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Abstract

Type I error probability spending functions are commonly used for designing sequential analysis 

of binomial data in clinical trials, but it is also quickly emerging for near-continuous sequential 

analysis of post-market drug and vaccine safety surveillance. It is well known that, for clinical 

trials, when the null hypothesis is not rejected, it is still important to minimize the sample size. 

Unlike, in post-market drug and vaccine safety surveillance, that is not important. In post-market 

safety surveillance, specially when the surveillance involves identification of potential signals, the 

meaningful statistical performance measure to be minimized is the expected sample size when the 

null hypothesis is rejected. The present paper shows that, instead of the convex Type I error 

spending shape conventionally used in clinical trials, a concave shape is more indicated for post-

market drug and vaccine safety surveillance. This is shown for both, continuous and group 

sequential analysis.
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1. Introduction

In sequential analysis hypothesis testing, multiple tests are applied to cumulative data in 

time. Such multiple testing approach favors to anticipate statistically accurate decisions even 

for small sample sizes. For this reason, sequential analysis is now an important tool for post-

market drug and vaccine safety surveillance. When a new drug, or vaccine, is 

commercialized, fast identification of potential risks from serious adverse events is a central 

goal for the population’s safety[1, 2, 3, 4].

The conventional approach for sequential analysis is based on monitoring a real-valued test 

statistic in comparison to a flat signaling threshold at each single test. The analysis is 

interrupted as soon as the test statistic becomes greater than such threshold. The sequential 

probability ratio test (SPRT) of Wald [5], the Pocock’s test [6], and the O’Brien & Fleming’s 

test [7], are some of the conventional sequential methods based on flat thresholds given in 

the scale of a test statistic. These methods are traditionally used for clinical trials. More 
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recently, new test statistics has been developed specially for monitoring adverse events 

caused by recently approved drugs. This is the case of the maximized sequential probability 

ratio test, introduced by [8], and the conditional MaxSPRT (CMaxSPRT), proposed by [9].

Alternatively, in place of a flat threshold given in the scale of a test statistic, sequential 

hypothesis testing can be designed through a Type I error spending approach [10]. The Type 

I error spending is a non-decreasing function, say S(n), taking values in the [0, α] interval, 

where α is the overall significance level up to the termination of the analysis, and n is the 

time index defined as a fraction of the total length of surveillance, N. S(n) dictates, in 

advance, the rate at which the Type I error probability is to be spent in the course of the 

multiple sequential tests. A common choice is the power-type shape:

S n = α × n
N

ρ
, ρ > 0, n ∈ (1, N] . (1)

Most of the discussions on the choice of appropriate S(n) forms can be tracked back to 

statistical challenges appearing in clinical trials. The book of [10] offers a rich overview on 

the history and main contributions dealing with usage of Type I error spending in clinical 

trials. As in clinical trials it is often expensive to recruit many patients to participate of the 

pre-market study, an important question that has been intensively scrutinized in the last three 

decades is how to find S(n) shapes in order to optimize the trade-off between statistical 

power and expected sample size, also called ‘expected time of surveillance’. The expected 

time of surveillance is a statistical performance measure defined as the average of the sample 

size at which the surveillance is stopped, which can occur in either of two situations, when 

the null hypothesis is rejected, or when the null is not rejected. In this direction, [11] 

performed an intensive study aimed to compare three different Type I error spending shapes. 

The study revealed that Type I error spending functions with convex shapes will, typically, 

benefit sample size reductions. In the same direction, [10] showed that, for the specific 

power-type shape, ρ values around 2, which also leads to a convex shape, can provide a near-

optimal balancing between power and expected time of surveillance.

Unlike clinical trials, in post-market safety surveillance it is usually easy to increase the total 

sample size. This is so because, when a surveillance system is up and running over 

electronic health records, the costs of keeping the monitoring for some additional months are 

negligible [12]. Therefore, when the null hypothesis is not rejected, it is not a priority to 

minimize the sample size. By another hand, as emphatically stated by [12], the very 

important statistical performance measure in post-market safety surveillance is the expected 

number of events when the null hypothesis is rejected, called ‘expected time to signal’. The 

expected time to signal is the conditional expectation that measures the average sample size 

under the situations where the null hypothesis is rejected. Because many people are exposed 

to the drug/vaccine, and only a small number of patients may be part of the monitoring 

system, a delayed identification (signal) of elevated risks can lead to a large number of 

affected patients. This is the reason why, in post-market safety surveillance, the focusing on 

finding S(n) shapes for minimizing expected time to signal is much more important than for 

minimizing expected time of surveillance.
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Unfortunately, there is a lack of works dedicated to explore how to choose the Type I error 

spending in order to minimize expected time to signal. This lack is probably explained by 

two related reasons: (i) sequential analysis for post-market safety surveillance is just 

emerging, and the first proposals dates back in no more than 10 years, [4], and (ii) the 

expected time to signal is a very new concept which was formalized, possibly by the first 

time through an official publication, in the year of 2015, with the work of [12]. Therefore, 

finding appropriate S(n) shapes in response to the post-market safety surveillance goals is 

also a very new challenge.

Aiming to face this challenge for sequential testing with binomial data, the present paper 

compares four of the classical and most important Type I error spending functions. Again, as 

this work is concentrated on the goals of the post-market drug/vaccine safety surveillance, 

the design criterion (performance measure) used in the present comparison study is the 

expected time to signal. Exact calculations show that the Type I error spending of the form 

in (1) is, in general, an appropriate choice. The value of ρ that minimizes the expected time 

to signal depends on the desired α level and on the actual Bernoulli success probability 

under the alternative hypothesis. But, in most of the cases, the optimal ρ solution is a 

number in the (0,1) interval, that is, associated to a concave shape, which contrasts to the 

convex shape usually adopted in clinical trials. Also, we found that ρ values in the range 

[0.5,1] are appropriate choices in most of the evaluated scenarios. All investigations in this 

paper are applied for both, continuous and group sequential approaches.

This paper is organized as follows: the next section establishes notation and meaningful 

definitions. Section 3 offers a brief discussion on how the expected time to signal behaves 

for the methods of Pocock, O’Brien & Fleming, and MaxSPRT. Section 4 presents the 

results of the comparison study of four different Type I error spending shapes in terms of 

expected time to signal. Section 5 closes the paper with the main conclusions.

2. Notation and Definitions

Binomial data take place when, for example, a population is monitored in both, exposed and 

unexposed periods. This is the case, for example, of self-control studies, where the goal is to 

compare the period when an individual is exposed to an administered drug against an 

unexposed period, before administrating the drug, in the same individual. Another situation 

where a binomial model is applicable is the case where patients exposed to a drug are 

compared with matched unexposed subjects.

Let Cn denote a non-negative discrete stochastic process of discrete time. For fixed n, 

assume that Cn is the random variable: number of events from the exposed population when 

a total of n adverse events is observed.

For the purposes of this paper, the random variable

Yn = Cn − Cn − 1
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follows a Bernoulli distribution with success probability pn R, for n = 1, 2, …, and C0 = 0. 

Assume that Y1, Y2, … are independent, i.e.:

Pr[Yn + 1 = 1|Y1 = y1,…, Yn = yn] = pn, R,

for any sequence of observed 0’s and 1’s, y1, …, yn. In the post-market vaccine safety 

surveillance context, the success probability is given by:

pn, R = 1/ 1 + zn/R ,

where zn is the matching ratio associated to the nth adverse event. For example, if there are 2 

controls matched to each case at the very first test, then z1 = 2. In a self-control analysis, zn 

is the ratio between the control time window by the risk time window associated to the nth 

test. For example, if the risk window is 3 days long and the control window is 5 days long 

when the first test is performed, then z1 = 5/3. The parameter of interest, R, is interpreted as 

the relative risk implied by the vaccination. If the vaccine is safe, then R is smaller than or 

equal to 1. But, if the vaccine offers real threats to population’s health, then R is greater than 

1.

Sequential analysis can be performed by a continuous or a group sequential fashion and, for 

binomial data, are constructed according to the following definitions.

Definition 1. (Group Sequential Analysis)

For a set of constants a1 < a2 < ⋯ < aG, and a sequence ni i − 1
G  of times taken from the set 

{1,…, N}, which is based on the number of events rather than calendar time, a group 

sequential analysis design for binomial data is any procedure that rejects the null hypothesis 

if Cni
≥ ai for some i ∈ {1,…, G}, and does not reject the null otherwise.

Definition 2. (Continuous Sequential Analysis)

For a non-decreasing sequence of integers bn, with n ∈ {1,…, N} representing the number of 

events rather than calendar time, a continuous sequential analysis design for binomial data is 

any procedure that rejects the null hypothesis if Cn ≥ bn for some 1 ≤ n ≤N.

The tuning parameter N is an arbitrary positive integer representing the maximum length of 

surveillance (maximum sample size) for interrupting the surveillance without rejecting the 

null hypothesis. Continuous sequential designs are directed for applications where the events 

arrive one-by one, and hence even a single observation can signalize rejection of the null 

hypothesis. With group sequential designs, the null hypothesis can be rejected only after 

observing a predefined number of events for each test. Naturally, the choice between 

continuous and group designs is made according to peculiarities of each application. For 

example, it can be defined according to logistical and/or financial aspects of data collection. 

In either approach, the hypotheses considered in this paper are of the form:
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H0: R ≤ 1 against H1: R > 1. (2)

[12] show the important fact, valid not only for binomial data but for any positive stochastic 

process, that any group sequential design can be rewritten in terms of a continuous design 

with same or better performance in terms of maximum sample size, Type I error probability, 

statistical power, and expected time to signal. This is so due to the obvious but still 

remarkable fact that, for a given group sequential design with signaling threshold ani
 with i = 

1,…, G, a continuous design with same power and alpha level can be constructed in the 

following way:

bn = ani
. for n ∈ (ni − 1, ni], (3)

where N = nG. This result is very useful for many reasons, but it is specially convenient in 

this paper because it ensures that we can express all formulas for statistical performance 

measures (e.g., power, expected time to signal) using only the notation of continuous 

sequential analysis without loss of generality.

Let n1 denote the minimum number of events required before allowing for rejection of H0, 

i.e., n1 is the minimum n such that:

Pr[Cn ≥ bn | R = 1] > 0.

For matching ratio zn, signaling threshold bn, and maximum sample size N, the overall 

probability of rejecting the null hypothesis is given by:

β(R) = Pr[Cn1
≥ bn1

∪ ⋯ ∪ CN ≥ bN | R]

= Pr[Cn1
≥ bn1

| R] + Pr[Cn1
< bn1

∩ Cn1 + 1 ≥ bn1 + 1 | R]

+ ⋯ + + Pr[ ∩n = n1
N − 1 Cn < bn ∩ CN ≥ bN | R]

= πn1
(R) + ⋯ + πN(R),

(4)

where, for n = n1:

πn1
(R) = Pr[Cn1

≥ bn1
| R] = ∑

c = b1

n1 n1
c

pn, R
c 1 − pn, R

n1 − c
. (5)

For n = 2,…,N:
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πn R = Pr[ ∩n = n1
N − 1 {Cn < bn} ∩ CN ≥ bN | R]

= ∑
cn1

= 0

bn1
− 1

∑
cn1

+ 1 = cn1

min bn1 + 1 − 1, cn1
+ 1

⋯ +

+ ∑
cn − 1 = cn − 2

min bn − 1 − 1, cn − 2 + 1

∑
cn = bn

n
∏
j = 0

N − n1 + 1
pn, R

1 − pn,R

cn1 + j
− cn j

[1 − pn, R]I(0 ≤ cn − cn − 1

≤ 1) .

(6)

Note that expression (4) is non-decreasing with R. This is true because, for each fixed n ∈ 
{n1, ⋯, N}, the probability of the event {Cn ≥ bn} is increasing with R for any choice bn ≤ n, 

and it equals to zero otherwise. The last assertion holds because pn,R is increasing with R 
Therefore, the overall significance level is calculated by evaluating expression (4) using R = 

1. Likewise, the punctual Type I error probability, spent at the nth event, is given by πn(R = 

1). Therefore, the actual cumulative Type I error probability, spent up to the nth test, is given 

by:

αn = ∑
t = 1

n
πt(R = 1) . (7)

There is an implicit dependence of αn on the sequence of thresholds bn1
, ⋯, bn, and this can 

be made explicit through the notation αn(bn1
, ⋯, bn). But, for finding critical values during 

the planing phase, the calculation has to be done in the opposite direction, i.e., one has to 

elicit critical values that match with the target Type I error spending. Thus, if n > n1, and for 

fixed constants bn1
, ⋯, bn − 1, the critical value, bn, of the nth test, is given by:

bn = min j ∈ 1, 2, ⋯ :αn(bn1
, ⋯, bn − 1, j) ≤ S(n) . (8)

If n = n1, then:

Silva Page 6

Stat Med. Author manuscript; available in PMC 2019 April 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



bn1
= min j ∈ [1, 2, ⋯ :αn1

( j) ≤ S(n1) , (9)

Under this notation, as Cn has a discrete support, there will exist testing times where there is 

no positive punctual Type I error probability spending due to the impossibility of attending 

the target Sn, and such cases will lead to bn = n + 1, that is, αn − αn−1 = 0.

Usually, the signaling threshold is not established directly in the scale of Cn through bn, but 

constructed in terms of a flat critical value, cν, which is usually a number in the scale of a 

real-valued test statistic, W(Cn). That is, the sequential analysis is interrupted, and H0 is 

rejected, for the first n such that:

W(Cn) ≥ cυ . (10)

For arbitrary α, if W(Cn) is non-increasing with Cn, the exact flat thresholds given in the 

scale of W(.) can be obtained through a numerical bisection algorithm, [8]. This is the case, 

for instance, of the most important sequential testing methods, such as Pocock’s method, [6], 

O’Brien & Fleming’s test, [7], maximized sequential probability ratio test (MaxSPRT), [8], 

and the modified MaxSPRT, [13]. Table 1 presents the test statistics related to each of these 

methods.

3. Expected Time to Signal

Now, we formally define the most important statistical performance measure of this paper, 

the so called ‘expected time to signal’. Let T denote the number of events when the 

surveillance is interrupted. The expected time to signal is a conditional expectation, denoted 

by 𝔼[T]H0 rejected, R], given by:

𝔼[T]H0 rejected, R] = 1 × Pr[T = 1|H0 rejected, R] + 2 × Pr T = 2|H0 rejected, R + ⋯⋯ + N × Pr[T = N |H0

rejected, R] = 1 × Pr T = 1| R
Pr H0 rejected | R

+ 2 × Pr[T = 2| R]
Pr[H0 rejected | R] + ⋯⋯ + N × Pr[T = N | R]

Pr[H0 rejected | R]

[from (4), (5), and (6)] =
∑n = 1

N n × πn(R)
β(R) . (11)

Note that the term Pr[T = n|R] is also denoted by πn(R), which can be calculated according 

to (6).

Statistical performance measures, such as expected time to signal, are strongly dependent 

upon the Type I error spending shape. Also, it is important to emphasize: the expected time 
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to signal will usually differ from the expected time of surveillance for a fixed Type I error 

spending shape. The expected time of surveillance, denoted by 𝔼[T | R], is given by:

𝔼[T | R] = 1 × Pr[T = 1| R] + 2 × Pr[T = 2| R] + ⋯ + N × Pr[T = N | R] = 1 × π1(R) + 2 × π2(R) + ⋯ + N × πN
(R) + N × Pr[H0 not rejected |R

[from (4)] = ∑
n = 1

N
n × πn(R) + N × [1 − β(R)] . (12)

Although these measures are related to each other, the Type I error spending shape that 

minimizes 𝔼[T]H0 rejected, R] will usually differ from the shape that minimizes 𝔼[T | R] if 

compared under the same fixed power. For example, consider again the power-type spending 

shape, i.e., S(n) = α (n/N)ρ, and a constant matching ratio zn = z = 1. For a significance level 

α = 0.05, we can elicit the minimum sample size that attains a power of 0.8 for a given target 

relative risk, say r, and fixed ρ. Hence, it is possible to evaluate the behavior of each 

performance measure for arbitrary scenarios of true R values under a range of target r and ρ 
choices.

It is important to stress the distinction between the notations R and r. While R represents the 

unknown parameter of interest, the term r works as a tuning parameter for sequential 

analysis designing. For example, one can base the choice of the maximum length of 

surveillance under the requirement of detecting relative risks of at least r = 2 with probability 

(power) of at least 0.8. But, the actual performance of such a sequential design depends on 

the actual R, that is, the actual power will be smaller than 0.8 if R < 2, and it will be greater 

than 0.8 if R > 2. We could assume, by simplicity, that target and actual relative risks 

coincides. For instance, take the scenarios R = r = 1.2, 1.3, 1.5, 2, having target power of 0.8 

for α = 0.05, and z = 1. In this case, if we calculate expected time to signal and expected 

time of surveillance for each ρ value in [0.1, 0.2, …, 3], we will find that the ρ values that 

minimize expected time to signal are 1.2, 1, 0.8, and 0.9, for R = 1.2, 1.3, 1.5, 2, 

respectively. Differently, for the same R values, the ρ values that minimize expected time of 

surveillance are 1.5, 1.7, 2, and 1.2. These results are shown in Table 3 and illustrated with 

Figure 1 of the Supplementary Material Part I.

We observe that solutions minimizing expected time to signal are related to ρ values smaller 

than or around 1, and those for minimizing expected time of surveillance are greater than 1. 

But, situations where R = r, as discussed in the paragraph above, are unlikely in practice. 

Actually, it is more likely that the tuning parameter r and the actual R will differ in practice.

For a more realistic evaluation, Figure 1 presents expected time to signal and expected time 

of surveillance as a function of ρ, but also considering scenarios where r and R are different. 

This is done for R = 1.2, 1.3, 1.5, 2, with r = 2 in all scenarios. Each line represents a fixed R 
value, where R = 1.2 is represented by the thinnest dashed line, R = 1.3 has the thinnest solid 

line, R = 1.5 has the the thickest dashed line, and R = 2 is represented by the thickest solid 
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line. Little circles are used to point the optimal ρ values of each scenario. Figure 1(A) has 

expected time to signal 𝔼[T]H0 rejected, R] . The minimum values occur for ρ values of 

0.1,0.2,0.9, and 0.9 for R equal to 1.2,1.3,1.5, and 2, respectively. These solutions lead to 

concave shapes. Figure 1(B) brings the curves for expected time of surveillance 𝔼[T | R] . 

There the optimal ρ values are 2.2, 2.2, 2.2, and 1.2 for R = 1.2, 1.3, 1.5, 2, respectively. 

These solutions lead to convex shapes. Therefore, ρ solutions minimizing 𝔼[T]H0 rejected, R]

greatly differ from the solutions minimizing 𝔼[T | R].

While it is well-known in the literature of sequential analysis that convex shapes are 

indicated to optimize expected time of surveillance for fixed powers, a concave shape seems 

to be a better option if expected time to signal is the important measure. This preliminary 

evidence shall be further explored in Section 4.

3.1. Expected Time to Signal and Conventional Methods

As already stated in Section 2, sequential analysis designs that are defined in terms of test 

statistics are just indirect ways of selecting S(n) shapes. Hence, certain test statistics might 

perform very well for clinical trials, where 𝔼[T | R] is the meaningful measure, but not so well 

for post-market safety surveillance, where 𝔼[T]H0 rejected, R] is a very important measure. 

Therefore, as sequential analysis methods are rapidly embracing post-market safety 

surveillance problems, it is important to explore the relation between time to signal and 

some of the well-known test statistics.

Table 2 offers critical value, power, and expected time to signal for each of the test statistics 

presented in Table 1. Figure 2 enables to evaluate how the performance measures relate to 

the the Type I error spending shape implied by each statistic. The maximum sample sizes 

used in Table 2, denoted by N0, were fixed at the minimum values satisfying solutions under 

a target statistical power of 0.99, fixed relative risk of R = 2, and α = 0.01, 0.05. For 

simplicity, all calculations in this table are based on non-variable matching ratios, for which 

two scenarios were considered, zn = 1 and zn = 4.

Important: the exact performances in Table 2 differ from the target ones. The actual size, 

denoted by αN, and power, denoted by β(R), are not exactly equal to α and 0.99, 

respectively, due to the discrete nature of Cn.

We see from Table 2 that the smallest expected time to signal is promoted by Pocock’s 

approach, and the largest one occurs with O’Brien & Fleming’s method (O’BF). This can 

sound controversial at a first sight. O’Brien & Fleming’s statistic is just a linearly weighted 

version of the score statistic, just as it is Pocock’s statistic. Then, why do they perform so 

differently? A similar phenomenon is observed between the second best approach, the 

MaxSPRT test, and the second worse approach, modified MaxSPRT (M. MaxSPRT), since 

they are obtained by scalar transformations of the same statistic, the likelihood ratio test 

statistic.

Actually, what the best approaches have in common is the concave shape of their implied 

Type I error spending. For instance, take z = 1 in Figures 2(A) and 2(B). The Type I error 
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spending associated to the best, Pocock’s statistic (black solid line), has a concave shape, 

exactly as the second best curve (black dotted line) from MaxSPRT. Now, take z = 4. In this 

case, Figures 2(C) and 2(D), Pococok’s statistic and MaxSPRT switch places, i.e., 

MaxSPRT presents the smallest 𝔼[T]H0 rejected, R] and Pocock’s statistic presents the second 

smallest. Among the concave curves, what determines the best is the way at which the speed 

of increasing is managed at the beginning and at the end of the surveillance. For z = 1, the 

curve for MaxSPRT is placed above Pocock’s curve for small n, but then they cross each 

other and keep position until the end of the surveillance. For z = 4, we observe the reverse, 

i.e., Pocock’s curve is placed above MaxSPRT’s curve at the beginning of the surveillance, 

but they cross each other in a long term surveillance. It means that, as expected, spending a 

high amount of Type I error probability at the beginning of the surveillance leads to a fast 

detection of increased risks, but it has to be done in a balanced way in order to save 

sufficient Type I error probability for intermediate times of analysis. Although concave 

shapes and high alpha spending at the beginning of the surveillance characterize the designs 

of small expected time to signal, this is not a sufficient condition for achieving the best 

performance. There is a balance between power spending and time to signal, and, as shall be 

shown in Section 4, such a balance depends on z and R. Hence, the point is not if the best 

function is more, or less, concave, but that the proper concavity depends on the values of N, 

R, z and target power.

It is worth noting that the judgment of the best or worse is relative. It depends on the target 

performance measure. For instance, if expected sample size is the main performance 

measure under concern, hence convex shapes, like the O’Brien & Fleming test and the 

modified MaxSPRT, would present the best performances, [13].

Naturally, the shapes identified above (between convex or concave), for the implicit Type I 

error spending of each test statistic, are obtained when flat signaling thresholds are used. 

But, any of these methods could promote either concave or convex shapes by strategical 

usage of time-varying thresholds. For example, in the context of post-market safety 

surveillance, [14] generalizes MaxSPRT for Poisson data by considering the usage of non-

flat critical values according to target Type I error probability spending. By comparing four 

different critical value functions in terms of statistical power and expected time to signal, 

they argue that, if an adverse event is rare but can lead to severe harmful consequences, then 

early rejection of H0 should be permitted, that is, decreasing signaling thresholds should be 

preferred. But, if adverse events are not rare and of less severeness, then increasing 

thresholds should be adopted.

4. Comparison of Type I Error Spending Shapes in Terms of Expected Time 

to Signal

This study compares the following four shapes of Type I error spending:

S1(n) = α × n
N

ρ
, ρ > 0,

S2 n = 2 − 2 × Φ xα × N /n , where xα is such that Φ−1 1 − α/2 = xα,
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S3(n) = α × log 1 + exp(1) − 1 × n
N ,

S4(n) = α × [1 − exp{− nγ
N }]/ 1 − exp −γ .

According to [11], [15] and [16], the power-type function, S1(n), produces good 

approximations for the Pocock’s and O’Brien & Fleming’s tests for specific values of ρ. But, 

this function is also appropriate to mimic the MaxSPRT and the modified MaxSPRT 

designs. MaxSPRT and modified MaxSPRT match reasonably well to S1 (n) for ρ = 0.28 

and ρ = 2.5, respectively. Recall that S1 (n) produces a line for ρ = 1, a convex curve for ρ > 

1, and a concave curve for 0 < ρ < 1. [10] offers a comprehensive overview of the literature 

concerned with good choices for ρ in the sense of producing a favorable balancing between 

expected time of surveillance and statistical power. Such studies suggest that ρ values 

around 2 (i.e., convex shape) provide small expected time of surveillance. There are not 

similar studies concerned with expected time to signal. Regarding S2(n), as verified by [17], 

that function is appropriate for approximating the O’Brien & Fleming’s error spending. [17] 

also introduced S3(n) in order to approximate the error spending of Pocock’s test, but the 

function S4(n), introduced by [18], fits far better to Pocock’s Type I error spending curve 

than S3(n). This is illustrated with Figure 2 of the Supplementary Material Part I. The 

function S4 is concave for γ > 0 and convex for γ < 0, and it is flat for γ = 0.

4.1. Tuning Parameters Settings

This comparison study is based on the following tuning parameters choices. The scenarios 

for the significance level are α = 0.01, 0.025, 0.05, 0.1. The target powers are β(r) = 0.8, 0.9, 

0.99. For each signaling threshold associated to a fixed R in the set {1.2, 1.3, 1.5, 2, 3, 4}, 

expected time to signal was calculated for target relative risks of r = 1.2, 1.3,1.5, 2, 3, 4. For 

the matching ratio, it were considered fixed values zn = z, given by z = 0.5, 1, 2, 4. Due to 

space restrictions for showing the numerical results of so many scenarios, only a fraction of 

the results are explicitly in the body of this material. But, the available numbers favor a 

resume of the general conclusions achieved with this intensive study that is also supported 

by many other tables and additional figures available in the Supplementary Material Part I. 

Calculations for any other scenario not shown here can be easily performed by a simple 

‘copy and paste’ of the code, written in R language, [19], and available in the 

Supplementary Material Part II.

4.2. Comparison Under a Continuous Sequential Fashion

The forms S1(n) and S4(n) define entire families of functions. Some choices of ρ and γ are 

best suited than others. For α = 0.05 and a target power of β(2) = 0.99, Figure 3 illustrates 

the behavior of the expected time to signal under a relative risk of R = 2.

It is clear that the expected time to signal depends on the value of ρ for S1(n), and on γ for 

S4(n). Thus, the comparison of S1 (n) and S4 (n) against each other, and against S2 (n) and 

S3 (n), demands a previous step: finding the optimal ρ and γ, in the sense of minimizing 

expected time to signal, for each scenario of r, power, α, and z. Such a preliminary 

investigation was based on the values of ρ = 0.01, .02, ⋯, 2 and γ = −10, −0.99, ⋯, 0, 0.01, .

02, ⋯, 10. For target powers of 0.9 and 0.99, and significance levels of 0.01 and 0.05, Table 
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1 and Table 2 of the Supplementary Material Part I present the solutions, with a precision of 

two decimal places, for the choices of ρ and γ that minimize 𝔼[T]H0 rejected, R] rejected, R]. 

For S1(n), in most of the cases, the optimal solution for ρ is a value smaller than 1, leading 

to concave Type I error spending shapes. But, the exact optimal solution depends on z and α. 

As a whole, and as illustrated with Figure 3(A), the optimal solution is around 0.5 in most of 

the scenarios. For S4(n), as one can follow with Figure 3(B), the optimal γ is uniformly 

greater than zero, hence, again, concave Type I error spending shapes are the best options.

For a significance level of 0.01, Table 3 presents expected time to signal calculated for each 

Type I error spending function. Similarly, Table 5 and 6 of the Supplementary Material Part I 

show expected time to signal for α = 0.05. The numbers for S1(n) and S4(n) are based on the 

optimal solutions for ρ and γ of Tables 1 to 4 of the Supplementary Material Part I.

As a rule, the power-type shape, S1(n), is the best option in scenarios where R > r. If R ≤ r, 
then S4(n) performs better. In the other side of the bridge, function S2(n) presents invariably 

the largest expected time to signal.

4.3. Comparison Under a Group Sequential Fashion

Near-continuous sequential analysis, where the total number of events (cases+controls) at 

each test can be greater than 1, is more realistic than assuming strict continuous analysis. 

But, although irregular and sometimes even unpredictable, the number of events at each test 

is not expected to vary much during the surveillance. For example, a team of analysts may 

have a good idea about the sample size to be observed from electronic health records, like 

e.g. 10 events per record, but they also may expect that the actual numbers will show up a 

little smaller value, like 6 events, or a little larger, like 15, but unlikely much different, like 

50. Thus, regular group sizes, where the number of events in each test is constant, is treated 

here as a good approximation for the reality.

Denoting the number of tests by G, there were considered three different scenarios for the 

group sizes, G = 2, 5, 20. Tables 7, 8 and 9 of the Supplementary Material Part II show the 

expected time to signal for each of these scenarios. Again, the superiority of S1 (n) is evident 

for most of the scenarios where R > r, hence S4 (n) presents smaller expected time to signal 

for R ≤ r. There are some exceptions, but, as a whole, the results are similar to what we 

observed for the continuous sequential approach. These results are not affected by the values 

of the parameters G, α or z.

5. Concluding Remarks

In general, functions S1(n) and S4(n) promote better performances in terms of expected time 

to signal. But, the winner between these two functions depends on the relative magnitude 

between the actual relative risk (R) and the relative risk (r) that solves a given target power 

of interest. S4(n) tends to promote smaller expected time to signal than S1(n) in applications 

where R ≤ r. But, if R > r, then S1(n) tends to show better performances. These are general 

results, but exceptions were observed since the behavior of power and expected time to 

signal is not uniform with the tuning parameters ρ and γ, and this is so due to the discrete 

nature of the binomial distribution. Another important point to stress is that, in all scenarios, 
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the optimal solution was found among concave functions. This fact is not in contradiction 

with the fact that, in few scenarios, ρ solutions were slightly greater than 1, cases that lead to 

convex Type I error spending shapes for S1(n). Such cases occurred for R ≤ r, which are the 

scenarios where S4(n) was found the best option under positive γ values, that is, concave 

Type I error spending shapes.

Although concavity is a remarkable property of Type I error spending functions that 

minimize expected time to signal, this is not a sufficient condition for ensuring the best 

performance. There is also a trade-off between power spending and time to signal, which 

depends on N, r, z, R, and target power. Therefore, tuning parameters that define the shape to 

use, such as ρ and γ, should be elicited during the sequential analysis designing as it takes in 

account the tuning parameters and target performance measures of each application.

The assumption of a constant marching ratio is near-realistic. In practice, the Bernoulli 

success probability can present a certain variation while the surveillance advances, and an 

infinite number of possibilities for the trajectories of zn could be drawn in each application. 

But, as the results indicate that the superiority of S1(n) and S4(n) is observed for all the 

evaluated z values, it is safe to conclude that the usage of a constant z in the present 

investigations leads to an accurate understanding of the correspondence between Type I error 

spending and expected time to signal.

Besides the concave Type I error spending shape, another remarkable characteristic that 

favors reduction of the expected time to signal is the requirement of a slow spending rate in 

initial surveillance times. From Figure 2, we see that the best shape among those options 

allocates moderate to small Type I error spending at the beginning of the surveillance. This 

result explains the findings of [20], which evidenced that requiring a minimum number of 

events before allowing the rejection of the null hypothesis, same as putting very small Type I 

error spending for first events, can lead to relevant gains in terms of expected time to signal.

As emphasized in early sections, in post-market surveillance it is cheap and easy to collect 

large data sets once a monitoring system is set up and running. Therefore, minimizing the 

overall sample size at termination of the surveillance is not imperative. In theory, if the null 

hypothesis is rejected, then the surveillance should stop. But, in practice, one could keep 

collecting/analyzing data in order to access more evidence rather than stopping the 

monitoring to make an early decision even when the null is rejected. This is so because 

sequential analysis can be performed for different goals, such as point estimate, interval 

estimation, hypothesis testing, or more than one of these goals simultaneously. Thus, when a 

signalization for rejection of H0 occurs, irrespectively of having a small, moderate or large 

sample size at the signalization moment, the surveillance can still continue in order to collect 

more data for ensuring a more accurate relative risk estimation. Again, this is applicable in 

situations where the costs of keeping collecting data for a longer time is negligible. While an 

early signal is valuable for preliminary actions and further investigations, investigators 

should take advantage of an alive surveillance system for improving the precision of point 

and interval estimation, and for ratifying evidences obtained from early analysis.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Expected time to signal and expected time of surveillance for different Type I error spending 

shapes under z = 1, α = 0.05, power of 0.8, ρ values in [0.1, 0.2, ⋯, 3], actual relative risks 

of R = 1.2, 1.3, 1.5, 2, and target relative risk of r = 2. Small circles point the ρ values that 

minimize the performance measures at each scenario.
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Figure 2. 
Actual Type I error spending for continuous sequential testing, based on binomial data, with 

target power of 0.99 under R = r = 2, α = 0.01, 0.05, and constant matching ratio zn = z Of 1 

and 4.

Silva Page 16

Stat Med. Author manuscript; available in PMC 2019 April 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Expected time to signal calculated for continuous sequential designs based on S1 (n) and 

S4(n) considering a grid of values of ρ = 0.01, .02, ⋯·, 2 and γ = −10, −0.99, ⋯, 0, 0.01, .02, 

⋯, 10. The expected time to signal is evaluated for a true relative risk of R = 2, and a target 

power of 0.99 given target r = 2 under an overall significance level α = 0.05. Minimum 

values are marked with little circles at each curve.
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Table 1

Test Statistics for Sequential Analysis with Binomial Data. The parameter setting under H0 is p ≤ p0, where 

p0 = (1 + zn)−1

Pocock’s Score Statistic (Un) O’Brien & Fleming

W(Cn) = Un =
cn − np0

np0(1 − p0) , i f
cn
n > p0,

0, otherwise .

W(Cn) = Un
n
N

1/2
, i f

cn
n > p0,

0, otherwise .

MaxSPRT statistic (Λn)

W(Cn) = Λn
cn log

cn
n − log p0 + (n − cn)[log

n − cn
n − log(1 − p0)], i f

zncn
(n − cn) > 1,

0, otherwise .

Modified MaxSPRT

W(Cn) = 2n
N Λn

1/2
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