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Abstract. Floating point operations are fast, but require continuous effort by the user
to ensure correctness. This burden can be shifted to the machine by providing a library
of exact analysis in which the computer handles the error estimates. Previously, we pro-
vided a fast implementation of the exact real numbers in the Coq proof assistant. This
implementation incorporates various optimizations to speed up the basic operations of
O’Connor’s implementation by a 100 times. We implemented these optimizations in a
modular way using type classes to define an abstract specification of the underlying dense
set from which the real numbers are built. This abstraction does not hurt the efficiency.

This article is a substantially expanded version of (Krebbers/Spitters, Calculemus 2011)
in which the implementation is extended in the various ways. First, we implement and
verify the sine and cosine function. Secondly, we create an additional implementation of
the dense set based on Coq’s fast rational numbers. Thirdly, we extend the hierarchy
to capture order on undecidable structures, while it was limited to decidable structures
before. This hierarchy, based on type classes, allows us to share theory on the naturals,
integers, rationals, dyadics, and reals in a convenient way. Finally, we obtain another
dramatic speed-up by avoiding evaluation of termination proofs at runtime.

1. Introduction

There is a big gap between numerical algorithms in research papers, which typically use
concepts like Hilbert spaces and fixed point theorems from functional analysis, and their
actual implementation, which uses floating point numbers1 and matrix operations. This gap
makes it difficult to trust the code. Similarly, this gap is undesirable in proofs of theorems
(e.g. Kepler conjecture [Hal02], existence of the Lorentz attractor [Tuc02]) that rely on
the execution of this code for numerical approximation. Finally, from a purely software
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arithmetic.
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1By floating points we mean numbers of the shape n ∗ be, where n and e are bounded integers and b is
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2 R. KREBBERS AND B. SPITTERS

engineering point of view, the situation is undesirable, because the gap between the (abstract
mathematical) numerical algorithms and the (concrete floating point) implemented program
makes the code difficult to maintain.

The challenge to close this gap has already been posed by Bishop in his fundamental
work on constructive analysis [Bis67]. Bishop proposed to use constructive analysis to
bridge this gap. Moreover, we can narrow this gap by using

• exact real numbers or intervals instead of floating point numbers;
• functional programming instead of imperative programming;
• dependent type theory which allows us to compute with complete metric spaces;
• a proof assistant which allows us to verify the correctness proofs;
• constructive mathematics to tightly connect mathematics with computations and to avoid
computationally impossible case distinctions.

Separately, all these tools have proved itself. By going to the limits of this proven technol-
ogy we should be able to come within a small constant factor of floating point computa-
tions. In this way one would obtain a tool suitable for research and education in numerical
analysis that allows one to compute abstractly at the level of functional analysis, e.g. to
compute fixed points of operators on Hilbert spaces. Like the development of Fortran
and MATLAB this will require a huge amount of work. In the present paper we focus on
the performance of real number computation in the Coq proof assistant.

Real numbers, being infinite objects, cannot be represented exactly in a computer.
Hence, in constructive analysis [Bis67] one uses functions which when fed a desired precision
approximate a real numbers by a rational, or a dyadic number, to within that precision2.
The real numbers are the completion of the rationals. This completion construction can be
organized in a monad, a familiar construct from functional programming. The completion
monad provides an efficient combination of proving and computing [O’C07]. In this way,
O’Connor [O’C08] implements exact real numbers and the transcendental functions on them
in Coq. A number of possible improvements in this implementation were already suggested
in [OS10, O’C09].

(1) Use Coq’s new machine integers instead of the integers built from ordinary inductive
data types;

(2) use dyadic rationals (that are numbers of the shape n ∗ 2e for n, e ∈ ❩, also known as
infinitary floats) instead of ordinary rationals;

(3) use approximate division to improve the implementation of power series.

Here we carry out all three optimizations. Unfortunately, changing O’Connor’s implemen-
tation to use the new machine integers was far from trivial, as he used a particular concrete
representation of the rationals. To avoid this in the future, we moreover provide an abstract
specification of the dense set as approximate rationals. Finally, we obtain another dramatic
speed-up by avoiding evaluation of termination proofs at runtime.

Outline. Section 2 describes some aspects of the Coq proof assistant relevant for our devel-
opment. Section 3 describes metric spaces, monads, and O’Connor’s implementation of the
real numbers [O’C07]. Section 4 extends Spitters and van der Weegen’s approach to abstract
interfaces using type classes [SvdW11]. Section 5 describes the theory of approximate ratio-
nals, our implementation of the real numbers, and deals with computing power series and

2One could argue that we capture only the definable, or computable, real numbers in this way. These
issues are important and well-studied, see for instance [TvD88], but we will not go into them here.
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the square root. We finish with some benchmarks in Section 6 and conclusions in Section 7.
The sources of our developments can be found at https://github.com/c-corn/corn.

2. The Coq-system

The Coq proof assistant is based on the calculus of inductive constructions [CH88, CP90], a
dependent type theory with (co)inductive types; see [Coq12, BC04]. In true Curry-Howard
fashion, it is both a pure functional programming language with an expressive type system,
and a language for mathematical statements and proofs. We highlight some aspects of Coq
relevant for our development.

2.1. Notations. Coq has an extensible mechanism for defining complex notations. We use
this mechanism heavily, together with unicode symbols, to obtain notations that are closer
to common mathematical practice. However, due to conflicts with standard Coq syntax,
there are some small deviations. For example, we write ∀x, Px instead of ∀x.Px. In this
paper we tried to stay as close as possible to the notations in our Coq development.

2.2. Types and propositions. Propositions in Coq are types [ML98, ML82], which them-
selves have types called sorts. Coq features a distinguished sort called Prop that one may
choose to use as the sort for types representing propositions. The distinguishing feature of
the Prop sort is that terms of non-Prop type may not depend on the values of inhabitants of
Prop types (that is, proof terms). This regime of discrimination establishes a weak form of
proof irrelevance, in that changing a proof can never affect the result of value computations.
On a practical level, this lets Coq safely erase all Prop components when extracting certi-
fied programs to Ocaml or Haskell. We should note however, that in practice, Coq’s
extraction mechanism [Let08] is still very hard to use for programs with the complexity, in
terms of depth of definitions, that we are interested in [CFS03, CFL06].

2.3. Constructive indefinite description. In spite of the restriction on Prop discussed in
the previous paragraph, Coq allows recursive functions to use a value of Prop type to ensure
termination [BC04, 14.2.3, 15.4]. In particular, this is used to prove constructive indefinite

description, which states that given a decidable predicate over the natural numbers, a Prop

based existential can be converted into a Type based one. Its formal statement can be found
in the standard library:

Lemma constructive indefinite description nat (P : nat → Prop) :

(∀ x : nat, {P x} + {¬ P x}) → (∃ n : nat, P n) → {n : nat | P n}

Here the notation {x : A | P x} for P : A → Prop denotes a Σ-type. This lemma can be
seen as a form of Markov’s principle in Coq. The algorithm does a bounded search for a
new witness satisfying the predicate. The witness from the Prop based existential is only
used to prove termination of the search. No information flows from the Prop universe to the
Type universe because the witness found for the Type based existential is independent of the
witness from the Prop based one.

https://github.com/c-corn/corn
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2.4. Equality, setoids, and rewriting. Because theCoq type theory lacks quotient types
(as it endangers the decidability of type checking), one usually bases abstract structures
on a setoid (‘Bishop set’): a type equipped with an equivalence relation [Bis67, Hof97].
This leads to a naive set theory as described by Palmgren [Pal09]. When the user attempts
to substitute a given (sub)term using an equality, the system keeps track of, resolves, and
combines proofs of equivalence [Soz09].

The ‘native’ notion of equality in Coq, Leibniz equality, is that of terms being convert-
ible, naturally reified as a proposition by the inductive type family eq with single constructor
eq refl : ∀ (T : Type)(x : T), x ≡ x, where a ≡ b is notation for eq T a b. Since convertibility is a con-
gruence, a proof of a ≡ b lets us substitute b for a anywhere inside a term without further
conditions. Our interest is in more complicated equalities, so we diverge from Coq tradition
and reserve = for setoid equality. Rewriting with = does give rise to side conditions. For
instance, consider formal fractions of integers as a representation of rationals. Rewriting a
subterm using such an equality is permitted only if the subterm is an argument of a func-
tion that has been proven to respect the equality. Such a function is called Proper, and that
property must be proved for each function in whose arguments we wish to enable rewriting.

2.5. Type classes. Type classes are a great success in the Haskell functional program-
ming language, as a means of organizing interfaces of abstract structures. Coq’s type
classes provide a superset of their functionality, but are implemented in a different way.

In Haskell and Isabelle, type classes and their instances are second class. They
are handled as specialized syntactic constructs whose semantics are given specifically by
the type class apparatus. By contrast, the expressivity of dependent types and inductive
families as supported in Coq, combined with the use of pre-existing technology in the
system (namely proof search and implicit arguments) enable a first class type class imple-
mentation [SO08]: classes are ordinary record types (‘dictionaries’), instances are ordinary
constants of these record types (registered as hints with the proof search machinery), class
constraints are ordinary implicit arguments, and instance resolution is achieved by aug-
menting the unification algorithm to invoke ordinary proof search for implicit arguments of
class type. Thus, type classes in Coq are realized by relatively minor syntactic aids that
bring together existing facilities of the theory and the system into a coherent idiom, rather
than by introduction of a new category of qualitatively different definitions with their own
dedicated semantics.

We use the algebraic hierarchy based on type classes and its abstract specification of
◆,❩ and ◗ described in [SvdW11]. Unfortunately, we should note that we have clearly met
the efficiency problems connected to the current implementation of type classes in Coq.
Luckily, these efficiency problems are limited to instance resolution which is only performed
at compile time. Type classes effect the computation time of type checked terms due to the
absence of code inlining. In an illustrative example the use of type classes caused only a
3% performance penalty; see Section 6.

2.6. Virtual machine and machine integers. Coq includes a virtual machine [GL02],
vm compute, based on Ocaml’s virtual machine to allow efficient evaluation. Both the ab-
stract machine and its compilation scheme have been proved correct, in Coq, with respect
to the weak reduction semantics. However, we still need to extend our trusted core to a
bigger kernel, as the implementation has not been formally verified.
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Machine integers were also added to the Coq system [AGST10]. The usual evaluation
inside Coq (compute) uses a special inductive type for cyclic integers, but the virtual machine
(vm compute) uses actual machine integers. The type bigZ of arbitrary precision integers is
built from binary trees of these cyclic integers. Primality tests in [Spi11] show a big speed-up
compared to the inductively defined integers. Our work confirms this big speed-up gained
by using machine integers. We pay for this speed-up, however, by having to trust the virtual
machine and its translation to actual machine integers.

3. Metric spaces and the completion monad

Having completed our brief description of the Coq-system, we now turn to O’Connor’s
formalization of exact real numbers [O’C07]. Traditionally, a metric space is defined as a set
X with a metric function d : X×X → ❘≥0 satisfying certain axioms. We use a more relaxed
definition of a metric space that does not require the metric be a function; see also [Ric08].
The metric is represented via a (respectful) ball relation B : ◗>0 → X → X → Prop

satisfying:3

msp refl : ∀x ε, Bε x x

msp sym : ∀x y ε, Bε x y → Bε y x

msp triangle : ∀x y z ε1 ε2, Bε1 x y → Bε2 y z → Bε1+ε2 x z

msp closed : ∀x y ε, (∀δ, Bε+δ x y) → Bε x y

msp eq : ∀x y, (∀ε, Bε x y) → x = y

The ball relation Bε x y expresses that the points x and y are within ε of each other. We
call this a ball relationship because the partially applied relation BX

ε x : X → Prop is a
predicate that represents the closed ball of radius ε around the point x. For example, the

ball relation on ◗ is B◗ε x y := |x− y| ≤ ε.
A metric space X is a prelength space if:

∀a b ε δ1 δ2, ε < δ1 + δ2 → Bε a b → ∃c, Bδ1
a c ∧ Bδ2

c b.

In particular, a prelength space has approximate midpoints: for any δ > 0 we can take
δ1 = δ2 = ε/2 + δ. Every complete prelength metric space is a length metric space. The
metric space ◗ is a prelength space; see [O’C07] for details.

We will introduce the completion of a metric space as a monad. In order to do this we
will first introduce monads.

3.1. Monads. Moggi [Mog89] recognized that many non-standard forms of computation
may be modeled by monads4. Wadler [Wad92] popularized their use in functional program-
ming. Monads are now an established tool to structure computation with side-effects. For
instance, programs with input X and output Y which have access to a mutable state S can
be modeled as functions of type X × S → Y × S, or equivalently X → (Y × S)S . The type
constructor MY := (Y × S)S is an example of a monad. Similarly, partial functions may
be modeled by maps X → Y⊥, where Y⊥ := Y + () is a monad.

3We use the positive rational numbers ◗>0 instead of the non-negative relation numbers ◗≥0 as it can
be expressed that two points x and y are within 0 of each other by ∀ε, Bε x y.

4In category theory one would speak about the Kleisli category of a (strong) monad.
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The formal definition of a (strong) monad is a triple (M, return, bind) consisting of a
type constructor M and two functions:

return : X → MX

bind : (X → MY ) → MX → MY

We will denote returnx as x̂, and bind f as f̌ . These two operations must satisfy:

bind return a = a

f̌ â = f a

f̌ (ǧ a) = bind (f̌ ◦ g) a

3.2. Completion monad. The completion of a metric space X is defined by:

CX := {f : ◗>0 → X | ∀ε1 ε2, Bε1+ε2
(f ε1) (f ε2)}.

Given metric spaces X and Y , a function f : X → Y is uniformly continuous with modulus

µf : ◗>0 → ◗>0 if:
∀ε x1 x2, Bµf ε

x1 x2 → Bε (f x1) (f x2).

Completion is a monad on the category of metric spaces with uniformly continuous func-
tions. The function return : X → CX defined by λx ε, x is the embedding of a metric space
in its completion. Moreover, a uniformly continuous function f : X → CY with modulus
µf can be lifted to operate on complete metric spaces as bind f : CX → CY defined by
λx ε, f (x (µf

ε
2))

ε
2 . A restriction to prelength spaces is essential for this efficient definition

of bind; see [O’C07] for details.
One advantage of this approach is that it helps us to work with simple representations.

Let ❘ := C◗. Then to specify a function from ❘ → ❘, we define a uniformly continuous
function f : ◗ → ❘, and obtain f̌ : ❘ → ❘ as the required function. Hence, the comple-
tion monad allows us to do in a structured way what was already folklore in constructive
mathematics: to work with simple, often decidable, approximations to continuous objects.

4. Abstract interfaces using type classes

An important part of this work is to further develop the algebraic hierarchy based on type
classes by Spitters and van der Weegen [SvdW11]. Especially, we extend their hierarchy with
constructive fields, order theory and interfaces for mathematical operations, such as shift
and power, common in programming languages. This layer of abstraction makes both proof
engineering and programming more flexible: it avoids duplication of code, it introduces
a canonical way to refer to operations and properties, both by names and notations, and
it allows us to easily swap different implementations of number representations and their
operations. First we will briefly recap the design decisions made in [SvdW11]. For a nice
tutorial following this design see [CS12]. More information on type classes and setoids in
Coq can also be found in the reference manual [Coq12].

Algebraic structures are expressed in terms of a number of carrier sets, a number of
relations and operations, and a number of laws that these operations and relations must
satisfy. One way of describing such a structure is by a bundled representation (as used
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in [GPWZ02] for example): one uses a dependently typed record that contains the carrier,
operations and laws. A setoid can be represented as follows.

Record Setoid : Type := {

st car :> Type;

st equiv : st car → st car → Prop;

st setoid : Equivalence st eq }.

Infix ”=” := st equiv : type scope.

The notation :> registers the projection st car : Setoid → Type as a coercion. Using the above
interface for Setoids, one can now define a SemiGroup whose carrier is a setoid.

Record SemiGroup : Type := {

sg car :> Setoid;

sg op : sg car → sg car → sg car;

sg proper : Proper (st equiv =⇒ st equiv =⇒ st equiv) sg op;

sg ass : ∀ x y z, sg op x (sg op y z) = sg op (sg op x y) z) }

The field sg proper states that the operation sg op respects the setoid equality. Its definition
expands to ∀ x1 x2 , x1 = x2 → ∀ y1 y2 , y1 = y2 → sg op x1 y1 = sg op x2 y2 .

However, this approach has some serious limitations, the most important one being a
lack of support for sharing components. For example, suppose we want to group together
two CommutativeMonoids in order to create a SemiRing. Now awkward hacks are necessary
to establish equality between the carriers5. A second problem is that if we stack up these
records to represent higher structures the projection paths become increasingly long. In the
above example, the projection path to obtain the carrier of a semigroup G is st car (sg car G),
but for fields, this path will be much longer.

Historically these problems have been an acceptable trade-off because unbundled rep-

resentations, in which the carrier and operations are parameterized, introduce even more
problems. An unbundled representation of a semigroup is as follows.

Record SemiGroup A (Ae : A → A → Prop) (Aop : A → A → A) : Prop := {

sg setoid : Equivalence Ae;

sg op proper : Proper (Ae =⇒ Ae =⇒ Ae) Aop;

sg ass : ∀ x y z, Ae (Aop x (Aop y z)) (Aop (Aop x y) z) }

There is nothing to bind notation to, no structure inference, and declaring and passing
requires too much manual bookkeeping. Spitters and van der Weegen have proposed a
use of Coq’s new type class machinery that resolves many of the problems of unbundled
representations. Our current experiment confirms that this is a viable approach.

An alternative solution is provided by packed classes [GGMR09] which use an alterna-
tive, and older, implementation of a variant of type classes: canonical structures; see also
Section 7. Yet another approach would be to use modules. However, as these are not first
class, we would be unable to define, e.g. homomorphisms between algebraic structures.

The first step of the approach of Spitters and van der Weegen is to define an operational

type class for each operation and relation.

Class Equiv A := equiv: relation A.

Infix ”=” := equiv: type scope.

Notation ”(=)” := equiv (only parsing).

Class SgOp A := sg op: A → A → A.

5An elegant solution is proposed by Pollack [Pol02]. However, its implementation requires simultaneous
inductive recursive definitions which are currently not supported in Coq.
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Infix ”&” := sg op (at level 50, left associativity).

Notation ”(&)” := sg op (only parsing).

Haskell-style notations (=) and (&) are defined so operations and relations can easily be
used in partially applied position.

Now an algebraic structure is just a type class living in Prop that is parametrized by
its carrier, relations and operations. This class contains all laws that the operations should
satisfy. The class for semigroups is as follows6.

Class Setoid A {Ae : Equiv A} : Prop := setoid eq :> Equivalence (@equiv A Ae).

Class SemiGroup A {Ae : Equiv A} {Aop: SgOp A} : Prop := {

sg setoid :> @Setoid A Ae;

sg op proper :> Proper ((=) =⇒ (=) =⇒ (=)) (&);

sg ass :> Associative (&) }.

Since the operations are unbundled we can easily support sharing. First we make classes
for the semiring operations and show that these are in fact special instances of the group
operations. For example7:

Class Mult A := mult: A → A → A.

Infix ”∗” := mult.

Notation ”(.∗.)” := mult (only parsing).

Instance mult is sg op ‘{f : Mult A} : SgOp A := f.

The SemiRing class is then as follows.

Class SemiRing A {Ae : Equiv A} {Aplus : Plus A}

{Amult : Mult A} {Azero : Zero A} {Aone : One A} : Prop := {

semiplus monoid :> @CommutativeMonoid A Ae plus is sg op zero is mon unit;

semimult monoid :> @CommutativeMonoid A Ae mult is sg op one is mon unit;

semiring distr :> LeftDistribute (.∗.) (+);

semiring left absorb :> LeftAbsorb (.∗.) 0 }.

The syntax :> in the definition of SemiRing declares certain fields as substructures8, so that
in any context where (A,=,+, ∗, 0, 1) is known to be a SemiRing, (A,=,+, 0) and (A,=, ∗, 1)
are automatically known to be CommutativeMonoids (and so on, transitively, because instance
resolution is recursive). In our hierarchy, these substructures by themselves establish the
inheritance diagram as in Figure 1.

Without type classes it would be cumbersome to manually carry around the arguments
of the class. However, because these arguments are type classes themselves, the type class
machinery will perform that job for us. Therefore, all arguments, except the carrier A are
declared as implicit using the syntax {x : X}, so the user does not have to specify them.

Proving that an actual structure is an instance of the SemiRing interface is straightfor-
ward. First we define instances of the operational type classes.

Instance nat equiv: Equiv nat := eq.

Instance nat plus: Plus nat := Peano.plus.

Instance nat mult: Mult nat := Peano.mult.

Instance nat 0: Zero nat := 0%nat.

Instance nat 1: One nat := 1%nat.

6We sometimes use the @ prefix to bypass implicit arguments in order to avoid ambiguity.
7We use (.∗.) instead of (*) due to conflicting notations with Coq’s comments.
8This syntax should not be confused with the similar syntax for coercions in records (e.g. in the bundled

representation of a SemiGroup on page 7).
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Here we see that instances are just ordinary constants of the class types. However, we use
the Instance keyword instead of Definition to let the type class machinery register the instance.
Now, to prove that the Peano naturals are in fact a semiring, we just write:

Instance: SemiRing nat.

Proof. . . . Qed.

The implicit arguments of SemiRing nat are automatically inferred by instance search. In
order to type check SemiRing nat, it has to solve @SemiRing nat ?1 ?2 ?3 ?4 ?5 with obligations
?1 : Equiv nat, . . . , ?5 : One nat. Since we have declared instances nat equiv : Equiv nat, . . . , nat 1 :

One nat, type class search will trivially solve these obligations. Thus SemiRing nat is actually
@SemiRing nat nat equiv nat plus nat mult nat 0 nat 1 with all type class constraints resolved.

The SemiRing type class can be used as follows.

Lemma example ‘{SemiRing A} x : 1 ∗ x = x + 0.

The backtick instructs Coq to automatically insert implicit declarations, namely Ae Aplus

Amult Azero Aone. It also lets us omit a name for the SemiRing A argument itself. All of
these arguments will be given automatically generated names that we will never refer to.
Furthermore, instance resolution will automatically find instances of the operational type
classes for the written notations. Thus the above is really:

Lemma example {A Ae Aplus Amult Azero Aone} {P : @SemiRing A Ae Aplus Amult Azero Aone} (x : A) :

@equiv A Ae

(@mult A Amult (@one A Aone) x)

(@plus A Aplus x (@zero A Azero)).

This approach to interfaces proved useful to formalize a standard algebraic hierarchy.
Combined with category theory and universal algebra, ◆ and ❩ are represented as interfaces
specifying an initial semiring and initial ring [SvdW11].

Class NaturalsToSemiRing (A : Type) :=

naturals to semiring : ∀ B ‘{Mult B} ‘{Plus B} ‘{One B} ‘{Zero B}, A → B.

Class Naturals A {Ae Aplus Amult Azero Aone} ‘{U : NaturalsToSemiRing A} := {

naturals ring :> @SemiRing A Ae Aplus Amult Azero Aone;

naturals to semiring mor :> ∀ ‘{SemiRing B}, SemiRing Morphism (naturals to semiring A B);

naturals initial :> Initial (semirings.object A) }.

These abstract interfaces for the naturals and integers make it easy to change the concrete
representation in the future. As fields are not algebraic, no such algebraic specification
exists for the rational numbers. Hence, we choose to specify ◗ as the field of fractions of
❩. More precisely, ◗ is specified as a field containing ❩ that moreover can be embedded
into the field of fractions of ❩.

Inductive Frac A {Ae : Equiv A} {Azero : Zero A} : Type :=

frac { num : A; den : A; den ne 0 : den 6= 0 }.

Class RationalsToFrac (A : Type) := rationals to frac : ∀ B ‘{Integers B}, A → Frac B.

Class Rationals A {Ae Aplus Amult Azero Aone Aneg Arecip} ‘{U : !RationalsToFrac A} : Prop := {

rationals field :> @DecField A Ae Aplus Amult Azero Aone Aneg Arecip;

rationals frac :> ∀ ‘{Integers Z}, Injective (rationals to frac A Z);

rationals frac mor :> ∀ ‘{Integers Z}, SemiRing Morphism (rationals to frac A Z);

rationals embed ints :> ∀ ‘{Integers Z}, Injective (integers to ring Z A) }.

In current versions of Coq, inference of substructures is based on backward reasoning.
In our semiring example that means, each time a CommutativeMonoid A instance is needed,
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instance search may try to find a SemiRing A instance. This style of instance search presents
some problems, as the following example illustrates.

Class Setoid Morphism {A B} {Ae : Equiv A} {Be : Equiv B} (f : A → B) := {

setoidmor a :> Setoid A;

setoidmor b :> Setoid B;

sm proper :> Proper ((=) =⇒ (=)) f }.

Each time we have to establish Setoid R for some R, instance search might try to infer a
Setoid Morphism from an arbitrary S to R, or vice versa. Since this search quickly results in
a serious blow-up, we omit the substructure declaration :>. Support for forward reasoning
may solve this problem. If we would be in a context in which we know something to be a
Setoid Morphism, then forward reasoning automatically infers that the source and target are
Setoids. Recently, an initial implementation of forward reasoning has been added to Coq,
but it suffers from some other performance problems.

4.1. Constructive fields and apartness. In constructive mathematics, the common no-
tion of inequality as the negation of equality is often too weak because a proof of a negation
lacks computational content. For example, in order to define the reciprocal of x ∈ ❘, one
needs a witness ε ∈ ◗>0 that |x| ≥ ε. Such a witness cannot be extracted from a proof
of x 6= 0. To solve this problem, one uses a setoid equipped with an apartness (irreflexive,
asymmetric and co-transitive) relation describing inequality [TvD88].

The algebraic hierarchy in the CoRN library [CFGW04] has been built on top of such
setoids. Unfortunately, this hierarchy is quite ‘heavy’ in practice. First, for structures with
decidable equality, the negation of equality is the only tight apartness. Hence, when working
with decidable structures, an apartness relation is unnecessary. Secondly, CoRN uses an
informative (that is, Type based) apartness relation to facilitate extraction of witnesses.
However, Coq’s present implementation of setoid rewriting does not support rewriting over
relations in Type. So, it does not allow us to replace equations in expressions involving
CoRN’s informative apartness and thus many proofs involve a lot of manual labor.

To remedy these issues we propose an alternative solution. We use a non-informative

(that is, Prop-based) apartness relation to enable setoid rewriting and include it just in the
parts of the algebraic hierarchy where we actually need it. The latter keeps our interfaces
clean and easy to use and should combine the best of two worlds. Type classes are of great
help to reduce bookkeeping and clutter in proofs.

Although using a non-informative apartness relation enables setoid rewriting, it dis-
ables extraction of witnesses. Fortunately, in case of the reals, a witness can be obtained
inefficiently by bounded linear search (see Section 2.3 and 5.1). We think our approach is
a reasonable trade-off since the amount of reasoning exceeds the potential use of apartness
in computation. In case we need a witness for efficient computation, we just have to spec-
ify it explicitly. This approach of specifying witnesses explicitly was already preferred by
O’Connor [O’C08], even when an informative apartness was available.

Our interface for a setoid with apartness (henceforth StrongSetoid) is as follows.

Class Apart A := apart: relation A.

Infix ”>< ” := apart (at level 70, no associativity) : type scope.

Class StrongSetoid A {Ae: Equiv A} {Aap : Apart A} : Prop := {

strong setoid irreflexive :> Irreflexive (><) ;

strong setoid symmetric :> Symmetric (><) ;
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strong setoid cotrans :> CoTransitive (><) ;

tight apart : ∀ x y, ¬ x >< y ↔ x = y }.

This interface is equipped with a tight equality. We prove that each StrongSetoid is a Setoid.
For decidable structures, we define the following class to describe that the apartness relation
is the negation of equality.

Class TrivialApart A ‘{Equiv A} {ap : Apart A} := trivial apart : ∀ x y, x >< y ↔ x 6= y.

Given a setoid with decidable equality we can easily extend it to a StrongSetoid.

Instance default apart ‘{Equiv A} : Apart A | 20 := (6= ).

Instance default apart trivial ‘{Equiv A} : TrivialApart A (ap:=default apart).

Lemma dec strong setoid ‘{Setoid A} ‘{Apart A}

‘{!TrivialApart A} ‘{∀ x y, Decision (x = y)} : StrongSetoid A.

Unfortunately, the type class mechanism is unable to detect simple loops. Hence we define
dec strong setoid as an ordinary Lemma instead of an Instance. This trick prevents Coq from
using it in instance search and therefore avoids endless derivations of the form StrongSetoid A,
Setoid A, StrongSetoid A, . . .

For ordinary setoids we want functions to be Proper, which means that they respect
equality. For setoids with apartness we need a stronger property, strong extensionality.

Class StrongSetoid Morphism {A B} {Ae : Equiv A} {Aap : Apart A}

{Be: Equiv B} {Bap : Apart B} (f : A → B):= {

strong setoidmor a: StrongSetoid A;

strong setoidmor b: StrongSetoid B;

strong extensionality : ∀ x y, f x >< f y → x >< y }.

We prove that for each StrongSetoid Morphism f we have Proper ((=)=⇒ (=))f. The only structures
for which we actually need apartness are implementations of the real numbers, hence we
only base the Field class on top of a StrongSetoid instead of the complete algebraic hierarchy.
Our class for fields is as follows. (The PropHolds class is explained in the next subsection.)

Class Recip A ‘{Apart A} ‘{Zero A} := recip: { x : A | x >< 0 } → A.

Notation ”// x” := (recip x).

Notation ”(//)” := recip (only parsing).

Class Field A {Ae Aplus Amult Azero Aone Aneg} {Aap : Apart A} {Arecip : Recip A} : Prop := {

field ring :> @Ring A Ae Aplus Amult Azero Aone Aneg;

field strongsetoid :> StrongSetoid A;

field plus ext :> StrongSetoid BinaryMorphism (+);

field mult ext :> StrongSetoid BinaryMorphism (.∗.);

field nontrivial :> PropHolds (1 >< 0);

recip proper :> Setoid Morphism (//);

recip inverse : ∀ x, proj1 sig x // x = 1 }.

We do not include strong extensionality of the inverse and the reciprocal because these
properties can be derived.

For convenience, we define an additional class DecField for fields with decidable equality
and whose reciprocal function is total. This class integrates nicely with Coq’s rational
numbers Q and bigQ, and the field tactic to solve field equations. This total reciprocal function
should satisfy /0 = 0, so properties as f(/x) = /(fx), /(/x) = x and /x ∗ /y = /(x ∗ y) hold
without any additional premises. We proved that a DecField is also an instance of our Field

class. A diagram of our complete algebraic hierarchy is displayed in Figure 1.
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StrongSetoid

Setoid

Field

Ring

IntegralDomain

SemiGroup

Monoid

CommutativeMonoid Group

AbGroupSemiRing

DecField

(a) The algebraic hierarchy

FullPartialOrder

StrictSetoidOrder PartialOrder

PseudoOrder

FullPseudoOrderPseudoSemiRingOrder

StrictSemiRingOrder

FullPseudoSemiRingOrder

SemiRingOrder

StrictOrder PreOrder

(b) The order hierarchy

Figure 1. The algebraic and order hierarchy. Dotted lines denote derived
inheritance, filled nodes denote presence of apartness.

4.2. Order theory. Existing Coq libraries for ordered algebraic structures turn out to
be too limited to abstract from ◆, ❩, ◗ and ❘ and their various implementations. The
formalization of ordered fields in the CoRN library [CFGW04] restricts to a very specific part
of the algebraic hierarchy (namely fields). Letouzey’s Numbers library, which is included
in recent versions of Coq trunk, only considers ◆ and ❩. The Ssreflect library presently
restricts to decidable structures with Leibniz equality. Moreover, even mathematically, the
most convenient abstraction is not entirely clear. Lešnik [Les10] provides a smooth order
theoretic characterization of these structures as so-called streaks. We, however, prefer our
theory below as it avoids partial functions.

In this work we present a library that captures the notion of order on a variety of
structures, including structures with undecidable equality. One of the building blocks of
our hierarchy is a pseudo order [Hey56], which is the constructive variant of a total order.

Class PseudoOrder ‘{Ae : Equiv A} ‘{Aap : Apart A} (Alt : Lt A) : Prop := {

pseudo order setoid : StrongSetoid A;

pseudo order asym : ∀ x y, ¬ (x < y ∧ y < x);

pseudo order cotrans :> CoTransitive (<);

apart iff total lt : ∀ x y, x >< y ↔ x < y ∨ y < x }.

In case equality is decidable, this interface is rather awkward to work with. Therefore we
present ways to go back and forth between the usual classical notions and their constructive
variants. For example, we use the type class machinery to infer the classical trichotomy
property in case apartness is just the negation of equality.

Instance lt trichotomy ‘{PseudoOrder A} ‘{!TrivialApart A} ‘{∀ x y, Decision (x = y)} : Trichotomy (<).
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Also, we can go the other way around. If we have a StrictSetoidOrder (an ordinary strict order
built upon a setoid) satisfying the trichotomy property, we obtain a pseudo order.

Lemma dec strict pseudo order ‘{StrictSetoidOrder A} ‘{Apart A}

‘{!TrivialApart A} ‘{∀ x y, Decision (x = y)} ‘{!Trichotomy (<)} : PseudoOrder (<).

In order to avoid loops, we define the above as an ordinary Lemma instead of an Instance.
Next, one could extend a pseudo order to the standard notion of a (pseudo) ring order.

Class PseudoRingOrder ‘{Equiv A} ‘{Apart A} ‘{Plus A}

‘{Mult A} ‘{Zero A} ‘{One A} ‘{Negate A} (Alt : Lt A) := {

pseudo ringorder spo :> PseudoOrder Alt;

pseudo ringorder ring : Ring A;

pseudo ringorder mult ext :> StrongSetoid BinaryMorphism (.∗.);

pseudo ringorder plus :> ∀ z, StrictlyOrderPreserving (z +);

pseudo ringorder mult : ∀ x y, 0 < x → 0 < y → 0 < x ∗ y }.

However, we wish to use our library on ordered structures for implementations of the natural
numbers as well. Since the natural numbers do not form a ring, but merely a semiring, we
strengthen the above class with a partial subtraction function (living in Prop, because we
never use it for computations) and require addition to be order reflecting. We call this,
apparently new notion, a PseudoSemiRingOrder.

Class PseudoSemiRingOrder ‘{Equiv A} ‘{Apart A} ‘{Plus A}

‘{Mult A} ‘{Zero A} ‘{One A} (Alt : Lt A) := {

pseudo srorder strict :> PseudoOrder Alt;

pseudo srorder semiring : SemiRing A;

pseudo srorder partial minus : ∀ x y, ¬ y < x → ∃ z, y = x + z;

pseudo srorder plus :> ∀ z, StrictOrderEmbedding (z +);

pseudo srorder mult ext :> StrongSetoid BinaryMorphism (.∗.);

pseudo srorder pos mult compat : ∀ x y,

PropHolds (0 < x) → PropHolds (0 < y) → PropHolds (0 < x ∗ y) }.

Instead of including the PseudoRingOrder class in our development, we include a lemma to
construct a PseudoSemiRingOrder from a ring satisfying the PseudoRingOrder axioms.

Given a pseudo (semiring) order, one could define the non-strict order x ≤ y in terms of
the strict order, namely as ¬ y < x. However, this is quite inconvenient in practice, because
we also want to talk about a priori different non-strict orders such as those defined in the
standard library. Hence we introduce the following class.

Class FullPseudoSemiRingOrder ‘{Equiv A} ‘{Apart A} ‘{Plus A}

‘{Mult A} ‘{Zero A} ‘{One A} (Ale : Le A) (Alt : Lt A) := {

full pseudo srorder pso :> PseudoSemiRingOrder Alt;

full pseudo srorder le iff not lt flip : ∀ x y, x ≤ y ↔ ¬ y < x }.

A diagram of our complete order hierarchy is displayed in Figure 1.
Our theory on abstract orders avoids duplication of theorems and proofs. For example,

the following lemmas apply to ◆, ❩, ◗ and the dyadics, because all of these structures
form a FullPseudoSemiRingOrder.

Lemma plus compat x1 y1 x2 y2 : x1 ≤ y1 → x2 ≤ y2 → x1 + x2 ≤ y1 + y2 .

Lemma lt 1 2 : 1 < 2.

Lemma square nonneg x : 0 ≤ x ∗ x.

To allow us to refer by canonical names to common properties, we introduce classes like:

Class OrderPreserving {A B} {Ae : Equiv A} {Ale : Le A} {Be : Equiv B} {Ble : Le B} (f : A → B) := {
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order preserving morphism :> Order Morphism;

order preserving : ∀ x y, x ≤ y → f x ≤ f y }.

Class OrderReflecting {A B} {Ae : Equiv A} {Ale : Le A} {Be : Equiv B} {Ble : Le B} (f : A → B) := {

order preserving back morphism :> Order Morphism;

order preserving back : ∀ x y, f x ≤ f y → x ≤ y }.

Here, an Order Morphism is just the factoring out of the common parts of both classes; namely
that f and ≤ respect equality. For the case of multiplication these properties have additional
premises, for example:

Global Instance: ∀ (z : A), PropHolds (0 < z) → OrderPreserving (z ∗.).

We introduce the PropHolds class to let the type class machinery prove these properties
automatically. For example consider:

Lemma example (n : N) (x y : A) : x ≤ y → (2 ˆ n + 2) ∗ x ≤ (2 ˆ n + 2) ∗ y.

Proof. intros. now apply (order preserving (2 ˆ n + 2 .∗)). Qed.

In order to use order preserving, we need a proof of PropHolds (0 < 2 ˆ n + 2). Type class resolu-
tion is able to prove this in a fully automated way because we have the following instances:

Instance: PropHolds (0 < 2);

Instance: ∀ x y : A, PropHolds (0 < x) → PropHolds (0 < y) → PropHolds (0 < x + y)

Instance: ∀ (n : N) (x : A), PropHolds (0 < x) → PropHolds (0 < x ˆ n)

This example shows that type class search is in fact very similar to proof search by the auto

tactic, but there is no need to call a tactic by hand.
For arbitrary instances of◆, ❩,◗ it is easy to define an order satisfying these interfaces:

Instance nat le ‘{Naturals N} : Le N | 10 := λ x y, ∃ z, y = x + z.

Instance nat lt ‘{Naturals N} : Lt N | 10 := λ x y, x ≤ y ∧ x 6= y.

However, often we encounter an a priori different order on a structure, most likely an
order defined in Coq’s standard library (like Nle and Nlt on N). Therefore we prove that a
FullPseudoSemiRingOrder uniquely specifies the order on ◆, ❩ and ◗. For example:

Context ‘{Naturals N} ‘{Naturals N2} {f : N → N2} ‘{!SemiRing Morphism f}

‘{Apart N} ‘{!TrivialApart N} ‘{!FullPseudoSemiRingOrder (A:=N) Nle Nlt}

‘{Apart N2} ‘{!TrivialApart N2} ‘{!FullPseudoSemiRingOrder (A:=N2) N2le N2lt}.

Global Instance: OrderEmbedding f.

Unfortunately Coq has no support to have an argument be ‘inferred if possible, generalized
otherwise’; see [SvdW11]. When declaring an argument of FullPseudoSemiRingOrder, one is
often in a context where most of its components are already available. Here, only the
additional arguments Le, Lt and Apart have to be introduced. The current workaround in
these cases (as shown above) involves providing names for components that are then never
referred to, which is a bit awkward. In the above it would much nicer to write:

Context ‘{Naturals N} ‘{Naturals N2} {f : N → N2} ‘{!SemiRing Morphism f}

‘{!TrivialApart N} ‘{!FullPseudoSemiRingOrder N} ‘{!TrivialApart N2} ‘{!FullPseudoSemiRingOrder N2}.

Global Instance: OrderEmbedding f.

4.3. Basic operations. The operation nat pow is most commonly, but inefficiently, defined
as repeated multiplication and the operation shiftl is defined as repeated duplication. Instead
we specify the desired behavior of these operations. This approach allows for different imple-
mentations for different number representations and avoids definitions and proofs becoming
implementation dependent.
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We introduce interfaces that specify the behavior of the operations abs, shiftl, nat pow and
int pow. Again there are various ways of specifying these interfaces: with Σ-types, bundled
or unbundled. In general, Σ-types are convenient for functions whose specification is easy,
for example:

Class Abs A ‘{Equiv A} ‘{Le A} ‘{Zero A} ‘{Negate A}

:= abs sig: ∀ (x : A), { y : A | (0 ≤ x → y = x) ∧ (x ≤ 0 → y = −x)}.

Definition abs ‘{Abs A} := λ x : A, proj1 sig (abs sig x).

However, for more complex operations, such as shiftl, we follow the unbundled approach by
Spitters and van der Weegen [SvdW11].

Class ShiftL A B := shiftl: A → B → A.

Infix ”≪ ” := shiftl (at level 33, left associativity).

Class ShiftLSpec A B (sl : ShiftL A B) ‘{Equiv A} ‘{Equiv B} ‘{One A}

‘{Plus A} ‘{Mult A} ‘{Zero B} ‘{One B} ‘{Plus B} := {

shiftl proper : Proper ((=) =⇒ (=) =⇒ (=)) (≪) ;

shiftl 0 :> RightIdentity (≪) 0;

shiftl S : ∀ x n, x ≪ (1 + n) = 2 ∗ x ≪ n }.

We do not specify shiftl as shiftl x n = x ∗ 2 ˆ n since on the dyadics we cannot take a negative
power while we can shift by a negative integer. Since theory on shifting with exponents in
◆ and ❩ is similar we want to avoid duplication of theorems and proofs. To this end we
introduce a class describing the bi-induction principle.

Class Biinduction A ‘{Equiv A} ‘{Zero A} ‘{One A} ‘{Plus A} : Prop

:= biinduction (P: A → Prop) ‘{!Proper ((=) =⇒ iff) P} : P 0 → (∀ n, P n ↔ P (1 + n)) → ∀ n, P n.

Since this class is inhabited by any integer and natural implementation we can parametrize
theory on shiftl as follows.

Context ‘{SemiRing A} ‘{!LeftCancellation (.∗.) (2:A)} ‘{SemiRing B} ‘{!Biinduction B} ‘{!ShiftLSpec A B sl}.

Lemma shiftl base plus x y n : (x + y) ≪ n = x ≪ n + y ≪ n.

Global Instance shiftl inj: ∀ n, Injective (≪n).

4.4. Decision procedures. The Decision type class by Spitters and van der Weegen collects
decidable propositions [SvdW11].

Class Decision P := decide: sumbool P (¬ P).

Using this type class we can declare a argument ‘{∀ x y, Decision (x = y)} to describe a decider
for = and say decide (x = y) to decide whether x = y or not. This type class allows us to easily
compose deciders, for example:

Instance prod dec ‘(A dec : ∀ x y : A, Decision (x = y))

‘(B dec : ∀ x y : B, Decision (x = y)) : ∀ x y : A ∗ B, Decision (x = y).

We have to be careful however. Consider the definition of the order on the dyadics.

Global Instance dy le: Le Dyadic := λ x y : Dyadic,

ZtoQ (mant x) ∗ 2 ˆ (expo x) ≤ ZtoQ (mant y) ∗ 2 ˆ (expo y)

Global Instance dy le dec: ∀ (x y : Dyadic), Decision (x ≤ y).

Now, decide (x ≤ y) for x and y of type Dyadic is actually @decide (x ≤ y) (dy le dec x y). This
shows that the proposition x ≤ y is just a phantom argument used for instance search only,
whereas dy le dec is the decision procedure doing the actual work. Due to eager evaluation
of Coq’s virtual machine, the term decide (x ≤ y) is expanded to
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@decide (ZtoQ (mant x)∗ 2 ˆ (expo x)≤ ZtoQ (mant y)∗ 2 ˆ (expo y)) (dy le dec x y),

resulting in the phantom argument being evaluated first. In many cases evaluation of such
a phantom argument is cheap, but here it involves an expensive conversion of x and y to Q.
We avoid evaluation of this phantom argument by wrapping it under a λ-abstraction.

Definition decide rel ‘(R : relation A) {dec : ∀ x y, Decision (R x y)}

(x y : A) : Decision (R x y) := dec x y.

Now, if we write decide rel (≤) x y, it expands to

@decide rel (λ x y, ZtoQ (mant x)∗ 2 ˆ (expo x)≤ ZtoQ (mant y)∗ 2 ˆ (expo y)) x y dy le dec,

where the definition of inequality is safely hidden under a λ-abstraction.
This problem would not appear if Coq’s virtual machine would evaluate propositions

lazily, as the phantom argument is just a proposition. Unfortunately, lazy evaluation of
propositions is not supported by its current implementation.

4.5. Explicit type casts. The Cast type class collects (explicit) type casts.

Class Cast A B := cast: A → B.

Implicit Arguments cast [[Cast]].

Notation ”’ x” := (cast x) (at level 20).

Instance: Params (@cast) 3.

This definition allows us to refer to a cast from x : A to B by using an apostrophe, or writing
cast A B x. An example of an instance of this class is:

Instance NonNeg inject: Cast (A≥0) A := @proj1 sig A .

Here, A≥0 is a Σ-type describing the non-negative cone of an ordered ring A. Contrary to
Coq’s built-in coercion mechanism, our type casts are explicit instead of implicit and type
classes are used to register them. Our approach has some advantages:

(1) By using type classes to register casts, we are allowed to parametrize classes with casts.
An example is the AppRationals class, as defined in Section 5.

(2) Implicit coercions often introduce ambiguity. Since our approach allows us to refer to
casts by a (canonical) name, e.g. cast B C (cast A B x), we can avoid this ambiguity.

(3) Casts can be put in partially applied position, e.g. order preserving (cast Z Q).

Coq’s coercion mechanism does not allow us to define a coercion from A≥0 to A nor
a coercion from a ring to its polynomial ring. More generally, it does not allow most
forms of parametrized coercions nor non-uniform coercions. An implementation that allows
parametrized coercions like NonNeg inject has to avoid an infinite loop: to naively type check
x : A, one has to type check x : A≥0, x : (A≥0)≥0, . . . We suffer from such loops if we compose
our Cast classes automatically as well. Hence we refrain from adding:

Instance cast comp base ‘{f : Cast A B} : ComposedCast A B := f.

Instance cast comp step ‘{f : Cast B C} ‘{g : ComposedCast A B} : ComposedCast A C := λ x, f (g x).

Matita [ASCTZ07] allows parametrized coercions and avoids the loop by not applying coer-
cions recursively, but instead building a well-chosen set of set of composite coercions [Tas08].
Non-uniform coercions [ST11] are available in Matita. They are implemented using unifi-
cation hints, a feature similar to type classes.
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5. The real numbers

To make our implementation of the reals independent of the underlying dense set, we provide
an abstract specification of approximate rationals inspired by the notion of approximate

fields — a field with approximate operations — which is used in Bauer and Kavler’s RZ
implementation of the exact reals [BK08]; see also [BT09]. In particular, we provide an
implementation of this interface by dyadics based on Coq’s machine integers.

Our interface for approximate rationals describes an ordered ring containing Z that
is dense in Q. Here Z are the binary integers from Coq’s standard library, and Q are
the rationals based on these binary integers. We do not parametrize by arbitrary integer
and rational implementations because they are hardly used for computation. For efficient
computation we include the operations: approximate division, normalization, an embedding
of Z, absolute value, power by N, shift by Z, and decision procedures for equality and order.

Class AppDiv AQ := app div: AQ → AQ → Z → AQ.

Class AppApprox AQ := app approx: AQ → Z → AQ.

Class AppRationals AQ {AQe AQplus AQmult AQzero AQone AQneg} ‘{Apart AQ} ‘{Le AQ} ‘{Lt AQ}

{AQtoQ : Cast AQ Q as MetricSpace} ‘{!AppInverse AQtoQ} {ZtoAQ : Cast Z AQ}

‘{!AppDiv AQ} ‘{!AppApprox AQ} ‘{!Abs AQ} ‘{!Pow AQ N} ‘{!ShiftL AQ Z}

‘{∀ x y : AQ, Decision (x = y)} ‘{∀ x y : AQ, Decision (x ≤ y)} : Prop := {

aq ring :> @Ring AQ AQe AQplus AQmult AQzero AQone AQneg;

aq trivial apart :> TrivialApart AQ;

aq order embed :> OrderEmbedding AQtoQ;

aq strict order embed :> StrictOrderEmbedding AQtoQ;

aq ring morphism :> SemiRing Morphism AQtoQ;

aq dense embedding :> DenseEmbedding AQtoQ;

aq div : ∀ x y k, ball (2 ˆ k) (’app div x y k) (’x / ’y);

aq compress : ∀ x k, ball (2 ˆ k) (’app approx x k) (’x);

aq shift :> ShiftLSpec AQ Z (≪) ;

aq nat pow :> NatPowSpec AQ N (ˆ);

aq ints mor :> SemiRing Morphism ZtoAQ }.

We define the real numbers as the completion of the approximate rationals. To create
functions on the real numbers, we use the monadic operations bind or map. This approach
is convenient because equality and inequality are decidable on the approximate rationals,
whereas it is not on the real numbers. For binary functions, e.g. addition and multiplication,
we use the map2 function, as described in [O’C07].

O’Connor [O’C07] keeps the size of the rational numbers small to avoid efficiency prob-
lems. He introduces a function approx x ǫ that yields the ‘simplest’ rational number between
x − ǫ and x + ǫ. We modify the approx function slightly: app approx x k yields an arbitrary
element between x − 2k and x + 2k. Using this function we define the compress operation on
the real numbers: compress := bind (λ x ǫ, app approx x (Qdlog2 ǫ)) such that compress x = x.

In Section 5.4 we will explain our choice of using a power of 2 to specify the precision
of app div and app approx.

5.1. Order and apartness. Following [BB85, O’C09], we define non-negativity and the
order on the real numbers as follows.

NonNeg x := ∀ε : ◗>0,−ε ≤ x ε

x ≤ y := NonNeg (y − x)
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Bishop and Bridges [BB85] define positivity as the dual of non-negativity: ∃ε : ◗>0, ε < x ε.
O’Connor [O’C09] defines positivity and the strict order differently so as to avoid a poten-
tially expensive computation, namely x ε− ε, to obtain a witness between 0 and x.

Pos x := {ε : ◗>0 | ε ≤ x}
x <T y := Pos (y − x)

We use the T subscript to emphasize that the relation lives in Type. Next, we define
x ><T y := x <T y ∨ y <T x. Extraction of a witness ε ∈ (0, x] from Pos x allows us to
define the reciprocal function of type ∀x : ❘, 0 ><T x → ❘.

In order to use our type class based hierarchy we need a strict order and apartness
relation in Prop. We need this restriction because Coq’s present implementation of setoid
rewriting does not allow rewriting in Type-based relations (see Section 4.1). Our definition
is similar to Bishop and Bridges’ definition of positivity, but uses shifts instead.

x < y := ∃n : ◆, 1 ≪ −n < (y − x) (1 ≪ (−n− 1))

x >< y := x < y ∨ y < x

Using constructive indefinite description (see Section 2.3), it is an easy job to prove that
we indeed have x < y ↔ x <T y and x >< y ↔ x ><T y. Similar to O’Connor [O’C09], we
implement a tactic that automatically proves strict inequalities. The tactic terminates iff
the inequality holds and is similar to our use of linear search to obtain x <T y from x < y.

5.2. Implementation using the dyadics. The dyadic rationals are numbers of the shape
n ∗ 2e for n, e ∈ ❩. In order to remain independent of a specific implementation of integers,
we have defined most of the operations for arbitrary integer implementations. Given such
an implementation Int it is straightforward to define the ring operations.

Notation ”x ↾ p” := (exist x p) (at level 20).

Record Dyadic := dyadic { mant : Int; expo : Int }.

Infix ”H ” := dyadic (at level 80).

Global Instance dy inject: Cast Int Dyadic := λ x, x H 0.

Global Instance dy negate: Negate Dyadic := λ x, −mant x H expo x.

Global Instance dy mult: Mult Dyadic := λ x y, mant x ∗ mant y H expo x + expo y.

Global Instance dy 0: Zero Dyadic := cast Int Dyadic 0.

Global Instance dy 1: One Dyadic := cast Int Dyadic 1.

Global Program Instance dy plus: Plus Dyadic := λ x y,

if decide rel (≤) (expo x) (expo y)

then mant x + mant y ≪ (expo y − expo x) ↾ H min (expo x) (expo y)

else mant x ≪ (expo x − expo y) ↾ + mant y H min (expo x) (expo y).

In this code (≪) has type Int → Int≥0→ Int, where Int≥0 is a Σ-type describing the non-negative
cone of Int. Therefore, in the definition of dy plus we have to equip expo y − expo x with a
proof that it is in fact non-negative.

The operation of approximate division is not implemented in an abstract way as we
have not developed a type class and theory for right shifts yet. For our implementation
using Coq’s machine integers bigZ, we defined approximate division concretely using the
shift right function from the standard library.
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5.3. Implementation using the rationals. Our development contains additional imple-
mentations of the AppRationals class using Coq’s old rational numbers Q and the new rational
numbers bigQ (which are built from the machine integers bigZ). Although creating these im-
plementations is uninteresting from a performance point of view, it confirms that it is trivial
to change the underlying dense set from which our real numbers are built.

To implement the app approx function in an efficient manner, we use shifts on the under-
lying integers. Furthermore, to keep the size of the results of the division operation small,
we incorporate the app approx function.

Instance bigQ div: AppDiv bigQ := λ x y, app approx (x / y).

5.4. Power series. Elementary transcendental functions as exp, sin, ln and atan can be
defined by their power series. If the coefficients of a power series are alternating, decreasing
and have limit 0, then we obtain a fast converging sequence with an easy termination proof.
For −1 ≤ x ≤ 0,

exp x =

∞
∑

i=0

xi

i!

is of this form. To approximate exp x with error ε we take the partial sum until xi

i! ≤ ε.
In order to implement this efficiently we use a stream representing the series and define a
function that sums the required number of elements. For example, the series 1, a, a2, a3, . . .

is defined by the following stream.

CoFixpoint powers help (c : A) : Stream A := Cons c (powers help (c ∗ a)).

Definition powers : Stream A := powers help 1.

Streams in Coq, like lists in Haskell, are lazy. So, in the example the multiplications are
accumulated.

Since Coq only allows structural recursion (and guarded co-recursion) it requires some
work to convince Coq that our algorithm terminates. Intuitively, one would describe the
limit as an upperbound of the required number of elements using the Exists predicate.

Inductive Exists A (P : Stream A → Prop) (x : Stream) : Prop :=

| Here : P x → Exists P x

| Further : Exists P (tl x) → Exists P x.

This approach leads to performance problems. The upperbound, encoded in unary format,
may become very large while generally only a few terms are necessary. Due to vm compute’s
eager evaluation scheme, this unary number will be computed before summing the series.
Instead O’Connor [O’C09] uses LazyExists.

Inductive LazyExists A (P : Stream A → Prop) (x : Stream A) : Prop :=

| LazyHere : P x → LazyExists P x

| LazyFurther : (unit → LazyExists P (tl x)) → LazyExists P x.

Unfortunately, our experiments showed that the above still yields too much overhead due
unnecessary to reduction of proofs. To remedy this issue we introduce the following function
where Str nth tl n s takes the n-th tail of the stream s.

Fixpoint LazyExists inc ‘{P : Stream A → Prop}

(n : nat) s : LazyExists P (Str nth tl n s) → LazyExists P s :=

match n return LazyExists P (Str nth tl n s) → LazyExists P s with

| O ⇒ λ x, x
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| S n ⇒ λ ex, LazyFurther (λ , LazyExists inc n (tl s) ex)

end.

This function adds n additional LazyFurther constructors. When instantiated with a big
enough n, computation will suffer from the implementation limits of Coq (e.g. a stack
overflow) or runs out of memory, before it ever refers to the actual proof. Using LazyExists inc

we are able to compute on average twice the amount of decimals as we did before on examples
such as the ones in Table 2.

O’Connor’s InfiniteAlternatingSum s returns the real number represented by the infinite
alternating sum over s, where the stream s is decreasing, non-negative and has limit 0.
We extend this in two ways. First, we generalize various notions to abstract structures.
Secondly, as we do not have exact division on approximate rationals, we extend the algo-
rithm to work with approximate division. The latter requires changing InfiniteAlternatingSum s

to InfiniteAlternatingSum n d which computes the infinite alternating sum of the stream λi, ni

di
.

This allows us to postpone divisions. Also, we have to determine both the length of the
partial sum and the required precision of the divisions. To do so we find a k such that:

B ε
2

(app div nk dk (log
ε

2k
) +

ε

2k
) 0. (5.1)

Now k is the length of the partial sum, and ε
2k is the required precision of division. Using

O’Connor’s results we have verified that these values are correct and such a k indeed exists
for a decreasing, non-negative stream with limit 0.

As noted in Section 5, we have specified the precision of division in powers of 2 instead
of using a rational value. This allows us to replace (5.1) with:

B ε
2

(app div nk dk (log ε− (k + 1)) + 1 ≪ (log ε− (k + 1))) 0.

Here k is the length of the partial sum, and 2l, where l = log ε − (k + 1), is the required
precision of division. This variant can be implemented without any arithmetic on the
rationals and is thus much more efficient.

This method gives us a fast way to compute the infinite alternating sum, in practice,
only a few extra terms have to be computed and due to the approximate division the
auxiliary results are kept as small as possible.

Similarly, using this method to compute infinite alternating sums, we use the following
series to implement atan x and sin x for x ∈ [−1, 1].

atan x =
∞
∑

i=0

(−1)i ∗ x2i+1

(2i+ 1)!

sin x =
∞
∑

i=0

(−1)i ∗ x2i+1

2i+ 1
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We extend these functions to their complete domain by repeatedly applying the following
formulas [O’C09].

exp x = (exp (x ≪ 1))2 (5.2)

exp x =
1

exp (−x)
(5.3)

sin x = 3 ∗ sin
x

3
− 4 ∗

(

sin
x

3

)3
(5.4)

atan x = −atan (−x) (5.5)

atan x =
π

2
− atan

1

x
for 0 < x (5.6)

atan x =
π

4
− atan

(x− 1

x+ 1

)

for 0 < x (5.7)

Since we do not have exact division on the approximate rationals, we parameterize infinite
sums by two streams in Equation 5.4, 5.6 and 5.7.

The series described in this section converge faster for arguments closer to 0. We use
Equation 5.2 and 5.4 repeatedly to reduce the input to a value |x| ∈ [0, 2k). For 50 ≤ k,
this yields nearly always major performance improvements, for higher precisions setting it
to 75 ≤ k yields even better results. Unfortunately, we are unaware of a similar trick for
atan. We define π in terms of atan using the following Machin-like formula.

π := 176 ∗ atan
1

57
+ 28 ∗ atan

1

239
− 48 ∗ atan

1

682
+ 96 ∗ atan

1

12943
Again, here we notice the purpose of parameterizing infinite sums by two streams. We
define cos in terms of sin.

cos x = 1− 2 ∗
(

sin
x

2

)2

O’Connor [O’C07, O’C09] subtracts multiples of 2π to reduce the arguments of sin and cos.
In our tests this did not lead to performance improvements because our implementation of
π turned out to be slower than the performed range reductions.

5.5. Square root. We use Wolfram’s algorithm [Wol02, p.913] for computing the square
root. Its complexity is linear, in fact it provides a new binary digit in each step.

Context ‘(Pa : 1 ≤ a ≤ 4).

Fixpoint AQroot loop (n : nat) : AQ ∗ AQ :=

match n with

| O ⇒ (a, 0)

| S n ⇒

let (r, s) := AQroot loop n in

if decide rel (≤) (s + 1) r

then ((r − (s + 1)) ≪ (2:Z), (s + 2) ≪ (1:Z))

else (r ≪ (2:Z), s ≪ (1:Z))

end.
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We write (rn, sn) for the n-th pair of approximations. By induction we obtain:

s2n + 4rn = 4n+1a (5.8)

rn ≤ 2sn + 4 (5.9)

2msn ≤ sn+m ≤ 2m(sn + 4)− 4 (5.10)

rn ≤ 23+n (5.11)

By 5.8, (2−(n+1)sn)
2 + 2−2nrn = a. By 5.11, 2−2nrn converges to 0 as n tends to ∞.

Therefore, by 5.10, 2−(n+1)sn is a Cauchy sequence which moreover converges to
√
a.

We extend the square root to its entire domain by repeatedly applying:

√
x = 2 ∗

√

x

4

O’Connor’s Coq implementation [O’C08] includes the much faster Newton iteration,
whose complexity is logarithmic in the number of decimals. The function to iterate is:

Definition f (r : Q) : Q := r / 2 + a / (2 ∗ r).

Because of the absence of exact division on our approximate rationals we cannot implement
this function directly. However, we can implement it on our real numbers. As the above
definition does not use sharing, we have to define this function on the reals by first defining:

Definition f (r : AQ) (ǫ : Qpos) : AQ := (r + approx div (Qdlog2 ǫ) a r) ≪ (−1).

and then showing that it gives rise to a continuous function f : AQ → AR which we finally
lift to a function bind f : AR → AR on the reals. In this way we take care of sharing, division
and intermediate use of the approx function (see Section 5) all in one go. We hope the future
correctness proof to be quite smooth, since we work with exact real numbers. We have
implemented this in Haskell and it performs really well.

6. Benchmarks

The first step in this research was to create a Haskell prototype based on O’Connor’s
implementation of the real numbers inHaskell [O’C07]. The second step was to implement
and verify this prototype in Coq. Our Coq development contains verified versions of: the
field operations, exponentiation by a natural, computation of power series, exp, atan, sin,
cos, π and the square root.

In this section we present some benchmarks, taken from the ‘Many Digits’ friendly
competition [NW09], comparing the old and the new implementation, both in Haskell
and Coq. All benchmarks have been carried out on an Intel Core Quad 2.4 GHz with 8GB
of memory running Debian GNU/Linux. The sources of our developments can be found
at https://github.com/c-corn/corn.

Table 1 shows some benchmarks in Haskell with compiler optimizations enabled (-O2)
and Table 2 compares our Coq implementation with O’Connor’s. More extensive bench-
marking shows that our Haskell implementation generally benefits from a 15 times speed
up while the speed up in Coq is generally more than a 100 times for small examples already.
This difference between the comparison of the Haskell and the Coq implementation is ex-
plained by the fact that O’Connor’sHaskell implementation already uses rational numbers

https://github.com/c-corn/corn
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Expression Decimals Old New
P01 sin (sin (sin 1)) 5.000 25s 2.3s
P02

√
π 5.000 3.3s 1.7s

P03 sin e 5.000 13s 1.2s

P04 exp (π ∗
√
163) 5.000 22s 2.0s

P05 exp (exp e) 5.000 43s 2.6s
P06 log (1 + log (1 + log (1 + log (1 + π)))) 500 107s 2.5s
P07 exp 1000 20.000 1.1s 0.7s
P08 cos (1050) 20.000 6.7s 1.4s

P09 sin (3 ∗ log 640320√
163

) 5.000 33s 16s

P11 tan e+ atan e+ tanh e+ atanh 1
e

500 41s 3.2s
P12 asin 1

e
+ cosh e+ asinh e 500 99s 3.2s

Table 1. Haskell, compiled with ghc version 6.12.1, using -O2. The
column ‘old’ refers to the Haskell prototype of O’Connor, and the column
‘new’ to our Haskell prototype.

Expression Decimals Old New Decimals New
P01 sin (sin (sin 1)) 25 46s 0.6s 500 3.8s
P02

√
π 25 0.3s 0.03s 500 6.8s

P03 sin e 25 36s 0.1s 500 1.9s

P04 exp (π ∗
√
163) 10 214s 0.1s 500 3.7s

P05 exp (exp e) 10 36s 0.2s 500 3.2s
P07 exp 1000 10 2662s 1.0s 2.000 4.9s
P08 cos (1050) 25 11s 0.3s 2.000 12s

Table 2. Coq trunk, revision 14023. The column ‘old’ refers to the Coq
implementation of O’Connor, and the column ‘new’ to our Coq implemen-
tation. Computations using a higher precision did not terminate within a
reasonable time using O’Connor’s implementation, so these are omitted.

built from fast integers and incorporates various optimizations, while his Coq implemen-
tation does not. The last column of Table 2 indicates that our new implementation is able
to compute an order of magnitude more decimals in the same amount of time.

We also compared the new reals built from Coq’s fast rationals (Section 5.3) and our
dyadic rationals (Section 5.2). For exp, sin and cos we obtain quite similar results due to the
our range reductions to reduce the length of the power series. In case of the square root,
the dyadics rationals are much faster because wolfram iteration is designed for an efficient
shift. It is interesting to notice that π and atan benefit the least from our improvements, as
we are unaware of range reductions to reduce the length of the series.

We conclude this section with a comparison between the performance of Wolfram’s
algorithm in Coq and Haskell. The Haskell prototype (without compiler optimizations)
is quite fast, computing 10,000 iterations (giving 3,010 decimals) of

√
2 takes 0.2s. In Coq

it takes 7.4s using type classes and 7.2s without type classes. Here we exclude the time
spend on type class resolution. Thus type classes cause only a 3% performance penalty on
computations, which is very acceptable for the modularity that they introduce.
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Unfortunately, the Coq implementation is slow compared to Haskell. Laurent Théry
suggested that this is due to the representation of the fast integers, which uses a tree
with a fixed depth and when the size of the integer becomes too big uses a less optimal
representation. Increasing the size of the tree representation and avoiding an inefficiency in
the implementation of shifts reduces this time to 5.4s.

7. Conclusions and Related work

We have greatly improved the performance of real number computation in Coq using Coq’s
new machine integers. We produced highly structured and abstract code using type classes
with no apparent performance penalty. Moreover, Coq’s notation mechanism combined
with unicode characters gives nicely readable statements and proofs. Type classes were a
great help in our work. However, the current implementation of instance resolution is still
experimental and at times too slow (at compile time).

Canonical structures provide an alternative, and partially complementary, implemen-
tation of type classes [GZND11]. By choice, canonical structures restrict to deterministic
proof search, this makes them more efficient, but also somewhat more intricate to use. The
use of canonical structures by the Ssreflect team [GGMR09] makes it plausible that with
some effort we could have used canonical structures for our work instead. However, the
Ssreflect-library is currently not suited for setoids which are crucial to us. The integra-
tion of unification hints [ARCT09] into Coq may allow a tighter integration of type classes
and canonical structures.

We needed to adapt our correctness proofs to prevent the virtual machine from eagerly
evaluating them. Lazy evaluation for Prop would have allowed us to use the original proofs.
Moreover, setoid rewriting over relations in Type would have made our work much easier.

The experimental native compute by Boespflug, Dénès and Grégoire [BDG11] performs
evaluation by compilation to native Ocaml code. This approach uses the Ocaml com-
piler available and is interesting for heavy compilation. Our first experiments indicate an
additional speed up of 3 times compared to vm compute.

The Flocq project [BM11] formalizes infinitary floating-points in Coq. It provides
a library of theorems on multi-radix multi-precision arithmetic and supports efficient nu-
merical computations inside Coq. However, the current library is still too limited for our
purposes, but in the future it should be possible to show that they form an instance of our
approximate rationals. This may allow us to gain some speed by taking advantage of fine
grained algorithms instead of our more straightforward ones.

The encoding of real numbers as streams of ‘bits’ is potentially interesting. However,
currently there is a big difference in performance. The computation of 37 decimals of the
square root of 1/2 by Newton iteration [JP09], using the framework described in [Ber07,
Jul08], took 12s. This should be compared with our use of the Wolfram iteration, which
gives only linear convergence, but with which we nevertheless obtain 3,000 decimals in a
similar time. On the other hand, the efficiency of π in their framework is comparable with
ours. Berger [Ber09], too, uses co-induction for exact real computation.

The present work is part of a larger program to use constructive mathematics based
on type theory as a programming language for exact analysis. This should culminate in a
numerical ODE-solver. To do so we need to extend the current technology to functional
analysis. For instance we will build a type class interface for metric spaces in order to treat
various function spaces.
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Cohen and Mahboubi [Coh12, CM12] provide a formalization of quantifier elimination
for the theory of decidable real closed fields, and an implementation of the algebraic real
numbers. Quantifier elimination will automate many proofs in constructive analysis which
only involve algebraic real numbers. Conversely, our implementation could be used for
efficiently evaluating a Cauchy representation of an algebraic real number.
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