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Abstract. We introduce the concept of “type I burst excitability”, which is a generalization of the “normal”
excitability that is well-known in cardiac and neural systems. We demonstrate this type of burst excitability in
a specific model system, a pyramidal cell from the electrosensory lateral line lobe of the weakly electric fish
Apteronotus leptorhynchus. As depolarizing current is increased, a saddle-node bifurcation of periodic orbits occurs,
which separates tonic and burst activity. This bifurcation is responsible for the excitable nature of the system, and
is the basis for the “type I” designation. We verify the existence of this transition from in vitro recordings of a
number of actual pyramidal cells. A scaling relationship between the magnitude and duration of a current pulse
required to induce a burst is derived. We also observe this type of burst excitability and the scaling relationships
in a multicompartmental model that is driven by realistic stochastic synaptic inputs mimicking sensory input. We
conclude by discussing the relevance of burst excitability to communication between weakly electric fish.
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1. Introduction

Bursting, in which a cell periodically switches from
quiescent behavior to a rapidly spiking state and back
again, is an important and common form of electri-
cal activity (de Vreis, 1998; Izhikevich, 2000; Keener
and Sneyd, 1998; Rinzel and Ermentrout, 1998). In
this paper we introduce a specific example of what we
term “burst excitability”. Burst excitability is analo-
gous to the “normal” excitability seen in neural, cardiac
and other systems (Bub et al., 2002; Ermentrout, 1996;
Glass and Mackey, 1988; Goldbeter, 1996; Izhikevich,
2000; Keener and Sneyd, 1998; Rinzel and Ermentrout,

1998), where a small, transient change in the input
to a system causes it to undergo a large, stereotyp-
ical excursion in phase space before returning to its
rest state. In neural systems, this large excursion corre-
sponds to an action potential, while in cardiac systems
it is a heart beat. In burst excitability, the large excur-
sion in phase space is what would normally be classi-
fied as a “burst” in the bursting system, and the “rest
state” that the system returns to may be periodic fir-
ing, as opposed to a true fixed point. Normal excitabil-
ity often appears in systems that are close in parame-
ter space to a saddle-node bifurcation of fixed points
(Guckenheimer and Holmes, 1990; Kuznetsov, 1995),
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and which also have a “global connection” which the
system approximately follows during the large excur-
sion in phase space (Ermentrout, 1996; Gutkin and
Ermentrout, 1998).

We discuss burst excitability in a system which
also has a saddle-node bifurcation, although of peri-
odic orbits rather than fixed points, and which also
has a “global connection” in phase space. Specifically,
we discuss the “ghostburster” model of Doiron et al.
(2002), a model of a pyramidal cell from the electrosen-
sory lateral line lobe (ELL) of a weakly electric fish that
is capable of burst discharge (Lemon and Turner, 2000).
Previous work on a low-dimensional ODE model for
this pyramidal cell showed that the transition from pe-
riodic to bursting behavior as the injected current was
increased was a saddle-node bifurcation of periodic or-
bits (Doiron et al., 2002), and it is the presence of this bi-
furcation that provides a necessary ingredient for burst
excitability. We refer to the type of burst excitability
investigated here as “type I” in analogy with “normal”
type I excitability, which involves a saddle-node bifur-
cation of fixed points (Ermentrout, 1996; Gutkin and
Ermentrout, 1998).

In Section 2 we briefly review “normal” excitabil-
ity. In Section 3 we introduce the pyramidal cell model
that shows type I burst excitability, and in Section 4 we
discuss the saddle-node bifurcation of periodic orbits
and show experimental data verifying the existence of
a qualitative change from tonic to bursting behavior in
ELL pyramidal cells as injected current is increased.
In Section 5 we demonstrate type I burst excitability in
both the ghostburster model and a large multicompart-
ment model (Doiron et al., 2001a). Section 6 contains
an analysis of some of the properties of excitability, as
derived from the normal form of the saddle-node bifur-
cation, and numerical verification of these results for
both the low-dimensional pyramidal cell model we are
studying and the multicompartment model of Doiron
et al. (2001a). Finally we conclude in Section 7 with a
discussion of our results, in particular, with respect to
coding of communication signals between fish.

2. “Normal” Excitability

Excitability is a well-known phenomenon, observed in
neural, cardiac and other systems. The usual notion of
excitability is that a system is at rest and there exists
a threshold such that if a perturbation pushes the sys-
tem over threshold, it undergoes a large, stereotypical

excursion in phase space (corresponding to e.g. the pro-
duction of an action potential in a spiking neuron) be-
fore returning to rest. If the perturbation fails to push
the system over threshold, the variables return directly
to their resting values.

An example is shown in Fig. 1, where we inves-
tigate the Morris–Lecar system (Keener and Sneyd,
1998; Rinzel and Ermentrout, 1998). Here we increase
the input current I for a short amount of time before
reducing it to its original value and observe the re-
sponse of the system (see Appendix A for the equa-
tions describing this system, and Fig. 2 of Gutkin and
Ermentrout (1998) for a similar result). If the increase
in current is not large enough (top panels) the system
returns directly to its original fixed point (small closed
loop in the top right panel). However, if the increase is
sufficiently large (bottom panels) the system makes a
large excursion in phase space before returning to rest.
(Note that the trajectory that leaves the right side of
the bottom right panel in Fig. 1 returns through the left
side and approaches the stable fixed point “A” from the
left.) Most of the large excursion in phase space oc-
curs after I has been returned to its original value; the
temporary increase in I was only necessary to push the
system across the threshold—once across, the system
must trace out a large excursion before returning to rest.

This form of excitability results from the fact that
the bifurcation from quiescence to periodic firing as
the input current is increased is a saddle-node bifurca-
tion of fixed points (A and B), and that the two fixed
points involved in the bifurcation lie on a topological
circle, so that after they have annihilated one another
a periodic orbit exists (Ermentrout, 1996; Gutkin and
Ermentrout, 1998). The stable manifold of the saddle
fixed point (B) acts as the threshold in this situation,
and once this is crossed, a trajectory must closely fol-
low part of the unstable manifold of this fixed point
(which makes up part of the topological circle), making
the large excursion in phase space before returning to
the stable fixed point (A). It was this type of geometry
that was used in the derivation of the “theta neuron”
(Ermentrout, 1996; Gutkin and Ermentrout, 1998), a
canonical model for this type of excitability.

This type of bifurcation to periodic firing as current
is increased leads to “type I” neural dynamics, charac-
terized by arbitrarily low firing frequencies as the cur-
rent is varied. This is in contrast to “type II” dynamics,
where the onset of periodic firing occurs at non-zero
frequency, often through a Hopf bifurcation (Gutkin
and Ermentrout, 1998; Rinzel and Ermentrout, 1998).



Burst Excitability 331

20 30 40 50 60
−0.5

0

0.5

Time

u,
v

u
v

−0.4 −0.3 −0.2 −0.1
0

0.01

0.02

0.03

0.04

B

A

u

v

20 30 40 50 60
−0.5

0

0.5

Time

u,
v

u
v

−0.4 −0.3 −0.2 −0.1
0

0.01

0.02

0.03

0.04

u

v

A

B

Figure 1. An example of normal excitability for the Morris–Lecar system (16)–(17). Top left: u and v as functions of time. The current was
stepped from 0.07 to 0.1 during 30 < t < 32. Top right: corresponding phase portrait. “A” is a stable node, “B” is a saddle. The unstable
manifold of B is shown dashed, and the stable manifold of B is shown dotted. The trajectory is shown solid. (The right-most section of the
unstable manifold of B loops up and returns to A from the left.) Bottom panels: Same as top panels, but the current was stepped from 0.07 to
0.15 for 30 < t < 32. Note that the two fixed points A and B are annihilated in a saddle-node bifurcation at I ≈ 0.085.

It should be noted that the large excursion in phase
space before returning to a fixed point can involve the
production of more than one action potential, a situa-
tion that Izhikevich (2000) called “burst excitability”,
and Av-Ron et al. (1993) referred to as “conditional
bursting”. However, neither of these papers contain any
analysis of this phenomenon and both only mention the
phenomenon in passing. Butera et al. (1995) studied
the effects of transient current inputs to both real and
model R15 bursting neurons that were either bathed in
serotonin or dopamine, or had constant hyperpolariz-
ing or depolarizing currents injected. They found be-
havior that we would call “burst excitability”, but their
analysis involved “quasi-steady-state I–V plots”, rather
than the geometric ideas that we use. A subsequent
paper (Butera et al., 1997) did take a geometric ap-
proach, and the results presented here use similar ideas
to those presented there. One significant difference,

however, is that the underlying burst mechanisms are
quite different.

3. The Ghostburster Model

We now present the ODE model of a pyramidal cell
from the electrosensory lateral line lobe (ELL) of the
weakly electric fish Apteronotus leptorhynchus. These
fish sense weak electric fields due to either objects in
their environment or their own nearly-periodic elec-
tric organ discharge (EOD) (Assad et al., 1999). The
electric field is sensed by electroreceptors that cover
the fish’s body (see e.g. Nelson et al. (1997) and refer-
ences therein). In general, these electroreceptors pro-
duce more action potentials as the amplitude of the
electric field at the surface of the fish’s skin is in-
creased (Xu et al., 1996). They make both excitatory
and inhibitory (through an interneuron) connections to
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Figure 2. An example of bursting for the system (1)–(6), for I = 10.
Top: somatic voltage. Middle: dendritic voltage. Bottom: pd (in-
activation of dendritic potassium). Bursts terminate with a high-
frequency somatic “doublet” at t approximately 75, 90, 115 and 140.

a layer of pyramidal cells in the ELL (Berman and
Maler, 1999).

The pyramidal cell model, previously discussed in
Doiron et al. (2002), was a reduction of a multicompart-
mental model presented in Doiron et al. (2001a). The
reduction was achieved by lumping the many compart-
ments into two, representing the soma and the dendrite
of the cell, and by ignoring the dynamics of channels
not thought to be important for the bursting behavior.

The model consists of two isopotential compart-
ments, representing the soma and dendrite of the neu-
ron. They are diffusively coupled through voltage, fol-
lowing (among others) Mainen and Sejnowski (1996)
and Pinsky and Rinzel (1994). The equations govern-
ing the system, previously presented in Doiron et al.
(2002), are:

C
dVs

dt
= I − gNa,s[m∞,s(Vs)]2(h0 − ns)(Vs − VNa)

− gdr,sn2
s (Vs − VK ) − gL (Vs − VL )

− gc

κ
(Vs − Vd ) (1)

dns

dt
= n∞,s(Vs) − ns

0.39
(2)

C
dVd

dt
= −gNa,d [m∞,d (Vd )]2hd (Vd − VNa)

− gdr,dn2
d pd (Vd − VK ) − gL (Vd − VL )

− gc

1 − κ
(Vd − Vs) (3)

dhd

dt
= h∞,d (Vd ) − hd (4)

dnd

dt
= n∞,d (Vd ) − nd

0.9
(5)

dpd

dt
= p∞,d (Vd ) − pd

5
(6)

Subscripts s and d refer to somatic and dendritic vari-
ables, respectively. The variables m and h are activation
and inactivation of Na+, respectively, and n and p are
activation and inactivation of K+, respectively. Param-
eter values are C = 1, gNa,s = 55, h0 = 1, VNa = 40,
gdr,s = 20, VK = −88.5, gL = 0.18, VL = −70, gc = 1,
κ = 0.4, gNa,d = 5, gdr,d = 15. I is the somatic input
current, gc is the coupling conductance, and κ is the
ratio of the somatic area to the total area of the cell.
Other functions are m∞,s(V ) = 1/[1+exp(−(V +40)/
3)], n∞,s(V ) = 1/[1+exp(−(V +40)/3)], m∞,d (V ) =
1/[1 + exp(−(V + 40)/5)], h∞,d (V ) = 1/[1 + exp
((V + 52)/5)], n∞,d (V ) = 1/[1 + exp(−(V + 40)/5)],
p∞,d (V ) = 1/[1 + exp((V + 65)/6)]. For details and
derivation of these equations, see Doiron et al. (2001a,
2002).

This model reproduced burst discharge qualitatively
similar to that seen in experiments (Lemon and Turner,
2000; Turner and Maler, 1999). During bursting, the be-
havior of the system is as follows (Lemon and Turner,
2000). After most somatic action potentials, a dendritic
action potential occurs. Experimental recordings show
that the half-width of a dendritic action potential is
larger than the half-width of the corresponding somatic
one (Lemon and Turner, 2000), and this is incorporated
into the model through different time-constants for the
somatic versus dendritic channels. Because of this dif-
ference in half-widths, current flows from the den-
drite to the soma immediately after the somatic action
potential, causing a depolarizing afterpotential (DAP)
at the soma. This DAP decreases the amount of time un-
til the next somatic action potential. Because of the slow
time-scale of inactivation of dendritic potassium (the
variable pd in (6)) the sizes of these DAPs slowly in-
crease, leading to successively shorter interspike inter-
vals (ISIs). This continues until a somatic ISI is smaller
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than the refractory period of the dendrite and the den-
drite fails to produce an action potential in response
to a somatic one, so little current flows from the den-
drite to the soma, no DAP appears, and the next ISI is
long. The process then repeats. These long ISIs, each
of which immediately follows a very short one, divide
a train of action potentials into bursts. Figure 2 shows
a typical series of bursts from the model (1)–(6). A de-
tailed description of this burst mechanism is presented
in Lemon and Tuner (2000) and Doiron et al. (2001a).

If the current injected into the soma is decreased,
there is enough time between action potentials for the
variable controlling dendritic inactivation of potassium
(pd ) to recover fully. Thus successive DAPs do not
grow in size and the neuron fires periodically. An ex-
ample is shown in Fig. 3, where the somatic voltage
as a function of time is shown for 4 different values
of injected current. The qualitative difference in be-
haviors for low and high I imply that there must be a
bifurcation separating periodic from burst firing as I is
increased.

4. Saddle-Node Bifurcation

4.1. Model Results

It was found in Doiron et al. (2002) that if the current to
the soma (I ) is gradually increased, the system (1)–(6)
switches from quiescence (a fixed point) to periodic
firing and then to bursting, in contrast with many other
bursting systems (Pinsky and Rinzel, 1994; Steriade
et al., 1998; Terman, 1992). The transition from pe-
riodic firing to bursting behavior was found to be
caused by a saddle-node bifurcation of periodic orbits
(Kuznetsov, 1995). These orbits and the bifurcation are
shown in Fig. 4, a bifurcation diagram for (1)–(6) as
a function of I (see also Fig. 3). For smaller values
of I , a stable and an unstable periodic orbit coexist.
As I is increased they annihilate one another and the
system behaves in a complex, chaotic fashion (Doiron
et al., 2002). This bifurcation is necessary for this type
of burst excitability, as will be seen.

4.2. Experimental Results

The existence of the transition from periodic to burst-
ing behavior as I is varied is also seen in data from
actual pyramidal cells. Sharp electrode intracellular
recordings were obtained from ELL pyramidal cells

200 250 300 350 400
−80
−60
−40
−20

0
20
40

V
s 

(m
V

)

I=9

200 250 300 350 400
−80
−60
−40
−20

0
20
40

V
s 

(m
V

)

I=6

200 250 300 350 400
−80
−60
−40
−20

0
20
40

V
s 

(m
V

)

I=8

200 250 300 350 400
−80
−60
−40
−20

0
20
40

Time (ms)

V
s 

(m
V

)

I=10

Figure 3. An example of bursting for the system (1)–(6), for I =
6, 8, 9 and 10 (top to bottom). The somatic voltage is plotted. In the
top two panels the neuron is firing periodically, and in the bottom
two it is bursting.

for which a constant depolarization, I , was applied for
4 seconds. To show the transition as a function of in-
jected current we use a quantity (previously introduced
in Doiron et al. (2001b)) that will enable us to distin-
guish between voltage records that show mostly peri-
odic behavior and records that show mostly bursting.
For each somatic voltage train, we find the minimum
voltage between each pair of action potentials and la-
bel these νi for i = 1, . . . , N , where there are N such
minima in the particular trace being examined. We then
form the average of the square of the differences be-
tween successive pairs of νi , defining

	 ≡ 1

N − 1

N∑
i=2

(νi − νi−1)2 (7)

For periodic firing, νi = νi−1 for 2 ≤ i ≤ N , so 	

will equal zero for this case. During bursting, there is a
gradual increase in the values of νi during a burst and
then a sudden drop during the long interburst interval
(see Fig. 2, top panel, and Fig. 3). Thus each pair, νi −
νi−1, will be nonzero and contribute to the sum. Since
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Figure 4. The bifurcation diagram for (1)–(6) as a function of I .
For I less than ∼8.5 there are two periodic orbits, one stable (solid
line) and one unstable (dash-dotted). The maximum and minimum
values of hd over one period are plotted vertically. For I greater than
∼8.5 the value of hd at each local maximum and minimum during a
period of 400 msec are plotted.

it is mainly the interburst intervals that contribute to
the sum, and the number of action potentials per burst
decreases as I is increased above the bifurcation value
(Doiron et al., 2002), 	 will increase as I increases
past the bifurcation value (∼8.5, from Fig. 4).

In Fig. 5 we show 	 for both experimental and
model data. The top and middle panels of Fig. 5 show
	, defined in (7), as a function of somatic input current
for two different pyramidal cells during recordings of
duration four seconds, and the bottom panel shows the
same quantity for the model (1)–(6). Data from six
other cells was recorded and shows similar behavior to
that in the top two panels (data not shown). A number of
other cells were recorded from but did not show burst-
ing for the range of currents tested, which is in agree-
ment with previous studies (Lemon and Turner, 2000).
There was a large variability in the maximum value of
	 and the value of I at which the transition occurred.
This is to be expected, due to the known variabil-
ity in dendritic arborization (Bastian and Courtright,
1991; Bastian and Nguyenkim, 2001). This variability
affects the threshold for bursting and the range of pos-
sible spiking patterns, among other properties (Laing
et al., 2002).

The existence of current values at which both the
actual and model cells switch from periodic to bursting
behavior is clear. The experimental data presented here
and in Lemon and Turner (2000) strongly suggests that
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Figure 5. Top and middle: 	, (7), as a function of somatic input
current, I , for two different pyramidal cells. The number of spikes,
N , was typically about 400. See Lemon and Turner (2000) for details
of the methods used to record the data presented here. Bottom: 	 as
a function of I for the system (1)–(6).

the actual cells undergo a saddle-node bifurcation of
periodic orbits as the current injected to the soma is var-
ied. Furthermore, the average burst length in data from
these cells has been observed to scale as the inverse of
the square root of the amount by which the current is
superthreshold (Doiron et al., 2003). This saddle-node
bifurcation of periodic orbits is a necessary ingredient
for type I burst excitability.

5. Burst Excitability

Since the bifurcation terminating periodic firing as I is
increased in the system (1)–(6) (see Fig. 4) is a saddle-
node bifurcation of periodic orbits (Doiron et al., 2002),
in analogy with normal type I excitability we have the
possibility of excitable behavior. The other necessary
ingredient is a “global reinjection” mechanism, analo-
gous to the topological circle mentioned in Section 2,
which, after the periodic orbits have been annihilated,
provides a mechanism for a large excursion in phase
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space and return to a periodic orbit. We do have this
“reinjection”, as can be seen in the behavior of pd dur-
ing a burst (Fig. 2, bottom panel). The variable pd grad-
ually decreases through a burst, but cannot continue to
do this forever, as eventually the effect of the dendritic
refractory period come into play, the burst terminates,
and pd rapidly increases—this is the reinjection.

(For the study of burst excitability in the ghost-
burster, we are making an analogy between the saddle-
node bifurcation of fixed points in the Morris–Lecar
system (Fig. 1) and the saddle-node bifurcation of pe-
riodic orbits in the ghostburster. However, for burst ex-
citability in other bursting systems, other bifurcations
may relevant.)

For a value of I just below that corresponding to the
periodic to bursting transition, the stable manifold of
the unstable periodic orbit acts as a threshold—if this
is crossed, pd starts to decrease and continues to do so
until the burst terminates and the trajectory returns to
the stable periodic orbit. An example of this is shown
in Fig. 6. At a current of 8.3, the neuron fires periodi-
cally. The current is stepped from 8.3 to either 10.5 or
11 for 10 ms, and then returned to 8.3. The step to 10.5
fails to induce a burst and the variables return directly to
their previous (periodic) values, but a step to 11 pushes
the system over threshold, pd decreases until the end of
the burst, and then the variables return to their previous
values. Note that most of the burst occurs after I has
been returned to 8.3, another signature of the excitable
nature of the system.

Thus, for the system (1)–(6), we have a new form
of excitability, analogous to the usual form with the
associations

Normal excitability Type I burst excitability

Fixed point Periodic firing

Action potential Burst

However, the analogy is not exact since before the per-
turbation the system (1)–(6) is periodically oscillating,
rather than at a fixed point, and the phase of the os-
cillation at which the perturbation is applied must be
taken into consideration. The value of this phase can
greatly affect the resulting burst. This is demonstrated
in Fig. 7, where two identical current pulses are ap-
plied but at slightly different phases of the underlying
oscillation (the actual difference in phases for the two
situations is approximately 1/8 of a cycle). Note that
the time between the onset of the pulse and the termi-
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Figure 6. Burst excitability in (1)–(6). Two different current pulses
(shown in the bottom panel, 1/30 their actual size) were applied. The
larger one (bold line) induced a burst (top panel) that appeared about
30 ms after the stimulus, while the smaller one (thin line) did not
(middle panel). Top: Vs for the large stimulus. Middle: Vs for the
small stimulus. Bottom: pd and I/30.

nation of the burst is very different in the two cases.
Another difference, also related to the more complex
nature of the underlying system, is that the bursts are
not highly stereotyped. They all terminate in a high
frequency “doublet”, but as mentioned, the number of
action potentials between the stimulus onset and the
doublet is highly variable.

The duration of the applied current steps is com-
patible with the synaptic input to the pyramidal cell
resulting from the detection of a “chirp”, a transient
modulation of both the frequency and amplitude of a
fish’s EOD. Zupanc and Maler (1993) found that chirps
could be evoked in Apteronotus leptorhynchus by im-
itating the EOD of a neighboring fish, and proposed
that chirps are involved in communication between fish.
They found that chirps typically last about 15 ms and in-
volve an increase in the frequency of the chirping fish of
about 100 Hz. Chirps produce transient increases in ex-
citatory synaptic input to pyramidal cells (unpublished
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Figure 7. Different bursts induced by identical current pulses (in-
dicated by the solid bars in the voltage panels) for the system (1)–(6).
The current was stepped from 8.3 to 10.8 for 10 ms at t = 500 (top
two panels) and again at t = 1000 (bottom two panels). The differ-
ence in the underlying phases at the two stimuli is approximately 1/8
of a cycle, corresponding to approximately 1 ms.

observations) that result in the production of a small
number of spikes (Metzner and Heiligenberg, 1991).
This provides motivation for the form of the current
pulses used in Figs. 6 and 7.

To demonstrate type I burst excitability in these pyra-
midal cells in a more realistic manner, we have simu-
lated a transient input to a realistic multicompartmen-
tal model of a pyramidal cell in vivo. The model used
was presented in Doiron et al. (2001a). The cell has
both proximal and apical dendritic compartments, con-
structed from a digitized image of a Lucifer yellow
stained basilar pyramidal cell; the apical compartments
contain channels responsible for the active backpropa-
gation necessary for bursting. A single basilar dendrite
extends from the soma for approximately 200 µm, after
which the dendrite branches to form a bush-like struc-
ture. The electroreceptor afferents synapse excitatorily
to this bush.

Lateral segment pyramidal cells have been shown to
be required for the detection of communication signals

(chirps) (Metzner, 1999). To simulate one of these cells,
we spread 1000 excitatory synapses over the basilar
bush of the neuron—these model afferent connections.
This number is estimated from data on receptive field
sizes (Bastian et al., 2002) and receptor density (Carr
et al., 1982). The synaptic events are modeled as cur-
rents of the form −g(t)(V (t) − 0), where V (t) is the
voltage of the compartment to which the synapse is at-
tached (i.e. the reversal potential is 0) and g(t) follows
an alpha function

g(t) = ĝ

(
t

τ

)
e1−t/τ (8)

after each firing time, where ĝ = 6 pS and τ = 1.5 msec
(i.e. AMPA synapses). These parameters are appropri-
ate for modeling afferent-evoked EPSPs in pyramidal
cells (Berman and Maler, 1999). (The maximal con-
ductance was chosen so as to produce realistic changes
in the firing rate of the pyramidal cell, given the firing
rates of the afferent inputs.) The synaptic firing times
were chosen from independent Poisson distributions.
The firing rate of each synapse was originally set at
150 Hz, and then stepped to either 475 or 400 Hz when
250 < t < 270, i.e. for 20 msec. These values are
consistent with the responses of electroreceptors dur-
ing chirp stimuli (unpublished observations) (Metzner
and Heiligenberg, 1991).

As can be seen in Fig. 8, the step to 400 Hz did not
induce a burst, but the step to 475 Hz did. The first and
third panels of Fig. 8 show the somatic voltage, and the
second and fourth show the sum of the conductances
from all 1000 synapses as a function of time (compare
with Fig. 6). Thus in a much more realistic model of
the pyramidal cell, and with more realistic stochastic
inputs, we also have type I burst excitability.

This form of burst excitability was also observed
by Laing and Longtin (2002) in a reduced model of
the system (1)–(6). The model presented there used an
integrate-and-fire neuron to produce action potentials,
and a second variable that mimicked the effects of the
slowly changing dendritic potassium in (1)–(6).

6. Analysis

6.1. Theory

Both the normal and burst excitability that we have
analyzed arise from saddle-node bifurcations—of fixed
points in normal excitability and of periodic orbits in
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Figure 8. Burst excitability in the multicompartmental model of
Doiron et al. (2001a). In the top two panels an increase in the firing
rate of randomly occurring excitatory synaptic events induced a burst,
whereas in the bottom two panels a slightly smaller increase in firing
rate did not induce a burst. See text for details.

burst excitability. The normal form of this bifurcation
can be used to derive the minimum pulse strength and
duration needed to induce a burst (or action potential).
We first examine normal excitability.

The normal form of the saddle-node bifurcation of
fixed points in a continuous-time dynamical system is
(Guckenheimer and Holmes, 1990; Kuznetsov, 1995)

dx

dt
= µ + x2 (9)

This governs the behavior on the center manifold. For
µ < 0 there are two fixed points, x± ≡ ±√−µ. The
point x− is stable with basin of attraction (−∞, x+),
and x+ is unstable. For µ > 0 there are no fixed points.
The current pulses discussed above for normal ex-
citability correspond to switching µ from a negative
value to a positive one for a short amount of time, and
then back again. Assume for concreteness that before
the pulse, µ = −ν, (ν > 0), and that during the pulse

µ = λ, (λ > 0). For µ > 0, the solution of (9) is

x(t) = √
µ tan

[√
µt + tan−1

(
x(0)√

µ

)]
(10)

where x(0) is the value of x at time 0. For a pulse
of duration T to cause an action potential, we need
x(T ) > x+, where x(0) = x−, i.e. for x to escape
the basin of attraction of the stable fixed point during
the pulse, having started at the stable fixed point. Once
x has escaped the basin of attraction it will make a
large excursion and then return to the stable fixed point.
(The normal form (9) is only a local description of the
dynamics, and does not describe the large excursion.)
The above inequality is equivalent to

√
ν <

√
λ tan

[√
λT + tan−1

(−√
ν√

λ

)]
(11)

which, under the assumption that
√

ν/λ is small so that
tan x ≈ tan−1 x ≈ x , can be written

2
√

ν

λ
< T (12)

Thus the minimum value of T that will induce an action
potential scales as

T ∼
√

ν

λ
(13)

The analysis of type I burst excitability is very simi-
lar, except that one should now study the normal form
of the saddle-node bifurcation of fixed points in a map:

xn+1 = xn + µ + x2
n (14)

where n is an integer. This map can be derived by plac-
ing a Poincaré section in the flow, reducing the study of
a periodic orbit in a continuous-time system to the study
of a fixed point of a discrete-time map (Guckenheimer
and Holmes, 1990; Kuznetsov, 1995). For µ < 0, the
map (14) has two fixed points, ±√−µ, which are de-
stroyed in a saddle-node bifurcation at µ = 0 in the
same way as for (9). A bifurcation of this form (which
corresponds to a saddle-node bifurcation of periodic
orbits in a flow) can be observed in (1)–(6) by placing
a Poincaré section in the flow, as was shown in Doiron
et al. (2002). The scaling relationship obtained from
(14) is also given by (13).
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6.2. Numerical Results

In Fig. 9 we show numerical results for the system
(1)–(6) that are consistent with the scaling of (13). Here,
the current before a pulse (effectively ν) is held constant
while the height of the pulse (effectively λ) is increased.
We measured the minimum duration of a pulse needed
to produce a burst with probability 0.5. We have to take
this probabilistic approach for burst excitability as the
“rest state” is now periodic firing, and the time of the
onset of the pulse relative to the phase of the periodic
firing has to be considered (see Fig. 7). (This would
also be the case if, e.g. the system shown in Fig. 1 was
weakly periodically forced.)

To obtain Fig. 9, a number of pulses were applied at
random phases of the periodic oscillation. (The time be-
tween pulses was sufficient for the system to relax back
to the periodic orbit.) The average number of bursts per
pulse is a continuous function of both pulse duration
and strength, and curves for probabilities other than
0.5 are similar to that shown in Fig. 9. As predicted by
(13), the minimum pulse duration required to induce a
burst for a fixed baseline current (effectively ν) is in-
versely proportional to the height of the pulse above the
value needed to produce bursting. (The offset, 0.1235,
in the caption of Fig. 9 is a result of the pulse height
being ν + λ, not just λ.) The baseline current was set
at I = 8.3.

Note that a plot of the form shown in Fig. 9 but with
the axes interchanged (i.e. a plot of the stimulus inten-
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Figure 9. Minimum duration of a pulse required to generate an
average of one burst per two pulses for the system (1)–(6), as a
function of pulse height. Circles are numerically measured values,
the solid curve is y = 24.14/(x − 0.1235). The baseline current is
I = 8.3.
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Figure 10. Minimum duration of a pulse required to generate an av-
erage of one burst per two pulses for the system (1)–(6), as a function
of baseline current. I = 10 during a pulse. Circles are numerically
measured values, the solid curve is y = 33.69

√
8.481 − x and the

dashed curve is y = 32.02 tan−1 (1.213
√

8.476 − x).

sity necessary to evoke a response as a function of stim-
ulus duration) is often known as a “strength-duration
curve” (Koch, 1999). However, these are usually con-
structed for normal excitability, where the event is a
single action potential rather than a burst of them.

Figure 10 is further confirmation that the relation-
ship (13) holds for (1)–(6). Here the height of the pulse
(effectively λ) is held constant while the current before
the pulse (effectively ν) is varied. Note that ν increases
as I decreases. As in Fig. 9, we measure the minimum
duration of a pulse needed to produce, on average, one
burst for every two pulses applied. We see that this du-
ration is proportional to the square root of the difference
between the baseline current and the current needed to
produce bursting (solid line), in agreement with (13).
An even better fit can be obtained by keeping the full
expression (11), which gives

T ∼ tan−1 (α
√

ν) (15)

for some α, assuming that λ is fixed (dashed line in
Fig. 10).

The scaling results of (13) also hold for the multi-
compartment model of Doiron et al. (2001a), discussed
in Section 5. Recall that we change the input strength
by modulating the firing rate of the independent Pois-
son processes associated with each of the 1000 excita-
tory synapses. In Fig. 11 we show a plot of the mini-
mum duration of a pulse required to generate a burst
as a function of the strength of the pulse. The firing
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Figure 11. Minimum duration of a pulse required to generate a
burst for the model described in Doiron et al. (2001a) as a function
of pulse height. Circles are numerically measured values, the solid
curve is the function y = 7107/(x − 141). Ten noise realizations we
used to obtain each data point. Compare with Fig. 9.
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Figure 12. Minimum duration of a pulse required to generate a
burst for the model described in Doiron et al. (2001a) as a function
of the intensity before stimulation. Circles are numerically measured
values, the solid curve is the function y = 1.996

√
225 − x . Ten noise

realizations we used to obtain each data point. Compare with Fig. 10.

rate prior to the pulse, and after it, was 150 Hz. We
see that the simulation results are consistent with the
theory.

In Fig. 12 we show further confirmation that the
scaling given (13) holds for the multicompartment
model of Doiron et al. (2001a). We have kept the in-
tensity of each pulse constant at 475 Hz, but varied
the rate of synaptic activity before and after the pulse
(they are the same) and determined how this affects
the duration of a pulse required to produce one burst.

We see that again the simulations agree well with the
theory, particularly when the baseline activity is close
to the threshold between tonic and bursting behavior
(225 Hz, from Fig. 12).

Note that while the numerically obtained results
above are consistent with there being a saddle-node
bifurcation of periodic orbits separating periodic from
bursting behavior, other model neurons could have
other bifurcations that separate these types of behavior
and produce the same form of scaling.

7. Discussion and Conclusion

We have introduced and analyzed the new phenomenon
of type I burst excitability, presenting it in a specific
system, a “ghostburster” pyramidal cell, and in a spe-
cific context, the detection of communicatory signals.
Briefly, the existence of a saddle-node bifurcation of
periodic orbits, together with a “global reinjection”
through phase space, enable us to make an analogy
with normal excitability:

Normal excitability Type I burst excitability

Fixed point Periodic firing

Action potential Burst

The analogy is not exact, as the underlying phase of
the periodic oscillation at the onset of the transient
input must be taken into account, and the bursts are
not as highly sterotyped as action potentials in normal
excitability. We have shown data from actual pyrami-
dal cells which strongly suggests that these cells pos-
sess the necessary ingredients for this type of burst
excitability, and we have also simulated it in a realistic
multicompartment model of a pyramidal cell driven by
stochastic inputs. We have derived and verified a scal-
ing law relating the strength and duration of the current
pulses required to observe a superthreshold response of
an excitable system.

The pyramidal cells studied are sensory neurons,
receiving input directly from electroreceptors on the
surface of the fish, and thus it is reasonable to as-
sume that they process electrosensory information in
some way and pass it to higher brain regions. As
mentioned, the type of input current required to in-
duce a burst in these cells is compatible with the out-
put of electroreceptors (unpublished observations) that
detect a chirp from another fish (Zupanc and Maler,
1993).
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The production of a burst by a pyramidal cell in the
ELL in response to a sudden artificial increase in EOD
amplitude has recently been seen in vivo (J. Bastian,
personal communication). These bursts were observed
by recording from the dendrite of a pyramidal cell,
and both the decreasing ISIs during the burst and the
sudden decrease in spike amplitude at the end of the
burst indicate that this was the same type of burst as
discussed here and elsewhere (Doiron et al., 2001a,
2002; Lemon and Turner, 2000). These burst responses
were suppressed by hyperpolarization of the cell, which
is consistent with the existence of a threshold in current
for burst behavior.

More generally, the current input to a ghostbursting
cell will not be constant, but will have slow modula-
tions. These could be due to objects passing close to
the fish, or a result of the “beat” frequency that occurs
when two fish with different EOD frequencies are close
to one another. (The beat frequency is equal to the dif-
ference between the EOD frequencies of the two fish;
recall that EODs are quasi-sinusoidal.) The results in
Fig. 7 show that the response of a pyramidal cell to iden-
tical inputs depends on the phase of the periodic firing
of the cell, but it may also be the case that the response
will be different during different parts of the cycle asso-
ciated with the beating frequency. Indeed, Zupanc and
Maler (1993) showed that the form of chirps emitted by
male fish in response to a simulated EOD depended on
the phase of the beat cycle created between the fish’s
own EOD and the simulated EOD, and any system for
detecting such chirps may also take into account the
phase of the beat cycle.

Lisman (1997) recently proposed that bursts, rather
than individual action potentials, may be fundamental
units of neural information. One reason behind this
idea is that many synapses are unreliable, but due to
facilitation a burst of action potentials may be signaled
reliably in a situation where a single action potential
may not. The system described in this paper may be
an example for which this principle applies, since the
burst terminates with a high-frequency “doublet” event.
Simultaneous burst discharge by a number of pyramidal
cells that synapse onto a common target cell would
presumably be more reliable than a transient increase
in the rate of asynchronous firing of those cells.

Other bursting systems also have bifurcations that
separate periodic or quiescent behavior from burst-
ing as input current is changed (Terman, 1992). We
have simulated the square-wave, parabolic and elliptic
bursters described in Rinzel and Ermentrout (1998),

and found that these systems also have such bifurca-
tions. These bursters all follow the pattern quiescence
→bursting→ tonic as current is increased (not shown),
in contrast with the system (1)–(6). We have found that
transient changes in input current across the bifurcation
points separating these regimes also cause behavior that
is qualitatively similar to that discussed above—a mo-
tion in phase space that would be labeled a burst if the
system was bursting, followed by a return to either pe-
riodic or quiescent behavior, depending on the state of
the system before the perturbation (results not shown).
This is the behavior observed by Izhikevich (2000) and
Av-Ron et al. (1993); their systems were close to the
quiescent/bursting boundary. Butera et al. (1995) saw
similar behavior in model and real R15 neurons and in
a subsequent paper analyzed the model in a way similar
to that performed here (Butera et al., 1997). However,
the bifurcations involved in the transitions from burst-
ing to other types of behavior in these models are often
very complicated (Terman, 1992), rather than simple
saddle-node bifurcations. Also, the models described
in Rinzel and Ermentrout (1998) are not models of
sensory neurons, so it is harder to speculate about the
“meaning” of burst excitability in such neurons. This
is in contrast with the system (1)–(6), which represents
a neuron thought to play an important role in sensory
processing.

It should also be mentioned that there are other
model neurons which are capable of bursting, but which
do not follow the pattern quiescence → bursting →
tonic as injected current is increased. An example is
integrate-and-fire-or-burst model of a thalamocortical
relay neuron (Smith et al., 2000), which moves from
quiescence to a single burst to quiescence and finally to
periodic firing as the injected DC current is gradually
increased.

The simulations mentioned above, and the results
of others (Av-Ron et al., 1993; Butera et al., 1995;
Izhikevich, 2000), suggest that burst excitability is a
general phenomenon in systems capable of bursting.
We have analyzed the behavior of one particular type
in a particular model, as did Butera et al. (1997); the
analysis of other bursting systems under time-varying
input remains to be done.

Appendix: Equations

The Morris–Lecar system (Keener and Sneyd, 1998;
Rinzel and Ermentrout, 1998) is the following pair of
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ODEs:

du

dt
= I − g1m(u)(u − 1) − gK (u − uK )

− gL (u − uL ) (16)
dv

dt
= φ[v(u) − v]

τ (u)
(17)

where

m(u) = 1 + tanh [(u − u1)/u2]

2
(18)

v(u) = 1 + tanh [(u − u3)/u4]

2
(19)

and

τ (u) = 1

cosh [(u − u3)/(2u4)]
(20)

We use the following parameter values: g1 = 1, gK =
2, uK = −0.7, gL = 0.5, uL = −0.5, φ = 1/3, u1 =
−0.01, u2 = 0.15, u3 = 0.1, u4 = 0.145.
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