
Under consideration for publication in Math. Struct. in Comp. Science

Type-based termination of recursive
definitions

G. B A R T H E1, M. J. F R A D E2, E. G I M É N E Z3,4, L. P I N T O5, and T. U U S T A L U2,6

1 INRIA Sophia-Antipolis, 2004 route des Lucioles, BP 93,
F-06902 Sophia-Antipolis Cedex, France
2 Dep. de Informática, Universidade do Minho, Campus de Gualtar,
P-4710-057 Braga, Portugal
3 Trusted Logic, 5 rue du Bailliage, F-78000 Versailles, France
4 Instituto de Computación, Universidad de la República, Julio Herrera y Reissig 565,
11300 Montevideo, Uruguay
5 Dep. de Matemática, Universidade do Minho, Campus de Gualtar,
P-4710-057 Braga, Portugal
6 Institute of Cybernetics, Akadeemia tee 21, EE-12618 Tallinn, Estonia

Received 19 December 2000; revised 7 July 2002

The paper introduces λ̂ , a simply typed lambda calculus supporting inductive types and

recursive function definitions with termination ensured by types. The system is shown to

enjoy subject reduction, strong normalization of typable terms and to be stronger than a

related system λG in which termination is ensured by a syntactic guard condition. The

system can, at will, be extended to also support coinductive types and corecursive

function definitions.

1. Introduction

Background Most functional programming languages (ML, Haskell, etc) and proof devel-
opment systems based on the proofs-as-programs paradigm of logic (Coq, HOL, PVS,
etc) rely on powerful type theories featuring inductive types such as natural numbers
or lists. Those languages come equipped with a mechanism for recursive definition of
functions. However, there are significant differences between the mechanisms used in
functional programming languages and in proof development systems.

The first difference concerns the termination of recursive functions. While in functional
programming languages recursive functions are allowed to diverge, in proof development
systems non-terminating functions must be banished from the language, as they almost
always lead to logical paradoxes.

The second difference concerns how recursive definitions are introduced. In functional
programming languages, recursive functions are described in terms of a pattern-matching

operator (case) and a general fixpoint operator (let-rec). For example, the addition of
two natural numbers could be introduced as follows:

let rec plus n m =

G. Barthe, M. J. Frade, E. Giménez, L. Pinto, and T. Uustalu 2

case m of

0 -> n

| (S p) -> (S (plus n p))

end

On the other hand, in the traditional presentations of type-based proof development
systems (Coquand and Paulin 1990; Dybjer 1994; Luo 1994; Nordström et al. 1990), a
recursive function f : d→ θ on an inductive type d is defined by means of the elimination

rule of d, where both pattern matching and recursion are built into a single scheme
which ensures termination. In this approach, the function plus can be encoded using the
elimination rule of natural numbers nat elim θ : θ → (Nat→ θ → θ)→ Nat→ θ, which
corresponds to the primitive recursion scheme:

let plus n m = (nat_elim nat n (fun p r -> (S r)) m)

This approach is theoretically sound. However practice has shown that eliminators are
rather cumbersome to use, whereas case-expressions and fixpoint expressions lead to more
concise and readable definitions. Looking for a good compromise between termination
and presentation issues, (Coquand 1992) suggested that recursors should be replaced by
case-expressions and a restricted form of fixpoint expressions, see also (Giménez 1995).
The restriction is imposed through a predicate Gf on untyped terms. This predicate
enforces termination by constraining all recursive calls to be applied to terms smaller
than the formal argument x of f—for instance, a pattern variable issued from a case
expression on x. The restricted typing rule for fixpoint expressions hence becomes:

f : Nat→ θ ` e : Nat→ θ

` (letrec f = e) : Nat→ θ
if Gf (e) (∗)

This alternative approach, called guarded by destructors recursion in (Giménez 1995), has
been implemented in the Coq system. Five years of experiments carried out with Coq

have shown that it actually provides much more palatable representations of recursive
functions.

However, the use of an external predicate G on untyped terms suffers from several
weaknesses:

1 The guard predicate is too syntax-sensitive and too weak.
The acceptance of a recursive definition becomes too sensitive to the syntactical
shape of its body. Sometimes, a small change in the definition could make it to
no longer satisfy the guardedness condition. As an example, consider the following
modification of the plus function, where the condition is no longer satisfied because
of the introduction of a redex in the definition:

let comp f g x = (f (g x))

let rec plus n m =

case m of

0 -> n

| (S p) -> (comp S (plus n) p)

end

In addition, the guard predicate rejects many terminating recursive definitions such

Type-based termination of recursive definitions 3

as the Euclidean division, Ackermann’s function, or functions that swap arguments,
such as subtyping algorithms for higher-order languages

let rec sub a a’ =

case a a’ of

(base b) (base b’) -> sub_base b b’

| (fun b1 b2) (fun b’1 b’2) -> (sub b’1 b1) && (sub b2 b’2)

| ... -> ...

end

2 The guard predicate is hard to implement and hard to extend.
The guardedness condition is among the main sources of bugs in the implementation
of the proof system. In order to improve the number of definitions accepted by the
system, the guardedness condition has become more and more complicated hence
prone to errors.
Besides, it is easier to extend the type system than to extend the guardedness condi-
tion: type conditions are expressed as local constraints associated to each construction
of the language whereas the guard predicate yields global constraints.

3 The guard predicate is often defined on normal forms.
Often the guard predicate is defined on normal forms only, which renders the typing
rule (∗) useless in practice. Subsequently, the typing rule (∗) is usually replaced by
the more liberal typing rule

f : Nat→ θ ` e : Nat→ θ

` (letrec f = e) : Nat→ θ
if Gf (nf e)

where nf is the partial function associating to an expression its normal form. Now the
modified rule introduces two further complications:

(a) The new guard condition leads to inefficient type-checking.
Verifying the guardedness condition makes type-checking less efficient as the body
of a recursive definition has to be reduced for being checked—expanding previously
defined constants like the constant comp in the example above.

(b) The new guard condition destroys strong normalization.
For example, the normal form of the following definition satisfies the guardedness
condition, but not the definition itself:

let K x y = x

let rec diverging_id n =

case n of 0 -> K n (diverging_id n)

| (S p) -> S (diverging_id n)

end

There is an infinite reduction sequence for the term diverging id 0:†

diverging id 0→ (K 0 (diverging id 0))→ (K 0 (K 0 (diverging id 0)))→ . . .

One solution around this problem (the solution has been considered for Coq) is

† In fact, Coq 7.1 accepts this definition of diverging id!

G. Barthe, M. J. Frade, E. Giménez, L. Pinto, and T. Uustalu 4

to store recursive definitions with their bodies in normal forms, as enforced by the
rule

f : Nat→ θ ` e : Nat→ θ

` (letrec f = (nf e)) : Nat→ θ
if Gf (nf e)

but the rule has severe drawbacks: (1) proof terms become huge; (2) the expres-
sions being stored are not those constructed interactively by the user; (3) the
modified typing rule for fixpoint expressions is not syntax-directed, i.e. one can-
not guess the expression e appearing in the premise from the conclusion of the
rule.

In order to circumvent those weaknesses, some authors have proposed semantically mo-
tivated type systems that ensure the termination of recursive definitions through typing
(Giménez 1998; Amadio and Coupet-Grimal 1998; Barras 1999). The idea, which already
occurs in Mendler’s work (Mendler 1991), consists in regarding an inductive type d as
the least fixpoint of a monotonic operator −̂d on types, and to enforce termination of
recursive functions by requiring that the definition of f : α̂d→θ, where α may be thought
as a subtype of d, only relies on structurally smaller function calls, embodied by a func-
tion fih : α→θ. This approach to terminating recursion, which we call type-based, offers
several advantages over the guarded by destructors approach. In particular, it addresses
all the above-mentioned weaknesses.

This article The purpose of this paper is to introduce λ̂ , a simply typed λ-calculus that
supports type-based recursive definitions. Although heavily inspired from previous work
by Giménez (Giménez 1998) and closely related to recent work by Amadio and Coupet
(Amadio and Coupet-Grimal 1998), the technical machinery behind our system puts a
slightly different emphasis on the interpretation of types. More precisely, we formalize
the notion of type-based termination using a restricted form of type dependency (a.k.a.
indexed types), as popularized by (Xi and Pfenning 1998; Xi and Pfenning 1999). This
leads to a simple and intuitive system which is robust under several extensions, such as
mutually inductive datatypes and mutually recursive function definitions; however, such
extensions are not treated in the paper.

The basic idea is to proceed as follows:

— First, every datatype d is replaced by a family of approximations indexed over a set
of stages, which are used to record a bound on the “depth” of values. Here, we adopt
a simple minded approach and let stages range over the syntax

s := ı | ŝ | ∞

where ı ranges over stage variables, the hat operator −̂ is a function mapping a stage
to its “successor” and ∞ is the stage at which the iterative approximation process
converges to the datatype itself.

— Second, a recursive definition of a function, say f : d→ θ should be given by a term
e constructing a function g′ : dı̂ → θ from g : dı→ θ, where ı ranges over stages (in
other words, e should be stage-polymorphic).

In order to illustrate the machinery involved, let us consider the inductive type Nat

Type-based termination of recursive definitions 5

whose constructors are o : Nat and s : Nat→Nat. The typing rules are

` o : Natŝ
` n : Nats

` s n : Natŝ

and, as an instance of the subsumption rule,

` n : Nats

` n : Natŝ

Finally recursive functions from Nat to θ are constructed with the following typing rule:

f : Natı→θ ` e : Nat̂ı→θ

` (letrec f = e) : Nat→θ

where ı is fresh wrt. θ. As shall be shown later, such recursive functions are terminat-
ing and, despite its simplicity, this mechanism is powerful enough to capture course-of-
value primitive recursion. Conformance to the scheme and hence termination is enforced
through types.

Organization The remainder of this paper is organized as follows. In Section 2, we present
the system λ̂ formally. In Section 3, we show that λ̂ is well-behaved, and in particular
enjoys subject reduction and strong normalisation. In Section 4, we introduce λG and
prove that λ̂ strictly extends the system λG . In Section 5, we consider an extension of
λ̂ with coinductive types. We review related work in Section 6 and conclude in Section
7.

2. The System λ̂
In this section, we introduce λ̂ , a simply typed lambda calculus featuring strongly posi-
tive, finitely iterated parametric inductive types (in the sense of, e.g., (Martin-Löf 1971))
and type-based termination of recursive definitions. The calculus is à la Curry: terms
come without any type annotations.

2.1. Datatypes, constructors

Datatypes and constructors are named: we assume given two denumerable sets D of
datatype identifiers and C of constructor identifiers. On datatypes, we assume a strat-
ification that ensures that the dependency relation between datatypes is well-founded.
Hence each datatype d is assigned a stratum str(d) ∈ N. Datatypes and constructors
may only accept a fixed number of arguments, so we stipulate that every datatype iden-
tifier d (resp. constructor c) has a fixed arity ar(d) ∈ N (resp. ar(c) ∈ N) that indicates
the number of parameters taken by d (resp. c). Finally, we require that every datatype
d ∈ D comes equipped with a vector C(d) ⊆ C of constructors, and if d 6= d′ then
C(d) ∩ C(d′) = ∅.

For the sake of clarity, we adopt the following naming conventions: d, d′, di, . . . range
over D and c, c′, ci, . . . range over C.

G. Barthe, M. J. Frade, E. Giménez, L. Pinto, and T. Uustalu 6

2.2. Terms and reduction

Terms are built from variables, abstractions, applications, constructors, case-expressions
and recursive definitions. Assume we have a denumerable set VE of (object) variables,
and let x, x′, xi, y, . . . range over VE .

Notation 2.1. For every set A, we let A∗ denote the set of lists over A, and 〈〉 denote
the empty list. ~a range over A∗ if a ranges over A. #~a denotes the length of ~a, and ~a[i]
denotes, when it exists, the ith element of ~a. For convenience, we will sometimes write
lists in the form 〈a1, . . . , an〉 instead of a1 . . . an.

Definition 2.2 (Terms). The set E of terms is given by the abstract syntax

e, e′ ::= x | λx. e | e e′ | c | case e′ of {~c ⇒ ~e} | (letrec x = e)

where in the clause for case-expressions it is assumed that ~c = C(d) for some d ∈ D.

Free and bound variables, substitution, etc. are defined as usual. We let e[x := e′] be the
result of replacing all free occurrences of x in e with e′.

The reduction calculus is given by β-reduction for function application, ι-reduction for
case analysis and µ-reduction for unfolding recursive definitions, which is only allowed in
the context of application to a constructor application.

Definition 2.3 (Reduction Calculus).

1 β-reduction →β is defined as the compatible closure of the rule

(λx. e) e′ →β e[x := e′]

2 ι-reduction →ι is defined as the compatible closure of the rule

case (ci ~a) of {c1 ⇒ e1 | . . . | cn ⇒ en} →ι ei ~a

where #~a = ar(ci).
3 µ-reduction →µ is defined as the compatible closure of the rule

(letrec f = e) (c ~a) →µ e[f := (letrec f = e)] (c ~a)

where #~a = ar(c).
4 βιµ-reduction →βιµ is defined as →β ∪ →ι ∪ →µ.

Remark 2.4. In the formulation of the β- and µ-reduction rules, we rely on a variable
convention: in the β-rule, the bound variables of e are assumed to be different from the
free variables of e′; in the µ-rule, the bound and the free variables of e are assumed to
be different.

The mechanics of the reduction calculus is illustrated by the following example.

Example 2.5. Consider the inductive type of natural numbers Nat with C(Nat) = {o, s}.
Let plus ≡ (letrec plus = λx. λy. case x of {o⇒y | s⇒λx′. s (plus x′ y)}). The following is
a reduction sequence that computes one plus two, where as usual�β denotes the reflexive
and transitive closure of →β .

Type-based termination of recursive definitions 7

plus (s o) (s (s o))
→µ (λx. λy. case x of {o ⇒ y | s ⇒ λx′. s (plus x′ y)}) (s o) (s (s o))
�β case s o of {o ⇒ s (s o) | s ⇒ λx′. s (plus x′ (s (s o)))}
→ι (λx′. s (plus x′ (s (s o)))) o

→β s (plus o (s (s o)))
→µ s ((λx. λy. case x of {o ⇒ y | s ⇒ λx′. s (plus x′ y)}) o (s(s o)))
�β s (case o of {o ⇒ s (s o) | s ⇒ λx′. s (plus x′ (s (s o)))})
→ι s (s (s o))

2.3. Types and typing system

Assume now given two denumerable sets VT of type variables and VS of stage variables.
Adopt the naming conventions that α, α′, αi, β, δ, . . . range over VT and ı, , . . . range over
VS . Proceeding from these, we define stage and type expressions. Stage expressions are
built of stage variables, a symbol for the successor function on stages, and a symbol for
the limit stage. A type expression is either a type variable, a function type expression or
a datatype approximation expression.

Definition 2.6 (Stages and types).

1 The set S of stage expressions is given by the abstract syntax:

s, r ::= ı | ∞ | ŝ

2 The set T of type expressions is given by the abstract syntax:

σ, τ ::= α | τ→σ | ds ~τ

where in the last clause, it is assumed that the length of ~τ is exactly ar(d).

Notation 2.7. Very often we write ~τ→σ as an abbreviation for τ1→ . . .→τn→σ, and
d ~σ as an abbreviation for d∞ ~σ.

In order to present the typing rules for constructor and case expressions, we have to
have a means for fixing the intended typings of the constructors. To this end, we introduce
notions of constructor scheme and constructor scheme instantiation.

Definition 2.8 (Constructor scheme). A constructor scheme is a triple (δ, ~α, ~σ)
where δ, ~α ∈ VT and ~σ ∈ T such that

1 each σi is positive w.r.t. δ, see Figure 5;
2 each σi is positive w.r.t. each αj , see Figure 5;
3 ~α, δ are pairwise distinct;
4 ~α, δ are the only type variables that can occur in ~σ;
5 there are no occurrences of stage variables in ~σ.

The set of constructor schemes is denoted by CS.

Observe that type parameters have to appear only positively in the argument types of
the constructors. This makes it possible to parameterize the type of lists with respect

G. Barthe, M. J. Frade, E. Giménez, L. Pinto, and T. Uustalu 8

to the type of elements, binary trees with respect to the type of node labels, arbitrarily
branching trees with respect to the type of node labels, but not with respect to the
branching type.

In the sequel, we assume given a map D : C → CS that respects arities: formally, for
every datatype d and c ∈ C(d),

D(c) = (δ, ~α, ~σ) with #~α = ar(d) and #~σ = ar(c)

This mapping has to satisfy the following condition: if c ∈ C(d) and D(c) = (δ, ~α, ~σ),
then any d′ ∈ D appearing in ~σ satisfies str(d′) < str(d). This ensures that only finitely
iterated inductive definitions are permitted (excluding mutual induction) and is made
use of in the model construction (Definition 3.23) in the proof of strong normalization.

Constructor schemes specify the possible typings for the arguments of each given con-
structor of every possible datatype: if δ is an approximation of the datatype, and ~α are
the parameters of the datatype, then ~σ is a possible typing for the arguments of the
constructor.

Example 2.9. Consider Bool,Nat,List,Tree,Ord ∈ D. We have

C(Bool) = {true, false} D(true) = (δ, 〈〉, 〈〉)
D(false) = (δ, 〈〉, 〈〉)

for the datatype of booleans;

C(Nat) = {o, s} D(o) = (δ, 〈〉, 〈〉)
D(s) = (δ, 〈〉, 〈δ〉)

for the datatype of natural numbers;

C(List) = {nil, cons} D(nil) = (δ, 〈α〉, 〈〉)
D(cons) = (δ, 〈α〉, 〈α, δ〉)

for lists;

C(Tree) = {branch} D(branch) = (δ, 〈α〉, 〈α,List δ〉)

for finitely branching trees; and

C(Ord) = {zero, succ, lim}
D(zero) = (δ, 〈〉, 〈〉)
D(succ) = (δ, 〈〉, 〈δ〉)
D(lim) = (δ, 〈〉, 〈Nat→δ〉)

for ordinals (or better said, for ordinal notations).

Each particular legal typing for the arguments of a constructor is obtained by instanti-
ating the associated constructor scheme. The concept of instance of a constructor scheme
is formally defined as follows.

Definition 2.10 (Instance). Let d ∈ D, c ∈ C(d), s ∈ S and ~τ ∈ T such that
#~τ = ar(d). Assume D(c) = (δ, ~α, ~σ). An instance of c w.r.t. s and ~τ is defined as follows

Instsc ~τ = ~σ[δ := ds~τ][~α := ~τ]

Type-based termination of recursive definitions 9

We now turn to the typing system. On the stages, we introduce a comparison rela-
tion. Importantly, the stage comparison rules state that all stages beyond the limiting
stage are equivalent. On top of the stage comparison relation, another set of rules de-
fines a subtyping relation on types. A crucial fact stated by these rules is that a given
approximation of a datatype is always included in the next one.

Definition 2.11 (Stage comparison and subtyping). τ is a subtype of σ, written
τ v σ, is defined by the rules of Figure 2, where s 4 r is defined by the rules of Figure 1.

(refl)
s 4 s

(trans)
s 4 r r 4 p

s 4 p
(hat)

s 4 ŝ
(infty)

s 4∞

Fig. 1. Stage comparison rules

(refl)
σ v σ

(data)
s 4 r τi v τ ′i (1 ≤ i ≤ ar(d))

ds~τ v dr ~τ ′
(func)

τ ′ v τ σ v σ′

τ→σ v τ ′→σ′

Fig. 2. Subtyping rules

Notation 2.12. We write ~σ v ~τ , if #~σ = #~τ and σ[i] v τ [i] for i = 1..#~σ.

Lemma 2.13. If σ v τ and τ v θ, then σ v θ.

Lemma 2.14. If r̂ 4 ŝ, then r 4 s.

Proof. By induction on the proof of p 4 ŝ, one can show that p 4 ŝ implies p 4 s or
p = ŝ from where the claim can be inferred by instantiating p = r̂.

Lemma 2.15. If r 4 s, then Instrc ~τ v Instsc ~τ .

In order to define the typing relation between terms and type expressions, we need the
concepts of context and judgment.

Definition 2.16 (Contexts and judgments).

1 A context is a finite sequence x1 : σ1, . . . , xn : σn where x1, . . . , xn are pairwise
disjoint (object) variables and σ1, . . . , σn are types.

2 A typing judgment is a triple of the form Γ ` e : σ, where Γ is a context, e is a term
and σ is a type expression.

The definition of the typing relation itself depends on that of subtyping.

Definition 2.17 (Typing).

1 A typing judgment is derivable if it can be inferred from the rules of Figure 3 where
the positivity condition ı pos σ in the (rec) rule is defined in Figure 4.

G. Barthe, M. J. Frade, E. Giménez, L. Pinto, and T. Uustalu 10

(var)
Γ ` x : σ

if (x : σ) ∈ Γ

(abs)
Γ, x : τ ` e : σ

Γ ` λx. e : τ→σ

(app)
Γ ` e : τ→σ Γ ` e′ : τ

Γ ` e e′ : σ

(cons)
Γ ` c : Instsc ~τ→dŝ~τ

if c ∈ C(d)

(case)
Γ ` e′ : dŝ~τ Γ ` ei : Instsci ~τ→θ (1 ≤ i ≤ n)

Γ ` case e′ of {c1 ⇒ e1 | . . . | cn ⇒ en} : θ
if C(d) = {c1, . . . , cn}

(rec)
Γ, f : dı~τ→θ ` e : dı̂~τ→θ[ı := ı̂] ı pos θ

Γ ` (letrec f = e) : ds~τ→θ[ı := s]
if ı not in Γ, ~τ

(sub)
Γ ` e : σ σ v σ′

Γ ` e : σ′

Fig. 3. Typing rules for λ̂

2 A term e ∈ E is typable if Γ ` e : σ is derivable for some context Γ and type σ.

(sp1) ı pos α

(sp2)
ı neg τ ı pos σ
ı pos τ → σ

(sp3)
ı pos τi (1 ≤ i ≤ ar(d))

ı pos ds~τ

(sn1) ı neg α

(sn2)
ı pos τ ı neg σ
ı neg τ → σ

(sn3)
ı nocc s ı neg τi (1 ≤ i ≤ ar(d))

ı neg ds~τ

Fig. 4. Positive-negative occurrences of a stage variable

The rules (var), (abs), and (app) come from the standard simply typed λ-calculus. The
rule (sub) is present in any λ-calculus with subtyping and provides a linkage between the
subtyping and typing relations. The remaining rules—(cons), (case) and (rec)—deserve
short comments.

The (cons) rule says that applying a constructor of a given datatype to values in an
approximation of the datatype gives a value that is guaranteed to be an element in the
next approximation. The (case) rule says that the converse is also true: any value in the
approximation next to some given one is a result of applying one of the constructors of
the datatype to values in the given approximation and can therefore be subjected to case
analysis. The (letrec) rule, finally, says that any systematic way of extending a function

Type-based termination of recursive definitions 11

(pos1)
β pos α

(pos2)
β neg τ β pos σ

β pos τ → σ

(pos3)
β pos τi (1 ≤ i ≤ ar(d))

β pos ds~τ

(neg1)
β 6= α

β neg α

(neg2)
β pos τ β neg σ

β neg τ → σ

(neg3)
β neg τi (1 ≤ i ≤ ar(d))

β neg ds~τ

Fig. 5. Positive-negative occurrences of a type variable

defined on a given approximation of a datatype to work also on the next approximation
induces a function defined on the whole datatype, the limit of the approximations. The
premiss of this rule involves an implicit universal quantification over the set of all stages
(freshness condition!).

2.4. Some examples

In order to illustrate the mechanics and expressive power of our calculus, we now give
a few examples of programming. We start from simple recursive definitions that are
definable in all useful existing systems.

Example 2.18 (Standard examples).

— The addition of two natural numbers. The only recursive call in this program is made
on a depth-one recursive component of the argument value.

plus ≡ (letrec plus :Natı→Nat→Nat =
λx:Natı̂ . λy:Nat. case x of {o ⇒ y

| s ⇒ λx′:Natı . s (plus x′ y)︸ ︷︷ ︸
:Nat

}
) : Nats→Nat→Nat

— The concatenation of two lists and the concatenation of a list of lists.

append ≡ (letrec append:Listıτ→List τ→List τ = λx:Listı̂τ . λy:List τ .

case x of {nil ⇒ y

| cons ⇒ λz:τ . λx
′
:Listıτ . cons z (append x′ y)︸ ︷︷ ︸

:List τ

}
) : Lists τ→List τ→List τ

G. Barthe, M. J. Frade, E. Giménez, L. Pinto, and T. Uustalu 12

conc ≡ (letrec conc:Listı(List τ)→List τ = λx:Listı̂(List τ).

case x of {nil ⇒ nil

| cons ⇒ λz:List τ . λx
′
:Listı(List τ). append z (conc x′)︸ ︷︷ ︸

:List τ

}
) : Lists (List τ)→List τ

— The addition of two ordinals.

add ≡ (letrec add :Ordı→Ord→Ord = λx:Ordı̂ . λy:Ord.

case x of {zero ⇒ y

| succ ⇒ λx′:Ordı . succ (add x′ y)︸ ︷︷ ︸
:Ord

| lim ⇒ λx′:Nat→Ordı . lim (λz:Nat. add (x′ z)︸ ︷︷ ︸
Ordı

y

︸ ︷︷ ︸
:Ord

)

︸ ︷︷ ︸
:Ord

}
) : Ords→Ord→Ord

The following example illustrates the use of subsumption.

Example 2.19 (Example using subsumption). The predicate that decides if a nat-
ural number is even or not may be defined as follows. This program involves a recursive
call on a deep recursive component of the argument value. To type it, therefore, the
subsumption rule has to be used.

(letrec even :Natı→Bool = λx:Natı̂ .

case x of {o ⇒ true

| s ⇒ λx′
:NatıvNatı̂

. case x′ of {o ⇒ false

| s ⇒ λx′′:Natı . even x′′︸ ︷︷ ︸
:Bool

}

}
) : Nats→Bool

The following examples demonstrate the specific, novel features of λ̂ . First of all,
stages provide a limited means of controlling the effect of a recursively defined function
in terms of the relation between the depths of argument and result values.

Example 2.20 (Examples of “exact” typings).

— The length of a list. This standard program for calculating the length of a list admits

Type-based termination of recursive definitions 13

an unusually “exact” (i.e., tight and therefore informative) type in λ .̂

length ≡ (letrec length :Listıτ→Natı =
λx:Listı̂τ . case x of {nil ⇒ o

| cons ⇒ λz:τ . λx
′
:Listıτ . s (length x′)︸ ︷︷ ︸

:Natı︸ ︷︷ ︸
:Natı̂

}
) : Listsτ→Nats

— The map of a function on a list. This program is very similar to that for the length
function and also admits an “exact” typing, but becomes crucial in an example below.

map ≡ λf:τ→σ. (letrec map:Listıτ→Listıσ = λx:Listı̂τ .

case x of {nil ⇒ nil

| cons ⇒ λz:τ . λx
′
:Listıτ . cons (f z)︸ ︷︷ ︸

:σ

(map x′)︸ ︷︷ ︸
:Listıσ︸ ︷︷ ︸

:Listı̂σ

}
):Listsτ→Listsσ

Further, recursive calls are allowed on structurally smaller arguments that cannot be
verified to be structurally smaller using a viable syntactic criterion.

Example 2.21 (Examples not handled by the guard condition).

— The Euclidean division d x
y+1e. This program for the Euclidean division depends on

a program for subtraction. It is not typable in systems with a syntactic guard predi-
cate, as, syntactically, (minus x′ y) is not properly structurally smaller than x in the
program below. In λ̂ , it is typable because of the “exact” type assignable to minus.

minus ≡ (letrec minus :Natı→Nat→Natı = λx:Natı̂ . λy:Nat.

case x of {o ⇒ x

| s ⇒ λx′:Natı . case y of {o ⇒ x

| s ⇒ λy′:Nat. minus x′ y′︸ ︷︷ ︸
:Natı

}

}
) : Nats→Nat→Nats

(letrec div :Natı→Nat→Natı =
λx:Natı̂ . λy:Nat. case x of {o ⇒ o

| s ⇒ λx′:Natı . s (div (minus x′ y)︸ ︷︷ ︸
:Natı

y)

︸ ︷︷ ︸
:Natı

}
) : Nats→Nat→Nats

— Flattening of finitely branching trees. This program depends on map and conc. Sim-

G. Barthe, M. J. Frade, E. Giménez, L. Pinto, and T. Uustalu 14

ilarly to div, it is not typable in systems with a syntactic guard predicate.

(letrec flatten :Treeıτ→List τ =
λx:Treeı̂τ . case x of {

branch ⇒ λz:τ . λx
′
:List (Treeıτ). cons z (conc (map flatten x′)︸ ︷︷ ︸

:List (List τ)

)

︸ ︷︷ ︸
:List τ

}
) : Treesτ→List τ

Finally, we give an example demonstrating the usefulness of having the capability of
naming stages explicitly: if one recursion is nested in another, we need two distinct free
stage variables.

Example 2.22 (Examples involving several stage variables). The Ackermann
function. The natural definition of the Ackermann function is not typable in our system.
A definition with two recursions, one nesting the other, however, is easy to type.

ack ≡ (letrec ack :Natı→Nat→Nat = λx:Natı̂ .

case x of {o ⇒ λz. (s z)︸ ︷︷ ︸
:Nat→Nat

| s ⇒ λx′:Natı . (letrec ack x :Nat→Nat = λy:Nat̂ .

case y of {o ⇒ ack x′ (s o)︸ ︷︷ ︸
:Nat

| s ⇒ λy′:Nat . ack x′ (ack x y′)︸ ︷︷ ︸
:Nat︸ ︷︷ ︸

:Nat

}

):Nat→Nat

}
) : Nats→Nat→Nat

3. Meta-theoretical results

In this section, we prove two important meta-theoretic properties of λ̂ —subject reduc-
tion and strong normalizability of typable terms.

3.1. Subject reduction

The proof of subject reduction for λ̂ is quite standard. Before going into this proof,
some lemmata involving monotonicity and substitution properties for stages, as well as
generation and substitution properties for typing, are considered.

Lemma 3.1 (Generation lemma for subtyping).

1 σ v τ1 → τ2 ⇒ σ ≡ τ ′1 → τ ′2 ∧ τ1 v τ ′1 ∧ τ ′2 v τ2
2 τ1 → τ2 v σ ⇒ σ ≡ τ ′1 → τ ′2 ∧ τ ′1 v τ1 ∧ τ2 v τ ′2
3 θ v ds~τ ⇒ θ ≡ dr~σ ∧ r 4 s ∧ ~σ v ~τ

Type-based termination of recursive definitions 15

4 ds~τ v θ ⇒ θ ≡ dr~σ ∧ s 4 r ∧ ~τ v ~σ
5 α v σ ⇒ σ ≡ α
6 σ v α ⇒ σ ≡ α

Proof. Immediate by analysis of the subtyping rules.

Lemma 3.2 (Generation lemma for typing).

1 Γ ` x : σ ⇒ (x : τ) ∈ Γ ∧ τ v σ
2 Γ ` a b : σ ⇒ Γ ` a : τ → σ′ ∧ Γ ` b : τ ∧ σ′ v σ
3 Γ ` λx.e : σ ⇒ σ ≡ τ1 → τ2 ∧ Γ, x : τ ′1 ` e : τ ′2 ∧ τ1 v τ ′1 ∧ τ ′2 v τ2
4 Γ ` c : σ ⇒ σ ≡ ~γ → θ ∧ ~γ v Instsc ~τ ∧ dŝ~τ v θ ∧ c ∈ C(d)
5 Γ ` case a of {~c⇒ ~b} : σ ⇒ Γ ` a : dŝ~τ ∧ Γ ` bi : Instsci ~τ → θ ∧ θ v σ
6 Γ ` letrec f = e : σ ⇒ Γ, f : dı~τ → θ ` e : (dı~τ → θ)[ı := ı̂] ∧ (dı~τ → θ)[ı :=

s] v σ with ı ∈ VS , ı pos θ and ı fresh in Γ, ~τ

Proof. By inspection on the derivation of the antecedent judgments.

Lemma 3.3.

1 If ı pos θ and r 4 s, then θ[ı := r] v θ[ı := s].
2 If ı neg θ and r 4 s, then θ[ı := s] v θ[ı := r].
3 If τ v σ and α pos θ, then θ[α := τ] v θ[α := σ].
4 If τ v σ and α neg θ, then θ[α := σ] v θ[α := τ].

Proof. Properties 1 and 2 are proved by simultaneous induction on the structure of θ
and similarly for properties 3 and 4.

Lemma 3.4.

1 If σ v σ′, then σ[ı := s] v σ′[ı := s] .
2 If σ v σ′, then σ[α := τ] v σ′[α := τ] .

Proof. By induction on the structure of σ.

Lemma 3.5. If r 4 s and ~τ v ~σ, then Instrc ~τ v Instsc ~σ.

Proof. Follows from the previous lemmas.

Lemma 3.6. Γ1, x : τ,Γ2,Γ3 ` a : σ ⇒ Γ1,Γ2, x : τ,Γ3 ` a : σ

Proof. By induction on the derivation of Γ1, x : τ,Γ2,Γ3 ` a : σ.

Lemma 3.7 (Substitution lemma).
If Γ, x : τ ` a : σ and Γ ` b : τ , then Γ ` a[x := b] : σ.

Proof. By induction on the derivation of Γ, x : τ ` a : σ.

The following lemma shows the polymorphic nature of stage variables. In fact, in
a derivable judgment a stage variable can be replaced throughout by a stage without
affecting derivability.

Lemma 3.8. If Γ ` a : σ then Γ[ı := s] ` a : σ[ı := s].

G. Barthe, M. J. Frade, E. Giménez, L. Pinto, and T. Uustalu 16

Proof. Without loss of generality, one can assume ı nocc s, otherwise one could firstly
apply this weaker version of the lemma with ı being replaced by a new stage variable κ
(for the set of stage variables is infinite) and use again the weaker version of the lemma
with κ replaced by s.

By induction on the derivation of Γ ` a : σ. The only interesting case is when
the last rule applied is (rec). (The other cases can be easily proved using the induction
hypothesis.) Assume the last step is

Γ, f : d~τ → θ ` e : d̂~τ → θ[:= ̂] pos θ

Γ ` (letrec f = e) : dr~τ → θ[:= r]
 fresh in Γ, ~τ

A stage variable κ can be chosen such that κ is fresh in Γ, ~τ , θ, κ 6= ı and κ nocc s. Then,
from the induction hypothesis, Γ, f : dκ~τ → θ[:= κ] ` e : dκ̂~τ → θ[:= ̂][:= κ].
Therefore Γ, f : dκ~τ → θ[:= κ] ` e : dκ̂~τ → θ[:= κ][κ := κ̂] and therefore, using again
the induction hypothesis,

Γ[ı := s], f : dκ~τ [ı := s]→ θ[:= κ][ı := s] `
e : dκ̂~τ [ı := s]→ θ[:= κ][κ := κ̂][ı := s]

Since κ nocc s, the substitutions [κ := κ̂] and [ı := s] can be exchanged, obtaining

Γ[ı := s], f : dκ~τ [ı := s]→ θ[:= κ][ı := s] `
e : dκ̂~τ [ı := s]→ θ[:= κ][ı := s][κ := κ̂] (1)

and, as κ is fresh in Γ[ı := s] and in ~τ [ı := s], one can apply the rule (rec).
Let u ≡ r[ı := s]. From (1) by (rec),

Γ[ı := s] ` (letrec f = e) : du~τ [ı := s]→ θ[:= κ][ı := s][κ := u]

So, as κ nocc s, ı nocc s and κ is θ-fresh, Γ[ı := s] ` (letrec f = e) : (dr~τ)[ı := s] →
θ[:= u][ı := s]. Hence, Γ[ı := s] ` (letrec f = e) : (dr~τ → θ[:= r])[ı := s].

We are now ready to prove that λ̂ enjoys the property of subject reduction.

Proposition 3.9 (Subject reduction).

Γ ` e1 : σ ∧ e1 →βιµ e2 ⇒ Γ ` e2 : σ

Proof. By induction on the derivation of Γ ` e1 : σ. The interesting cases are when
the last rule applied is (app) or (case):

(app)Assume e1 ≡ a b and the last step is

Γ ` a : τ1 → τ2 Γ ` b : τ1
Γ ` a b : τ2

Then one may have the following cases:

e2 ≡ e[x := b], with a ≡ λx.e. From the typing derivation for a, using Lemma 3.2,
follows that Γ, x : τ ′1 ` e : τ ′2, τ1 v τ ′1 and τ ′2 v τ2, and from the typing derivation
for b, by (sub) one derives Γ ` b : τ ′1. Thus, by Lemma 3.7, Γ ` e[x := b] : τ ′2
and finally by the rule (sub), Γ ` e[x := b] : τ2.

Type-based termination of recursive definitions 17

e2 ≡ (e[f := (letrec f = e)]) (c~a), with a ≡ (letrec f = e) and b ≡ (c~a). Applying Lemma
3.2 to the typing derivation for a one has:

Γ, f : dı~τ → θ ` e : (dı~τ → θ)[ı := ı̂] (2)

(dı~τ → θ)[ı := s] v τ1 → τ2 (3)

ı ∈ VS ∧ ı pos θ ∧ ı fresh in Γ, ~τ (4)

From (3) by Lemma 3.1, τ1 v ds~τ ∧ θ[ı := s] v τ2 and thus, using again Lemma
3.1,

τ1 ≡ dp~τ ′ ∧ p 4 s ∧ ~τ ′ v ~τ
From (2) and (4), by (rec), Γ ` (letrec f = e) : (dı~τ → θ)[ı := q] holds for an
arbitary stage q. Therefore, choosing q ≡ ı and taking into account (2), by Lemma
3.7 one can derive

Γ ` e[f := (letrec f = e)] : (dı~τ→θ)[ı := ı̂] (5)

Thus we have Γ ` (c~a) : dp~τ ′ and so, by lemmas 3.1 and 3.2, one of two
possibilities for p must arise: p ≡ n with n ≥ 1 or p ≡ ∞m with m ≥ 0, where
for a stage s and for k ∈ IN, sk means s hatted k times.

— Case p ≡ n with n ≥ 1 then, using Lemma 3.8 on (5) with substitution
[ı := (n−1)], and since ı is fresh w.r.t. Γ and ~τ ,

Γ ` e[f := (letrec f = e)] : d
n

~τ→θ[ı := n]

Thus, since Γ ` (c~a) : τ1 and τ1 ≡ dp~τ ′, by (sub) and (app), follows Γ `
e[f := (letrec f = e)] (c~a) : θ[ı := n]. One has n 4 s and ı pos θ so, by
Lemma 3.3, θ[ı := n] v θ[ı := s] and the proof of this case is concluded using
the rule (sub).

— Case p ≡ ∞m with m ≥ 0 then, observing that by (sub) Γ ` (c~a) : d∞
(m+1) ~τ ′,

and the proof could now be completed arguing as in the previous case.

The remaining cases, where e2 ≡ a′ b with a →βιµ a
′, or e2 ≡ a b′ with b →βιµ b

′,
follow by routine induction.

(case)Assume e1 ≡ case a of {c1 ⇒ b1 | . . . | cn ⇒ bn} and the last step is

Γ ` a : dŝ~τ Γ ` bi : Instsci ~τ → θ (1 ≤ i ≤ n)

Γ ` case a of {c1 ⇒ b1 | . . . | cn ⇒ bn} : θ

Then one may have:

e2 ≡ bi a1 . . . aar(ci), with a ≡ ci a1 . . . aar(ci). From Γ ` ci a1 . . . aar(ci) : dŝ~τ , by
Lemma 3.2, it follows that

Γ ` ci : ~γ→σ ∧ σ v dŝ~τ

and also for 1 ≤ j ≤ ar(ci)

Γ ` aj : γj ∧ γj v Instrci
~ψ[j] ∧ dr̂ ~ψ v σ

So, dr̂ ~ψ v dŝ~τ and therefore, by lemmas 3.1 and 2.14, r 4 s and ~ψ v ~τ . Using

G. Barthe, M. J. Frade, E. Giménez, L. Pinto, and T. Uustalu 18

Lemma 3.5 and the (sub) rule, one has Γ ` aj : Instsci ~τ [j] for 1 ≤ j ≤ ar(ci),
which can be combined with the typing derivation of bi, by means of the rule
(app), to conclude the proof of this case.

The remaining cases, e2 ≡ case a′ of {~c⇒ ~b} with a→βιµ a
′, and e2 ≡ case a′ of {c1 ⇒

b1 | . . . | ci ⇒ b′i | . . . | cn ⇒ bn} with bi →βιµ b
′
i, follow by routine induction.

3.2. Strong normalization

As usual, we say that a term e is strongly normalizing with respect to →βιµ, if all βιµ-
reduction sequences starting with e terminate. Let SN denote the set of terms that are
strongly normalizing with respect to →βιµ.

To prove that every typable term is in SN, we use the method of saturated sets. This
is a standard technique, see, e.g., (Luo 1994). The idea is to provide the system with
a semantics in which terms are interpreted as terms and type expressions as sets of
terms known by construction only to contain strongly normalizing terms and always be
non-empty (saturated sets). The strong normalizability of all typable terms then follows
immediately as soon it is proved that the system is sound with respect to it.

3.2.1. Saturated sets and interpretation domains We start by defining the notions of base
terms and key reduction (aka. weak head reduction).

Definition 3.10 (Base terms). The set Base of base terms is defined inductively as
follows:

— VE ⊆ Base.
— If b ∈ Base and e ∈ SN then b e ∈ Base.
— If b ∈ Base and e1, . . . , en ∈ SN, then case b of {c1 ⇒ e1 | . . . | cn ⇒ en} ∈ Base.
— If b ∈ Base and e ∈ SN then (letrec f = e) b ∈ Base.

Every base term is strongly normalizing.

Lemma 3.11. Base ⊆ SN

Definition 3.12 (Key reduction). The relation of key reduction between terms is
defined inductively as follows:

— If e is a βιµ-redex and e′ is the contractum, then e→k e
′.

— If a→k a
′, then a e→k a

′ e,
— If a →k a

′, then case a of {c1 ⇒ e1 | . . . | cn ⇒ en} →k case a′ of {c1 ⇒ e1 | . . . |
cn ⇒ en}.

— If a→k a
′, then (letrec f = e) a→k (letrec f = e) a′.

Key reduction commutes with reduction in the following sense.

Lemma 3.13. If a→k b and a→ a′ 6= b, then a′ →k b
′ and b� b′ for some b′.

The following two lemmas provide sufficient conditions for an expression to be strongly
normalizing.

Type-based termination of recursive definitions 19

Lemma 3.14.

1 If a ∈ SN, a→k b and b e ∈ SN, then a e ∈ SN.
2 If a ∈ SN, a→k b and case b of {c1 ⇒ e1 | . . . | cn ⇒ en} ∈ SN, then case a of {c1 ⇒

e1 | . . . | cn ⇒ en} ∈ SN.
3 If a ∈ SN, a→k b and (letrec f = e) b ∈ SN, then (letrec f = e) a ∈ SN.

Proof. We prove (1). Suppose a ∈ SN, a→k b and b e ∈ SN. First note that e ∈ SN as
b e ∈ SN. The proof of a e ∈ SN is by simultaneous induction on “a ∈ SN” and “e ∈ SN”.
We have to prove that c ∈ SN for any one c such that a e → c. As a can be neither
a lambda-abstraction nor a letrec, there are two cases: either c = a′ e and a → a′ or
c = a e′ and e→ e′.

— Suppose c = a′ e and a→ a′. If a′ = b, then c = a′ e ∈ SN, since b e ∈ SN. Otherwise,
by Lemma 3.13, there is b′ such that a′ →k b

′ and b� b′. We have a′ ∈ SN (as a ∈ SN),
a′ →k b

′ and b′ e ∈ SN (as b e ∈ SN). By the induction hypothesis, c = a′ e ∈ SN.
— Suppose c = a e′ and e → e′. We have a ∈ SN, a →k b, b e′ ∈ SN (as b e ∈ SN). By

the induction hypothesis, c = a e′ ∈ SN.

Lemma 3.15.

1 If a, e, a[x := e] ∈ SN, then (λx. a) e ∈ SN.
2 If ~a, e1, . . . , en, ei ~a ∈ SN, then case (ci ~a) of {c1 ⇒ e1 | . . . | cn ⇒ en} ∈ SN.
3 If ~a, e, e[f := (letrec f = e)] (c ~a) ∈ SN, then (letrec f = e) (c ~a) ∈ SN.

Next we define saturated sets and state some of their closure properties. Saturated sets
are sets of strongly normalizing terms containing the base terms and closed with respect
to key expansion.

Definition 3.16 (Saturated sets).

1 A set X ⊆ E is said to be a saturated set, if

— X ⊆ SN,

— Base ⊆ X,

— if a ∈ SN and a→k a
′ for some a′ ∈ X, then a ∈ X.

The set of all saturated sets is denoted by SAT.
2 For any X ⊆ E , let pXq = {a ∈ SN | ∃b ∈ Base ∪X.a�k b}.

The following lemma establishes some basic properties of the closure operator p·q.

Lemma 3.17.

1 If X ⊆ SN, then pXq is a saturated set, in fact, the smallest saturated set containing
X.

2 pX1 ∪ . . . ∪Xnq = pX1q ∪ . . . ∪ pXnq.
3 If Xi is a saturated set for any i ∈ I, then

⋃
i ∈ I.Xi is a saturated set. (We say that⋃

i ∈ ∅.Xi = p∅q.)

G. Barthe, M. J. Frade, E. Giménez, L. Pinto, and T. Uustalu 20

On saturated sets, we can define a function-space forming operation. This is needed
for the interpretation of function-space types.

Definition 3.18. For any X,Y ⊆ E , let X→Y = {a ∈ E | ∀e ∈ X. a e ∈ Y }.

Lemma 3.19. If X and Y are saturated sets, then so is X→Y .

Proof. Suppose X and Y are saturated. Clearly any a ∈ X→Y is strongly normalizing:
as X is non-empty, we can pick some e ∈ X and then a ∈ SN because a e ∈ Y ⊆ SN. Let
us check that X→Y satisfies the conditions of saturatedness.

— Suppose b ∈ Base and consider any e ∈ X. As e ∈ SN, we have that b e ∈ Base ⊆ Y .
Hence b ∈ X→Y .

— Suppose a ∈ SN, a →k a′ and a′ ∈ X → Y . We have to show that a ∈ X → Y ,
i.e., that, for any e ∈ X, a e ∈ Y . Consider any e ∈ X. We have a e →k a

′ e and
a′ e ∈ Y ⊆ SN, hence Lemma 3.14 applies and a e ∈ SN. Since Y is saturated, we get
a e ∈ Y .

3.2.2. Type and term interpretation In what now follows, we define a semantics of the
language of stages, types, and terms and show that the rules of stage comparison, sub-
typing and typing are sound with respect to that semantics. Types will be interpreted as
saturated sets of terms, terms will be interpreted as terms.

We start with the definitions of valuations and interpretation for stages and types.
Stages will be interpreted as ordinals below Ω, the first uncountable ordinal, types as
saturated sets of terms. Inductive types are interpreted as limits of a monotone approxi-
mation process from below. As the universe, SN, is countable, the approximation process
is guaranteed to converge before Ω.

Definition 3.20 (Stage valuation).

1 A stage valuation is a map π : VS→Ω + 1.
2 For every stage valuation π, ı ∈ VS , and x ∈ Ω + 1, the stage valuation π(ı := x) is

defined as follows:

π(ı := x)(ı′) =
{
x if ı′ ≡ ı
π(ı′) if ı′ 6≡ ı

Definition 3.21 (Interpretation of stages). Let π be a type valuation. The corre-
sponding stage interpretation function [[.]]π : S→Ω + 1 is defined as follows:

[[ı]]π = π(ı) if ı ∈ VS
[[∞]]π = Ω

[[ŝ]]π =
{

[[s]]π + 1 if [[s]]π < Ω
[[s]]π if [[s]]π = Ω

Definition 3.22 (Type valuation).

1 A type valuation is a map ξ : VT →SAT.

Type-based termination of recursive definitions 21

2 For every type valuation ξ, α ∈ VT , and X ∈ SAT, the type valuation ξ(α := X) is
defined as follows:

ξ(α := X)(α′) =
{
X if α′ ≡ α
ξ(α′) if α′ 6≡ α

Definition 3.23 (Interpretation of types). Let π be a stage valuation and ξ a type
valuation. The corresponding type interpretation function [[.]]π,ξ : T →SAT is defined by
induction on heights (because of the stratification on datatype identifiers, every type has
finite height):

[[α]]π,ξ = ξ(α) if α ∈ VT
[[τ→σ]]π,ξ = [[τ]]π,ξ→ [[σ]]π,ξ

[[ds~τ]]π,ξ = D([[~τ]]π,ξ, [[s]]π)

where D(~X, x) is defined by induction on x by

D(~X, 0) = p∅q
D(~X, y + 1) = pc1 [[~σ1]]π,ξ(δ:=D(~X,y),~α:= ~X) ∪ . . . ∪ cn [[~σn]]π,ξ(δ:=D(~X,y),~α:= ~X)q

where D(ci) = (δ, ~α, ~σi)

D(~X, x) =
⋃
y < x.D(~X, y) if x is a limit ordinal

Lemma 3.24 (Substitution lemma for the interpretation of types).

1 [[σ[ι := s]]]π,ξ = [[σ]]π(ι:=[[s]]π),ξ

2 [[σ[α := τ]]]π,ξ = [[σ]]π,ξ(α:=[[τ]]π,ξ)

The following lemma states that the sequence of approximates of any datatype is
non-decreasing with respect to set inclusion and converges before Ω.

Lemma 3.25.

1 If X ⊆ X ′ and α pos σ, then [[σ]]π,ξ(α:=X) ⊆ [[σ]]π,ξ(α:=X′).
If X ⊆ X ′ and α neg σ, then [[σ]]π,ξ(α:=X′) ⊆ [[σ]]π,ξ(α:=X).

2 If x ≤ x′, then D(~X, x) ⊆ D(~X, x′).
3 D(~X,Ω + 1) = D(~X,Ω).

Proof.

1 By mutual induction on the height of σ.
2 From (1), by induction on x.
3 From (2), using the fact that E is countable. The iteration process has to converge

before Ω: the opposite would imply that E is uncountable, as Ω is uncountable.

Lemma 3.26.

1 [[dŝ~τ]]π,ξ = pc1 [[Instsc1 ~τ]]π,ξ ∪ . . . ∪ cn [[Instscn ~τ]]π,ξq
2 [[d∞~τ]]π,ξ = pc1 [[Inst∞c1 ~τ]]π,ξ ∪ . . . ∪ cn [[Inst∞cn ~τ]]π,ξq

Next we define valuations and interpretation for terms.

G. Barthe, M. J. Frade, E. Giménez, L. Pinto, and T. Uustalu 22

Definition 3.27 (Term valuation).

1 A term valuation is a map ρ : VE→E .
2 For every term valuation ρ, e ∈ E and x ∈ VE , the term valuation ρ(x := e) is defined

as follows:

ρ(x := e)(z) =
{
e if z ≡ x
ρ(z) if z 6≡ x

Definition 3.28 (Interpretation of terms). For any term valuation ρ, the map
([.])ρ : E→E is defined inductively as follows:

([x])ρ = ρ(x)
([λx. e])ρ = λx.([e])ρ(x:=x)

([e e′])ρ = ([e])ρ ([e′])ρ
([ck])ρ = ck

([case e of {c1 ⇒ e1 | . . . | cn ⇒ en}])ρ = case ([e])ρ of {c1 ⇒ ([e1])ρ | . . . | cn ⇒ ([en])ρ}
([letrec f = e])ρ = letrec f = ([e])ρ(f :=f)

Remark 3.29. In the clauses for lambda-abstraction and letrec, a form of variable
convention is relied upon: namely, x resp. f is assumed not to appear as a free variable
in any of the terms ρ(y) where y is free in e. Alternatively, without the convention, some
variable renaming may be necessary: in the case of lambda-abstraction, one would set

([λx. e])ρ = λx′.([e])ρ(x:=x′)

where x′ is some variable free in no ρ(y) where y is free in e.

Lemma 3.30 (Substitution lemma for the interpretation of terms).

— ([e[x := e′]])ρ = ([e])ρ(x:=([e′])ρ).
— ([e])ρ = e[~y := ρ(~y)] where ~y are the free variables of e.

The notion of satisfaction and validity are defined as usual: satisfaction of subtyping
is set inclusion, and satisfaction of typing is set membership.

Definition 3.31 (Satisfaction, validity).

1 A stage valuation π satisfies a stage comparison judgment s 4 s′, if [[s]]π ≤ [[s′]]π. A
stage comparison judgment s 4 s′ is valid, if every stage valuation satisfies it.

2 A stage valuation π and a type valuation ξ satisfy a subtyping judgment σ v σ′, if
[[σ]]π,ξ ⊆ [[σ′]]π,ξ. A subtyping judgment σ v σ′ is valid, if every pair of stage and type
valuations satisfies it.

3 A valuation is a triple (π, ξ, ρ), where π is a stage valuation, ξ is a type valuation and
ρ is a term valuation.

4 Let (π, ξ, ρ) be a valuation.

(a) (π, ξ, ρ) satisfies a context Γ, written (π, ξ, ρ) |= Γ, if ρ(x) ∈ [[τ]]π,ξ for each
(x : τ) ∈ Γ.

(b) (π, ξ, ρ) satisfies a typing judgment Γ ` e : σ, if

(π, ξ, ρ) |= Γ ⇒ ([e])ρ ∈ [[σ]]π,ξ

Type-based termination of recursive definitions 23

5 A typing judgment Γ ` e : σ is valid, written Γ |= e : σ, if every valuation satisfies
it.

3.2.3. Soundness wrt. the semantics Next we prove that the rules of λ̂ for stage com-
parison, subtyping, and typing are sound wrt. the semantics just defined. The strong
normalization theorem follows as a corollary from the typing soundness.

Proposition 3.32 (Stage comparison soundness).

s 4 s′ derivable ⇒ s 4 s′ valid

Proof. By induction on the derivation of s 4 s′.

Proposition 3.33 (Subtyping soundness).

σ v σ′ derivable ⇒ σ v σ′ valid

Proof. By induction on the derivation of σ v σ′.

Lemma 3.34. Let ξ be a type valuation. Then

1 If ı pos σ and x ≤ x′, then [[σ]]π(ı:=x),ξ ⊆ [[σ]]π(ı:=x′),ξ.
2 If ı neg σ and x ≤ x′, then [[σ]]π(ı:=x),ξ ⊇ [[σ]]π(ı:=x′),ξ.

Proof. By simultaneous induction on the structure of σ.

Proposition 3.35 (Typing soundness).

Γ ` e : σ derivable ⇒ Γ |= e : σ

Proof. By induction on the derivation of Γ ` e : σ.

(var)Assume the last (and the only) step is

Γ ` x : τ
and (x : τ) ∈ Γ

Suppose (π, ξ, ρ) |= Γ. We have to show that ([x])ρ ∈ [[τ]]π,ξ. This is true, as (x : τ) ∈ Γ.

(abs)Assume the last step is
Γ, x : τ ` e : σ

Γ ` λx. e : τ→σ
Suppose (π, ξ, ρ) |= Γ. We have to show that ([λx. e])ρ ∈ [[τ → σ]]π,ξ. Since [[τ →
σ]]π,ξ = [[τ]]π,ξ→ [[σ]]π,ξ and ([λx. e])ρ = λx.([e])ρ0 , where ρ0 = ρ(x := x), this amounts
to showing that (λx. ([e])ρ0) a ∈ [[σ]]π,ξ for any a ∈ [[τ]]π,ξ.
Observe first that, since (π, ξ, ρ0) |= Γ and ρ0(x) = x ∈ VE ⊆ [[τ]]π,ξ, the induction
hypothesis tells us that ([e])ρ0 ∈ [[σ]]π,ξ ⊆ SN.
Suppose now a ∈ [[τ]]π,ξ ⊆ SN and let ρ′ = ρ(x := a). Since (π, ξ, ρ′) |= Γ and
ρ′(x) = a ∈ [[τ]]π,ξ, by the induction hypothesis, we get that ([e])ρ′ ∈ [[σ]]π,ξ ⊆ SN.
Write ~y for the free variables of e, then (λx. ([e])ρ0) a →k ([e])ρ0 [x := a] = e[~y :=
ρ0(~y)][x := a] = e[~y := ρ′(~y)] = ([e])ρ′ (by the variable convention, Remark 3.29,
x does not occur free in ρ0(~y)). By Lemma 3.15, (λx. ([e])ρ0) a ∈ SN. As [[σ]]π,ξ is a

G. Barthe, M. J. Frade, E. Giménez, L. Pinto, and T. Uustalu 24

saturated set, we get that (λx. ([e])ρ0) a ∈ [[σ]]π,ξ.

(app)Assume the last step is

Γ ` e : τ→σ Γ ` e′ : τ
Γ ` e e′ : σ

Suppose (π, ξ, ρ) |= Γ. We have to show that ([e e′])ρ ∈ [[σ]]π,ξ. As ([e e′])ρ = ([e])ρ ([e′])ρ,
this amounts to showing that ([e])ρ ([e′])ρ ∈ [[σ]]π,ξ.
As (π, ξ, ρ) |= Γ, the induction hypothesis gives that ([e])ρ ∈ [[τ → σ]]π,ξ = [[τ]]π,ξ→
[[σ]]π,ξ and ([e′])ρ ∈ [[τ]]π,ξ. Thus ([e])ρ ([e′])ρ ∈ [[σ]]π,ξ.

(cons)Assume the last (and the only) step is

Γ ` ck : Instsck ~τ→dŝ~τ
and k ∈ 1..n

Suppose (π, ξ, ρ) |= Γ. We have to show that ([ck])ρ ∈ [[Instsck ~τ→dŝ~τ]]π,ξ = [[Instsck ~τ]]π,ξ→
[[dŝ~τ]]π,ξ. As ([ck])ρ = ck, this amounts to showing that ck~a ∈ [[dŝ~τ]]π,ξ for any
~a ∈ [[Instsck ~τ]]π,ξ. But that holds trivially, since [[dŝ~τ]]π,ξ = pc1 [[Instsc1 ~τ]]π,ξ ∪ . . . ∪
cn [[Instscn ~τ]]π,ξq.

(case)Assume the last step is

Γ ` e : dŝ~τ Γ ` e1 : Instsc1 ~τ→θ . . . Γ ` en : Instscn ~τ→θ

Γ ` case e of {c1 ⇒ e1 | . . . | cn ⇒ en} : θ

Suppose (π, ξ, ρ) |= Γ. We have to show that ([case e of {c1 ⇒ e1 | . . . | cn ⇒ en}])ρ ∈
[[θ]]π,ξ. As ([case e of {c1 ⇒ e1 | . . . | cn ⇒ en}])ρ = case ([e])ρ of {c1 ⇒ ([e1])ρ | . . . |
cn ⇒ ([en])ρ}, this amounts to showing that case ([e])ρ of {c1 ⇒ ([e1])ρ | . . . | cn ⇒
([en])ρ} ∈ [[θ]]π,ξ.
As (π, ξ, ρ) |= Γ, from the induction hypothesis we get that ([e])ρ ∈ [[dŝ~τ]]π,ξ ⊆ SN and
([ek])ρ ∈ [[Instsck ~τ→θ]]π,ξ = [[Instsck ~τ]]π,ξ→ [[θ]]π,ξ ⊆ SN for each k ∈ 1..n.
Since [[dŝ~τ]]π,ξ = pc1 [[Instsc1 ~τ]]π,ξ ∪ . . . ∪ cn [[Instscn ~τ]]π,ξq, it must be the case that
([e])ρ �k b for some b ∈ Base ∪ c1 [[Instsc1 ~τ]]π,ξ ∪ . . . ∪ cn [[Instscn ~τ]]π,ξ.
From b ∈ Base∪ c1 [[Instsc1 ~τ]]π,ξ ∪ . . .∪ cn [[Instscn ~τ]]π,ξ, it follows that case b of {c1 ⇒
([e1])ρ | . . . | cn ⇒ ([en])ρ} ∈ [[θ]]π,ξ ⊆ SN. Indeed, if b ∈ Base, then case b of {c1 ⇒
([e1])ρ | . . . | cn ⇒ ([en])ρ} ∈ Base ⊆ [[θ]]π,ξ, as ([ek])ρ ∈ SN for each k ∈ 1..n; if
b ∈ ck [[Instsck ~τ]]π,ξ for some k ∈ 1..n, then b = ck~a for some ~a ∈ [[Instsck ~τ]]π,ξ and
therefore case b of {c1 ⇒ ([e1])ρ | . . . | cn ⇒ ([en])ρ} →k ([ek])ρ~a ∈ [[θ]]π,ξ and, by
Lemma 3.15, case b of {c1 ⇒ ([e1])ρ | . . . | cn ⇒ ([en])ρ} ∈ SN, hence case b of {c1 ⇒
([e1])ρ | . . . | cn ⇒ ([en])ρ} ∈ [[θ]]π,ξ as [[θ]]π,ξ is saturated.
From ([e])ρ �k b it follows that case ([e])ρ of {c1 ⇒ ([e1])ρ | . . . | cn ⇒ ([en])ρ} �k

case b of {c1 ⇒ ([e1])ρ | . . . | cn ⇒ ([en])ρ}; further, by Lemma 3.14, case ([e])ρ of {c1 ⇒
([e1])ρ | . . . | cn ⇒ ([en])ρ} ∈ SN. Since [[θ]]π,ξ is saturated, we get that case ([e])ρ of {c1 ⇒
([e1])ρ | . . . | cn ⇒ ([en])ρ} ∈ [[θ]]π,ξ.

Type-based termination of recursive definitions 25

(rec)Assume the last step is

Γ, f : dı~τ→θ ` e : dı̂~τ→θ[ı := ı̂] ı pos θ

Γ ` (letrec f = e) : ds~τ→θ[ı := s]
and ı fresh in Γ, ~τ

Suppose (π, ξ, ρ) |= Γ. We have to show that ([(letrec f = e)])ρ ∈ [[ds~τ→θ[ı := s]]]π,ξ.
As [[ds~τ→ θ[ı := s]]]π,ξ = [[dı~τ→ θ]]π0,ξ = [[dı~τ]]π0,ξ→ [[θ]]π0,ξ and ([(letrec f = e)])ρ =
(letrec f = ([e])ρ0) where π0 = π(ı := [[s]]π) and ρ0 = ρ(f := f), this amounts to
showing that (letrec f = ([e])ρ0) a ∈ [[θ]]π0,ξ for any a ∈ [[dı~τ]]π0,ξ.
As (π0, ξ, ρ0) |= Γ and ρ0(f) = f ∈ VE ⊆ [[dı~τ→ θ]]π0,ξ, by the induction hypothesis
we get that ([e])ρ0 ∈ [[dı̂~τ→θ[ı := ı̂]]]π0,ξ ⊆ SN.
We prove our goal by induction on π0(ı).

(π0(ı) = 0)Suppose a ∈ [[dı~τ]]π0,ξ = p∅q ⊆ SN. Then a�k b for some b ∈ Base.
Since ([e])ρ0 ∈ SN, from b ∈ Base it follows that (letrec f = ([e])ρ0) b ∈ Base ⊆
[[θ]]π0,ξ ⊆ SN.
From a �k b it follows that (letrec f = ([e])ρ0) a �k (letrec f = ([e])ρ0) b and, by
Lemma 3.14, (letrec f = ([e])ρ0) a ∈ SN.
Since [[θ]]π0,ξ is a saturated set, we can conclude that (letrec f = ([e])ρ0) a ∈ [[θ]]π0,ξ.

(π0(ı) = y + 1)Let π′ = π(ı := y) and ρ′ = ρ(f := (letrec f = ([e])ρ0)). As (π′, ξ, ρ′) |=
Γ and as by the inner induction hypothesis ρ′(f) = (letrec f = ([e])ρ0) ∈ [[dı~τ]]π′,ξ→
[[θ]]π′,ξ = [[dı~τ → θ]]π′,ξ, by the outer induction hypothesis we get that ([e])ρ′ ∈
[[dı̂~τ→θ[ı := ı̂]]]π′,ξ = [[dı~τ→θ]]π0,ξ.
Suppose a ∈ [[dı~τ]]π0,ξ = pc1 [[Instıc1 ~τ]]π′,ξ ∪ . . . ∪ cn [[Instıcn ~τ]]π′,ξq ⊆ SN. Then
a�k b for some b ∈ Base ∪ c1 [[Instıc1 ~τ]]π′,ξ ∪ . . . ∪ cn [[Instıcn ~τ]]π′,ξ.
From b ∈ Base ∪ c1 [[Instıc1 ~τ]]π′,ξ ∪ . . . ∪ cn [[Instıcn ~τ]]π′,ξ we get that (letrec f =
([e])ρ0) b ∈ [[θ]]π0,ξ ⊆ SN. Indeed, if b ∈ Base, then (letrec f = ([e])ρ0) b ∈ Base ⊆
[[θ]]π0,ξ, since ([e])ρ0 ∈ SN; if b ∈ ck[[Instıck ~τ]]π′,ξ ⊆ [[dı~τ]]π0,ξ for some k ∈ 1..n, then
(letrec f = ([e])ρ0) b →k ([e])ρ0 [f := (letrec f = ([e])ρ0)] b = ([e])ρ′ b ∈ [[θ]]π0,ξ and,
by Lemma 3.15, (letrec f = ([e])ρ0) b ∈ SN, hence (letrec f = ([e])ρ0) b ∈ [[θ]]π0,ξ as
[[θ]]π0,ξ is saturated.
From a �k b it follows that (letrec f = ([e])ρ0) a �k (letrec f = ([e])ρ0) b and, by
Lemma 3.14, (letrec f = ([e])ρ0) a ∈ SN.
Since [[θ]]π0,ξ is a saturated set, we can conclude that (letrec f = ([e])ρ0) a ∈ [[θ]]π0,ξ.

(π0(ı) = x where x is a limit ordinal)Suppose a ∈ [[dı~τ]]π0,ξ =
⋃
y < x. [[dı~τ]]π(ı:=y),ξ.

Then a ∈ [[dı~τ]]π(ı:=y),ξ for some y < x. By the inner induction hypothesis and by
the positivity of ı in θ, we therefore get that (letrec f = ([e])ρ0) a ∈ [[θ]]π(ı:=y),ξ ⊆
[[θ]]π0,ξ.

(sub)Assume the last step is
Γ ` e : σ σ v σ′

Γ ` e : σ′
Suppose (π, ξ, ρ) |= Γ. We have to show that ([e])ρ ∈ [[σ′]]π,ξ. As (π, ξ, ρ) |= Γ, the
induction hypothesis gives ([e])ρ ∈ [[σ]]π,ξ and the subtyping soundness gives [[σ]]π,ξ ⊆
[[σ′]]π,ξ. Together, these give ([e])ρ ∈ [[σ′]]π,ξ.

G. Barthe, M. J. Frade, E. Giménez, L. Pinto, and T. Uustalu 26

The main result of this subsection follows as an immediate corollary of the soundness
of the typing system.

Proposition 3.36 (Strong normalization). →βιµ is strongly normalizing on typable
expressions:

Γ ` e : σ derivable ⇒ e ∈ SN

Proof. Assume Γ ` e : σ. Then, by Proposition 3.35, Γ |= e : σ. Consider a valuation
(π, ξ, ρ) where, for every x ∈ VE , ρ(x) = x. For every (x : τ) ∈ Γ, ([x])ρ = x ∈ [[τ]]π,ξ, since
[[τ]]π,ξ is saturated, hence (π, ξ, ρ) |= Γ. Therefore ([e])ρ ∈ [[σ]]π,ξ. As ([e])ρ = e, we have

e ∈ [[σ]]π,ξ ⊆ SN

4. The System λG

In this section we present the system λG , a simply typed λ-calculus with inductive types.
The terms allowed in λG are the same as those allowed in λ̂ . In particular, we continue to
have the letrec constructor for defining functions recursively, but in λG (following what is
done in (Giménez 1995)) termination of typable recursively defined functions is ensured
by a syntactical condition G constraining uses of recursive calls in the body of definitions.
The condition G is checked directly on the body of the function and not on its normal
form because of the problem this would raise (as discussed in the introduction).

4.1. The syntax of λG

The systems λG and λ̂ allow the same set of terms; they differ at the level of types in
the following aspects:

1 stages are not present in λG and so datatypes are not annotated by stages;
2 in λG there is no subtyping relation;
3 the set of typing rules is different, and λG ’s typing rule

Γ, f : d~τ → σ ` e : d~τ → σ Gxf (∅, a)

Γ ` (letrec f = e) : d~τ → σ
if e ≡ λx.a

for letrec-expressions is complemented by the syntactical condition G;
4 following (Giménez 1995), the datatypes allowed in λG are slightly more restricted

than those of λ̂ for, in the argument types of the constructors of a datatype, such
datatype can only have strictly positive occurences; so throughout this section we
assume that constructor schemes (δ, ~α, ~σ) are as in Definition 2.8 where condition 1
is replaced by the condition: each σi is strictly positive w.r.t. δ, or in other words, if
δ occurs in σi, σi is of the form ~γ→δ where ~γ has no occurrences of δ.

Let us focus on the letrec operator and on the syntactical condition G it satisfies. This
condition complements the reduction rule→µ, ensuring that each expansion of the letrec

operator consumes (at least) the constructor in the head of its argument. Informally, for
a term (letrec f = e) we should have the following:

Type-based termination of recursive definitions 27

1 f may occur in e only as the head of an application;
2 any application of f must be protected by a case analysis of the formal argument

of e, say x (for this reason f is said to be guarded by destructors); therefore f must
occur inside ei’s in the following context:

case x of { c1 ⇒ λx11. . . . λx1m1 . e1

...
cn ⇒ λxn1. . . . λxnmn . en

}

3 considering that the components of x are the xij (direct components) together with
the components of each xij (inner components), f must be applied to a term of the
form z ~a where z is a recursive component of x (i.e., z is a component of x whose
type has occurrences of the type of x).

To illustrate the observations above, let us consider the examples already given in
Section 2, plus and even, now transposed to λG .

Example 4.1.

— The addition of two natural numbers.

(letrec plus = λx. λy. case x of {o ⇒ y

| s ⇒ λn.s (plus n y)
}

) : Nat→ Nat→ Nat

Here the only application of plus is protected by a case analysis on x, the formal
argument of plus. The argument of this application is the pattern variable n, a direct
component of x.

— A function that indicates whether or not a natural number is even.

(letrec even = λx. case x of {o ⇒ true

| s ⇒ λy. case y of {o ⇒ false

| s ⇒ λz. even z }
}

) : Nat→ Bool

In this example the application of even is guarded by a case analysis on the argument
x. The argument of this application is the pattern variable z, an inner component
of x which becomes available in the case analysis on the pattern variable y, a direct
component of x.

The formal description of the guarded-by-destructors condition is provided by the pred-
icate Gxf (V, a) defined below. The V argument is a set of variables used to collect the
pattern variables in a representing the recursive components of x. In order to identify
the recursive components of a variable, we start by characterizing the recursive positions
of a constructor scheme as follows:

G. Barthe, M. J. Frade, E. Giménez, L. Pinto, and T. Uustalu 28

1.
f 6= y

Gxf (U, y)
if y is a variable

2.
Gxf (U, a)

Gxf (U, λz.a)

3.
Gxf (U, e)

Gxf (U, letrec g = e)

4.
Gxf (U, c)

5.
Gxf (U, a) Gxf (U, b)

Gxf (U, a b)

6.
Gxf (U, z ~a)

Gxf (U, f (z ~a))
if z ∈ U

7.
Gxf (U, e) Gxf (U, bi) (1 ≤ i ≤ n)

Gxf (U, case e of {c1 ⇒ b1 | . . . | cn ⇒ bn})
if

e 6≡ z ~a
∨

(e ≡ z ~a ∧ z 6∈ U ∪ {x})

8.
Gxf (U, aj) (1 ≤ j ≤ m) Gxf (Vi, ei) (1 ≤ i ≤ n)

Gxf (U, case (z a1 . . . am) of {c1 ⇒ b1 | . . . | cn ⇒ bn})

if

z ∈ U ∪ {x}
bi ≡ λy1. . . . λyar(ci). ei
Vi ≡ U ∪ {yj | RP(j,D(ci)) for 1 ≤ j ≤ ar(ci)}

Fig. 6. Guarded-by-destructors rules

Definition 4.2. Let c be a λG constructor such that D(c) = (δ, ~α, ~σ). We say that the
number j corresponds to a recursive position of D(c), written RP(j,D(c)), if σj is of the
form ~γ→δ.

The predicate G is now defined as follows:

Definition 4.3 (G predicate). Let U ⊆ V, let x and f be distinct variables not in U

and let a ∈ E . The predicate Gxf (U, a) is derivable using the rules in Figure 6.

Lemma 4.4. If f nocc a then Gxf (U, a).

Proof. By induction on the structure of a.

One can check that the guard predicate holds on addition.

Type-based termination of recursive definitions 29

Example 4.5. The function plus of Example 4.1 can be shown guarded as follows

plus 6= y

Gxplus(∅, y)
1
Gxplus({n}, s)

4

plus 6= n

Gxplus({n}, n)
1

Gxplus({n}, plus n)
6

plus 6= y

Gxplus({n}, y)
1

Gxplus({n}, plus n y)
5

Gxplus({n}, s (plus n y))
5

Gxplus(∅, case x of {o ⇒ y | s ⇒ λn.s (plus n y)}) 8

Gxplus(∅, λy.case x of {o ⇒ y | s ⇒ λn.s (plus n y)}) 2

As suggested in the introduction, the predicate G is very sensitive to syntax. This is
illustrated by the example below.

Example 4.6. Consider the following expression.

letrec plus = λx. λy. case x of {o ⇒ y

| s ⇒ λn.s ((λg. g n y) plus)
}

This expression also defines the addition of two natural numbers: it is obtained from the
plus function defined in Example 4.1 by a β-expansion. However, this definition of plus
does not satisfy condition G because the occurrence of plus in the letrec body is not the
head of an application. So, when trying to prove the condition G we would have to derive
Gxplus({n}, plus) which, by looking at the rules defining G, we can immediately say to be
underivable.

Another example of an expression not satisfying the guard condition is the Euclidean
division already considered.

Example 4.7. The Euclidean division defined in Example 2.21 does not satisfy G for
in the recursive call of the div function (div (minus x′ y) y) its argument (minus x′ y) is
not a recursive component of its formal argument (x), but instead the result of applying
the previously defined minus to a recursive component (x′) of x.

We now turn to the typing system. First, one needs to define instances of constructors.
The definition is almost identical to the one for λ̂ , the only difference being the absence
of stages.

Definition 4.8. Let d ∈ D, c ∈ C(d) and ~τ ∈ T such that #~τ = ar(d). Assume
D(c) = (δ, ~α, ~σ). An instance of c w.r.t. ~τ is defined as follows

Instc ~τ = ~σ[δ := d~τ][~α := ~τ]

Typing of terms is defined in the usual way.

Definition 4.9 (Typing). The typing judgment Γ ` e : σ is derivable if it can be
inferred by the rules of Figure 7, where Gxf (∅, a) is the guarded-by-destructors condition
defined in Figure 6.

G. Barthe, M. J. Frade, E. Giménez, L. Pinto, and T. Uustalu 30

(var)
Γ ` x : σ

if (x : σ) ∈ Γ

(abs)
Γ, x : τ ` e : σ

Γ ` λx.e : τ → σ

(app)
Γ ` e : τ → σ Γ ` e′ : τ

Γ ` e e′ : σ

(cons)
Γ ` c : Instc ~τ → d~τ

if c ∈ C(d)

(case)
Γ ` e : d~τ Γ ` ei : Instci ~τ → θ (1 ≤ i ≤ n)

Γ ` case e of {c1 ⇒ e1 | . . . | cn ⇒ en} : θ
if C(d) = {c1, . . . , cn}

(rec)
Γ, f : d~τ → σ ` e : d~τ → σ Gxf (∅, a)

Γ ` (letrec f = e) : d~τ → σ
if e ≡ λx.a

Fig. 7. Typing rules for λG

Below are presented some properties of λG used in the interpretation of λG into λ̂

exhibited in the following section.

Lemma 4.10. Γ1,Γ2, x : τ,Γ3 ` a : σ ⇒ Γ1, x : τ,Γ2,Γ3 ` a : σ

Proof. By induction on the derivation of Γ1,Γ2, x : τ,Γ3 ` a : σ.

Lemma 4.11 (Generation lemma for G). If Gxf (U, a) has a derivation D, then only
one rule can be applied as the last step of D.

Proof. By case analysis on a. Note that only the conclusions of the rules 5 and 6 can
be matched. Furthermore, in order to match the conclusions of such rules a must be of
the form f (z~b), in which case rule 5 cannot be applied as last rule for its left premise
would be underivable.

Lemma 4.12. If Gxf (U, a) and U ⊆ V , then Gxf (V, a).

Proof. By induction on the derivation of Gxf (U, a). The interesting case is when the
last rule applied is rule 7.

Assume a ≡ case e of {c1 ⇒ b1 | . . . | cn ⇒ bn} and the last step is

Gxf (U, e) Gxf (U, bi) (1 ≤ i ≤ n)

Gxf (U, case e of {c1 ⇒ b1 | . . . | cn ⇒ bn})

— If e 6≡ z ~a or if e ≡ z a1 . . . am, z 6∈ U ∪ {x} and z 6∈ V , then by induction hypothesis
Gxf (V, e) and Gxf (V, bi) for 1 ≤ i ≤ n, thus Gxf (V, a) can be derived using rule 7.

— Consider now e ≡ z a1 . . . am, z 6∈ U ∪ {x} and z ∈ V . Each bi must be of the form
λy1. . . . λyar(ci). ei. Let Qi ≡ V ∪{yj | RP(j,D(ci)) for 1 ≤ j ≤ ar(ci)}. For 1 ≤ i ≤ n,
since V ⊆ Qi, using the induction hypothesis Gxf (Qi, bi) and then, by Lemma 4.11,

Type-based termination of recursive definitions 31

Gxf (Qi, ei). Also, from the induction hypothesis we have Gxf (V, aj) for 1 ≤ j ≤ m and
therefore, applying rule 8, Gxf (V, a).

The remaining cases can be easily proved using the induction hypothesis.

Lemma 4.13 (Generation lemma for λG).

1 Γ ` x : σ ⇒ (x : σ) ∈ Γ
2 Γ ` e e′ : σ ⇒ ∃ τ ∈ T . Γ ` e : τ → σ ∧ Γ ` e′ : τ
3 Γ ` λx.e : θ ⇒ θ ≡ τ → σ ∧ Γ, x : τ ` e : σ
4 Γ ` c : θ ⇒ θ ≡ Instc ~τ → d~τ with c ∈ C(d)
5 Γ ` case e of {c1 ⇒ e1| . . . |cn ⇒ en} : θ ⇒ ∃ d ∈ D ∃~τ ∈ T . Γ ` e : d~τ ∧ Γ `

ei : Instci ~τ → θ for 1 ≤ i ≤ n with ci ∈ C(d)
6 Γ ` letrec f = e : θ ⇒ θ ≡ d~τ → σ ∧ Γ, f : d~τ → σ ` e : d~τ → σ ∧ e ≡

λx.a ∧ Gxf (∅, a)

4.2. From λG to λ̂

In this section we show that λ̂ is a more general system than λG . The Examples 4.6
and 4.7 already illustrated that some terms typable in λ̂ cannot be typed in λG . In this
section we show that: if Γ `λG a : σ then Γ `λ̂ a : σ (the subscript at the turnstyle
sign indicating the type system considered). Naturally, the main difficulty in transiting
from λG to λ̂ is posed by letrec-expressions because the two systems have different kinds
of typing rules for these expressions.

Given Γ `λG letrec f = λx.a : d~τ → σ, by the generation lemma for λG , we have

Γ, f : d~τ → σ, x : d~τ `λG a : σ ∧ Gxf (∅, a) (6)

However, we would want to have

Γ, f : dı~τ → σ, x : dı̂~τ `λ̂ a : σ (ı fresh in Γ, ~τ) (7)

in order to use the λ̂ rec-rule and so derive Γ `λ̂ letrec f = λx.a : d~τ → σ. Intuitively
(6) is sufficient to guarantee (7) because, as we have Gxf (∅, a), all the possible occurrences
of f in a are of the form f (z ~a), with z being a recursive component of x. In (7) we have
x : dı̂~τ so, if z is a recursive component of x we should have z : ~γ → dı~τ . Hence f (z ~a)
is also typable in λ̂ .

The remainder of this subsection is devoted to the embedding of λG into λ̂ . In this
embedding the Main Lemma below plays a central role. There we present the full con-
struction underlying the lemma because it lays open the details of the relation between
the systems λG and λ̂ .

In the following we assume that each variable xi is uniquely associated to a stage
variable i. Recall also that, in λ̂ , the notation d~τ abbreviates the datatype d∞~τ .

G. Barthe, M. J. Frade, E. Giménez, L. Pinto, and T. Uustalu 32

Lemma 4.14 (Main Lemma). Let

Γ0 = Γ
Γi = Γi−1, fi : di ~τi → σi, xi : di ~τi for 1 ≤ i ≤ n

Γ̂0 = Γ0

Γ̂i = Γ̂i−1, fi : dii ~τi → σi, xi : d̂ii ~τi for 1 ≤ i ≤ n
where i is a fresh stage variable
associated to xi

and, for 1 ≤ i ≤ n, let Ui be a set of variables such that for each z ∈ Ui, z : ~γ → di ~τi ∈ Γ
and so that all the Ui’s are disjoint. Then,

Γn `λG a : σ ∧ (∀i ∈ {1, . . . , n}. Gxifi (Ui, a)) ⇒ [Γ̂n]U `λ̂ a : σ

where U =
⋃

1≤i≤n Ui and [Γ̂n]U is obtained from Γ̂n by replacing each declaration
z : ~γ → di ~τi (with z ∈ Ui) by z : ~γ → dii ~τi. Note that in order to make Γn a context, in
particular, all the fi’s and xi’s must be distinct and cannot be declared in Γ.

Proof. By induction on the structure of a.

1 Case a ≡ x, the hypothesis is

Γn `λG x : σ ∧ ∀i ∈ {1, . . . , n}. Gxifi (Ui, x)

— If x ≡ xi for some i ∈ {1, . . . , n}, σ ≡ di ~τi and so, [Γ̂n]U `λ̂ x : d̂ii ~τi. As
d̂ii ~τi v d∞i ~τi, using the rule (sub),

[Γ̂n]U `λ̂ x : di~τi

— If x 6≡ xi for every i ∈ {1, . . . , n} then, since ∀i ∈ {1, . . . , n}. Gxifi (Ui, x), x 6≡ fi for
every i ∈ {1, . . . , n}. Therefore, using Lemma 4.13, (x : σ) ∈ Γ. Hence

(a) If x 6∈ U , then [Γ̂n]U `λ̂ x : σ.

(b) If x ∈ U then, σ ≡ ~γ → di~τi for some i ∈ {1, . . . , n}. So, [Γ̂n]U `λ̂ x : ~γ →
dii ~τi and, since ~γ → dii ~τi v ~γ → d∞i ~τi, by (sub)

[Γ̂n]U `λ̂ x : σ

2 Case a ≡ e e′ the hypothesis is

Γn `λG e e′ : σ ∧ ∀i ∈ {1, . . . , n}. Gxifi (Ui, e e′)

— If e ≡ fi for some i ∈ {1, . . . , n} then, by Lemma 4.11, e′ ≡ z~b, Gxifi (Ui, e′) and
z ∈ Ui. Moreover:

(a) Γn `λG fi : di~τi → σi and σ ≡ σi. So, [Γ̂n]U `λ̂ fi : dii ~τi → σ.

(b) Γn `λG z : ~γ → di~τi. So, [Γ̂n]U `λ̂ z : ~γ → dii ~τi because z ∈ Ui.
(c) Γn `λG ~b : ~γ (using this notation to abbreviate the list of judgments Γn `λG

bk : γk for each bk ∈ ~b) and for every bk ∈ ~b, Gxifi (Ui, bk) because z 6= fi. For
j ∈ {1, . . . , n} − {i}, e 6= fj and, by Lemma 4.11, Gxjfj (Uj , bk) for every bk ∈ ~b.

Type-based termination of recursive definitions 33

Therefore, by induction hypothesis,

[Γ̂n]U `λ̂ ~b : ~γ

From (a), (b) and (c), using (app), one can then obtain

[Γ̂n]U `λ̂ fi (z~b) : σ

— If e 6≡ fi for every i ∈ {1, . . . , n} then, using Lemmas 4.11 and 4.13,

Γn `λG e : γ → σ ∧ Γn `λG e′ : γ

and

∀i ∈ {1, . . . , n}. Gxifi (Ui, e) ∧ Gxifi (Ui, e′)

Hence, by induction hypothesis,

[Γ̂n]U `λ̂ e : γ → σ ∧ [Γ̂n]U `λ̂ e′ : γ

Using the rule (app) one obtains [Γ̂n]U `λ̂ e e′ : σ.

3 Case a ≡ λy.e, the hypothesis is

Γn `λG λy.e : σ ∧ ∀i ∈ {1, . . . , n}. Gxifi (Ui, λy.e)

Using Lemmas 4.13 and 4.10, σ ≡ γ → σ′ for some γ, σ′ ∈ T and also

Γ, y : γ, f1 : d1 ~τ1 → σ2, x1 : d1 ~τ1, . . . , fn : dn ~τn → σ, xn : dn ~τn `λG e : σ′

By Lemma 4.11, ∀i ∈ {1, . . . , n}. Gxifi (Ui, e). Hence, by induction hypothesis,

[Γ, y : γ, f1 : d11 ~τ1 → σ1, x1 : d̂11 ~τ1, . . . , fn : dnn ~τn → σn, xn : d̂nn ~τn]U `λ̂ e : σ′

We know that y 6∈ Γ and so, y 6∈ U . Therefore, using Lemma 3.6 [Γ̂n]U , y : γ `λ̂ e : σ′

and the proof of this case is concluded applying rule (abs).
4 Case a ≡ c and c ∈ C(d), one assumes Γn `λG c : Instc ~τ → d~τ . Thus in λ̂ one can

apply (cons) to obtain [Γ̂n]U `λ̂ c : Inst∞c ~τ → d∞̂~τ , and since, Instc ~τ is being used
as an abbreviation for Inst∞c ~τ and d∞̂~τ v d∞~τ , one also has

[Γ̂n]U `λ̂ c : Instc ~τ → d~τ

5 Case a ≡ case e of {c1 ⇒ b1| . . . |cm ⇒ bm}, the hypotheses are

Γn `λG case e of {~c⇒ ~b} : σ (8)

∀i ∈ {1, . . . , n}. Gxifi (Ui, case e of {~c⇒ ~b}) (9)

and from (8), applying Lemma 4.13, there exists d, ~τ such that

Γn `λG e : d~τ (10)

Γn `λG bk : Instck ~τ → σ (11)

for each 1 ≤ k ≤ m. Two cases can now occur.

— If e 6≡ z ~a or e ≡ z ~a and z 6∈ Ui ∪ {xi} for every i ∈ {1, . . . , n}, then from (9) by
Lemma 4.11

∀i ∈ {1, . . . , n}.∀k ∈ {1, . . . ,m}. Gxifi (Ui, e) ∧ Gxifi (Ui, bk)

G. Barthe, M. J. Frade, E. Giménez, L. Pinto, and T. Uustalu 34

Thus applying the induction hypothesis to (10), followed by rule (sub), one has
[Γ̂n]U `λ̂ e : d∞̂~τ and applying the induction hypothesis to (11) one obtains
[Γ̂n]U `λ̂ bk : Inst∞ck ~τ → σ. Derivations of these judgments can now be put
together by means of the rule (case), proving

[Γ̂n]U `λ̂ case e of {~c⇒ ~b} : σ

— Consider now that e ≡ z ~a and z ∈ Ui ∪ {xi} for some i ∈ {1, . . . , n} (recall that
such i must be unique since: the Uj ’s are disjoint and contain none of the xj ’s;
and the xj ’s are distinct). Let, for each 1 ≤ k ≤ m,

bk ≡ λ ~yk.ek
Vk,i ≡ Ui ∪ {yk,r | RP(r,D(ck)) for 1 ≤ r ≤ ar(ck)}
Vk,j ≡ Uj for j ∈ {1, . . . , n} − {i}
Vk ≡

⋃
1≤j≤n Vk,j

where yk,r denotes the r-th component of vector ~yk. Applying Lemma 4.11 to (9),
one can now assume that for each 1 ≤ j ≤ n

∀ as ∈ ~a . G
xj
fj

(Uj , as) ∧ ∀ k ∈ {1, . . . ,m} . G
xj
fj

(Vk,j , ek) (12)

From (11) by Lemmas 4.13 and 4.10, one has

Γ, ~yk : Instck ~τ ,Γn \ Γ `λG ek : σ

where Γn \ Γ is the context Γn without the declarations in Γ. Moreover, yk,r :
~γyk,r → di~τi ∈ (~yk : Instck ~τ) for each 1 ≤ r ≤ ar(ck) such that RP(r,D(ck))

and thus, for each 1 ≤ k ≤ m and 1 ≤ j ≤ n, and for each z ∈ Vk,j we have
z : ~γz → di ~τi ∈ (Γ, ~yk : Instck ~τ). Hence, by the induction hypothesis

[̂Γ, ~yk : Instck ~τ ,Γn \ Γ]Vk `λ̂ ek : σ

from which one can show [Γ̂n]U , ~yk : Instick ~τ `λ̂ ek : σ (observe that Vk =
U ∪ {yk,r | RP(r,D(ck)) for 1 ≤ r ≤ ar(ck)}) and therefore, by the rule (abs),
[Γ̂n]U `λ̂ bk : Instick ~τ → σ holds.
To conclude the proof of this case, it suffices now to show that

[Γ̂n]U `λ̂ e : d̂ii ~τi (13)

and to use then the rule (case). In order to prove (13) one proceeds as follows.

(a) Case e ≡ xi, [Γ̂n]U `λ̂ xi : d̂ii ~τi is derivable.

(b) Case e ≡ z ~a with z ∈ Ui, from (10) by Lemma 4.13, Γn `λG z : ~γ → d~τ

(thus, d~τ ≡ di ~τi) and

Γn `λG ~a : ~γ (14)

Now, since (12) holds, one can apply the induction hypothesis to (14) obtaining
[Γ̂n]U `λ̂ ~a : ~γ. It is also true that z : ~γ → dii ~τi ∈ [Γ̂n]U , for z ∈ Ui, and since
~γ → dii ~τi v ~γ → d̂ii ~τi, by (sub) and (app), [Γ̂n]U `λ̂ z ~a : d̂ii ~τi holds.

Type-based termination of recursive definitions 35

6 Case a ≡ letrec f = λx.a′, we must have σ ≡ d~τ → σ′ for some d~τ , σ′ ∈ T , and the
hypothesis is

Γn `λG letrec f = λx.a′ : d~τ → σ′ ∧ ∀i ∈ {1, . . . , n}. Gxifi (Ui, letrec f = λx.a′)

By Lemma 4.13 we get

Γn, f : d~τ → σ′, x : d~τ `λG a′ : σ′

and Gxf (∅, a′). Again by the hypothesis, by Lemma 4.11, ∀i ∈ {1, . . . , n}. Gxifi (Ui, a′)
hence, assuming Un+1 = ∅, xn+1 = x and fn+1 = f , we have

∀i ∈ {1, . . . , n+ 1}. Gxifi (Ui, a′)

So, by induction hypothesis [Γ̂n+1]U `λ̂ a′ : σ′. Applying (abs) and (rec) we get
[Γ̂n]U `λ̂ letrec f = λx.a′ : (dı~τ → σ′)[ı :=∞]. Hence, for ı has no occurrences in ~τ
nor in σ′,

[Γ̂n]U `λ̂ (letrec f = λx.a′) : d~τ → σ′

We are now ready to prove the main result of this section.

Proposition 4.15.

Γ `λG a : σ ⇒ Γ `λ̂ a : σ

Proof. By induction on the derivation of Γ `λG a : σ.

(rec)Assume the last step is

Γ, f : d~τ → σ `λG e : d~τ → σ Gxf (∅, a)

Γ `λG (letrec f = e) : d~τ → σ
with e ≡ λx.a

By Lemma 4.13, Γ, f : d~τ → σ, x : d~τ `λG a : σ and since Gxf (∅, a) we are in
conditions of applying the Main Lemma and conclude Γ, f : dı~τ → σ, x : dı̂~τ `λ̂ a : σ.
Hence, applying the rules (abs) and (rec) one derives Γ `λ̂ (letrec f = e) : (dı~τ →
σ)[ı :=∞] which is the same as

Γ `λ̂ (letrec f = e) : d~τ → σ

for ı does not occur in σ or ~τ .

All the remaining cases can be easily proved using the induction hypothesis.

5. Extension to coinductive types

Coinductive types are a mechanism for the introduction of infinite objects into type
theory, and are useful in the modelling of perpetual computations, e.g., the operation of
process systems. The system λ̂ is readily extensible to support also coinductive types. We
shall here outline the syntax of an appropriate extension of λ̂ and give some programming
examples.

G. Barthe, M. J. Frade, E. Giménez, L. Pinto, and T. Uustalu 36

First, the definition of the set E of terms is extended with corecursive definitions.

e ::= . . . | (coletrec f = e)

In addition to β-, ι-, and µ-reduction, we define ν-reduction as the compatible closure of
the rule

case (coletrec f = e) ~a of {c1 ⇒ e1 | . . . | cn ⇒ en}
→ν case e[f := (coletrec f = e)] ~a of {c1 ⇒ e1 | . . . | cn ⇒ en}

The form of the ν-reduction rule may look unexpected, but is dual to µ-reduction: while
the µ-reduction rule allows unfolding of a recursive definition provided that the argument
value is produced by a constructor, the ν-reduction rule allows it, if the result value is
consumed by a case-expression.

Second, the definition of the set T of type expressions is extended with codatatype
approximation expressions

σ, τ ::= . . . | cods ~τ

cod∞ ~τ will also be written as cod ~τ .
The subtyping rules are supplemented with the following (codata) rule, dual to the

(data) rule:

(codata)
s 4 r τi v τ ′i (1 ≤ i ≤ ar(d))

codr~τ v cods~τ

The typing rules are supplemented with the rules (cons’), (case’) and (corec). The
two first of these are essentially the same as the rules (cons), (case), but they are used
for the construction and destruction of values of coinductive, not inductive types. Below
coInstsc ~τ stands for ~σ[δ := cods~τ][~α := ~τ].

(cons’)
Γ ` c : coInstsc ~τ→ codŝ~τ

if c ∈ C(d)

(case’)
Γ ` e′ : codŝ~τ Γ ` ei : coInstsci ~τ→θ (1 ≤ i ≤ n)

Γ ` case e′ of {c1 ⇒ e1 | . . . | cn ⇒ en} : θ
if C(d) = {c1 . . . , cn}

(corec)
Γ, f : ~σ → codı~τ ` e : (~σ → codı~τ)[ı := ı̂] ı pos ~σ

Γ ` (coletrec f = e) : (~σ → codı~τ)[ı := s]
if ı not in Γ, ~τ

Below are some programming examples that illustrate the use of co-recursive functions.

Example 5.1.

— The colist of all natural numbers starting from a given one (in the ascending order).

(coletrec from = λn. cons n (from (s n))) : Nat→ coList Nat

— The infinite colist consisting of zeros.

(coletrec zeros = cons o zeros) : coList Nat

— Concatenation of two colists. This program admits a type containing the information

Type-based termination of recursive definitions 37

that the concatenation of two colists is in the same approximation of the colist type
where the two individual colists are.

append ≡ (coletrec append :coListıτ→coListıτ→coListıτ =

λx:coListı̂ τ . λy:coListı̂ τ . case x of {nil ⇒
:coListı̂ τ︷︸︸︷

y

| cons ⇒ λa:τ . λx
′
:coListıτ . cons a (append x′ y)︸ ︷︷ ︸

:coListıτ︸ ︷︷ ︸
:coListı̂τ

}
) : coLists τ→ coLists τ→ coLists τ

— This program exchanges every first and second element in a given colist.

(coletrec exch :coListτ→coListıτ = λl:coListτ .

case l of {
nil ⇒ nil

| cons ⇒ λa:τ . λl
′
:coListτ .case l′ of {

nil ⇒ cons a nil

| cons ⇒ λa′:τ . λl
′′
:coListτ . cons a′ (cons a (exch l′′)︸ ︷︷ ︸

:coListıτ

)

︸ ︷︷ ︸
:coList

̂̂ıτ v coListı̂τ

}

}
) : coList τ→ coLists τ

Although the exchange function does not alter the length of a colist, the type we have
given to the program above is the best possible in our setting.

— As a last example, we give a program that, given a colist, computes its infinite rep-
etition. The typability of this program is a consequence of the typing we have given
for append.

(coletrec rep:coListıτ→coListıτ = λl:coListı̂τ .

case l of {nil ⇒ nil

| cons ⇒ λa:τ . λl
′
:coListıτ . cons a (append l′ (rep l)︸ ︷︷ ︸

:coListıτ

)

︸ ︷︷ ︸
:coListı̂τ

}
) : coListsτ→ coListsτ

The extended λ̂ enjoys subject reduction and strong normalizability of typable terms
just as the original λ̂ . The proof for λ̂ extends readily; we leave it out for space reasons.
We believe that λG extended with guarded by constructors corecursion is embeddible in
the extended λ̂ as the original λG is embeddible in λ̂ .

G. Barthe, M. J. Frade, E. Giménez, L. Pinto, and T. Uustalu 38

6. Related work

For the sake of clarity, we split existing systems into four categories: (1) based on
traditional-style terminating recursors, (2) based on a fixpoint operator controlled by
a syntactic guard predicate, (3) exploiting pattern matching, (4) based on a fixpoint op-
erator controlled by an unusual typing ensuring that the recursion actually terminates,
(5) relying on other type-based techniques for ensuring termination.

Comparison with (Martin-Löf 1971) and other works on traditional-style terminating
recursors Most formalizations of inductive types in type theory support recursive defini-
tions only indirectly via eliminators behaving as iterators or primitive recursors (Martin-
Löf 1971; Leivant 1983; Pierce et al. 1989; Pfenning and Paulin-Mohring 1990; Paulin-
Mohring 1993; Coquand and Paulin 1990; Dybjer 1994; Geuvers 1992; Matthes 1999;
Altenkirch 1999; Sp lawski and Urzyczyn 1999). Such systems are well-understood meta-
theoretically and enjoy good properties, but are hard to use in practical programming:
this requires the programmer to translate all recursive definitions he would like to make
into explicit definitions involving primitive recursion.

It is possible to devise similar eliminators capturing more sophisticated schemes of
terminating recursion such as course-of-value iteration or course-of-value primitive re-
cursion (Uustalu 1998; McBride 1999), but the resulting systems are even clumsier to
use practically.

Comparison with (Coquand 1994) and other works relying on a fixpoint operator con-
trolled by an external guard predicate (Coquand 1994) introduces a simple guard predi-
cate to ensure termination of fixpoint expressions in a calculus of infinite objects. Building
up on Coquand’s work, (Giménez 1995) defines a more liberal guarded-by-constructors
predicate for terminating corecursion and also a guarded-by-destructors predicate for ter-
minating recursion. Giménez shows that primitive recursor expressions can be rendered
as fixpoint expressions guarded by one destructor. In the opposite direction, a fixpoint
expression guarded by destructors can be coded as an expression involving primitive re-
cursors, but the translation is not uniform. The predicates defined by Giménez form the
basis of the mechanism for (co)inductive types in Coq. More recently, (Blanqui et al.
2002), building up on (Jouannaud and Okada 1997), propose another definition of the
guard predicate for inductive types, that allows for yet more expressions to be typed.
In a similar line of research, (Abel and Altenkirch 2002) propose a basic framework for
studying and comparing the different termination conditions that have been proposed so
far, focusing their attention on what conditions should be fulfilled for a checking to be
sound. An application of such framework to a particular condition can be found in (Abel
2000).

One possible objection against this line of work is that the system becomes more
unpredictable to the user as the complexity of the guard predicate builds up. Besides,
the guard predicate remains purely syntactic, which is not appropriate for a number of
applications, including separate compilation or interactive proof construction.

Type-based termination of recursive definitions 39

Comparison with (Coquand 1992) and other works on pattern-matching (Coquand 1992)
pioneers the use of pattern-matching in type theory. While pattern-matching yields leaner
definitions, its proof-theoretical status in the context of dependent types remains unclear.
Differently from guarded-by-destructors recursion, general pattern-matching is not a con-
servative improvement over primitive recursors: (Hofmann and Streicher 1994) prove the
derivability of uniqueness of equality proofs in a type theory with pattern-matching,
while equality proofs cannot be shown to be unique in the usual Calculus of Inductive
Constructions. To our knowledge, there is no complete account of the meta-theoretical
properties of pattern-matching in dependent type theory. (McBride 1999) has shown
that, under the uniqueness of equality proofs as an extra axiom, pattern matching is
admissible. (Giménez 1996) has remarked that in a typing system with dependent pat-
tern matching, the computation rule used in this article for corecursive definitions only
satisfies a weak form of the subject reduction property. Ongoing work on checking the
termination of recursive function definitions in functional languages, see e.g. (Telford and
Turner 1997; Abel and Altenkirch 2002; Giesl et al. 1998; Manoury and Simonot 1994),
bears relevance for this direction of type-theoretic developments. Of particular interest
for the future type-theoretic formalizations might be the recent work (Lee et al. 2001)
on the size-change principle for program termination.

As to implementations, restricted forms of pattern-matching have been implemented
in Coq by (Cornes 1997) and Lego by (Elbers 1998). Both implementations take advan-
tage of translations to recursors. Pattern-matching has also been consistently supported
in Alf and its subsequent versions, although no mechanism for termination checking
was ever implemented. In order to simplify the proof engine, Agda, which is the latest
incarnation of Alf, only supports a limited form of pattern-matching in which variables
are only allowed to occur once in the type of a constructor. This restriction rules out, for
example, inductive definitions such as equality.

Comparison with (Giménez 1998) and other works on guarded types This line of work is
really about non-traditional-style terminating recursors that look like fixpoint operators,
but where the computation is guaranteed to terminate by an unusual (stronger) typing
system. Such system involves introducing some kind of annotations on recursive types, a
notion of sub-typing enabling the transformation of such annotations, and a typing rule
for the term letrec f = e where the type of f and the type of e are marked differently.
In this sense, some of the systems mentioned in this section are not far from the so
called abstract interpretation techniques (Cousot and Cousot 1996), even though they
are formulated from a type-theoretical point of view. The exact relation of such typing
systems with respect to abstract interpretation techniques has not been studied in detail
yet, and could be a subject for further research.

(Mendler 1987) was, to our knowledge, the first author to propose a formalization
of inductive and coinductive types in a simply typed lambda calculus where primitive
recursion and primitive corecursion were formulated in a fixpoint-like style. In Mendler’s
system, type annotations on the fixpoint rule correspond to type variables. (Mendler
1991) considered a system supporting only iteration and coiteration. Works that comment
on these two papers include (Leivant 1990; Geuvers 1992; Uustalu and Vene 1997; Uustalu

G. Barthe, M. J. Frade, E. Giménez, L. Pinto, and T. Uustalu 40

1998; Matthes 1998; Matthes 2002; Sp lawski and Urzyczyn 1999). Among these, (Leivant
1990; Geuvers 1992) were the first papers to contrast and compare traditional-style and
Mendler-style terminating recursors. (Uustalu and Vene 1997; Uustalu and Vene 2002;
Uustalu 1998) showed that Mendler’s approach is readily generalizable for course-of-value
(co)recursion (in other words, full structural (co)recursion).

(Giménez 1996) introduced an extension of the Calculus of Constructions with induc-
tive and coinductive types, called CC∞. The fixpoint rules in CC∞ make use of three
kinds of marks, corresponding to the stages ∞, ι and ι̂ using the notation of this article.
This means that in CC∞ the hat operator can not be applied to another stage, but only
to stage variables. In (Giménez 1996), marks also have a second component, specifying
whether the recursive type is inductive or coinductive. There is no stage polymorphism,
and hence the function div of Example 2.21 can not be typed.

One of the main disadvantages of (Giménez 1996) is that it tried to tackle too many
problems at once, rendering the typing calculus less clear. Among the extra features
introduced in CC∞ which are not considered in this article we may cite the following
ones :

— Inductive lists are considered a subtype of coinductive ones, so that a function defined
on the type coList can also be used on an element of type List.

— Annotations are placed on typing judgments, writing x :s List instead of x : Lists.
One of the original motivations for such notation was to enable the description of
abstract recursion schema, where the type of the decreasing argument of the function
is abstracted away using a term of the form λA : Set · letrec f = λx :s A · e. Also,
the choice of having two different universal quantifiers renders unnecessary the intro-
duction of two types of lists (one for inductive and the other for coinductive ones)
with the same constructors. On the other hand, it is less clear how an ordinal based
semantics like the one proposed in this paper could be used to make sense of a term
of the form λA : Set · λx :s A · e. This is why, even though annotated quantifications
were kept, the calculus in (Giménez 1996) forces A in a term of the form λx :s A · e
to have a recursive type at its rightmost position.

— C∞ is built on the top of the Calculus of Constructions, so it uses Church’s style for
variable binding, where the type of the abstracted variable is explicitly mentioned.
Thus, types –and hence marks– may appear in the terms. As a consequence, the
reduction rule for fixpoints has to replace all mark variables by the ∞ mark, in order
to avoid having residual unbound mark identifiers in the definiens. Note that this
problem is not posed in λ̂ , where variable binding is “à la Curry”.

(Giménez 1998) introduced CCR, a different extension of the Calculus of Constructions
with inductive and coinductive types, based on (not fully general) sub- and supertyping
and bounded universal quantification over types. In CCR, marks are represented as type
variables, like in Mendler’s works, the hat operator is a type constructor, and stages
are just types. Since stage variables are type variables, stage replacement corresponds
just to the ordinary substitution operation of the calculus. The calculus in (Giménez
1998) was the first calculus to introduce stage polymorphism, enabling to type defini-
tions like the function div of Example 2.21 and the stream rep of Example 5.1. The

Type-based termination of recursive definitions 41

calculus of the present paper is very much inspired from (Giménez 1998), but replaces
sub- and supertypes with approximating types, and bounded type quantification with
stage quantification—the change allows the structure of stages to be uniform over all
datatypes and simplifies the introduction of recursive definitions on mutually dependent
inductive types. The meta-theory of CCR has not been studied yet, nor its connection
with implemented extensions of a calculus of (co)inductive constructions like the system
Coq. The detailed study of the main meta-theoretical properties of λ̂ presented in this
paper can be seen as a basic stage for developing the meta-theory of an extension of
the Calculus of Construction where the termination of functions is ensured by typing
constraints.

(Amadio and Coupet-Grimal 1998) define a simply typed λ-calculus “à la Curry”
featuring guarded coinductive types. Starting from Coquand’s guardedness condition,
they propose a semantics for such extension of lambda calculus based on partial equivalent
relations and ordinal iteration to interpret coinductive types. From that semantics, they
derive a typing rule for corecursive definitions using a mark system with three kinds
of marks, that correspond in our notation to ∞, ι and ι̂. The semantic interpretation
used to study the meta-theory of λ̂ in this article is actually an extension of the one
introduced in (Amadio and Coupet-Grimal 1998) for coinductive types. Also, the need
for the constraint ı pos σ in the typing rule for recursive definitions have been already
noticed by Amadio and Coupet. Their calculus introduces an extra rule enabling to treat
nested fixpoint definitions of the form (letrec f = (letrec g = e)) by reusing the mark
introduced in the definition of f as the mark for the variable g. However, the calculus
described in (Amadio and Coupet-Grimal 1998) lacks of full stage polymorphism, so
definitions like the function rep in 5.1 can not be typed in their system. Their calculus
does not consider inductive types. On the positive side, their calculus is shown to have
decidable type inference in (Bac 1998).

(Barras 1999) formalizes in Coq a variant of Giménez’ calculus CC∞, with the purpose
of proving the decidability of its typing judgment and extracting a type-checker from the
proof. In Barras’ calculus, inductive types are annotated with lists of marks, each one
corresponding to the stages ∞, ι and ι̂ of our system. The use of lists of marks enables
to type nested recursive function definitions like the ones considered in (Amadio and
Coupet-Grimal 1998), but for inductive types. He does not consider coinductive types
nor stage polymorphism. As the underlying lambda calculus is “à la Church”, Barras
introduces a distinguished primitive type M for marks, and marks are just variables
of that type. Mark variables are bound in fixpoint terms, so mark erasure in fixpoint
reductions corresponds just to ordinary variable substitution. The complete meta-theory
of Barras’ system has not been studied yet, but his system is the only mark based one
for which a type-checking algorithm has been developed.

Other type-based approaches to termination analysis (Xi 2001) proposes a system of re-
stricted dependent types, built upon DML (Xi and Pfenning 1999), to ensure program
termination. In essence, his system is closely related to ours since it uses stage informa-
tion to ensure termination. However, Xi’s system differs from ours in its expressiveness
and complexity: while we focus on the weakest calculus that uses type-based termination

G. Barthe, M. J. Frade, E. Giménez, L. Pinto, and T. Uustalu 42

and extends other calculi based on a simple syntactic guard predicate, Xi presents a very
rich system with stage arithmetic, and a notion of metric that is very useful to handle
functions in several arguments. Of course, expressiveness is achieved to the detriment
of simplicity and Xi’s system is much more complex than ours. (Grobauer 2001) uses
DML to find cost recurrences for first-order recursive definitions: a cost recurrence is an
upper bound to the running time of the program w.r.t. the size of its input, and hence a
witness that the recursive definition is terminating. In his work, Grobauer exploits com-
plex features of DML, including stage arithmetic, so his techniques do not seem directly
applicable to λ̂ . Closely related is the recent work on sized types (Hughes et al. 1996;
Pareto 2000; Chin and Khoo 2001).

7. Conclusion

We have introduced λ̂ , a novel type system for terminating recursive functions. The
salient features of λ̂ are its type-based approach to ensure termination through the
notion of stage, and its support for stage polymorphism. The calculus is powerful enough
to encode many recursive definitions rejected by existing type systems, scales up easily
to mutually inductive types and supports separate compilation. In comparison to λG , it
has a much clearer syntax and admits a clean semantics; the strong normalization can be
proved by means of a standard method. For practice, this means that λ̂ is less difficult to
implement (implementing the guard condition of λG is error-prone) and the code written
in it is more easily maintainable. This makes λ̂ a good candidate base system for type
theory based proof-assistants such as Coq.

In order to validate this claim, the following steps need to be taken:

— scale up λ̂ to dependent types and explicit polymorphism as in (Barras 1999; Giménez
1998);

— develop type checking and type inference algorithms for λ̂ . For the purpose of proof
assistants, it may be of interest to study a calculus where type annotations are given
and stage annotations are inferred;

— provide mechanisms to support mutually inductive datatypes, mutually recursive def-
initions and recursive functions in several parameters. For the latter, some form of
stage arithmetic might be needed.

In a different line of work, it may be of interest to give a precise characterization of the
functions from N to N that are representable in λ̂ .

Acknowledgments

We are grateful to our anonymous referees for the very constructive feedback we received
and to Roberto Amadio for making (Bac 1998) available to us.

The work by Gilles Barthe, Maria João Frade, Lúıs Pinto, and Tarmo Uustalu was
partially supported by the Portuguese Foundation for Science and Technology under
grant no. PRAXIS XXI/C/EEI/14172/98, by the INRIA-ICCTI collaboration and by
the FP5 IST project TYPES. Tarmo Uustalu received support also from the Estonian
Science Foundation under grant no. 4155.

Type-based termination of recursive definitions 43

References

Abel, A. (2000) Specification and verification of a formal system for structurally recursive

functions. In T. Coquand, P. Dybjer, B. Nordström, and J. Smith (editors), Proceedings of

TYPES’99, Lecture Notes in Computer Science 1956, 1–20. Springer-Verlag.

Abel, A. and Altenkirch, T. (2002) A predicative analysis of structural recursion. J. of Functional

Programming 12(1), 1–41.

Altenkirch, T. (1999) Logical relations and inductive/coinductive types. In G. Gottlob,

E. Grandjean, and K. Seyr (editors), Proceedings of CSL’98, Lecture Notes in Computer

Science 1584, 343–354. Springer-Verlag.

Amadio, R. M. and Coupet-Grimal, S. (1998) Analysis of a guard condition in type theory

(extended abstract). In M. Nivat (editor), Proceedings of FoSSaCS’98, Lecture Notes in

Computer Science 1378, 48–62. Springer-Verlag.

Bac, A. (1998) Un algorithme d’inférence de types pour les types coinductifs. Memoire de DEA,

École Normale Supérieure de Lyon.

Barras, B. (1999) Auto-validation d’un système de preuves avec familles inductives. PhD thesis,

Université Paris 7.

Blanqui, F., Jouannaud, J.-P., and Okada, M. (2002) Inductive data type systems. Theoretical

Computer Science 272(1–2), 41–68.

Chin, W.-N. and Khoo, S.-C. (2001) Calculating sized types. Higher-Order and Symbolic

Computation 14(2–3), 261–300.

Coquand, T. (1992) Pattern matching with dependent types. In B. Nordström, K. Pettersson,

and G. Plotkin (editors), Informal Proceedings of TYPES’92, 71–84. Dept. of Computing

Science, Chalmers Univ. of Technology and Göteborg Univ. ftp://ftp.cs.chalmers.se/pub/cs-

reports/baastad.92/proc.ps.Z.

Coquand, T. (1994) Infinite objects in type theory. In H. Barendregt and T. Nipkow (editors),

Proceedings of TYPES’93, Lecture Notes in Computer Science 806, 62–78. Springer-Verlag.

Coquand, T. and Paulin, C. (1990) Inductively defined types (preliminary version). In P. Martin-

Löf and G. Mints (editors), Proceedings of COLOG’88, Lecture Notes in Computer Science

417, 50–66. Springer-Verlag.

Cornes, C. (1997) Conception d’un langage de haut niveau de representation de preuves:

Récurrence par filtrage de motifs; Unification en présence de types inductifs primitifs; Synthèse

de lemmes d’inversion. PhD thesis, Université de Paris 7.

Cousot, P. and Cousot, R. (1996) Abstract interpretation. ACM Computing Surveys 28(2),

324–328.

Dybjer, P. (1994) Inductive families. Formal Aspects of Computing 6(4), 440–465.

Elbers, H. (1998) Connecting formal and informal mathematics. PhD thesis, Technische Uni-

versiteit Eindhoven.

Geuvers, H. (1992) Inductive and coinductive types with iteration and recursion. In B. Nord-

ström, K. Pettersson, and G. Plotkin (editors), Informal Proceedings of TYPES’92, 193–

217. Dept. of Computing Science, Chalmers Univ. of Technology and Göteborg Univ.

ftp://ftp.cs.chalmers.se/pub/cs-reports/baastad.92/proc.ps.Z.

Giesl, J., Walther, C., and Brauburger, J. (1998) Termination analysis for functional programs.

In W. Bibel and P. Schmitt (editors), Automated Deduction: A Basis for Applications, Vol. 3:

Applications, Applied Logic Series 10, 135–164. Kluwer Academic Publishers.

Giménez, E. (1995) Codifying guarded definitions with recursion schemes. In P. Dybjer and

B. Nordström (editors), Proceedings of TYPES’94, Lecture Notes in Computer Science 996,

39–59. Springer-Verlag.

G. Barthe, M. J. Frade, E. Giménez, L. Pinto, and T. Uustalu 44

Giménez, E. (1996) A calculus of infinite constructions and its application to the verification of

reactive systems. PhD thesis, Ecole Normale Supérieure de Lyon.

Giménez, E. (1998) Structural recursive definitions in Type Theory. In K. G. Larsen, S. Skyum,

and G. Winskel (editors), Proceedings of ICALP’98, Lecture Notes in Computer Science 1443,

397–408. Springer-Verlag.

Grobauer, B. (2001) Cost recurrences for DML programs. In Proceedings of ICFP’01, SIGPLAN

Notices 36(10), 253–264. ACM Press.

Hofmann, M. and Streicher, T. (1994) The groupoid model refutes uniqueness of identity proofs.

In Proceedings of LICS’94, 208–212. IEEE CS Press.

Hughes, J., Pareto, L., and Sabry, A. (1996) Proving the correctness of reactive systems using

sized types. In Proceedings of POPL’96, 410–423. ACM Press.

Jouannaud, J. P. and Okada, M. (1997) Abstract data type systems. Theoretical Computer

Science 173(2):349–391.

Lee C.-S., Jones, N. D. and Ben-Amram, A. M. (2001) The size-change principle for program

termination. In Proceedings of POPL’01, SIGPLAN Notices 36(3), 81–92. ACM Press.

Leivant, D. (1983) Reasoning about functional programs and complexity classes associated with

type disciplines. In Proceedings of FOCS’83, 460–469. IEEE Computer Society Press.

Leivant, D. (1990) Contracting proofs to programs. In P. Odifreddi (editor), Logic and Computer

Science, APIC Studies in Data Processing 31, 279–327. Academic Press.

Luo, Z. (1994) Computation and Reasoning: A Type Theory for Computer Science, Int. Series

of Monographs in Computer Science 11. Clarendon Press.

Manoury, P. and Simonot, M. (1994) Automatizing termination proofs of recursively defined

functions. Theoretical Computer Science 135(2), 319–343.

Martin-Löf, P. (1971) Hauptsatz for the intuitionistic theory of iterated inductive definitions.

In J. E. Fenstad (editor), Proceedings of 2nd Scandinavian Logic Symp., Studies in Logic and

the Foundations of Mathematics 63, 179–216. North-Holland Publ. Co.

Matthes, R. (1998) Extensions of System F by Iteration and Primitive Recursion on Mono-

tone Inductive Types. PhD thesis, Fachbereich Mathematik, Ludwig-Maximilians-Universität

München.

Matthes, R. (1999) Monotone fixed-point types and strong normalization. In G. Gottlob,

E. Grandjean, and K. Seyr (editors), Proceedings of CSL’98, Lecture Notes in Computer

Science 1584, 298–312. Springer-Verlag.

Matthes, R. (2002) Tarski’s fixed-point theorem and lambda calculi with monotone inductive

types. Synthese 133(1), 107–129.

McBride, C. (1999) Dependently Typed Functional Programs and Their Proofs. PhD thesis,

Laboratory for Foundations of Computer Science, Dept. of Computer Science, Univ. of Ed-

inburgh.

Mendler, N. P. (1987) Recursive types and type constraints in second-order lambda-calculus.

In Proceedings of LICS’87, 30–36. IEEE Computer Society Press.

Mendler N. P. (1991) Inductive types and type constraints in the second-order lambda-calculus.

Annals of Pure and Applied Logic 51(1–2), 159–172.

Nordström, B., Petersson, K. and Smith, J. (1990) Programming in Martin-Löf ’s Type Theory:

An Introduction, Int. Series of Monographs on Computer Science 7, Clarendon Press.

Pareto, L. (2000) Types for crash prevention. PhD thesis, Chalmers Univ. of Techn., Göteborg.

Paulin-Mohring, C. (1993) Inductive definitions in the system Coq: Rules and properties. In

M. Bezem and J. F. Groote (editors), Proceedings of TLCA’93, Lecture Notes in Computer

Science 664, 328–345. Springer-Verlag.

Type-based termination of recursive definitions 45

Pfenning, F. and Paulin-Mohring, C. (1990) Inductively defined types in the calculus of con-

structions. In M. Main, A. Melton, M. Mislove, and D. Schmidt (editors), Proceedings of

MFPS’89, Lecture Notes in Computer Science 442, 209–228. Springer-Verlag.

Pierce, B., Dietzen, S. and Michaylov, S. (1989) Programming in higher-order typed lambda-

calculi. Technical Report CMU-CS-89-111, School of Computer Science, Carnegie-Mellon

Univ.

Sp lawski, Z. and Urzyczyn, P. (1999) Type fixpoints: Iteration vs. recursion. In Proceedings of

ICFP’99, SIGPLAN Notices 34(9), 102–113. ACM Press.

Telford, A. and Turner, D. (1997) Ensuring streams flow. In M. Johnson (editor), Proceedings

of AMAST’97, Lecture Notes in Computer Science 1349, 509–523. Springer-Verlag.

Uustalu, T. (1998) Natural Deduction for Intuitionistic Least and Greatest Fixedpoint Logics,

with an Application to Program Construction. PhD thesis (Dissertation TRITA-IT AVH

98:03), Dept. of Teleinformatics, Royal Inst. of Technology, Stockholm.

Uustalu, T. and Vene, V. (1997) A cube of proof systems for the intuitionistic predicate µ, ν-

logic. In M. Haveraaen and O. Owe (editors), Proceedings of NWPT’96, Research Report 248,

Dept. of Informatics, University of Oslo, 237–246.

Uustalu, T. and Vene, V. (2002) Least and greatest fixedpoints in intuitionistic natural deduc-

tion. Theoretical Computer Science 272(1–2), 315–339.

Xi, H. and Pfenning, F. (1998) Eliminating array bound checking through dependent types. In

Proceedings of PLDI’98, SIGPLAN Notices 33(5), 249–257. ACM Press.

Xi, H. and Pfenning, F. (1999) Dependent types in practical programming. In Proceedings of

POPL’99, 214–227. ACM Press.

Xi, H. (2001) Dependent types for program termination verification. In Proceedings of LICS’01,

231–242. IEEE CS Press.

