the delegator’s public key
and the message type which is used to identify the message subset. This new
primitive has (at least) the following promising properties. One is that the dele-
gator only needs one key pair so that the key management problem is simplified.
The other is that the delegator can choose a particular proxy for a specific dele-
gatee, which might be based on the sensitiveness of the delegation. Compromise
of one proxy key will only affect one subset of messages.

We provide a security model for our concept and provide formal definitions
for semantic security and ciphertext privacy which is a valuable attribute in
privacy-sensitive contexts. If a type-based proxy re-encryption scheme achieves
ciphertext privacy property then all re-encrypted ciphertexts are indistinguish-
able from normal ciphertexts originally generated for the delegatee, therefore,
message senders (the delegators) remain anonymous. We propose two type-based
proxy re-encryption schemes. The first scheme achieves ciphertext privacy and
is IND-PR-CPA secure based on the XDH and the Co-BDH assumptions in the
random oracle model. The second scheme is IND-PR-CCA secure based on the
BDH and the KE assumptions in the random oracle model, but it does not
achieve ciphertext privacy.

Related work. Mambo and Okamoto [15] firstly propose the concept of delegation
of decryption right in the context of speeding up decryption operations. Blaze,
Bleumer and Strauss [5] introduce the concept of atomic proxy cryptography
which is proxy re-encryption. They present an Elgamal [10] based proxy re-
encryption scheme, in which the proxy is also capable of converting ciphertexts
encrypted for Bob into ciphertexts which can be decrypted by Alice. Jakobsson
[14] and Zhou et al. [20] simultaneously propose quorum-based protocols, which
divide the proxy into many components. Dodis and Ivan [13] propose generic
constructions of proxy re-encryption schemes by using double-encryption. Ate-
niese et al. [1] propose an Elgamal based scheme and show its application in

securing file systems. In addition, Ateniese et al. also point out a number of
desirable properties for proxy re-encryption schemes. Note that these papers are
mainly focused on the traditional public-key encryption schemes. Apart from the
generic construction of Dodis and Ivan [13], there are two identity-based proxy
re-encryption schemes: one is proposed by Green and Ateniese [11] and the other
is proposed by Matsuo [16]. In both schemes, the delegator and the delegatee
are assumed to be registered at the same domain (or, the same key generation
center).

Organization. The rest of the paper is organized as follows. In Section 2 we
provide some preliminary knowledge. In Section 3 we present the security model
for type-based proxy re-encryption. In Section 4 we present the IND-PR-CPA
secure type-based proxy re-encryption scheme with ciphertext privacy and prove
its security. In Section 5 we present the IND-PR-CCA secure type-based proxy
re-encryption scheme without ciphertext privacy and prove its security. In Sec-
tion 6 we conclude the paper.

2 Preliminaries

If x is chosen uniformly at random from the set Y , then we write x ∈R Y . The
symbol ⊥ denotes an error message. Our security analysis is done in the random
oracle model [4]. Next, we review the necessary knowledge about pairing and the
related assumptions, and then review the Public Key Encryption (PKE).

2.1 Review of Pairing

More detailed information can be found in [6,12]. Generally, a pairing (or, bilinear
map) satisfies the following properties:

1. G1, G2, and GT are three multiplicative groups of prime order p;
2. g1 is a generator of G1 and g2 is a generator of G2;
3. ê : G1×G2 → GT is an efficiently-computable bilinear map with the following

properties:
– Bilinear: for all a, b ∈ Zp, we have ê(ga

1 , gb
2) = ê(g1, g2)ab.

– Non-degenerate: ê(g1, g2) 6= 1.

The Co-Bilinear Diffie-Hellman (Co-BDH) problem is as follows: given g1, g
a
1 , gb

1 ∈
G1, g2, g

c
2 ∈ G2 as input, output ê(g1, g2)abc ∈ GT . An algorithm A has advan-

tage ε in solving Co-BDH in G if

Pr[A(g1, g2, g
a
1 , gb

1, g
c
2) = ê(g1, g2)abc] ≥ ε,

where the probability is over the random choice of a, b, c ∈ Zp, and the random
bits of A.

Definition 1. We say that the Co-BDH assumption holds if any polynomial-
time adversary has only a negligible advantage ε in solving the Co-BDH problem.

Note that the Co-BDH assumption is closely related to the Asymmetric Bi-
linear Diffie-Hellman (ABDH) assumption defined in [7].

The eXternal Diffie-Hellman (XDH) assumption is also widely used in the
literature (e.g. [8]). We say that an algorithm A has advantage ε in solving the
XDH problem if

|Pr[A(g2, g
a
2 , gb

2, g
a·b
2) = 0]− Pr[A(g2, g

a
2 , gb

2, g
c
2) = 0]| ≥ ε,

where the probability is over the random choice of a, b, c ∈ Zp, and the random
bits of A.

Definition 2. We say that the XDH assumption holds if any polynomial-time
adversary has only a negligible advantage ε in solving the XDH problem.

Instead of the above general setting, the simplified setting is also widely used
(e.g. [6]). Here, a pairing (or, bilinear map) satisfies the following properties:

1. G and GT are two multiplicative groups of prime order p;
2. g is a generator of G;
3. ê : G×G→ GT is an efficiently-computable bilinear map with the following

properties:

– Bilinear: for all u, v ∈ G and a, b ∈ Zp, we have ê(ua, vb) = ê(u, v)ab.
– Non-degenerate: ê(g, g) 6= 1.

The Bilinear Diffie-Hellman (BDH) problem is as follows: given a tuple
g, ga, gb, gc ∈ G as input, output ê(g, g)abc ∈ G. An algorithm A has advan-
tage ε in solving BDH if

Pr[A(g, ga, gb, gc) = ê(g, g)abc] ≥ ε,

where the probability is over the random choice of a, b, c ∈ Zp, and the random
bits of A.

Definition 3. We say that the BDH assumption holds if any polynomial-time
algorithm has only a negligible advantage ε in solving the BDH problem.

Besides these computational/decisional assumptions, the Knowledge of Ex-
ponent (KE) assumption is also used in a number of papers (e.g. [3,9]). The KE
assumption is defined as follows.

Definition 4. For any adversary A, which takes a KE challenge (g, ga) as input
and returns (C, Y) where Y = Ca, there exists an extractor A′, which takes the
same input as A returns c such that gc = C.

2.2 Review of Public Key Encryption

A Public Key Encryption (PKE) scheme [17] involves a Trusted Third Party
(TTP) and users, and consists of four algorithms (Setup, KeyGen, Encrypt, Decrypt)
which are defined as follows. As a standard practice, the security of a PKE
scheme is evaluated by an attack game played between a challenger and an ad-
versary, where the challenger simulates the protocol execution and answers the
oracle queries from the adversary. Corresponding to the PKE algorithms, we
also introduce the oracles for the adversary.

– Setup(k) : Run by the TTP, this algorithm takes a security parameter k as
input and generates the public parameter params, which is an implicit input
for other algorithms and we omit it in the description for simplicity.

– KeyGen(k) : Run by a user, this algorithm generates a key pair (pk, sk). An
KeyGen oracle can be queried with a public key pk; the challenger returns
the corresponding private key sk.

– Encrypt(m, pk) : Run by the message sender, this algorithm takes a message
m and a public key pk as input, and outputs a ciphertext c encrypted under
the public key pk.

– Decrypt(c, sk) : Run by the message receiver, this algorithm takes a cipher-
text c and the private key sk as input, and outputs the message m. A Decrypt
oracle can be queried with a pair (c, pk) as input; the challenger returns
Decrypt(c, sk).

We extend the concept of PKE to type-based PKE which enables a message
sender to explicitly include some type information in the encryption process.
A type-based PKE consists of four algorithms (Setup,KeyGen, Encrypt,Decrypt),
where Setup and KeyGen are defined as above, and

– Encrypt(m, t, pk) : Run by the message sender, this algorithm takes a message
m, a type string t, and a public key pk as input, and outputs a ciphertext
c encrypted under the public key pk. Note that both c and t should be sent
to the message receiver.

– Decrypt(c, t, sk) : Run by the message receiver, this algorithm takes a cipher-
text c, a message type t, and the private key sk as input, and outputs the
message m. A Decrypt oracle can be queried with a pair (c, t, pk) as input;
the challenger returns Decrypt(c, t, sk).

In the above descriptions, the type information t can also be included as a
part of the ciphertext c, but we have explicitly used type information t as a label
of the ciphertext c. This is only a description preference.

3 The concept of Type-based Proxy Re-encryption

In a type-based proxy re-encryption scheme, the delegator possesses a key pair
(pk, sk) with a type-based PKE scheme (Setup1, KeyGen1,Encrypt1, Decrypt1),

as defined in Section 2.2. We assume that the delegatees use a PKE scheme
(Setup2,KeyGen2, Encrypt2, Decrypt2).

Suppose the delegator wants to delegate his decryption right for messages
with type t to a delegatee with key pair (pk′, sk′), he runs the Pextract algorithm
to generate the proxy key.

– Pextract(pk, pk′, t, sk) : This algorithm takes the delegator’s public key pk,
the delegatee’s public key pk′, a message type t, the delegator’s private key
sk as input and outputs the delegation key rk

pk
t→pk′

. A Pextract oracle can
be queried with a tuple (pk, pk′, t) as input; the challenger returns the proxy
key rk

pk
t→pk′

.

Note that all proxy keys, rk
pk

t→pk′
for any t and pk′, are generated based

on the delegator’s single key pair. To delegate his right, the delegator assigns
rk

pk
t→pk′

to an appropriate proxy, which will preform the re-encryption for the
delegator’s ciphertexts.

– Preenc(c, t, rk
pk

t→pk′
) : Run by the proxy, this algorithm takes a ciphertext

c (for the delegator), a message type t, and the proxy key rk
pk

t→pk′
as in-

put, and outputs a new ciphertext c′ (for the delegatee with (pk′, sk′)). A
Preenc oracle can be queried with (c, t, pk, pk′) as input; the challenger re-
turns Preenc(c, t, rk

pk
t→pk′

).

In contrast to the assumption of multi-level delegation (e.g. in [11]), we as-
sume that there is only one level delegation, namely the delegatees will not
further delegate their decryption rights to other users.

3.1 Threat Model for Type-based Proxy Re-encryption

In practice, there might be multiple different parties acting as proxies. For ex-
ample, Alice may choose Proxy 1 to delegate her decryption right to Bob and
choose a proxy 2 to delegate his decryption right to Charlie, where these two
proxies have no relationship. Every involved proxy is assumed to be semi-honest
in the following sense: it will honestly convert the delegator’s ciphertexts using
the proxy key; however, it might act maliciously to obtain some information
about the plaintexts of the delegator and the delegatee.

We identify the following security requirements with respect to the semantic
security for plaintexts.

1. Firstly, the proxy should not obtain any information about the plaintexts of
either the delegator or the delegatee.

2. Secondly, the delegatee should be able to decrypt all the appropriate type
of plaintexts of the delegator after the re-encryption by the proxy. However,
the delegatee alone should not obtain any information about the plaintexts
before the re-encrypted by the proxy. This is essential when we want the
proxy to be a policy enforcer.

In our formal definitions, these requirements lead to the IND-PR-CCA/IND-
PR-CPA security of type-based proxy encryption schemes for the delegator.

With a public key encryption scheme, if Alice encrypts a message to Bob
using his public key, then Alice can stay anonymous. However, with a proxy
re-encryption scheme, this kind of anonymity might not be trivially achieved.
For example, in the schemes in [11], Bob can tell whether messages are from the
same user or not. In many potential applications of proxy re-encryption, this
might become a privacy concern if the delegator does not want the delegatee to
know whether a certain message is from him or not. Therefore, a re-encrypted
ciphertext should be indistinguishable from a normal ciphertext generated under
the delegatee’s public key. This requirement leads to the definition of ciphertext
privacy.

3.2 Formal Security Definitions

Before the formal definitions, we first introduce the idea behind our IND-PR-
CCA definition (the idea of IND-PR-CPA security follows immediately). The
definition covers two types of adaptive adversaries: a malicious delegatee and
a malicious proxy. In the case of a malicious delegatee with key pair (pk′, sk′),
the adversary is allowed to know all proxy keys for message types t 6= t∗, either
the private key sk′′ or the proxy key rk

pk
t∗→pk′′

for any other delegatee with

(pk′′, sk′′), but not rk
pk

t∗→pk′
. In the case of a malicious proxy with rk

pk
t∗→pk′

,
the adversary is allowed to know all proxy keys for message types t 6= t∗, either
the private key sk′′ or the proxy key rk

pk
t∗→pk′′

for any other delegatee with

(pk′′, sk′′), but not sk′. In addition, the adversary is capable of issuing decryption
queries (see our remarks below). We believe the adversary has been granted the
most privileges possible.

IND-PR-CCA security. We first define the semantic security against a chosen
ciphertext attack for the delegator.

Definition 5. A type-based proxy re-encryption scheme is said to be IND-PR-
CCA secure for the delegator if any polynomial time adversary has only a negli-
gible advantage in the IND-PR-CCA game, where the adversary’s advantage is
defined to be |Pr[b′ = b]− 1

2 |.
Analogous to the IND-CCA definition [2], as depicted in Figure 1, the IND-

PR-CCA game is as follows.

1. Game setup: The challenger takes a security parameter k as input, runs
Setup1 to generate the public system parameter params1 and runs Setup2 to
generate the public system parameter params2. The challenger runs KeyGen1

to generate a key pair (pk, sk).
2. Phase 1: The adversary takes params1, params2, and pk as input, and has

access to the following types of oracles: KeyGen2, Pextract, Preenc, Decrypt1,
and Decrypt2. Once the adversary decides that Phase 1 is over, it outputs two

1. params1
$← Setup1(k); params2

$← Setup2(k); (pk, sk)
$← KeyGen1(k)

2. (m0, m1, t
∗)

$←A(KeyGen2,Pextract,Preenc,Decrypt1,Decrypt2)(params1, params2, pk)

3. b
$← {0, 1}; cb

$← Encrypt1(mb, t
∗, pk)

4. b′
$←A(KeyGen2,Pextract,Preenc,Decrypt1,Decrypt2)(params1, params2, pk, cb)

Fig. 1. IND-PR-CCA Security

equal length plaintexts m0,m1, and a message type t∗. At the end of Phase
1, the following constraint should be satisfied: For any pk′, if (pk, pk′, t∗) has
been queried to the Pextract oracle, then pk′ should not have been queried
to the KeyGen2 oracle.

3. Challenge: The challenger picks a random bit b ∈ {0, 1} and returns cb =
Encrypt1(mb, t

∗, pk) as the challenge to the adversary.
4. Phase 2: The adversary is allowed to continue querying the same types of

oracles as in Phase 1. At the end of Phase 2, we have the following constraints.

(a) (cb, t
∗, pk) has not been queried to the Decrypt1 oracle.

(b) For any pk′, if (pk, pk′, t∗) has been queried to the Pextract oracle, then
pk′ should not have been queried to the KeyGen2 oracle.

(c) If pk′ has been queried to the KeyGen2 oracle, (cb, t
∗, pk, pk′) should not

have been queried to the Preenc oracle.
(d) If (pk, pk′, t∗) has been queried to the Pextract oracle, then (c′b, pk′)

should not have been queried to the Decrypt2 oracle where c′b is a valid
output of Preenc(cb, t

∗, pk, pk′).

5. Guess (game ending): The adversary outputs a guess b′ ∈ {0, 1}.

We remark on the constraints (c) and (d) in the above game. In the case
of type-based proxy re-encryption, if the adversary obtains sk′, then a Preenc
query with the input (cb, t

∗, pk, pk′) is equivalent to a Decrypt1 query with the
input (cb, t

∗, pk). If the adversary obtains rk
pk

t∗→pk′
, then a Decrypt2 query with

the input (c′b, pk′), where c′b is a valid output of a Preenc query with the in-
put (cb, t

∗, pk, pk′), is equivalent to a Decrypt1 query with the input (cb, t
∗, pk).

These constraints are necessary to prevent the adversary from winning the game
trivially.

IND-PR-CPA security. We define the semantic security against a chosen plain-
text attack for the delegator. Analogous to the IND-CPA definitions for tra-
ditional PKE schemes [2], we can just remove the decryption privileges of the
adversary to define the IND-PR-CPA game, i.e. the oracle accesses to Preenc,
Decrypt1, and Decrypt2 are removed. However, we need to provide the adversary
a Preenc† oracle to cover the case that a malicious delegatee with (pk′, sk′) can
always decrypt the re-encrypted ciphertexts for him.

– Preenc†(m, t, pk, pk′): the challenger returns Preenc(Encrypt1(m, t, pk), t, rk
pk

t→pk′
).

1. params1
$← Setup1(k); params2

$← Setup2(k); (pk, sk)
$← KeyGen1(k)

2. (m0, m1, t
∗)

$←A(KeyGen2,Pextract,Preenc†)(params1, params2, pk)

3. b
$← {0, 1}; cb

$← Encrypt1(mb, t
∗, pk)

4. b′
$←A(KeyGen2,Pextract,Preenc†)(params1, params2, pk, cb)

Fig. 2. IND-PR-CPA Security

Note that the re-encrypted ciphertext might leak some information about the
delegator’s private key and hence help the adversary to obtain some information
of the delegator’s ciphertexts. This has been ignored in [11].

The IND-PR-CPA game is depicted in Figure 2, and a detailed description
can be obtained by forbidding the Preenc, Decrypt1, and Decrypt2 oracle access
and providing Preenc† oracle access in the IND-PR-CCA game.

Definition 6. A type-based proxy re-encryption scheme is said to be IND-PR-
CPA secure for the delegator if any polynomial time adversary has only a neg-
ligible advantage in the IND-PR-CPA game (depicted in Figure 2), where the
adversary’s advantage is defined to be |Pr[b′ = b]− 1

2 |.

Ciphertext privacy. The ciphertext privacy attribute means that, for any del-
egatee, a re-encrypted ciphertext is indistinguishable from a normal ciphertext
generated under the delegatee’s public key. The attack game for ciphertext pri-
vacy is as follows.

1. Game setup: The challenger takes a security parameter k as input, runs
Setup1 to generate the public system parameter params1 and runs Setup2 to
generate the public system parameter params2. The challenger runs KeyGen1

to generate a key pair (pk, sk).
2. Phase 1: The adversary takes params1, params2, and pk as input, and has

access to the following types of oracles: KeyGen2 and Pextract. Once the
adversary decides that Phase 1 is over, it outputs a message m, a message
type t, and pk′.

3. Challenge: The challenger picks a random bit b ∈ {0, 1} and returns a chal-
lenge cb as follows.
– If b = 0, then cb = Encrypt2(m, pk′).
– If b = 1, then cb = Preenc(Encrypt1(m, t, pk), t, rk

pk
t→pk′

).

4. Phase 2: The adversary has access to the same types of oracles as in Phase
1.

5. Guess (game ending): The adversary outputs a guess b′ ∈ {0, 1}.

Definition 7. A type-based proxy re-encryption scheme achieves ciphertext pri-
vacy if any polynomial time adversary has only a negligible advantage in the
above game, where the adversary’s advantage is defined to be |Pr[b′ = b]− 1

2 |.

4 CPA-secure Scheme with Ciphertext Privacy

In this section we propose a new type-based proxy re-encryption scheme which
achieves ciphertext privacy. The scheme is IND-PR-CPA secure based on the
Co-BDH and the XDH assumptions in the random oracle model. We note that
the ciphertext privacy is achieved through the re-randomization by the proxy.

4.1 Description of the Scheme

The delegator’s type-based PRE scheme. The delegator uses the following type-
based PKE scheme (Setup1,KeyGen1, Encrypt1, Decrypt1).

1. Setup1(k) : This algorithm generates three multiplicative cyclic groups G1,
G2, and GT of prime order p, a random generator g1 of G1, a random gen-
erator g2 of G2, a bilinear map ê : G1 ×G2 → GT , and two hash functions

H1 : {0, 1}∗ → G2, H2 : {0, 1}∗ → {0, 1}`,

where ` is a polynomial in k and {0, 1}` is the plaintext space. The public
parameter is denoted as params1 = (G1,G2,GT , p, g1, g2,H1,H2, ê, `), and
we further assume the type information is t ∈ {0, 1}∗.

2. KeyGen1(k) : This algorithm outputs a key pair (pk, sk) where u ∈R Zp,
pk = gu

1 , and sk = u.
3. Encrypt1(m, t, pk) : This algorithm outputs a ciphertext c = (c1, c2, c3),

where
r ∈R Zp, c1 = gr

1, h ∈R GT , c2 = m⊕ H2(h).

c3 = h · ê(pk, H1(0||t))r

= h · ê(g1,H1(0||t))u·r

4. Decrypt1(c, t, sk) : This algorithm recovers m as follows:

m′ = c2 ⊕ H2(
c3

ê(c1, H1(0||t))sk
)

= m⊕ H2(h)⊕ H2(
h · ê(g1, H1(0||t))u·r

ê(g1, H1(0||t))u·r)

= m

The delegatee’s PRE scheme. The delegatees use the following PKE scheme
(Setup2,KeyGen2, Encrypt2, Decrypt2).

1. Setup2(k) : Set params2 = params1 = (G1,G2,GT , p, g1, g2,H1,H2, ê, `).
2. KeyGen2(k) : This algorithm outputs a key pair (pk, sk), where v ∈R Zp,

pk = gv
2 , and sk = v.

3. Encrypt2(m, pk) : This algorithm outputs a ciphertext c = (c0, c1, c2, c3),
where

x, y ∈R Zp, c0 = gx
1 , c1 = gv·y

2 , w ∈R GT , c2 = m⊕ H2(w),

c3 = w · ê(gx
1 , gy

2)
= w · ê(g1, g2)x·y

4. Decrypt2(c, sk) : This algorithm recovers m as follows:

m′ = c2 ⊕ H2(
c3

ê(c0, c1)v−1)

= m⊕ H2(w)⊕ H2(
w · ê(g1, g2)x·y

ê(gx
1 , gv·y

2)v−1)

= m

The delegation algorithms. Suppose the delegator has a key pair (pk, sk), where
pk = gu

1 and sk = u. Suppose a delegatee has a key pair (pk′, sk′), where pk′ = gv
2

and sk′ = v. The algorithms Pextract and Preenc are defined as follows.

– Pextract(pk, pk′, t, sk): The proxy key is rk
pk

t→pk′
, where

s ∈R Zp, rk
pk

t→pk′
= (gv·s

2 , gs
2 · H1(0||t)−sk).

– Preenc(c, t, rk
pk

t→pk′
): Given a ciphertext c = (c1, c2, c3), where

c1 = gr
1, c2 = m⊕ H2(h), c3 = h · ê(g1,H1(0||t))u·r,

this algorithm computes a new ciphertext c′ = (c′0, c
′
1, c

′
2, c

′
3), where

z ∈R Zp, c′0 = c1, c′1 = g
v·(s+z)
2 , c′2 = c2,

c′3 = c3 · ê(c′0, g(s+z)
2 · H1(0||t)−sk)

= h · ê(gr
1,H1(0||t)u) · ê(gr

1, g
(s+z)
2 · H1(0||t)−u)

= h · ê(g1, g2)r·(s+z).

The re-encrypted ciphertext is also a valid ciphertext for the delegatee so
that the delegatee can obtain the plaintext m by running Decrypt2.

4.2 Security Analysis

The proposed scheme is proven to be IND-PR-CPA secure from Lemma 1 and
achieve ciphertext privacy from Lemma 2.

Lemma 1. The proposed type-based proxy re-encryption scheme is IND-PR-
CPA secure based on the Co-BDH and the XDH assumptions in the random
oracle model.

Proof sketch. We suppose that the total number of queries of the form 0||t
issued to H1 in Phase 1 of the IND-PR-CPA game is bounded by integer q1

1.
Suppose an adversary A has the advantage ε in the IND-PR-CPA game. The
security proof is done through a sequence of games [18].

Game0: In this game, the challenger faithfully answers the oracle queries
from A. The challenger simulates the random oracle H1 as follows: the challenger
maintains a list of vectors, each of them containing a request message, an element
of G2 (the hash-code for this message), and an element of Zp. After receiving
a request message, the challenger first checks its list to see whether the request
message is already in the list. If the check succeeds, the challenger returns the
stored element of G2; otherwise, the challenger returns gx

2 , where x a randomly
chosen element of Zp, and stores the new vector in the list. The challenger
simulates the random oracle H2 as follows: the challenger maintains a list of
vectors, each of them containing a request message and an element of {0, 1}` (the
hash-code for this message). After receiving a request message, the challenger
first checks its list to see whether the request message is already in the list. If the
check succeeds, the challenger returns the stored element of {0, 1}`; otherwise,
the challenger returns y which is a randomly chosen element of {0, 1}`, and stores
the new vector in the list. Let δ0 = Pr[b′ = b] in Game0, as we assumed at the
beginning, |δ0 − 1

2 | = ε.

Game1: In this game, the challenger performs as follows.

1. Game setup: The challenger faithfully performs.
2. Phase 1: The challenger randomly selects τ ∈ {1, 2, · · · , q1 + 1}. If τ ≤ q1,

suppose the τ -th input to H1 is 0||t′. The challenger faithfully answers the
oracle queries.

3. Challenge: After receiving (m0,m1, t
∗) from the adversary, the challenger

aborts if one of the following events occurs:
(a) 0||t∗ has been queried to H1 but is not the τ -th query.
(b) 0||t∗ has not been queried to H1 but τ ≤ q1.
The challenger faithfully returns the challenge.

4. The challenger performs faithfully in Phase 2.

Note that if the challenger does not abort and the τ -th queried has been made
in Phase 1, then t′ = t∗. The probability that the challenger successfully ends
is (at least) 1

q1+1 , i.e. the probability that the challenger does not abort in its
execution is 1

q1+1 . Let δ1 = Pr[b′ = b] given that the challenger successfully ends,
in which case δ1 = δ0. Let θ1 be the probability that the challenger successfully
ends and b′ = b in Game1, then we have θ1 = δ1

q1+1 .

1 For simplicity of description, it is reasonable to assume that the total number is
counted for queries with different inputs.

Game2: In this game, the challenger performs as follows.

1. Game setup: The challenger faithfully performs.
2. Phase 1: The challenger performs in the same way as in Game1 except for

the following.

– Pextract(pk, pk′, t′): The proxy key is computed as rk
pk

t′→pk′
, where

s ∈R Zp, q ∈R G2, rk
pk

t′→pk′
= (q, gs

2 · H1(0||t′)−sk).

– Preenc†(m, t′, pk, pk′): The challenger returns c′ = (c′0, c
′
1, c

′
2, c

′
3), where

x, z1, z2 ∈R Zp, c′0 = gx
1 , c′1 = (pk′)(z1+z2),

h ∈R GT , c′2 = m⊕ H2(h), c′3 = h · ê(g1, g2)x·(z1+z2).

3. Challenge: The challenger performs in the same way as in Game1.
4. The challenger performs in the same way as in Game1 except for the following.

– Pextract(pk, pk′, t∗): The proxy key is rk
pk

t∗→pk′
, where

s ∈R Zp, q ∈R G2, rk
pk

t∗→pk′
= (q, gs

2 · H1(0||t)−sk).

– Preenc(m, t∗, pk, pk′): The challenger returns c′ = (c′0, c
′
1, c

′
2, c

′
3), where

x, z1, z2 ∈R Zp, c′0 = gx
1 , c′1 = (pk′)(z1+z2),

h ∈R GT , c′2 = m⊕ H2(h), c′3 = h · ê(g1, g2)x·(z1+z2).

In this game, the difference with Game1 is that (gs
2, pk′, (pk′)s) is replaced

with (gs
2, pk′, q

H1(0||t∗)) in answering the Pextract query with the input (pk, pk′, t∗),
where the adversary is not allowed to issue a KeyGen2 query with the input pk′.
Let θ2 be the probability that the challenger successfully ends and b′ = b in
Game2, then |θ2 − θ1| is negligible based on the XDH assumption.

Game3: In this game, the challenger performs in the same way as in Game2,
except for the Challenge Phase: After receiving (m0,m1, t

∗), the challenger com-
putes the challenge c = (c1, c2, c3) as follows:

b ∈R {0, 1}, r ∈R Zp, c1 = gr
1, h, h1 ∈R GT , c2 = mb ⊕ H2(h), c3 = h1.

Compared with Game2, the challenger faithfully answers the oracle queries
except that the following event E1 occurs: there is a oracle query to H2 with the
input h1

ê(g1,H1(0||t))u·r . We first describe the following claim.

Claim. The probability Pr[E1] is negligible based on the Co-BDH assumption.

The proof of this claim is straightforward by constructing a Co-BDH solver as
follows: Given a Co-BDH challenge (g1, g2, g

a
1 , gb

1, g
c
2), set pk = ga

1 , gr
1 = gb

1, and
H1(0||t∗) = gc

2. We omit the details here. Let θ3 be the probability that the
challenger successfully ends and b′ = b in Game3. Since h ∈R GT and H2 is
a random oracle, we can conclude that θ3 = 1

2(q1+1) . From Claim 1, we have
|θ2 − θ3| is negligible.

We have shown that the following values are negligible: |θ1 − θ2|, |θ2 − θ3|.
Hence, |θ1 − θ3| = |θ1 − 1

2(q1+1) | is negligible. Recall that |δ0 − 1
2 | = ε, δ1 = δ0,

θ1 = δ1
q1+1 , we have ε

q1+1 is negligible so that ε is also negligible. The lemma now
follows. ut
Lemma 2. The proposed type-based proxy re-encryption scheme achieves ci-
phertext privacy unconditionally.

Proof sketch. Given a message m, the ciphertext generated by Encrypt2 is c =
(c0, c1, c2, c3), where

x, y ∈R Zp, c0 = gx
1 , c1 = gv·y

2 , w ∈R GT , c2 = m⊕H2(w), c3 = w · ê(g1, g2)x·y,

while the re-encrypted ciphertext is c′ = (c′0, c
′
1, c

′
2, c

′
3), where

r, z ∈R Zp, c
′
0 = gr

1, c
′
1 = g

v·(s+z)
2 , h ∈R GT , c′2 = m⊕H2(h), c′3 = h·ê(g1, g2)r·(s+z).

Since s is a fixed value, the statistical distance between the distributions of c
and c′ is 0. The lemma now follows. ut

5 CCA-secure scheme without ciphertext privacy

In this section we propose a new type-based proxy re-encryption scheme which is
IND-PR-CCA secure based on the BDH and the KE assumptions in the random
oracle model. However, the scheme does not achieve ciphertext privacy.

5.1 Description of the Scheme

The delegator’s type-based PKE scheme. The delegator uses the following type-
based PKE scheme (Setup1,KeyGen1, Encrypt1, Decrypt1).

1. Setup1(k) : This algorithm generates two cyclic groups G and GT of prime
order p, a generator g of G, a bilinear map ê : G×G→ GT , and three hash
functions

H1 : {0, 1}∗ → G, H2 : {0, 1}∗ → Zp, H3 : {0, 1}∗ → {0, 1}`,

where ` is a polynomial of k and {0, 1}` is the plaintext space. The public
parameter is denoted as params1 = (G,GT , p, g, H1,H2,H3, ê, `), and we
further assume the type information is t ∈ {0, 1}∗.

2. KeyGen1(k) : This algorithm outputs a key pair (pk, sk) where u ∈R Zp,
pk = gu, and sk = u.

3. Encrypt1(m, t, pk) : This algorithm outputs the ciphertext c = (c1, c2, c3, c4),
where

h ∈ GT , c1 = gH2(m||h), c2 = h · ê(pk, H1(0||t))H2(m||h),

c3 = m⊕ H3(h), c4 = H1(1||c1||c2||c3)H2(m||h).

4. Decrypt1(c, t, sk) : This algorithm recovers the plaintext as follows:
(a) Verify ê(c1, H1(1||c1||c2||c3)) = ê(g, c4).
(b) Compute h = c2

ê(H1(0||t),c1)sk and m = c3 ⊕ H3(h).
(c) Verify c1 = gH2(m||h).
(d) Return m.
During decryption, if any of the verifications fails, the algorithm returns an
error symbol ⊥.

The delegatee’s PKE scheme. Suppose (Setup,KeyGen, Encrypt,Decrypt) is a
PKE scheme which has the plaintext space Zp. The delegatees use a PKE scheme
(Setup2,KeyGen2, Encrypt2, Decrypt2).

1. Setup2(k) : Output params2 = (params,G,GT , p, g, H1,H2,H3, ê, `) where
params is the public parameter generated by Setup(k).

2. KeyGen2(k) : Output a key pair (pk, sk) which is the output of KeyGen(k).
3. Encrypt2(m, pk) : This algorithm outputs the ciphertext c = (c−1, c0, c1, c2, c3),

where

w ∈ GT , x, y ∈R Zp, c−1 = Encrypt(x, pk), c0 = Encrypt(y, pk), c1 = gH2(m||w),

c2 = w · ê(gH2(m||w), H1(2||x||c−1||pk) · H1(2||y||c0||pk)), c3 = m⊕ H3(w).

4. Decrypt2(c, sk) : This algorithm recovers the plaintext as follows:
(a) Compute w = c2

ê(c1,H1(2||Decrypt(c−1,sk)||c−1||pk)·H1(2||Decrypt(c0,sk)||c0||pk)) and
m = c3 ⊕ H3(w).

(b) Verify c1 = gH2(m||w).
(c) Return m.
During decryption, if any of the verifications fails, the algorithm returns an
error symbol ⊥.

The delegation algorithms. Suppose the delegator has a key pair (pk, sk). Sup-
pose a delegatee has the key pair (pk′, sk′). The algorithms Pextract and Preenc
are defined as follows.

– Pextract(pk, pk′, t, sk): The proxy key is rk
pk

t→pk′
, where

s1 ∈R Zp, s2 = Encrypt(s1, pk′),

rk
pk

t→pk′
= (s2, H1(2||s1||s2||pk′) · H1(0||t)−sk).

– Preenc(c, t, rk
pk

t→pk′
): Given a ciphertext c = (c1, c2, c3, c4), where

c1 = gH2(m||h), c2 = h · ê(pk, H1(0||t))H2(m||h),

c3 = m⊕ H3(h), c4 = H1(1||c1||c2||c3)H2(m||h).

this algorithm first verifies ê(c1,H1(1||c1||c2||c3)) = ê(g, c4). If the verifica-
tion passes, it computes a new ciphertext c′ = (c′−1, c

′
0, c

′
1, c

′
2, c

′
3), where

r ∈R Zp, c′−1 = Encrypt(r, pk′), c′0 = s2, c′1 = c1, c′3 = c3,

c′2 = c2 · ê(c′1,H1(2||r||c′−1||pk′) · H1(2||s1||s2||pk′) · H1(0||t)−sk)

= h · ê(pk, H1(0||t))H2(m||h) · ê(gH2(m||h), H1(2||r||c′−1||pk′)

·H1(2||s1||s2||pk′) · H1(0||t)−sk)
= h · ê(gH2(m||h),H1(2||r||c′−1||pk′) · H1(2||s1||s2||pk′)).

Otherwise, it return an error symbol ⊥.

It is clear that the re-encrypted ciphertext is also a valid ciphertext for the
delegatee so that the delegatee can obtain the plaintext m by running Decrypt2.

5.2 Security Analysis

The proposed scheme is proven to be IND-PR-CCA secure from Lemma 3.

Lemma 3. The proposed type-based proxy re-encryption scheme is IND-PR-
CCA secure based on the BDH assumption and the KE assumptions in the ran-
dom oracle model, given that (Setup, KeyGen, Encrypt, Decrypt) is deterministic
and one-way.

Proof sketch. We suppose that the total number of queries of the form 0||t
issued to H1 in Phase 1 of the IND-PR-CCA game is bounded by integer q1.
Suppose an adversary A has the advantage ε in the IND-PR-CCA game. The
security proof is done through a sequence of games [18].

Game0: In this game, the challenger faithfully answers the oracle queries
from A. The challenger simulates the random oracle H1 as follows: the challenger
maintains a list of vectors, each of them containing a request message, an element
of G (the hash-code for this message), and an element of Zp. After receiving a
request message, the challenger first checks its list to see whether the request
message is already in the list. If the check succeeds, the challenger returns the
stored element of G; otherwise, the challenger returns gx, where x a randomly
chosen element of Zp, and stores the new vector in the list. The challenger
simulates the random oracle H2 as follows: the challenger maintains a list of
vectors, each of them containing a request message and an element of Zp (the
hash-code for this message). After receiving a request message, the challenger
first checks its list to see whether the request message is already in the list. If the

check succeeds, the challenger returns the stored element of Zp; otherwise, the
challenger returns y which is a randomly chosen element of Zp, and stores the new
vector in the list. The challenger simulates the random oracle H3 as follows: the
challenger maintains a list of vectors, each of them containing a request message
and an element of {0, 1}` (the hash-code for this message). After receiving a
request message, the challenger first checks its list to see whether the request
message is already in the list. If the check succeeds, the challenger returns the
stored element of {0, 1}`; otherwise, the challenger returns z which is a randomly
chosen element of {0, 1}`, and stores the new vector in the list. Let δ0 = Pr[b′ = b]
in Game0, as we assumed at the beginning, |δ0 − 1

2 | = ε.
Game1: In this game, the challenger performs in the same way as in Game0,

except the following phases.

– Phase 1: The challenger randomly selects τ ∈ {1, 2, · · · , q1 + 1}. If τ ≤ q1,
suppose the τ -th input to H1 is 0||t′. The challenger faithfully answers the
oracle queries.

– Challenge: After receiving (m0,m1, t
∗) from the adversary, the challenger

aborts if one of the following events occurs:
• 0||t∗ has been queried to H1 but is not the τ -th query.
• 0||t∗ has not been queried to H1 but τ ≤ q1.

Note that if the challenger does not abort and the τ -th queried has been made
in Phase 1, then t′ = t∗. The probability that the challenger successfully ends is
(at least) 1

q1+1 . Let δ1 = Pr[b′ = b] given that the challenger successfully ends,
in which case δ1 = δ0. Let θ1 be the probability that the challenger successfully
ends and b′ = b in Game1, then we have θ1 = δ1

q1+1 .
Game2: In this game, the challenger performs in the same way as in Game1

except that that collision occurs to H1, H2, or H3. Since these hash functions are
modeled as random oracles, therefore the probability a collision occurs to any
of them is negligible. Let θ2 be the probability that the challenger successfully
ends and b′ = b in Game2, then we have |θ1 − θ2| = ε2 is negligible.

Game3: In this game, the challenger performs in the same way as in Game2

except for answering Decrypt2 as follows: Given the input (c−1, c0, c1, c2, c3), the
challenger returns ⊥ if the following check fails: There are not H1 queries with
the input 2||x′||c−1||pk′ and 2||y′||c0||pk′ to such that c0 = Encrypt1(y′, pk′),
w′ = c2

ê(c1,H1(2||x′||c−1||pk′)·H1(2||y′||c0||pk′)) , m′ = c3⊕H3(w′), and c1 = gH2(m
′||w′).

Otherwise, the challenger returns m′. Let θ3 be the probability that the chal-
lenger successfully ends and b′ = b in Game3, then we have |θ2 − θ3| = ε3
is negligible because (Setup, KeyGen, Encrypt, Decrypt) is deterministic and the
hash functions are random oracles.

Game4: The challenger performs as in the same way as in Game3 except for
answering Decrypt1 as follows: Given the input (c1, c2, c3, c4), the challenger re-
turns ⊥ if the following check fails: There is a query m′||h′ to H2 such that c1 =
gH2(m

′||h′), m′ = c3⊕H3(c2

ê(H1(0||t),pk)H2(m′||h′)), and c4 = H1(1||c1||c2||c3)H2(m
′||h′).

Otherwise, the challenger returns m′. Let θ4 be the probability that the chal-
lenger successfully ends and b′ = b in Game4, then we have |θ3 − θ4| = ε4 is
negligible because the hash functions are random oracles.

Game5: The challenger performs in the same way as in Game4 except for the
following. The challenger keeps a list of vectors of the form (pk, pk′, rk

pk
t∗→pk′

, h1)
and answers Pextract and Preenc as follows.

– Pextract(pk, pk′, t∗): If the proxy key exists, the challenger returns it. Oth-
erwise, the challenger returns the proxy key rk

pk
t∗→pk′

= (s2, h1), where

s1 ∈R Zp, s2 = Encrypt(s1, pk′), h1 ∈R G, h2 = H1(2||s1||s2||pk′),

and adds (pk, pk′, rk
pk

t∗→pk′
, h1) to the list.

– Preenc(c, t∗, pk, pk′): The challenger checks whether a vector of the form

(pk, pk′, rk
pk

t∗→pk′
, h1)

exists. If not, the challenger generates rk
pk

t∗→pk′
= (s2, h1), where

s1 ∈R Zp, s2 = Encrypt(s1, pk′), h1 ∈R G, h2 = H1(2||s1||s2||pk′),

and adds (pk, pk′, rk
pk

t∗→pk′
, h1) to the list. If c = cb, then the challenger

returns c′ = (c′−1, c
′
0, c

′
1, c

′
2, c

′
3), where

r ∈R Zp, c′−1 = Encrypt(r, pk′), c′0 = s2, c′1 = c1, c′3 = c3, c′2 = c2 · ê(c′1, h1).

Otherwise, the challenger verifies

ê(c1, H1(1||c1||c2||c3)) = ê(g, c4).

If the verification passes, the challenger extracts α such that c1 = gα, returns
the re-encrypted ciphertext as

r ∈R Zp, c′−1 = Encrypt(r, pk′), c′0 = s2, c′1 = c1, h3 = H1(2||r||c′−1||pk′),

c′2 = c2 · ê(c′1, h2 · h3) · ê(pk, H1(0||t∗))−α, c′3 = c3.

Game5 differs from Game4 only when one of the following events occurs:

1. For some pk′, the adversary issues a H1 query with the input 2||s1|| ∗ ||pk′

for any string ∗, but pk′ has not been issued to KeyGen2.
2. For some pk′, the adversary issues a H1 query with the input 2||r|| ∗ ||pk′ for

any string ∗, but pk′ has not been issued to KeyGen2.
3. The challenger cannot extract α for c1 = gα.

From the difference lemma [18], we have |δ5 − δ4| ≤ ε5 which is negligible in
the random oracle model, given that (Setup,KeyGen, Encrypt,Decrypt) is one-way
and the KE assumption is true for G.

Game6: In this game, the challenger performs in the same way as in Game5,
except for the Challenge Phase: After receiving (m0,m1, t

∗), the challenger com-
putes the challenge c = (c1, c2, c3, c4) as follows:

b ∈R {0, 1}, y ∈R Zp, h, h1 ∈R GT ,

c1 ∈R G, c2 = h1, c3 = mb ⊕ H3(h), gy = H1(1||c1||c2||c3), c4 = cy
1.

Compared with Game5, the challenger faithfully answers the oracle queries
except that the following event E1 occurs: there is a oracle query to H3 with the
input h1

ê(pk,H1(0||t))H2(mb||h) . We first describe the following claim.

Claim. The probability Pr[E1] is negligible based on the BDH assumption.

The proof of this claim is straightforward, so that we omit the details here. Let
θ6 be the probability that the challenger successfully ends and b′ = b in Game6.
Since h ∈R GT and H3 is a random oracle, we can conclude that θ6 = 1

2(q1+1) .
From Claim 2, we have |θ5 − θ6| is negligible.

We have shown that the following values are negligible: |θ1 − θ2|, |θ2 − θ3|,
|θ3 − θ4|, |θ4 − θ5|, and |θ5 − θ6|. Hence, |θ1 − θ6| = |θ1 − 1

2(q1+1) | is negligible.
Recall that |δ0 − 1

2 | = ε, δ1 = δ0, θ1 = δ1
q1+1 , we have ε

q1+1 is negligible so that ε
is also negligible. The lemma now follows. ut

6 Conclusion

In this paper we have introduced the concept of type-based proxy re-encryption
to address the inefficiency issues of traditional proxy re-encryption schemes in
practical applications. We have also proposed two schemes which are IND-PR-
CPA secure and IND-PR-CCA secure respectively. The IND-PR-CPA secure
scheme also achieves ciphertext privacy (which means that a re-encrypted ci-
phertext is indistinguishable from a normal ciphertext for the delegatee), but
the IND-PR-CCA secure scheme does not achieve this attribute. Designing an
IND-PR-CCA scheme with ciphertext privacy is left as an open problem. The
security model proposed in this paper is particularly designed for traditional
PKE schemes, hence, it is interesting to extend it to the ID-based setting.

References

1. G. Ateniese, K. Fu, M. Green, and S. Hohenberger. Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM Trans. Inf. Syst.
Secur., 9(1):1–30, 2006.

2. M. Bellare, A. Desai, D. Pointcheval, and P. Rogaway. Relations among notions of
security for public-key encryption schemes. In H. Krawczyk, editor, Advances in
Cryptology — CRYPTO 1998, volume 1462 of LNCS, pages 26–45. Springer, 1998.

3. M. Bellare and A. Palacio. The knowledge-of-exponent assumptions and 3-round
zero-knowledge protocols. In M. K. Franklin, editor, Advances in Cryptology —
CRYPTO 2004, volume 3152 of LNCS, pages 273–289. Springer, 2004.

4. M. Bellare and P. Rogaway. Random oracles are practical: a paradigm for designing
efficient protocols. In Proceedings of the 1st ACM conference on Computer and
communications security, pages 62–73. ACM Press, 1993.

5. M. Blaze, G. Bleumer, and M. Strauss. Divertible protocols and atomic proxy
cryptography. In K. Nyberg, editor, Advances in Cryptology — EUROCRYPT
’98, volume 1403 of LNCS, pages 127–144. Springer, 1998.

6. D. Boneh and M. K. Franklin. Identity-based encryption from the weil pairing. In
J. Kilian, editor, Advances in Cryptology — CRYPTO ’01, volume 2139 of LNCS,
pages 213–229. Springer, 2001.

7. N. Borisov and S. Mitra. Restricted queries over an encrypted index with applica-
tions to regulatory compliance. In S. M. Bellovin, R. Gennaro, A. D. Keromytis,
and M. Yung, editors, Applied Cryptography and Network Security, 6th Interna-
tional Conference, ACNS 2008, New York, NY, USA, June 3-6, 2008. Proceedings,
volume 5037 of LNCS, pages 373–391, 2008.

8. J. Camenisch, S. Hohenberger, and A. Lysyanskaya. Compact E-Cash. In
R. Cramer, editor, Advances in Cryptology - EUROCRYPT 2005, volume 3494
of LNCS, pages 302–321. Springer, 2005.

9. Ivan Damg̊ard. Towards practical public key systems secure against chosen cipher-
text attacks. In J. Feigenbaum, editor, Advances in Cryptology — CRYPTO 1991,
volume 576 of LNCS, pages 445–456. Springer, 1991.

10. T. ElGamal. A public key cryptosystem and a signature scheme based on discrete
logarithms. In G. R. Blakley and D. Chaum, editors, Advances in Cryptology —
CRYPTO ’84, volume 196 of LNCS, pages 10–18. Springer, 1985.

11. M. Green and G. Ateniese. Identity-based proxy re-encryption. In J. Katz and
M. Yung, editors, Applied Cryptography and Network Security, 5th International
Conference, volume 4521 of LNCS, pages 288–306. Springer, 2007.

12. G. Seroussi I. F. Blake and N. P. Smart. Elliptic Curves in Cryptography. Cam-
bridge University Press, 1999.

13. A. Ivan and Y. Dodis. Proxy cryptography revisited. In Proceedings of the Network
and Distributed System Security Symposium. The Internet Society, 2003.

14. Markus Jakobsson. On quorum controlled asymmetric proxy re-encryption. In
H. Imai and Y. Zheng, editors, Public Key Cryptography, Second International
Workshop on Practice and Theory in Public Key Cryptography, volume 1560 of
LNCS, pages 112–121. Springer, 1999.

15. M. Mambo and E. Okamoto. Proxy cryptosystems: Delegation of the power to
decrypt ciphertexts. IEICE TRANSACTIONS on Fundamentals of Electronics,
Communications and Computer Sciences, E80-A(1):54–63, 1997.

16. T. Matsuo. Proxy re-encryption systems for identity-based encryption. In T. Tak-
agi, T. Okamoto, E. Okamoto, and T. Okamoto, editors, Pairing-Based Cryptog-
raphy — Pairing 2007, volume 4575 of LNCS, pages 247–267. Springer, 2007.

17. A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied
Cryptography. CRC Press, 1997.

18. V. Shoup. Sequences of games: a tool for taming complexity in security proofs.
http://shoup.net/papers/, 2006.

19. L. Wang, Z. Cao, T. Okamoto, Y. Miao, and E. Okamoto. Authorization-Limited
Transformation-Free Proxy Cryptosystems and Their Security Analyses*. IEICE
Transactions on Fundamentals of Electronics, Communications and Computer Sci-
ences, (1):106–114, 2006.

20. L. Zhou, M. A. Marsh, F. B. Schneider, and A. Redz. Distributed blinding for
distributed elgamal re-encryption. In Proceedings of the 25th IEEE International
Conference on Distributed Computing Systems, pages 824–824. IEEE Computer
Society, 2005.

