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Abstract

This paper presents a static race detection analysis for
multithreaded Java programs. Our analysis is based
on a formal type system that is capable of captur-
ing many common synchronization patterns. These
patterns include classes with internal synchronization,
classes that require client-side synchronization, and
thread-local classes. Experience checking over 40,000
lines of Java code with the type system demonstrates
that it is an effective approach for eliminating races con-
ditions. On large examples, fewer than 20 additional
type annotations per 1000 lines of code were required
by the type checker, and we found a number of races in
the standard Java libraries and other test programs.

1 Introduction

Race conditions are common, insidious errors in multi-
threaded programs. A race condition occurs when two
threads manipulate a shared data structure simultane-
ously, without synchronization. Race conditions often
result in unexpected program behavior, such as pro-
gram crashes or incorrect results. They can be avoided
by careful programming discipline: protecting each data
structure with a lock and acquiring that lock before
manipulating the data structure [Bir89]. Since a lock
can be held by at most one thread at any time, careful
adherence to this lock-based synchronization discipline
ensures a race-free program.

Current programming tools provide little support for
this synchronization discipline. It is easy to write a
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program that, by mistake, neglects to perform certain
crucial synchronization operations. These synchroniza-
tion errors are not detected by traditional compile-time
checks. Furthermore, because the resulting race condi-
tions are scheduler dependent, they are difficult to catch
using testing techniques. A single synchronization error
in an otherwise correct program may yield a race condi-
tion whose cause may take weeks to identify [SBN+97].

This paper investigates a static analysis system for
detecting race conditions in Java programs. The anal-
ysis supports the lock-based synchronization discipline
by tracking the protecting lock for each shared field in
the program and verifying that the appropriate lock is
held whenever a shared field is accessed. We express
the reasoning and checks performed by this analysis as
an extension of Java’s type system.

This work builds on an earlier paper that describes
a race-free type system for a concurrent object calcu-
lus [FA99a]. We start by adapting that type system to
a core subset of Java. This initial type system is suf-
ficient to verify some example programs as race free.
In order to accommodate larger, more realistic, multi-
threaded programs, we extend the initial type system
with a number of additional features. These features
include:

1. classes parameterized by locks, which allow the
fields of a class to be protected by some lock ex-
ternal to the class;

2. the notion of objects that are local to a particu-
lar thread and therefore safely accessible without
synchronization; and

3. mechanisms for escaping the type system in places
where it proves too restrictive, or where a partic-
ular race condition is considered benign.

To evaluate the utility of the resulting type sys-
tem, we implemented a type checker and tested it on
a variety of Java programs totaling over 40,000 lines
of code. These programs include the standard Java in-
put/output package java.io; an interpreter for the web



scripting language WebL; and Ambit, a mobile object
calculus implementation.

Checking these programs using our type system re-
quires adding some additional type annotations. This
annotation burden is not excessive; typically fewer
than 20 annotations were required per 1000 lines of
code. Most of the annotations were inserted based
on feedback from the type checker. This annotation
process proceeded at a rate of roughly 1000 lines of
code per programmer-hour. During this process, we
discovered a number of race conditions in the pro-
grams being checked, including one race condition in
java.util.Vector, four in the java.io package, and
five in the WebL implementation. Although it is far
from complete, the type system proved sufficiently ex-
pressive to accommodate the majority of synchroniza-
tion patterns present in these programs.

The presentation of our results proceeds as follows.
Section 2 introduces a small concurrent subset of Java,
which we use to provide a formal description of our
type system. Section 3 describes an initial race-free
type system. We extend the system to include classes
parameterized by locks in Section 4 and thread-local
classes in Section 5. Section 6 describes our prototype
implementation, including the escape mechanisms. Sec-
tion 7 discusses our experiences checking several Java
programs. We relate this work to other projects in Sec-
tion 8, and we conclude in Section 9. The Appendix
contains a formal description of the type system.

2 A Multithreaded Subset of Java

This section introduces a small multithreaded subset
of Java, ConcurrentJava. This language is derived
from ClassicJava [FKF98], a sequential subset of
Java, and we adopt much of the type structure and
semantics of ClassicJava.

2.1 Syntax and Informal Semantics

ConcurrentJava supports multithreaded programs
by including the operation fork e which spawns a new
thread for the evaluation of e. This evaluation is per-
formed only for its effect; the result of e is never used.
Locks are provided for thread synchronization: each ob-
ject has an associated lock that has two states, locked
and unlocked, and is initially unlocked. The expression
synchronized e1 in e2 is evaluated in a manner similar
to Java’s synchronized statement: the subexpression
e1 is evaluated first, and should yield an object, whose
lock is then acquired; the subexpression e2 is then eval-
uated; and finally the lock is released. The result of e2

is returned as the result of the synchronized expression.
While evaluating e2, the current thread is said to hold

P ::= defn∗ e
defn ::= class cn body
body ::= extends c

{ field∗ meth∗}
field ::= [final]opt t fd = e
meth ::= t mn(arg∗) { e }

arg ::= t x
s, t ::= c | int

c ::= cn | Object

e ::= new c
| x
| e.fd
| e.fd = e
| e.mn(e∗)
| let arg = e in e
| synchronized e in e
| fork e

(program)

(class decl)

(class body)

(field decl)

(method decl)

(variable decl)

(type)

(class type)

(allocate)

(variable)

(field access)

(field update)

(method call)

(variable binding)

(synchronization)

(fork)

cn ∈ class names
fd ∈ field names

mn ∈ method names
x , y ∈ variable names

Figure 1: The grammar for ConcurrentJava.

the lock. Any other thread that attempts to acquire the
lock blocks until the lock is released. A newly forked
thread does not inherit locks held by its parent thread.

The syntax of the synchronized and fork expres-
sions and the rest of ConcurrentJava is shown in
Figure 1. A program is a sequence of class definitions
together with an initial expression, which is the starting
point for the program’s execution. Each class definition
associates a class name with a class body consisting of
a super class, a sequence of field declarations, and a
sequence of method declarations. A field declaration
includes an initialization expression and an optional
final modifier; if this modifier is present, then the field
cannot be updated after initialization. A method dec-
laration consists of the method name, its return type,
number and types of its arguments, and an expression
for the method body. Types include class types and
integers. Class types include class names introduced
by the program, as well as the predefined class Object,
which serves as the root of the class hierarchy. Expres-
sions include the typical operations for object alloca-
tion, field access and update, method invocation, and
variable binding and reference, as well as the concur-
rency primitives.



2.2 Locks Against Races

We present example programs in an extended language
with integer and boolean constants and operations,
and the constant null. We use e1; e2 to abbreviate
let x = e1 in e2, where x does not occur free in e2, and
we sometimes enclose expressions in braces for clarity.

Multithreaded ConcurrentJava programs are
prone to race conditions, as illustrated by the follow-
ing program, which allocates a new bank account, and
makes two deposits into the account in parallel:

class Account {
int balance = 0
int deposit (int x) {
this.balance = this.balance + x

}
}

let Account a = new Account in {
fork { a.deposit(10) }
fork { a.deposit(10) }

}

The program may exhibit unexpected behavior. In par-
ticular, if the two calls to deposit are interleaved, the
final value of balance may reflect only one of the two
deposits made to the account, which is clearly not the
intended behavior of the program. Thus, the program
contains a race condition: two threads attempt to ma-
nipulate the field balance simultaneously, with incor-
rect results.

We can fix this error by protecting the field balance
by the lock of the account object and only accessing or
updating balance when that lock is held:

class Account {
int balance = 0
int deposit(int x) {
synchronized this in {
this.balance = this.balance + x

}
}

}

The modified account implementation is race free and
will behave correctly even when multiple deposits are
made to the account concurrently.

3 Types Against Races

In practice, race conditions are commonly avoided by
the lock-based synchronization discipline used in the ex-
ample above. This section presents a type system that
supports this programming discipline. The type system

needs to verify that each field has an associated pro-
tecting lock that is held whenever the field is accessed
or updated. In order to verify this property, the type
system:

1. associates a protecting lock with each field decla-
ration, and

2. tracks the set of locks held at each program point.
We rely on the programmer to aid the verification

process by providing a small number of additional type
annotations. The type annotation guarded by l on a
field declaration states that the field is protected by the
lock expression l; the type system then verifies that this
lock is held whenever the field is accessed or updated.
The type annotation requires l1, . . . , ln on a method
declaration states that the locks l1, . . . , ln are held on
method entry; the type system verifies that these locks
are indeed held at each call-site of the method, and
checks that the method body is race-free given this as-
sumption. We extend the syntax of field and method
declarations to include these type annotations.

field ::= [final]opt t fd guarded by l = e
meth ::= t mn(arg∗) requires ls { e }

ls ::= l∗ (lock set)

l ::= e (lock expression)

We refer to the extended language as RaceFreeJava.
To ensure that each field is consistently protected by

a particular lock, irrespective of any assignments per-
formed by the program, the type system requires that
the lock expression in a guarded by clause be a final
expression. A final expression is either a reference to an
immutable variable1, or a field access e.fd , where e is a
final expression and fd is a final field. The type system
also requires that the lock expressions in a requires
clause be final for similar reasons.

The core of our type system is a set of rules for rea-
soning about the type judgment

P ;E; ls " e : t .

Here, P (the program being checked) is included in the
judgment to provide information about class definitions
in the program; E is an environment providing types
for the free variables of e; ls is a set of final expressions
describing the locks that are held when the expression
e is evaluated; and t is the type of e. Thus, the type
rules track the set of locks held each program point.
The rule [exp fork] for fork e checks the expression
e using the empty lock set since new threads do not
inherit locks held by their parent.

[exp fork]
P ; E; ∅ # e : t

P ; E; ls # fork e : int

1All variables are immutable in RaceFreeJava, but only final vari-
ables are in Java.



The rule [exp sync] for synchronized e1 in e2 checks
that e1 is a final expression of some class type c, and
then type checks e2 in an extended lock set that includes
e1, reflecting the fact that the lock e1 is always held
when evaluating e2.

[exp sync]
P ; E #final e1 : c P ; E; ls ∪ {e1} # e2 : t

P ; E; ls # synchronized e1 in e2 : t

The antecedent P ;E "final e1 : c checks that e1 is a final
expression of type c.

The rule [exp ref] for e.fd checks that e is a well-
typed expression of some class type c and that c declares
or inherits a field fd of type t, guarded by lock l.

[exp ref]
P ; E; ls # e : c

P ; E # ([final]opt t fd guarded by l = e′) ∈ c
P ; E # [e/this]l ∈ ls

P ; E # [e/this]t
P ; E; ls # e.fd : [e/this]t

It remains to check that the lock l guarding fd is held at
this program point; i.e., that l denotes the same lock as
some expression l′ in the current lock set. This requires
checking the semantic equivalence of the two expres-
sions l and l′, which is in general undecidable.

One approach is to conservatively approximate se-
mantic equivalence by syntactic equivalence, and sim-
ply to check that l ≡ l′. This approximation is overly
conservative in many cases however. In particular, oc-
currences of this in the lock expression l refer to the
object being dereferenced, which is the same object as
that denoted by e. To account for the aliasing of this
and e, the type system replaces all occurrences of this
in l by e, and then checks that [e/this]l ≡ l′ for some l′

in the current lock set. This check is performed by the
antecedent P ;E " [e/this]l ∈ ls. It is a sound approx-
imation of semantic equivalence and has been sufficient
for all programs we have inspected.

A similar aliasing situation arises in the next sec-
tion, where we introduce types containing lock expres-
sions. To accommodate this future extension, we in-
clude the appropriate substitutions for types here, and
yield [e/this]t as the type of the field access after check-
ing that it is a well-formed type.

The rule [exp assign] for e.fd = e′ ensures that the
appropriate lock is held whenever a field is updated.
The rule [exp invoke] for a method invocation ensures
that all locks in the requires clause of a method dec-
laration are held at each call site of the method.

[exp assign]
P ; E; ls # e : c

P ; E # (t fd guarded by l = e′′) ∈ c
P ; E # [e/this]l ∈ ls

P ; E; ls # e′ : [e/this]t
P ; E; ls # e.fd = e′ : [e/this]t

[exp invoke]
P ; E; ls1 # e : c

P ; E # (t mn(sj yj
j∈1...n) requires ls2 { e′ }) ∈ c

P ; E; ls1 # ej : [e/this]sj
P ; E # [e/this]ls2 ⊆ ls1

P ; E # [e/this]t
P ; E; ls1 # e.mn(e1...n) : [e/this]t

The remaining type rules are straightforward and
similar to those of ClassicJava. The complete set of
type judgments and rules is contained in Appendix A.

3.1 Race-Free Bank Accounts

We can use this type system to verify that the synchro-
nized bank account implementation is race free. We
must first add a type annotation stating that the field
balance is guarded by this. When no locks are re-
quired to invoke a method we omit its requires clause,
as we have done for deposit.

class Account {
int balance guarded by this = 0
int deposit(int x) {
synchronized this in {
this.balance = this.balance + x

}
}

}

let Account a = new Account in {
fork { a.deposit(10) }
fork { a.deposit(10) }

}

An alternative implementation of the bank account
may rely on its clients to perform the necessary syn-
chronization operations:

class Account {
int balance guarded by this = 0
int deposit(int x) requires this {
this.balance = this.balance + x

}
}

let Account a = new Account in {
fork { synchronized a in a.deposit(10) }
fork { synchronized a in a.deposit(10) }

}

In this example, the method signature

int deposit(int x) requires this

explicates the requirement that the object’s lock must
be acquired before calling deposit. Since the necessary
lock is indeed held at each call site, this program is also
well typed and race free.



4 External Locks

The type system of the previous section can verify
the absence of races in a number of interesting ex-
amples. However, larger, more realistic programs fre-
quently use a variety of synchronization patterns, some
of which cannot be captured by the system presented
so far. To accomodate such programs, we extend the
RaceFreeJava type system with additional features.
This section presents classes parameterized by locks,
and Section 5 introduces thread-local classes.

The type system requires that every field be guarded
by a final expression of the form x .fd1. · · · .fdn. Since
the only variable in scope at a field declaration is this,
the fields of an object must be protected by a lock that
is accessible from the object. In some cases, however,
we would like to protect the fields of an object by some
lock external to the object. For example, all of the
fields in a linked list might naturally be protected by
some object external to the list.

To accommodate this programming pattern, we ex-
tend RaceFreeJava to allow classes to be parameter-
ized by external locks:

defn ::= class cn<garg∗> body
garg ::= ghost t x (ghost decl)

c ::= cn<l∗> | Object

A class definition now contains a (possibly empty) se-
quence of formal parameters or ghost variables. These
ghost variables are used by the type system to verify
that the program is race free; they do not affect the
run-time behavior of the program. In particular, they
can appear only in type annotations and not in regu-
lar code. A class type c consists of a class name cn
parameterized by a sequence of final expressions. The
number and type of these expressions must match the
formal parameters of the class.

Type checking of parameterized classes is handled
via substitution. If

class cn<ghost t1 x 1, . . . , ghost tn xn> body

is a well-formed class definition, then for any final ex-
pressions l1, . . . , ln of the appropriate types, we consider
cn<l1, . . . , ln> to be a valid instantiated class type,
with associated instantiated class definition

class cn<l1, . . . , ln> [l1/x1, . . . , ln/xn]body

A few modifications to the type rules are necessary to
accommodate parameterized classes. These modifica-
tions are described in Appendix B.

4.1 Using External Locks

To illustrate the use of external locks, consider the dic-
tionary implementation of Figure 2. A dictionary maps

keys to values. In our implementation, a dictionary
is represented as an object containing a linked list of
Nodes, where each Node contains a key, a value, and a
next pointer.

For efficiency reasons, we would like to protect the
entire dictionary, including its linked list, with the lock
of the dictionary. To accomplish this, the class Node
is parameterized by the enclosing dictionary d; the
fields of Node are guarded by d; and each method of
Node requires that d is held on entry. Each method
of Dictionary first acquires the dictionary lock and
then proceeds with the appropriate manipulation of the
linked list. Since all fields of the linked list are protected
by the dictionary lock, the type system verifies that this
program is well typed and race free.

5 Thread-Local Classes

Large multithreaded programs typically have sections
of code that operate on data that is not shared across
multiple threads. For example, only a single thread in
a concurrent web server may need to access the infor-
mation about a particular request. Objects used in this
fashion require no synchronization and should not need
to have locks guarding their fields. To accommodate
this situation, we introduce the concept of thread-local
classes. We extend the grammar to allow an optional
thread local modifier on class definitions and to make
the guarded by clause on field declarations optional in
a thread-local class:

defn ::= [thread local]opt class cn<garg∗> body
field ::= [final]opt t fd [guarded by l]opt = e

An example of a thread-local class appears in Fig-
ure 3. The class Crawler is a concurrent web crawler
that processes a page by iterating over its links and
forking new threads to process the linked pages. The
LinkEnumerator class, which parses the text of the page
to find links, is not shared among threads. Therefore,
it is declared as a thread local class and contains un-
guarded fields.

A simple form of escape analysis is used to enforce
single-threaded use of thread-local objects. A type is
thread-shared provided it is not a thread-local class
type. The type system must ensure that thread-local
objects are not accessible from thread-shared objects.
Therefore, a thread-shared class declaration must (1)
have a thread-shared superclass and (2) contain only
shareable fields. A field is shareable only if it has a
thread-shared type and is either final or protected by a
lock. Also, the free variables of a forked expression must
be of a thread-shared type. The rules for thread-shared
types and fork appear in Appendix C.



class Node<ghost Dictionary d> {
String key guarded by d = null
Object value guarded by d = null
Node<d> next guarded by d = null

void init(String k, Object v, Node<d> n)
requires d {

node.key = k;
node.value = v;
node.next = n

}
void update(String k, Object v) requires d {
if (this.key.equals(k)) {
this.value = v

} else if (this.next != null) {
this.next.update(k,v)

}
}
...

}

class Dictionary {
Node<this> head guarded by this = null

void put(String k, Object v) {
synchronized this in {
if (this.contains(k)) {

this.head.update(k,v)
} else {
let Node<this> node =

new Node<this> in {
node.init(k,v,this.head);
this.head = node

}
}

}
}
...

}

Figure 2: A synchronized dictionary.

thread local class LinkEnumerator {
String text = null
int index = 0

void init(String t) {
this.text = t

}
boolean hasMoreLinks() { ... }
String nextLink() { ... }

}

class Crawler {
final Set visited = new Set
void process(String url) {
if (!visited.add(url)) {
let String text = loadPageText(url) in
let LinkEnumerator enum =

new LinkEnumerator in {
enum.init(text);
while (enum.hasMoreLinks()) {
let String link = enum.nextLink() in
fork { this.process(link) }

}
}

}
}
...

}

let Crawler c = new Crawler in
c.process("http://www.research.compaq.com")

Figure 3: A concurrent web crawler using a thread-local enumeration class.



Interestingly, our type system permits a thread-local
class to have a thread-shared superclass. This design
permits us to maintain Object (which is thread-shared)
as the root of the class hierarchy, as it is in Java. How-
ever, it also permits a thread-local object to be viewed
as an instance of a thread-shared class and hence to be
shared between threads. This sharing does not cause
a problem unless the object is downcast back to the
thread-local type in a thread other than the one in
which it was created. This downcast would make un-
guarded fields in the subclass visible to more than one
thread.

To eliminate this possibility, our type system forbids
downcasts from a thread-shared type to a thread-local
type. This restriction applies to explicit cast opera-
tions2 and, also, to the implicit downcasts that occur
during dynamic dispatch. To avoid such implicit down-
casts, our type system requires a thread-local class not
to override any methods declared in a thread-shared
superclass.

Alternatively, if these static requirements are too re-
strictive, a compiler could insert code to track the al-
locating thread of each object and dynamically check
that thread-shared to thread-local downcasts are only
performed by the appropriate thread.

6 Implementation

We have implemented the RaceFreeJava type system
for the full Java language [GJS96]. This race condition
checker, rccjava, extends the type system outlined so
far with the missing Java features, including arrays, in-
terfaces, constructors, static fields and methods, inner
classes, and so on. Only thread-local arrays posed any
technical challenges, but space considerations prohibit
a full discussion of those challenges here.

The additional type information required by
rccjava is embedded in Java comments to preserve
compatibility with existing Java tools, such as compil-
ers. Specifically, comments that start with the charac-
ter “#” are treated as type annotations by rccjava. See
Figure 5 for an example.

The rccjava tool was built on top of an existing
Java front-end that includes a scanner, parser, and type
checker. The extensions for race detection were rela-
tively straightforward to add to the existing code base
and required approximately 5,000 lines of new code.
The major additions were maintaining the lock set dur-
ing type checking, implementing syntactic equality and
substitution on abstract syntax trees, and incorporating
classes parameterized by locks.

2RaceFreeJava does not contain explicit casts, but the Java lan-
guage does.

An important goal in the design of rccjava was to
provide a cost-effective way to detect race conditions
statically. Thus, it was important to minimize both the
number of annotations required and the number of false
alarms produced. In order to attain this goal, rccjava
was designed to be able to relax the formal type system
in several ways and, also, to infer default annotations for
unannotated code. These features are described below.

6.1 Escape mechanisms

Rccjava provides mechanisms for escaping from the
type system when it proves too restrictive. The simplest
escape mechanism is the no warn annotation, which
turns off certain kinds of warnings on a particular line
of code, e.g.

f.a = 3; //# no warn race

This annotation is commonly used if a particular race
condition is considered benign.

Also, rccjava may be configured with a command
line flag to ignore all errors of a particular kind. For
example, the “-no warn thread local override” flag
turns off the restrictions whereby a thread-local class
cannot override a method of its thread-shared super-
class.

The holds annotation asserts that a particular lock
is held at a given program point:

//# holds f
f.a = 3;

This annotation puts f into the lock set for the remain-
der of block of statements in which it appears. As with
the no warn annotations, rccjava may be configured
to make global assumptions about when locks are held.
For instance, when run with the command line flag
“-constructor holds lock”, rccjava assumes that
the lock this is held in constructors. This is sound
as long as references to this are not passed to other
threads before the constructor call returns. Violations
of this assumption are unlikely, and using it eliminates
a large number spurious warnings.

6.2 Default Annotations

Although type inference for the rccjava type system re-
mains for future work, rccjava does construct default
annotations for unannotated classes and fields. The
heuristics used to compute default annotations are:

• A class with no annotations and no synchro-
nized methods is thread local by default, unless
the class is java.lang.Object or a subclass of
java.lang.Thread.



• Unguarded non-final instance fields in thread
shared classes are guarded by this.

• Unguarded non-final static fields are guarded by
the class object for the class to which they belong.

• A guarded by annotation is permitted on a class
declaration, and it applies to all fields of the class.

These heuristics are not guaranteed to produce the cor-
rect annotations, but experience has shown that they
save a significant amount of time while annotating large
programs. Roughly 90% of the classes in the test pro-
grams described below are treated correctly by these
heuristics.

7 Evaluation

To test the effectiveness of rccjava as a static race de-
tection tool, we used it to check several multithreaded
Java programs. Our test cases include two rep-
resentative single classes, java.util.Hashtable and
java.util.Vector, and several large programs, includ-
ing java.io, the Java input/output package (version
1.1) [Jav98]; Ambit, an implementation of a mobile ob-
ject calculus [Car97]; and an interpreter and run-time
environment for WebL, a language for automating web-
based tasks [KM98].

These five programs use a variety of synchroniza-
tion patterns, most of which were captured easily with
rccjava annotations. Rccjava was run with the com-
mand line flags “-no warn thread local override”
and “-constructor holds lock” for these tests (see
Section 6.1). Although these flags may cause rccjava
to miss some potential races, they significantly reduce
the number of false alarms reported and provide the
most effective way to deal with existing programs that
were not written with this type system in mind. Table 1
summarizes our experience in checking these programs.
It shows the number of annotations and time required to
annotate each program, as well as the number of race
conditions found in each program. The time includes
both the time spent by the programmer inserting anno-
tations and the time to run the tool.

Figure 4 breaks down the annotation count into the
different categories of annotations, normalized to the
frequency with which they appear in 1000 lines of code.
For the large programs, fewer than 20 annotations were
required per 1000 lines. Most of these annotations were
clustered in the small number of classes manipulated
from different threads. The majority of classes typi-
cally required very few or no annotations. Evidence
of this pattern is reflected in the statistics for the sin-
gle class examples, which have higher annotation fre-
quencies than the larger programs. Hashtable has a

high occurrence of annotations concerning class param-
eters and arguments because it contains a linked list
similar to that of Figure 2. Interestingly, restructur-
ing Hashtable to declare the linked list as an inner
class within the scope of the protecting lock reduces
the number of annotations to 25.

We discovered race conditions in three of the five
case studies, despite most of the code in these examples
being well tested and relatively mature. Of the four
races found in java.io, one was fixed in JDK version
1.2. We also found benign race conditions in all test
cases.

Figure 5 contains an excerpt from
java.util.Vector that illustrates a typical race
condition caught during our experiments. Suppose
that there are two threads manipulating a shared
Vector object. If one thread calls lastIndexOf(elem)
for some elem, that method may access elementCount
without acquiring the lock of the Vector object. How-
ever, the other thread may call removeAllElements
(which sets elementCount to 0) and then call
trimToSize (which resets elementData to an array of
length 0). Thus, an array out of bounds exception will
be triggered when the first thread enters the binary
version of lastIndexOf and accesses the elementData
array based on the old value of elementCount. Declar-
ing both versions of lastIndexOf to be synchronized
removes this race condition.

8 Related Work

A number of tools have been developed for detecting
race conditions, both statically and dynamically. War-
lock [Ste93] is a static race detection system for ANSI C
programs. It supports the lock-based synchronization
discipline through annotations similar to ours. How-
ever, Warlock uses a different analysis mechanism; it
works by tracing execution paths through the program,
but it fails to trace paths through loops or recursive
function calls, and thus may not detect certain races.
In addition, Warlock assumes, but does not verify, the
thread-local annotations introduced by the program-
mer. However, these soundness issues have not pre-
vented Warlock from being a practical tool. It has been
used to catch races in several programs, including an
X-windows library.

The extended static checker for Java (Esc/Java) is
a tool for static detection of software defects [LSS99,
DLNS98]. It uses an underlying automatic theorem
prover to reason about the program’s behavior and to
verify the absence of certain kinds of errors, such as null
dereferences and index out of bounds errors. ESC/Java
supports multithreaded programming via annotations
similar to our guarded by and requires clauses, and



Lines Programmer
Program Of Code Time (hrs) Annotations Races Found

java.util.Hashtable 440 0.5 60 0
java.util.Vector 430 0.5 10 1
java.io.* 16,000 16.0 139 4
Ambit 4,500 4.0 38 0
WebL 20,000 12.0 358 5

Table 1: Programs analyzed using rccjava.
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Figure 4: Number of rccjava annotations added to each program.

verifies that the appropriate lock is held whenever a
guarded field is accessed. However, it may still permit
race conditions on unguarded fields, since it does not
verify that such unguarded fields only occur in thread-
local classes. Overall, Esc/Java is a complex but pow-
erful tool capable of detecting many kinds of errors,
whereas rccjava is a lightweight tool tuned specifically
for detecting race conditions.

Aiken and Gay [AG98] also investigate static race
detection, in the context of SPMD programs. Since
synchronization in these programs is performed using
barriers, as opposed to locks, their system does not
need to track the locks held at each program point or
the association between locks the fields they protect.
Their system has been used successfully on a number
of SPMD programs.

Eraser is a tool for detecting race conditions and

deadlocks dynamically [SBN+97], rather than statically.
This approach has the advantage of being able to check
unannotated programs, but it may fail to detect certain
errors because of insufficient test coverage.

A variety of other approaches have been developed
for race and deadlock prevention; they are discussed in
more detail in an earlier paper [FA99b].

A number of formal calculi for Java have been pre-
sented in recent literature. These include attempts to
model the entire Java language [DE97, Sym97, NvO98]
and, also, smaller systems designed to study specific
features and extensions [IPW99]. We chose to use
the ClassicJava calculus of Flatt, Krishnamurthi, and
Felleisen [FKF98] as the starting point for our study.

There have been many suggested language ex-
tensions for supporting Java classes parameterized
by types [OW97, BOSW98, AFM97, BLM96, CJ98].



class Vector {
Object elementData[] /*# guarded by this */;
int elementCount /*# guarded by this */;

synchronized void trimToSize() { ... }
synchronized boolean removeAllElements() { ... }

synchronized int lastIndexOf(Object elem, int n) {
for (int i = n ; --i >= 0 ; )
if (elem.equals(elementData[i])) { ... }

}

int lastIndexOf(Object elem) {
return lastIndexOf(elem, elementCount); // race!!!

}
...

}

Figure 5: Excerpt from java.util.Vector.

Our work uses a different notion of parameterization,
namely, classes parameterized by values (more specif-
ically, lock expressions). Apart from this distinction,
our class parameterization approach most closely fol-
lows that of GJ [BOSW98], in that information about
class parameters is not preserved at run time.

The lock sets used in our type systems are similar to
effects [JG91, LG88, Nie96] since the locks held on entry
to an expression constrain the effects that it may pro-
duce. It may be possible to adapt existing techniques
for effect reconstruction [TT94, TT97, ANN97, TJ92]
to our setting to reduce the number of type annotations
required.

Our type system verifies that objects of a
thread local type are never shared between threads.
Much work has been done on the related problem
of inferring which objects are not shared between
threads [CGS+99, Bla99, BH99, WR99, ACSE99]. This
work has primarily focused on optimizing synchroniza-
tion operations, but it may be possible to adapt this
work to reduce or eliminate the need for thread local
annotations.

9 Conclusions and Future Work

Race conditions are difficult to catch using traditional
testing techniques. They persist even in common, rel-
atively mature Java programs. In this paper, we have
presented a type system for catching race conditions
statically and described rccjava, an implementation of
this system for Java. Our experience with rccjava in-
dicates that this technique is a promising approach for
building more reliable multithreaded software.

Because the type system is modular, it enables race
conditions to be detected early in the development cy-
cle, before the entire program has been written. The
type system does require the programmer to write ad-
ditional type annotations, but these annotations also
function as documentation of the locking strategies used
by the program.

To reduce the annotation overhead further, we are
currently studying the issue of type inference. We are
also considering rccjava extensions to support addi-
tional synchronization patterns. These extensions may
include methods parameterized by locks and support
for reader-writer locks.

Availability: We intend to make the rccjava pro-
totype implementation available for download from
http://www.research.compaq.com.

Acknowledgments: Thanks to John Mitchell for com-
ments on an earlier draft of this paper, and to Hannes
Marais and Mart́ın Abadi for several useful discussions.
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A The Initial Type System

This appendix presents the type system described in Section 3. We introduce class parameters and thread-local
classes in Appendices B and C, respectively.

We first define a number of predicates used in the type system informally. These predicates are based on similar
predicates from [FKF98], and we refer the reader to that paper for their precise formulation.

Predicate Meaning

ClassOnce(P ) no class is declared twice in P
WFClasses(P ) there are no cycles in the class hierarchy
FieldsOnce(P ) no class contains two fields with the same name, either declared or inherited
MethodsOncePerClass(P ) no method name appears more than once per class
OverridesOK(P ) overriding methods have the same return type, parameter types, and

requires set as the method being overridden

A typing environment is defined as
E ::= ∅ | E , arg

We define the type system using the following judgments.

Judgment Meaning

# P : t program P yields type t
P # defn defn is a well-formed class definition
P ; E # wf E is a well-formed typing environment
P ; E # meth meth is a well-formed method
P ; E # field field is a well-formed field
P ; E # t t is a well-formed type
P ; E # s <: t s is a subtype of t
P ; E # defn defn is a class defined in P
P ; E # field ∈ c class c declares/inherits field
P ; E # meth ∈ c class c declares/inherits meth
P ; E #final l : t l is a final expression with type t
P ; E # ls ls is a well-formed lock set
P ; E # l ∈ ls l appears in ls
P ; E # ls1 ⊆ ls2 lock set ls1 is contained in ls2
P ; E; ls # e : t expression e has type t

The typing rules for these judgments are presented below.

# P : t

[prog]
ClassOnce(P ) WFClasses(P )

FieldsOnce(P ) MethodsOncePerClass(P )
OverridesOK(P )

P = defn1...n e P # defni P ; ∅; ∅ # e : t
# P : t

P # defn

[class]
E = cn this

P ; E # c
P ; E # fieldi P ; E # methi

P # class cn extends c { field1...j meth1...k}

P ; E # wf

[env empty]

P ; ∅ # wf

[env x]
P ; E # t x %∈ Dom(E)

P ; E, t x # wf

P ; E # defn

[class definition]
P ; E # wf class c . . . ∈ P

P ; E # class c . . .

P ; E # t

[type c]
P ; E # class c . . .

P ; E # c

[type Object]
P ; E # wf

P ; E # Object

[type int]
P ; E # wf

P ; E # int

P ; E # t1 <: t2

[subtype refl]
P ; E # t

P ; E # t <: t

[subtype class]
P ; E # c1 <: c2

P ; E # class c2 extends c3 . . .
P ; E # c1 <: c3

P ; E # field ∈ c

[field]
P ; E #final l : c
P ; E; ∅ # e : t

P ; E # [final]opt t fd guarded by l = e

P ; E # field ∈ c

[field declared]
P ; E # class c . . . { . . . field . . . }

P ; E # field ∈ c

[field inherited]
P ; E # class c extends c′ . . .

P ; E # field ∈ c′

P ; E # field ∈ c



P ; E # method

[method]
P ; E # t P ; E # ls
P ; E, arg1...n ; ls # e : t

P ; E # t mn(arg1...n) requires ls { e }

P ; E # meth ∈ c

[method declared]
P ; E # class c . . . { . . . meth . . . }

P ; E # meth ∈ c

[method inherited]
P ; E # class c extends c′ . . .

P ; E # meth ∈ c′

P ; E # meth ∈ c

P ; E #final e : t

[final var]
P ; E # wf

E = E1, t x , E2

P ; E #final x : t

[final ref]
P ; E #final e : c

P ; E # (final t fd guarded by l = e′) ∈ c
P ; E #final e.fd : t

P ; E # ls

[lock set]
P ; E # wf

∀l ∈ ls. ∃c. P ; E #final l : c
P ; E # ls

P ; E # l ∈ ls

[lock set elem]
l ∈ ls P ; E # ls

P ; E # l ∈ ls

P ; E # ls1 ⊆ ls2

[lock set subset]
P ; E # ls1 P ; E # ls2 ls1 ⊆ ls2

P ; E # ls1 ⊆ ls2

P ; E # e : t

[exp sub]
P ; E; ls # e : s P ; E # s <: t

P ; E; ls # e : t

[exp new]
P ; E # ls P ; E # c

P ; E; ls # new c : c

[exp var]
P ; E # ls E = E1, t x , E2

P ; E; ls # x : t

[exp ref]
P ; E; ls # e : c

P ; E # ([final]opt t fd guarded by l = e′) ∈ c
P ; E # [e/this]l ∈ ls

P ; E # [e/this]t

P ; E; ls # e.fd : [e/this]t

[exp assign]
P ; E; ls # e : c

P ; E # (t fd guarded by l = e′′) ∈ c
P ; E # [e/this]l ∈ ls

P ; E; ls # e′ : [e/this]t

P ; E; ls # e.fd = e′ : [e/this]t

[exp invoke]
P ; E; ls1 # e : c

P ; E # (t mn(sj yj
j∈1...n) requires ls2 { e′ }) ∈ c

P ; E; ls1 # ej : [e/this]sj

P ; E # [e/this]ls2 ⊆ ls1
P ; E # [e/this]t

P ; E; ls1 # e.mn(e1...n) : [e/this]t

[exp let]
P ; E; ls # e1 : t

P ; E, t x ; ls # e2 : s
P ; E # [e1/x]s

P ; E; ls # let t x = e1 in e2 : [e1/x]s

[exp sync]
P ; E #final e1 : c P ; E; ls ∪ {e1} # e2 : t

P ; E; ls # synchronized e1 in e2 : t

[exp fork]
P ; E # ls P ; E; ∅ # e : t

P ; E; ls # fork e : int

B Parameterized Classes

This section extends the type system with classes parameterized by lock expressions. We extend typing environments
to include ghost variables:

E ::= ∅ | E , arg | E , garg

An instantiated class definition has the form:

ci ::= class c extends c { field∗ meth∗ }

There is one new judgment form.

Judgment Meaning

P ; E # ci ci is a valid instantiated class definition for P

We redefine well-typed classes to include ghost parameters, and we also introduce new rules for constructing
environments and instantiating parameterized classes. Rules that have subscripts in their names, such as [class2],
replace earlier rules of the same name. Rules that do not have subscripts are used in addition to the previous rules.



P # defn

[class2]
P ; ∅ # ti

gargi = ghost ti xi

E = garg1...n , cn<x1...n> this
P ; E # c

P ; E # fieldi P ; E # methi

P # class cn<garg1...n> extends c
{ field1...j meth1...k}

P ; E # wf

[env ghost]
P ; E # t

x %∈ Dom(E)
P ; E, ghost t x # wf

P ; E #final e : t

[final var2]
P ; E # wf

E = E1, [ghost]opt t x , E2

P ; E #final x : t

P ; E # ci

[class instantiation]
class cn<ghost ti x i∈1...n

i > body ∈ P
P ; E #final li : si P ; E # si <: ti

P ; E # class cn<l1...n> [li/x
i∈1...n

i ]body

C Thread-Local Classes

This section extends the type system with thread-local classes. The following judgments are added to the system:
Judgment Meaning

P # t shared values of type t can be shared between threads
P # field shareable field has a thread-shared type and is guarded by a lock or is final
P ; E; c # meth meth does not override a method from any thread-shared super type of c

The typing rules for these judgments are presented below. Rules [Exp Ref] and [Exp Assign] must also be
updated to support unguarded fields.

P # t shared

[class shared]
class cn<garg1...n> extends c { field1...j meth1...k} ∈ P

P # cn<x1...n> shared

[Object shared]

P # Object shared

[int shared]

P # int shared

P # field shareable

[shareable guarded field]
P # t shared

P # [final]opt t fd guarded by l = e shareable

[shareable final field]
P # t shared

P # final t fd = e shareable

P # defn

[class3]
P ; ∅ # ti

gargi = ghost ti xi

E = garg1...n , cn<x1...n> this
P ; E # c

P ; E # fieldi P ; E # methi

P # c shared P # fieldi shareable
P # class cn<garg1...n>

extends c { field1...j meth1...k}

[local class]
P ; ∅ # ti

gargi = ghost ti xi

E = garg1...n , cn<x1...n> this
P ; E # c

P ; E # fieldi P ; E # methi

P ; E; c # methi

P # thread local class cn<garg1...n>
extends c { field1...j meth1...k}

P ; E; c # meth

[override ok]

∀c′.

[
P ; E # c <: c′

∧ P ; E # (. . . mn( . . . ) requires . . .) ∈ c′

]
⇒ P %# c′ shared

P ; E; c # t mn(arg1...n) requires ls { e }

P ; E # ci

[local class instantiation]
thread local class cn<ghost ti x i∈1...n

i > body ∈ P
P ; E #final li : si P ; E # si <: ti

P ; E # class cn<l1...n> [li/x
i∈1...n

i ]body

P ; E; ls # e : t

[exp fork2]
P ; E; ∅ # e : t

∀x ∈ FV(e). P # E(x) shared
P ; E; ls # fork e : int


