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Abstract

Statistical sequential hypothesis testing is meant to analyze cumulative data accruing in time. The 

methods can be divided in two types, group and continuous sequential approaches, and a question 

that arises is if one approach suppresses the other in some sense. For Poisson stochastic processes, 

we prove that continuous sequential analysis is uniformly better than group sequential under a 

comprehensive class of statistical performance measures. Hence, optimal solutions are in the class 

of continuous designs. This paper also offers a pioneer study that compares classical Type I error 

spending functions in terms of expected number of events to signal. This was done for a number of 

tuning parameters scenarios. The results indicate that a log-exp shape for the Type I error spending 

function is the best choice in most of the evaluated scenarios.

Keywords

Sequential probability ratio test; Expected number of events to signal; Log-exp alpha spending

1 Introduction

In statistical inference, the classical non-sequential approach for hypothesis testing consists 

on defining the test criterion as a function of an unique batch of data, and hence only one 

test is performed. Differently, in sequential hypothesis testing multiple tests are performed 

sequentially, each based on information formed by a combination of new data with data 

observed in previous tests. Although the historic development of sequential analysis theory 

can be undoubtedly credited to challenges appearing in clinical trials (Jennison and Turnbull 

2000), applications for post-market drug and vaccine safety surveillance of adverse events is 

now in the fringe of the sequential analysis practice (Davis et al. 2005; Lieu et al. 2007; 

Kulldorff et al. 2011; Yih et al. 2011; Leite et al. 2016).

In the context of post-market drug and vaccine safety surveillance, a very useful model is the 

Poisson distribution. Following the construction used by Leite et al. (2016), Silva and 

Kulldorff (2015), Kulldorff et al. (2011), and Yih et al. (2011), let Xt denote the number of 

adverse events observed within the (0,t] time interval after a vaccination, where Xt follows a 

Poisson distribution with average (R × μt ). In this construction, μt is a known function of the 
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exposed population, and R is the relative risk reflecting the effect of the vaccine in the risk 

of occurring an adverse event. Basically, under the null hypothesis, the vaccine is safe, hence 

the relative risk is smaller than or equal to 1. Otherwise, the expected number of events is 

greater than μt, i.e. R > 1. This problem motivates the discussion in the present paper, which 

is directed to one tailed-tests with hypothesis of the form:

H0: R ≤ 1 against H1: R > 1. (1)

Usually, sequential methods for testing the hypotheses in Eq. 1 are based on monitoring a 

real valued test statistic, say W (Xt ), t (0,T], in comparison to a signaling threshold CVt. 

The null hypothesis is rejected for the first t such that W (Xt) CVt, or the null is taken as true 

if W (Xt ) < CVt for each t ∈ (0,T]. The tuning parameter T, called maximum length of 

surveillance, is an arbitrary constant defined by the investigator. The time dependent 

function CVt is specified in a way that the overall Type I error probability is safely smaller 

than or equal to a desired significance level, α. This type of threshold-based testing design is 

in the essence of established methodologies, such as e.g. Wald’s SPRT test (Wald 1945), the 

method of Pocock (1977), the O’Brien & Fleming’s statistic (O’Brien and Fleming 1979), 

the maximized sequential probability ratio test (MaxSPRT) introduced by Kulldorff et al. 

(2011), and the modified MaxSPRT introduced by Gombay and Li (2015).

An important design issue is the choice between continuous or group sequential fashions. 

With the continuous design, each t ∈ (0,T] can lead to the null rejection. Unlike, under a 

group sequential design, only selected points t1 < t2 < … < tG are taken as testing times. 

Naturally, the choice between continuous versus group designs depends on logistical/

financial aspects of data collection since continuous analysis can only be applied if it is 

feasible to observe the arrival time of each single new observation. But, in situations where 

the choice between continuous and group approaches is feasible prior to start the 

surveillance, a question that emerges is if one should be adopted in detriment of the other. 

Based on simulation studies, the works of Zhao et al. (2012) and Nelson et al. (2012) 

seemed to suggest that group sequential designs should be preferred even when data is 

extracted continuously. But, the work of Silva and Kulldorff (2013) put a light in the subject. 

They used analytical arguments to show that, if expected number of events to signal and 

expected length of surveillance are the design criterion for fixed power and alpha level, then 

continuous designs should always be used in place of group designs if logistically/

financially possible. It is worth noting that similar evaluations for other statistical 

performance measures, such as the risk function, are still pending in the literature. In order 

to cover this lack, the present paper shows that continuous sequential analysis is also 

uniformly better than group sequential in terms of expected loss (risk function), expected 

number of events to signal, and expected number of events.

Another important design issue is the shape of CVt. While some classical methods establish 

flat thresholds in the scale of W (Xt ) (Wald 1945; Pocock 1977; Kulldorff et al. 2011), 

others are defined under increasing or decreasing CVt functions (O’Brien and Fleming 1979; 

Gombay and Li 2015). But, all these methods can be rewritten in terms of a more 

comprehensive approach, the approach based on the Type I error probability spending 

function. Type I error spending functions, usually denoted by S (t), are meant to dictate the 
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amount of Type I error probability to be applied for each t ∈ (0,T]. A traditional choice is the 

so-called power-type function:

S(t) = α × t
T

ρ
, ρ > 0, t ∈ (0, T] . (2)

A number of Type I error spending functions are available in the literature. The comparison 

among many S (t) shapes has historically been made having expected sample size as the 

statistical performance measure of interest (Lan and DeMets 1983; Kim and Demets 1987). 

Unfortunately, the comparison of S (t) shapes in terms of expected number of events to 

signal (instead of expected sample size) has not been explored for the Poisson data yet. This 

paper brings a comparison study among four established Type I error spending functions. 

This is done having expected number of events to signal as the statistical performance 

measure of interest. Our results show that the log-exp function introduced by Lan and 

DeMets (1983) seems to be the best one.

This material is organized in the following way: the next section extends the results of Silva 

and Kulldorff (2013) about the optimality of continuous sequential analysis over group 

sequential analysis. Section 3 presents analytical expressions for statistical power calculation 

of continuous sequential designs. Section 4 compares four different Type I error probability 

spending functions in terms of expected number of events to signal for fixed statistical 

power. Section 5 closes the paper with the last considerations.

2 Continuous Designs are Uniformly Better than Group Designs

Continuous and group sequential designs are now formally defined.

Definition 1 (Group Sequential Design)

For a set of constants a1 ≤ a2 ≤ … ≤ aG, and a sequence ti i = 1
G  of times, where tG = T, a 

group sequential analysis design for Poisson data is a procedure that takes H1 as true if 

W(Xti
) ≥ ai for some i ∈ {1, …, G}, and takes H0 as true otherwise.

Definition 2 (Continuous Sequential Design)

Let CVt denote a continuous function in the (0,T ] interval. A continuous sequential analysis 

design for Poisson data is any procedure that takes H1 as true if W (Xt ) ≥ CVt for some t ∈ 
(0,T ].

The notion of “uniformly better design” is another important topic for the goals of this 

paper. It was introduced by Silva and Kulldorff (2013) having T, significance level, power, 

expected time to signal, and expected length of surveillance as the target statistical 

performance measures, and now we extended this definition to arbitrary set of statistical 

performance measures.

Definition 3 (Uniformly Better Design)
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Let D1 and D2 denote two sequential analysis designs for hypothesis testing for an unknown 

P -dimensional parameter θ. Let M (θ) = (M1(θ), ⋯ , MK(θ)) denote a K-dimensional row 

vector of statistical performance measures, and for i = 1, 2, let M i(θ) = (M1, i(θ), ⋯ , MK, i(θ))

denote the vector of measures associated to Di. Thus, D1 is uniformly formly better than D2 

over M (θ) if Mj,1(θ) ≤ Mj,2(θ) for each j = 1,… 4, and Mj,1 (θ) < Mj,2 (θ) for some j.

Evidently, the parameter of interest in the present work is the one-dimensional relative risk, 

i.e. here θ = R. For the target performance measures, define the 8-dimensional vector:

M (R) = (T , β(1), β(R), E[τ |H0 rej . , R], E[X |H0 rej . , R], E[τ | R], E[X | R],
ϕ(R)),

(3)

where β(1) is the overall Type I error probability (which equals to the desired α level), β(R) 

is the overall statistical power, E[τ|H0 rej., R] is the expected time to signal, E[X|H0 rej., R] 

is the expected number of events to signal, E[τ|R] is the expected time of surveillance, E[X|
R] is the expected number of events. The term φ (R) represents the risk function, also called 

expected loss, defined by:

ϕ(R) = l1(R) × β(R) × I(R ≤ 1) + l2(R) × [1 − β(R)] × I(R > 1), (4)

where lj (R), j 1, 2, is an arbitrary real-valued function of R that measures the undesirable 

effects, losses, followed by the Type I and Type II errors. The loss function is arbitrated by 

the analyst in such a way that l1 (R) represents the loss followed by the Type I error, and l2 

(R) represents the loss followed by the error of Type II. For example, one way to construct a 

loss function is to consider the financial costs involved in the development and 

implementation of a recently approved and commercialized vaccine.

As proved by Silva and Kulldorff (2013), continuous sequential analysis is uniformly better 

than group sequential over the measures T, β(1), β(R), E[τ|H0 rej., R and E[τ|R]. Now we 

extend their results for the performance vector in Eq. 3.

Theorem 1 For a Poisson stochastic process Xt indexed by continuous or discrete time, let

M 1(R) = (T1, β1(1), β1(R), E1[τ H0 re j . , R], E1[X H0 re j . , R], E1[τ R],

E1[X R], ϕ1(R))
(5)

denote the performance measure of an arbitrary group sequential design D1 that takes H1 as 
true for large values of Xt. Thus, there always exists a continuous sequential design, with 
performance measure

M 2(R) = (T2, β2(1), β2(R), E2[τ |H0 re j . , R], E2[X |H0 re j . , R], E2[τ | R],
E2[X | R], ϕ2(R))

(6)

such that:
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i. T2 = T1,

ii. β2(1) = β1(1),

iii. β2(R) = β1(R),

iv. E2[τ |H0 rej., R] < E1[τ |H0 rej., R],

v. E2[X|H0 rej., R] < E1[X|H0 rej., R],

vi. E2[τ |R] < E1[τ |R],

vii. E2[X|R] < E1[X|R], and

viii. φ2(R) = φ1(R).

Therefore, for each group sequential design, there always exists a continuous sequential 
design which is uniformly better over the vector of performance measures in Eq. 3.

Proof For a given group sequential design constructed according to Definition 1, consider an 

associated continuous sequential design having T = tG and, if t ∈ (ti−1, ti ], then CVt = ai.

With this associated continuous design, the proof of item (i) is trivial.

Items (ii) and (iii) follow from the fact that the associated continuous design rejects H0 if, 

and only if, the group sequential also does, which holds for each R ∈ (0, ∞).

To prove items (iv) to (vii), let τc denote the time when the associated continuous design is 

stopped. If the null hypothesis is rejected, then τc = inf{t ∈ (0,T] : W (Xt ) ≥ CVt }. It means 

that, if τG ∈ {t1, ·… , tG} is the stopping time of the group sequential design, then τc ≤ τG. 

In addition, define j = min{i : W (Xt ) ≥ ai }, therefore tj−1 < τc < tj, with t0 = 0. Because Xt 

is a Poisson stochastic process, there exists an ti < m < ti+1 such that E[Xm | R] − E[Xti
| R] > 0

and hence PR(Xm − Xti
> k | R) > 0 for any value of k, i.e. the probability that the continuous 

sequential analysis rejects the null hypothesis at time m is Pr(Xti
< ai, Xm ≥ ai + 1 | R) > 0, 

which implies that E[τc|R < E[τg|R]. Then expected time to signal and expected number of 

events to signal with the associated continuous design are smaller than those from the group 

design.

Item (viii) follows from item (iii). □

It is important to stress that the proof of the Theorem does not require the presence of all the 

8 measures of Eq. 3. Furthermore, follows also from this proof that the continuous design is 

uniformly better than the group over any subset of M (R).

Corollary 1 If Xt is a Poisson stochastic process, then for each group sequential design there 
always exists an uniformly better group sequential design over any subset of measures taken 
from the vector in Eq. 3.

Under a practical perspective, Theorem 1 can be used to support the practice of adopting a 

continuous sequential approach in post-market-safety surveillance, where data is collected in 
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a near continuous matter (Silva and Kulldorff 2013). Under a theoretical perspective, its 

importance relates to the implication that optimal sequential analysis designs are in the class 

of continuous designs.

Corollary 2 An optimal sequential hypothesis testing design for hypotheses of the form in 
Eq. 1, and having one or more of the performance measures in Eq. 3, is a continuous 
sequential design.

Inspired by the corollary above, hereinafter the content of this paper is directed for 

continuous sequential analysis. To do so, next section uses recursive expressions to derive 

analytical calculation of power and expected number of events to signal followed by 

continuous sequential designs. Such expressions shall be useful in the subsequent sections.

3 Recursive Power Function

Assume that W (Xt ) is: (i) monotone increasing with μt for each fixed Xt = x > 0, and (ii) 

monotone increasing with x for each fixed Xt = x > 0 and μt > 0. With this, for a given 

threshold CVt, let τx denote the arrival time of the x-th adverse event for x = 1, …, N, 
where:

N : = max x ∈ ℕ:W(x) ≤ CVt .

Hence, there always exist thresholds 0 < μ(1) ≤ μ(2) … ≤ μ(N), with μ(N) = T, such that the 

probability of rejecting H0 can be written as:

Pr[rej . H0 R] = Pr[W(Xt) ≥ CV t for some t ∈ (0, T) R] (7)

= Pr[Xt ≥ W−1(CV t) R] (8)

= Pr[ ∪x = 1
N τx ≤ μ(x) R] . (9)

where μ(x) = sup{t : x ≥ W −1 (CVt )}, and W −1 (CVt ) is the value y such that W (y) = CVt.

Since Xt ~ Poisson (μt ), write μt = λt, where λ is a known constant, and the time index t is a 

deterministic function of intrinsic characteristics of the analyzed phenomena, like for 

example the effects of covariates at each analysis combined with the proportion of exposed 

individuals of the population. Thus, the joint density of the vector (τ1, … , τN ) is:

f τ(y1, ⋯ , yN R) = (Rλ)Ne
−yNRλ

I(yN > 0) . (10)

Consider the transformation T = λ τ = (T1, ⋯ , TN), which has density:
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f T(t1, ⋯ , tN R) = RNe
−tNR

I(tN > 0) . (11)

Hence, the overall probability of rejecting H0, denoted by β(R), is given by:

β(R) = Pr[rej . H0 R] = Pr
x = 1

N
Tx ≤ μ(x) R

=
x = 1

N
Pr(N = x R),

(12)

where N is the cumulative number of observed events at to the signaling time. For N = 1:

Pr(N = 1 R) = Pr(T1 ≤ μ(1)) = 1 − e
−μ(1)R .

For N=2:

Pr(N = 2 R) = Pr T1 > μ(1) ∩ T2 > μ(2)

=
μ(1)

μ(2)

μ(1)

t2
R2e

−Rt2dt1dt2

= Pr μ(1) ≤ T2 ≤ μ(2) R − R−1μ(1)Pr μ(1) ≤ T1 ≤ μ(2) R .

For N=3:
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Pr(N = 3 R) = R−1Pr T1 > μ(1) ∩ T2 > μ(2) ∩ T3 > μ(3)

=

μ(2)

μ(3)

μ(2)

t3

μ(1)

t2
R3e

−Rt3dt1dt2dt3

= Pr μ(2) ≤ T3 ≤ μ(3) R − R−1μ(1)Pr μ(2) ≤ T2 ≤ μ(3) R

+ R−2 μ(1)μ(2) − μ(2)
2 /2 Pr μ(2) ≤ T1 ≤ μ(3) R .

For N=4:

Silva Page 8

Methodol Comput Appl Probab. Author manuscript; available in PMC 2019 December 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Pr(N = 4 R) = R−1Pr T1 > μ(1) ∩ ⋯ ∩ T4 > μ(4)

=

μ(3)

μ(4)

μ(3)

t3

μ(2)

t3

μ(1)

t2
R4e

−Rt1dt1dt2dt3dt4

= Pr μ(3) ≤ T4 ≤ μ(4) R − R−1μ(1)Pr μ(3) ≤ T3 ≤ μ(4) R

+ R−2 μ(1)μ(2) − μ(2)
2 /2 Pr μ(3) ≤ T3 ≤ μ(4) R

− R−3 μ(3)
3

3! −
μ(1)μ(3)

2

2 + μ(3) μ(1)μ(2) −
μ(2)

2

2

× Pr μ(3) ≤ T1 ≤ μ(4) R .

Thus, a recursive expression, with respect to N, can be written to express β(R):

β(R) =
N = 1

N

i = 1

N
( − 1)i + 1ψ iPr μ(N − 1) ≤ TN+1 − i ≤ μ(N) R

=
N = 1

N
βN(R) .

(13)

where μ0 = 0, ψ1 = 1, and for i = 2, …, N,

ψi =
j = 1

i − 1
( − 1) j + 1 rμ(i − 1)

j

j! ψi − j .
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It merits remark that βN(1) is the punctual Type I error probability spending associated to the 

N(th) event, which depends only on μ(N), μ(N−1), …, μ(1). This way, given a target Type I 

error probability spending S(t), one can ways elicit μ(N) such that βN(1) equals to S(μ(N)) for 

each N = 1, …, N.

The expected number of events to signal can also be calculated in a recursive way using the 

following:

E[X H0 rejected]

=
∑N = 1

N N ∑i = 1
N ( − 1)i + 1ψ iPr μ(N − 1) ≤ TN+1 − i ≤ μ(N) R

β(R) .
(14)

4 Comparing Type I Error Spending Functions

The expressions for power and expected number of events to signal in Eqs. 13 and 14, 

respectively, are used in the present section to perform a comparison study among four Type 

I spending functions. The first one is the power-type function already shown in the 

Introduction:

S1(t) = α × t
T

ρ
, ρ > 0. (15)

According to Kim and Demets (1987), Jennison and Turnbull (1989), and Jennison and 

Turnbull (1990), under appropriate choices for ρ the function S1(t) can mimic Pocock’s and 

O’Brien & Fleming’s methods with reasonable precision.

The second Type I error spending considered in this section was firstly suggested by Lan and 

DeMets (1983) as a good approximation for the O’Brien & Fleming’s test, and it is given 

by:

S2(t) = 2 − 2 × Φ xα × T /t , (16)

where xα is such that Φ−1 (1 − α/2) = xα.

Our third function, also introduced by Lan and DeMets (1983), is the log-exp function, 

which is meant to approximate the Pocock’s test, and it is given by:

S3(t) = α × log 1 + [exp(1) − 1] × t
T . (17)

Finally, the fourth function considered in this comparison study, suggested by Hwang et al. 

(1990), is also designed to mimic Pocock’s test, and its shape is as follows:
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S4(t) = α ×
1 − exp − t

T γ
1 − exp − γ , γ ∈ (0, 0.5] . (18)

All these functions were extensively studied by Lan and DeMets (1983), Kim and Demets 

(1987), Jennison and Turnbull (1989), Jennison and Turnbull (1990), and Jennison and 

Turnbull (2000) to explore the balance among statistical power, expected sample size, and 

maximum length of surveillance. In general, convex shapes lead to small expected sample 

sizes. Jennison and Turnbull (2000) shows that, for fixed statistical power, the function S1(t) 
promotes small expected samples sizes using ρ around 1.5 or 2.

The maximum length of surveillance and the expected sample size are historically used as 

target measures in sequential analysis. This is due to challenges arising in clinical trials, 

where it is usually difficult to recruit many patients for the clinical experiment. Differently, 

in post-market drug and vaccine safety surveillance the maximum sample size can be 

arbitrarily large when a surveillance system is up and running. By another hand, since a lot 

of people is exposed to the drug, a delayed signalization of actual risks from the drug can 

potentially cause real damages to the health of many patients (Silva and Kulldorff 2015). In 

this scenario, the meaningful performance measure is no longer maximum length of 

surveillance or expected sample size, but expected number of events to signal for fixed 

power. As stressed earlier in this paper, there are no studies comparing Type I error spending 

functions in terms of the trade-off between expected number of events to signal and power.

4.1 Tuning Parameters Settings

A total of 600 scenarios were considered, each corresponding to a specific choice among α 
= 0.01, 0.05, R = 1, 1.1, …, 3, and T = 10, 20, …, 100. For each scenario, power and 

expected number of events to signal were calculated for each of the four Type I error 

functions. Note that S1(t) and S4(t) define families of functions since different shapes are 

obtained if different values of ρ and γ are fixed. Because of this, each of the 600 designs 

described above were evaluated in the following set of meaningful values: ρ = 0.1, 0.2 …, 2, 

and γ = 0.1, 0.2, …, 0.5.

All calculations were executed using the R language (Team 2015), and can be reproduced 

with the code available as a Supplementary Material.

4.2 Results

We first investigate the best choice among ρ and γ values for using S1(t) and S4(t), 
respectively. We start with S1(t). After analyzing the overall numerical evolution of the 

expected number of events to signal as a function of power, we find out that, in general, the 

choice ρ = 0.5 is always either the best or near to the best choice, depending on the actual 

value of R. Unfortunately, due to space limitations, we are not able to show figures and 

tables containing all results from each of the tuning parameters explored in this work. But, 

some numerical results can be shown in order to illustrate the general conclusions. For 

example, Fig. 1 brings expected number of events to signal as a function of power for ρ = 
0.1, 0.5, 0.7, 1, 1.5. The x-axis, given in the log-scale, represents the actual power for each 
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of the different values of T. For R = 1.5, the best curve is associated to ρ = 0.7, but the curve 

for ρ = 0.5 is very close to it for each power. For scenario R = 2, the choice ρ = 0.5 is the 

best one. These results is uniformly observed for each of the tuning parameters considered.

Concerning the best choice for γ in S4(t), the global behavior can be illustrated considering 

the sample of γ values of 0.1, 0.3, and 0.7. Figure 2 illustrates the general behavior that 

identifies γ = 0.5 as the best choice in terms of minimizing expected number of events to 

signal for fixed power.

Now we compare S1(t), S2(t), S3(t) and S4(t). For this, we use ρ = 0.5 and γ = 0.5. Figure 3 

shows the comparison using R = 1.5, 2. It is evident that the S3(t) shape represented by the 

dotted line, called log-exp function, leads to the smallest expected number of events to 

signal among these four functions. Therefore, the final conclusion after all these massive 

numerical investigation is that the log-exp function should be adopted for sequential analysis 

with Poisson data when expected number of events to signal is the meaningful statistical 

performance measure.

5 Last Comments

The behavior of the expected number of events to signal in a continuous sequential 

surveillance is interesting. Because the continuous approach allows to look to the data as 

many times as wanted, the maximum length of surveillance is increased comparatively to a 

group sequential testing. This sample size enlargement also increases the expected length of 

surveillance. This explains why expected number of events to signal and expected sample 

size are not positively related, which, by its turn, explains the discordance between the 

findings of the present work and the findings of many authors. While former works indicate 

usage of a convex Type I error spending function, such as promoted by the O’Brien & 

Fleming’s method, the present work suggests usage of a concave function. The former is 

concentrated on minimizing expected length of surveillance, and the later is directed to 

minimize expected number of events to signal. Therefore, if expected sample size or 

maximum length of surveillance are used as design criterion, then O’Brien & Fleming’s test 

is known to be the good choice. Instead, if expected number of events to signal is the design 

criterion, then the concave shape promoted by the log-exp function S3(t) should be used.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Expected number of events to signal versus power using the S1(t) shape based on ρ = 0.1, 

0.5, 0.7, 1, 1.5. The tuning parameters used were R = 1.5, 2, α = 0.05, and selected 

maximum length of surveillance T. Note the log-scale for power
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Fig. 2. 
Expected number of events to signal versus power using the S2(t) shape based on γ = 0.1, 

0.3, 0.5. The tuning parameters used were R = 1.5, 2, α = 0.05, and selected maximum 

length of surveillance T. Note the log-scale for power
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Fig. 3. 
Expected number of events to signal versus power comparing the shapes S1(t) with ρ = 0.5, 

S2(t), S3(t), and S4(t)with γ = 0.5. Each design is based on the tuning parameters R = 1.5, 2, 

α = 0.05, and selected maximum length of surveillance T. Note the log-scale for power
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