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ABSTRACT

We present a comprehensive statistical analysis of the properties of Type Ia supernova (SN Ia) light curves in
the near-infrared using recent data from Peters Automated InfraRed Imaging TELescope and the literature. We
construct a hierarchical Bayesian framework, incorporating several uncertainties including photometric error,
peculiar velocities, dust extinction, and intrinsic variations, for principled and coherent statistical inference.
SN Ia light-curve inferences are drawn from the global posterior probability of parameters describing both individual
supernovae and the population conditioned on the entire SN Ia NIR data set. The logical structure of the hierarchical
model is represented by a directed acyclic graph. Fully Bayesian analysis of the model and data is enabled by an
efficient Markov Chain Monte Carlo algorithm exploiting the conditional probabilistic structure using Gibbs
sampling. We apply this framework to the JHKs SN Ia light-curve data. A new light-curve model captures the
observed J-band light-curve shape variations. The marginal intrinsic variances in peak absolute magnitudes are
σ (MJ ) = 0.17±0.03, σ (MH ) = 0.11±0.03, and σ (MKs) = 0.19±0.04. We describe the first quantitative evidence
for correlations between the NIR absolute magnitudes and J-band light-curve shapes, and demonstrate their utility
for distance estimation. The average residual in the Hubble diagram for the training set SNe at cz > 2000 km s−1

is 0.10 mag. The new application of bootstrap cross-validation to SN Ia light-curve inference tests the sensitivity
of the statistical model fit to the finite sample and estimates the prediction error at 0.15 mag. These results
demonstrate that SN Ia NIR light curves are as effective as corrected optical light curves, and, because they are less
vulnerable to dust absorption, they have great potential as precise and accurate cosmological distance indicators.
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1. INTRODUCTION

Type Ia supernova (SN Ia) rest-frame optical light curves have
been of great utility for measuring fundamental quantities of the
universe. As standardizable candles, they were critical to the
detection of cosmic acceleration (Riess et al. 1998; Perlmutter
et al. 1999). The cosmic acceleration may be caused by a dark
energy component of the universe (Frieman et al. 2008 provide a
recent review). SNe Ia have been used to constrain the equation-
of-state parameter w of dark energy (Garnavich et al. 1998), and
recent efforts have measured w to 10% (Wood-Vasey et al. 2007;
Astier et al. 2006; Kowalski et al. 2008; Hicken et al. 2009b).
SNe Ia have also been used to establish the extragalactic distance
scale and measure the Hubble constant (Freedman et al. 2001;
Jha et al. 1999; Riess et al. 2005, 2009a, 2009b),

The effectiveness of SNe Ia as distance indicators has been
improved greatly by the construction of empirical methods
that exploit relationships between peak optical luminosities of
SNe Ia and distance-independent measures such as light-curve
shape or color that have been observed in the burgeoning
sample of nearby low-z SNe Ia (Hamuy et al. 1996a; Riess
et al. 1999; Jha et al. 2006; Hicken et al. 2009a). Methods
have included ∆m15(B) (Phillips 1993; Hamuy et al. 1996b;
Phillips et al. 1999), MLCS (Riess et al. 1996a, 1998; Jha et al.
2007), “stretch” (Goldhaber et al. 2001), CMAGIC (Wang et al.
2003), and SALT (Guy et al. 2005, 2007). The largest systematic
uncertainty that limits the precision of rest-frame optical light
curves is dust extinction in the host galaxy and the entanglement
of dust reddening with the intrinsic color variations of SNe (e.g.,
Conley et al. 2007).

1 Current address: Department of Physics & Astronomy, 100 Allen Hall, 3941
O’Hara St., University of Pittsburgh, Pittsburgh, PA 15260, USA.

Early observations of SNe Ia in the infrared were made by
Kirshner et al. (1973), Elias et al. (1981), Elias et al. (1985),
Frogel et al. (1987), and Graham et al. (1988). Studies of nearby
SN Ia light curves in the NIR have found that the peak near-
infrared luminosities of SNe Ia have a dispersion smaller than
±0.20 mag (Elias et al. 1985; Meikle 2000; Krisciunas et al.
2004a, 2004c). Furthermore, the effect of dust extinction is
significantly diminished at near-infrared wavelengths, relative
to the optical. The combination of optical and near-infrared
observations of SN Ia light curves could lead to even better
SN Ia distances (Krisciunas et al. 2007).

Wood-Vasey et al. (2008; hereafter WV08) compiled the
largest homogeneous sample of NIR SN Ia observations,
taken with the Peters Automated InfraRed Imaging TELescope
(PAIRITEL; Bloom et al. 2006). After combining these with
NIR light-curve observations from the literature to yield a sam-
ple of 41 NIR SNe Ia, they constructed template light curves
by interpolating and smoothing the data. They measured the
scatter in the absolute magnitudes at the time of B maximum in
each of the J, H, and Ks bands and found σ (MH ) ≈ 0.15 mag,
σ (MJ ) ≈ 0.33 mag, and σ (MKs

) ≈ 0.26 mag. This analysis did
not take into account NIR light curve shape variations, but it was
found, as in Krisciunas et al. (2004a), that the Hubble diagram
residuals had no trend with the optical light-curve width.

The purpose of this paper is two-fold. First, we formulate the
hierarchical Bayesian approach to probabilistic inference with
SN Ia light curves in general. A proper Bayesian approach pro-
vides a principled, coherent framework for inference based on
the joint probability density over all quantities of interest condi-
tioned on the available data. It is natural to employ a simultane-
ous multi-level approach and derive joint probability densities
over the parameters of individual supernova light curves, their
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distance moduli, and also the variables that describe the popu-
lation, including those governing the joint probability distribu-
tions over multiband absolute magnitudes and light-curve shape
parameters. This approach enables consistent statistical infer-
ence of all hierarchical parameters, by coherently incorporating
several sources of uncertainty, including peculiar velocity uncer-
tainties, photometric measurement errors, intrinsic randomness
of light curves, and dust extinction into the global posterior
probability density conditioned on the entire data set simultane-
ously. This framework leads to a natural and consistent method
for probabilistic distance prediction with new SN Ia light-curve
data. The logical structure of our hierarchical model for SN Ia
light-curve inference is demonstrated by the equivalent directed
acyclic graph (DAG), a graphical model that facilitates easy
inspection of the probabilistic relationships.

Although the probabilities for fully Bayesian analysis of SN
Ia light curves are simple to write down, the joint posterior
distribution is generally non-Gaussian and difficult to evaluate.
To enable probabilistic inference, we have developed a Markov
Chain Monte Carlo (MCMC) algorithm, BayeSN, designed
to exploit the conditional probabilistic structure using Gibbs
sampling. We employ this code for both training the statistical
model and using the model to predict distances. The use
of advanced sampling methods facilitates the computation of
marginal probabilities of parameters from the global joint
posterior density.

In the second part of the paper, we apply this framework to
the NIR SN Ia light-curve data from the compilation of WV08.
We first construct model template light curves for the JHKs

bands. We compute fixed maximum likelihood template models
between −10 and 20 days for the H and Ks using all available
data. The J-band data are typically much less noisy than the H
and K, so we construct an extensive J-band model between −10
and 60 days that accounts for light-curve variations, in particular
the structure around the second maximum. Next, we apply
the BayeSN method to simultaneously (1) fit the individual
JHKs light curves, (2) compute the population characteristics,
especially the absolute magnitude variances and covariances
with J-band light-curve shape, and (3) estimate the joint and
marginal uncertainties over all hierarchical parameters. We
construct a Hubble diagram for the training set SNe Ia and
compute its residual errors.

The average Hubble diagram residual of the training set SNe is
an optimistic assessment of the predictive ability of the statistical
model for SN Ia light curves because it uses the SN data twice:
first for estimating the model parameters (training), and second
in evaluating the error of its “predictions.” Hence, the resid-
uals, or training errors, underestimate the expected prediction
error. This effect is present for all models based on finite train-
ing data, and is particularly important for small sample sizes.
We perform bootstrap cross-validation to realistically estimate
the out-of-sample prediction error and to test the sensitivity to
the finite NIR SN Ia sample. This technique ensures that the
same SNe are not simultaneously used for training and predic-
tion. It has not been used previously in SN Ia statistical modeling
and inference.

This paper demonstrates hierarchical Bayesian modeling and
distance estimation for SN Ia light curves in the NIR only. The
application of these methods to combined optical and NIR light
curves for the estimation of dust and distances will be described
in a subsequent paper (K. S. Mandel et al. 2009, in preparation).

This paper is organized as follows: in Section 2, we describe
the hierarchical Bayesian framework for SN Ia light-curve in-

ference. The structure of the hierarchical model can be depicted
formally as a directed acyclic graph presented in Section 2.3.
In Section 2.4, we describe BayeSN, an MCMC algorithm de-
signed for computing posterior inferences in the hierarchical
framework. In Section 3, the construction of template light-
curve models in JHKs is described. In Section 4, we apply
this approach to the NIR light-curve data, and summarize the
posterior inferences for both individual SNe and the popula-
tion. In Section 4.4, we construct Hubble diagrams by applying
the statistical model and describe the application of bootstrap
cross-validation to estimate the prediction error. In Section 4.5,
we discuss the potential impact of dust in the NIR sample.
We conclude in Section 5. In Appendix A, we briefly review
the conditional independence properties of graphical models.
Appendix B presents mathematical details of the BayeSN

method, and Appendix C describes its use in practice.

2. HIERARCHICAL BAYESIAN FRAMEWORK FOR SN
IA LIGHT-CURVE INFERENCE

Simple Bayesian analysis describes an inference problem
in which a generative model H with a free parameter θ
is assumed to underly the observed data D. The Bayesian
paradigm is to derive inferences on θ from the posterior
density of the parameter conditioned on the data: P (θ |D,H) ∝
P (D| θ,H)P (θ |H), where the first factor is the likelihood
function and the second factor is the prior on the model
parameter.

Hierarchical, or multi-level, Bayesian analysis is a modern
paradigm of statistical modeling, which enables the expression
of rich probabilistic models with complex structure on multiple
logical levels (Gelman et al. 2003). For example, ifDi represents
the data on individual i, and θi is a model parameter describing
i, the values of θi themselves may be drawn from a prior or
population distribution P (θi | α, β), which in turn depends on
unknown variables that describe the group level probabilistic
model. These unknown variables α, β are termed hyperparame-
ters to distinguish them from the individual level parameters θi .
The hierarchical Bayesian joint posterior distribution over all
parameters {θi} and hyperparameters α, β conditioned on the
data for many (N) individuals D = {Di} is then

P ({θi};α, β|D) ∝

[

N
∏

i=1

P (Di | θi)P (θi |α, β)

]

P (α, β), (1)

where the last factor represents the hyperprior density on the
hyperparameters. The fully Bayesian approach is to analyze the
full joint posterior density of all parameters and hyperparameters
simultaneously conditioned on the entire data set. This ensures
the complete and consistent accounting of uncertainty over all
the inferred parameters. We can build in complex probabilistic
structure by layering single-level models, at the individual
level and also at possibly multiple population levels, and
expressing the conditional relationships that connect them.
The hierarchical Bayesian paradigm is very well suited for
combining information and uncertainties from many logical
sources of randomness, interacting in non-trivial ways, in a
principled, coherent and consistent statistical framework for
studying structured data. This is the strategy we adopt in this
paper.

In contrast to more classical methods of model fitting, the
Bayesian approach is less concerned with the optimization
problem, i.e., finding the “best” values or point estimates of
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model parameters fitted to given data, and more concerned with
the construction of the full joint probability model, consistent
integration over uncertainties, and the simulation and sampling
of the joint posterior density. For most non-trivial models,
the integrations of interest are analytically intractable, so we
employ modern computation techniques to enable probabilistic
inference. We introduce an MCMC algorithm (BayeSN) that
uses stochastic simulation to calculate posterior inferences from
the hierarchical framework.

2.1. SN Ia Light-curve Models

A central task in the statistical analysis of SN Ia light-
curve data is the fitting of empirical light-curve models to
time-series photometric data in multiple passbands. A data set
for an individual SN s, {DF }, consists of observations in n
photometric filters, F ∈ {F 1, . . . , F n} (e.g.,{B,V, J,H }). Let

DF = {ti,m
F
i , σ 2

F,i}
NF

i=1 be the set of NF observations in band
F. We assume that these have already been corrected for time
dilation (Blondin et al. 2008) and K-corrected to the SN rest
frame, so that ti is the rest-frame phase of the observation
referenced to the time of maximum light in the B band (i.e.,
t = 0 corresponds to Bmax), mF

i is the apparent magnitude in

filter F at this phase, and σ 2
F,i is the measurement variance.

We wish to fit to these data a light-curve model, F0 +lF (t, θF ),
where F0 is the F-band apparent magnitude of the model at a

reference time t = 0, and lF (t, θF ) is the normalized light-curve

model such that lF (0, θF ) = 0. A vector of light-curve shape
parameters, θF , governs the functional form of the light-curve
models and may take on different values for each SN.

At the present time there is no known set of physical functions

lF (t, θF ) describing the temporal evolution of SNe light curves.
Theoretical SN Ia models alone provide insufficient guidance,
so these functions must be constructed from the light-curve data
itself. Typical parameterizations are motivated by a combination
of simplicity, intuition, mathematical convenience, and the
empirical study of detailed light-curve data of a large sample of
SNe. The ultimate utility of a functional form lies in its ability
to fit the observed modes of variation in data and capture the
observable information in the light curves. Examples of light-
curve shape functions are the following.

1. “Stretch” template method (Perlmutter et al. 1999;
Goldhaber et al. 2001): lF (t, θF ) = f (sF t), where the
shape parameter is θF = sF , the “stretch” factor in fil-
ter F, and f (·) is a fiducial light curve, e.g., the Leibundgut
template (Leibundgut 1989), which is a function of the rest-
frame SN phase with respect to t0, the time of Bmax.

2. The ∆m15(B) decline rate parameterization (Hamuy et al.
1996b; Phillips et al. 1999). Here the light-curve shape pa-
rameter is θB = ∆m15(B), the magnitude decline between
the peak and 15 days after the peak in B-band. The light-
curve function is defined at particular values of θB

i using
BVI light-curve templates generated from observed SNe.
Interpolation is used to fit light curves at intermediate val-
ues of ∆m15(B). Prieto et al. (2006) presented an updated
formulation.

3. MLCS (Riess et al. 1996a, 1998; Jha et al. 2007): the
light-curve model in UBRVI is of the form: lF (t, ∆) =
F0(t) + ∆PF (t) + ∆

2QF (t), where F0(t), PF (t), and QF (t)
are defined by templates. The light-curve shape parameter
is θF = ∆.

In this section, we do not assume any particular form for the

light-curve models lF (t; θF ). The results will be applicable to a

broad class of possible models. Without loss of generality, the

light-curve model can depend on some parameters (θF
L ) linearly

and others (θF
NL) nonlinearly. Hence, a general form of a light-

curve model in band F for the data is

mF
i = F0 + lF0

(

ti; θF
NL

)

+ lF
1

(

ti; θF
NL

)

· θF
L + ǫF

i , (2)

where lF
1 (t; θF

NL) is a vector of coefficients to the linear param-
eters. It is convenient for computational purposes to separate
the linear from nonlinear shape parameters. The parameter F0

could be considered a linear parameter and included with θL.
However, they are physically distinct quantities, as F0 sets the

apparent magnitude scale for the light curve whereas θF
L gen-

erally models the shape of the light curve, so we keep them
separate.

2.2. Constructing the Global Posterior Density

2.2.1. Light-curve Likelihood Function

Assuming Gaussian noise for ǫF
i , we can write the likelihood

of the light-curve model parameters θF = (θF
L , θF

NL) for a single

SN data set DF in one band F. Define the vectors and matrices:

mF = (mF (t1), . . . , mF (tNF
))T (3)

LF
0

(

θF
NL

)

=
(

lF0
(

t1; θF
NL

)

, . . . , lF0
(

tNF
; θF

NL

))T
(4)

LF
1

(

θF
NL

)

=
(

lF
1

(

t1; θF
NL

)

, . . . , lF
1

(

tNF
; θF

NL

))T
. (5)

Let us construct a vector of ones, 1, of the same length as the
data mF

s , and a measurement error covariance matrix WF . Due
to the practical difficulties of estimating the error covariances,
the current standard assumption is that the error terms ǫF

i are

independent, so that WF
ii = σ 2

F,i is diagonal. The likelihood
function for the light curve can be compactly written as

P (DF |F0, θ
F ) = N

(

mF |1F0 + LF
0

(

θF
NL

)

+ LF
1

(

θF
NL

)

·θF
L , WF

)

,
(6)

where N (x|µx,Σx) denotes the multivariate normal density in
the random vector x with mean µx and covariance Σx . Since the
photometric observations in multiple filters are sampled with
independent noise, the likelihood function of all light-curve
parameters over all bands given the multiband data {DF } is the
simple product of n single-filter likelihoods:

P ({DF }| φ) =
∏

F

P (DF | F0, θ
F ). (7)

We define the observable (or apparent) parameters vector

φ = (F 1
0 , . . . , F n

0 ; θF 1

, . . . , θF n

). This vector, with the light-

curve model functions lF (t; θF ), encodes all the information
needed to reconstruct the apparent light curve of a single SN,
i.e., the apparent magnitudes at the reference time and the
light-curve shape parameters in each of n photometric bands
F. Similarly, we define the intrinsic (or absolute) parameters

vector ψ = (MF 1 , . . . ,MF n; θF 1

, . . . , θF n

) encoding all the
information describing the absolute light curves of the SN. The
absolute magnitude at peak in filter F is MF = F0 − μ − AF ,
where μ is the distance modulus and AF is the dust absorption
in that filter, for a particular SN.
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2.2.2. Redshift-distance Likelihood Function

Type Ia SNe can be used as distance indicators because we
possess some knowledge of their relative distances in the low-
redshift regime (where they are independent of the cosmological
parameters ΩM , ΩΛ, and w) from the Hubble law and measured
redshifts to the host galaxies of the SNe. However, inference
of true luminosities and absolute distances requires external
calibration (e.g., from Cepheids) or knowledge of the Hubble
constant, Ho, which has not yet been independently measured to
high precision. If we are concerned only with relative distance
estimation, it is sufficient to fix the distance scale with an
assumed h = Ho/100 km s−1. The uncertainty in these local
distances is then dominated by the peculiar velocity field, which
we model probabilistically.

Let zc be the cosmological redshift of an SN. The measured
redshift is z, with measurement variance σ 2

z , corrected to the
cosmic microwave background (CMB) and the local infall
flow model of Mould et al. (2000). In a smooth cosmological
model, the distance modulus is related to zc: μ = f (zc) =
25 + 5 log10[dL(zc) Mpc−1], where dL(zc) is the luminosity
distance in Mpc. If we model the effect of random peculiar
velocity as a Gaussian noise with variance σ 2

pec, then z =

zc +N (0, σ 2
pec/c

2 +σ 2
z ), and the likelihood function is P (z| μ) =

N (z| f −1(μ), σ 2
pec/c

2 +σ 2
z ). The posterior density of the distance

modulus conditioning only on the redshift is P (μ|z) ∝ P (z|μ).
We use a flat prior P (μ) ∝ 1, since we have no a priori
knowledge about μ without the data. For recession velocities
cz ≫ σpec, f (zc) can be linearized about the fixed z to find

f −1(μ), so that, to a good approximation,

P (μ| z) = N

[

μ

∣

∣

∣

∣

f (z), σ 2
μ = [f ′(z)]2

(

σ 2
z +

σ 2
pec

c2

)]

. (8)

In the low-z regime, where dL(z) is linear in z (the Hubble law),
the variance is

σ 2
μ =

(

5

z ln 10

)2
[

σ 2
z +

σ 2
pec

c2

]

. (9)

Under the assumption that peculiar velocity uncertainty
amounts to Gaussian noise, at recession velocities cz < 5σpec,
the approximation of P (μ|z) with a normal distribution breaks
down, due to the nonlinearity of the logarithm. This effect is
inconsequential for our analysis because even though the distri-
bution becomes non-Gaussian, at such low recession velocities,
its width in magnitudes is much larger than the dispersion in
SN Ia absolute magnitudes. The redshift of a very low z SN Ia
carries little information about the absolute magnitude, so that
P (μ|z) is essentially flat over the width of the posterior density
in μ conditioning on the light curves of the SN. Hence, the exact
form of P (μ|z) is irrelevant in this regime. SN Ia light curves
can be used to infer the distances of these near-field SNe and
to measure the local velocity field (Riess et al. 1995; Haugbølle
et al. 2007; Neill et al. 2007).

2.2.3. The SN Ia Population Distribution

The utility of SNe Ia for cosmological studies lies in the ob-
served correlation of their peak luminosities with the shapes of
their optical light curves. Although the peak optical luminosi-
ties of SNe Ia range over a factor of 3, using correlations with
light-curve shape reduces the scatter about the Hubble line to

less than ∼ 0.20 mag. Physical modeling and simulation of SN
Ia progenitors may provide useful explanations for the observed
relationships between the observable properties of SNe Ia and
their peak luminosities. Such work may also describe detailed
probabilistic relationships between the two. For example, we
can define the joint population distribution of absolute mag-
nitudes (at the reference time) and the observable light-curve
shapes in multiple passbands. In our notation this population
distribution is P (ψ | Physical Parameters) where the “Physical
Parameters” may include, for example, the mass of the pro-
genitor, the chemical composition and distribution within the
progenitor, and the details of the explosion mechanism. Hille-
brandt & Niemeyer (2000) provide a review of progress in SN
Ia explosion modeling.

In the absence of such detailed information, we learn the
probabilistic relationships from the data. We describe the SN
Ia population distribution as P (ψ | µψ ,Σψ ). Here, µψ is a
vector of hyperparameters that describe the average intrinsic
characteristics, and Σψ is a collection of hyperparameters
describing the dispersion (variance) and correlations of the
intrinsic characteristics of absolute light curves. Since we have
no information on these hyperparameters a priori, we seek to
estimate them (and their uncertainties) from the data.

We will include this distribution in the global posterior
density in the mathematical form of a “prior” on the intrinsic
parameters ψ of a single SN. However, it is better to think of
this distribution as a “population” distribution from which the
intrinsic parameters are randomly drawn. Its hyperparameters
are unknown and must be estimated simultaneously from the
data. It has a different interpretation in the context of the
hierarchical model than the fixed prior of the simple Bayesian
treatment (which has no hyperparameters to be estimated).

Since we have no a priori information on the functional form
of P (·| µψ ,Σψ ), we must make some assumptions. The simplest
choice for a multivariate probability density that models corre-
lations between parameters is the multivariate Gaussian. In the
rest of this paper we will assume P (·| µψ ,Σψ ) = N (·| µψ ,Σψ )
with an unknown mean vector µψ = E(ψ s) and unknown co-
variance matrix Σψ = Var(ψ s). The intrinsic parameters of
individual SNe are independent, identically distributed random
variables drawn from this probability density: ψ ∼ N (µψ ,Σψ ).
If the data indicate a different distribution from the one we have
assumed, we can attempt another choice of the form of the
intrinsic population distribution.

The population hyperparameters µψ ,Σψ are the most impor-
tant variables in this hierarchical framework. During the training
process, they model the intrinsic statistical properties of the
SN Ia light curves, including the average behavior, intrin-
sic variability, correlations between different modes of light-
curve shape variation, correlations between absolute magnitudes
in different filters, and cross-correlations between light-curve
shape parameters and the absolute magnitudes. When the model
is used to make predictions, they are crucial for using this infor-
mation, and its uncertainty, to make distance estimates for new
SN Ia light curves.

2.2.4. Incorporating Dust Information

Dust along the line of sight from the SN to the observer
causes both extinction and reddening of the emitted light. These
effects originate from Galactic dust, which has been measured
and mapped (Schlegel et al. 1998), and dust in the SN’s host
galaxy, which is often more important, poorly understood and
is currently the largest systematic uncertainty in cosmological
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inference with SNe Ia (Conley et al. 2007). Previous efforts
to estimate dust extinction from SN Ia color excesses include
Riess et al. (1996b), Phillips et al. (1999), and Krisciunas et al.
(2000).

We incorporate the effects of host galaxy dust on SN ob-
servations probabilistically within the full statistical model as
follows. The extinction in a given passband is denoted AF. As-
suming a CCM reddening law (Cardelli et al. 1989), the extinc-
tion in a given band can be related to the visual extinction AV by

AF /AV = aF +bF R−1
V , so that there are two free parameters: the

magnitude of visual extinction AV and the slope of the extinction
law in the optical bands RV . The fixed regression coefficients aF

and bF are determined from the dust reddening analysis of SNe
spectra. Jha et al. (2007) suggested using an exponential prior
on the non-negative AV extinction to a particular SN. Interpreted
as a population distribution, this can be incorporated into our
framework as

P (AV , RV |τAV
,αR) = Expon(AV |τAV

)P (RV | αR), (10)

where τAV
is a hyperparameter describing the exponential

scale length or the average amount of visual extinction to the
population of SNe Ia. The form of the population distribution of
the RV is unknown, but we suppose that it may be specified
with hyperparameters αR . For example, if RV is fixed to a
single known value, e.g., αR = 1.7 or 3.1, we may set
P (RV |αR) = δ(RV − αR). Or one may allow the RV to vary
within a population probability density, e.g., RV ∼ N (μR, σ 2

R),

where the hyperparameters αR = (μR, σ 2
R) may be fixed or

we may attempt to learn them from the data, if the data are
sufficiently informative. It is not known a priori whether AV

and RV can be treated as independent random variables and if
the population probability density of (AV , RV ) is separable as
indicated in Equation (10).

When modeling the near-infrared observations, it makes more
sense to reference the extinction values to the H-band, rather
than to AV . For given AH , RV values, the extinction in any
band, AF, can be computed from the dust law. The ratio of near-
infrared to visual extinction is roughly AH /AV ∼ 0.2. Since the
behavior of dust in the near-infrared is relatively insensitive to
the slope of the reddening law in the optical bands, RV , it makes
sense to set it to a fixed representative global value αR . With
this choice, the extinction population distribution is

P (AH , RV |τAH
, αR) = Expon(AH |τAH

)δ(RV − αR), (11)

where τAH
is the exponential scale length in magnitudes of the

population distribution of H-band extinctions. To simplify the
notation, we denote this hyperparameter as τA ≡ τAH

, which
controls the dust scale for all filters through the reddening law.

2.2.5. Conditionally Conjugate Hyperpriors

To estimate the population hyperparameters µψ and Σψ , we
make our priors on them explicit, called hyperpriors. If we
lack any external motivating evidence, we should choose non-
informative or diffuse hyperpriors. Additionally, it is convenient
to choose the hyperprior from a parametric family that is con-
ditionally conjugate to the parametric family of the population
density. This means that the posterior density of the hyperpa-
rameters conditioned on the values of the other parameters and
data is from the same parametric family of probability densi-
ties as the hyperprior. This property is advantageous because if
one can sample directly (generate random numbers from) the

hyperprior density, then one can sample directly from the con-
ditional posterior density of the hyperparameters. This is useful
for constructing Markov chains for statistical computation of
the posterior density using Gibbs sampling (Section 2.4).

The hyperparameters µψ and Σψ describe a multivariate
normal density on ψ s . The conjugate family to the multivariate
normal with unknown mean and covariance matrix is the
Normal-Inverse-Wishart. This hyperprior can be expressed as
P (µψ ,Σψ ) = P (µψ |Σψ )P (Σψ ) such that

Σψ ∼ Inv-Wishartν0
(Λ−1

0 ) (12)

µψ |Σψ ∼ N (µ0,Σψ/κ0). (13)

The non-informative or diffuse conditionally conjugate density
is obtained in the limit as κ0 → 0, ν0 → −1, |Λ0| → 0 (Gelman
et al. 2003; the conventions regarding the Wishart distributions

differ: we choose the convention that if W ∼ Inv-Wishartν(S−1)
is a random matrix, then E(W ) = S/(ν − d − 1), where d is
the dimension of the d × d covariance matrix). In this limit,
the hyperprior of the population mean µψ becomes flat and the
hyperprior of the covariance Σψ is a diffuse distribution over the
space of positive semi-definite matrices, so that the hyperprior
does not favor any particular solution.

For the extinction exponential scale length τA > 0, we choose
a uniform positive hyperprior, expressing no prior preference
for a particular value. If this is viewed as an Inv-Gamma(−1, 0)
density on τA, it is conditionally conjugate to the exponential
distribution.

2.2.6. The Global Posterior Density

We now have the elements necessary to construct the full
joint posterior density of the sample of SNe Ia. A single SN
s with multiband light-curve data Ds = {DF

s }, and redshift zs ,
is described by intrinsic light-curve parameters ψ s , observable
parameters φs , and distance modulus μs , with dust extinction
modeled by As

H and Rs
V . The relations between these parameters

can be encoded as follows. Let v be a constant indicator vector
with the jth component vj defined as

vj ≡

{

1, if φj , ψj are magnitudes, e.g., F0 or MF

0, if φj , ψj are shape parameters.
(14)

Furthermore, define the vectors As with the jth component A
j
s :

if φ
j
s and ψ

j
s are magnitudes in band F, then

Aj
s ≡ AGal

F,s + AF

(

As
H , Rs

V

)

, (15)

otherwise, A
j
s = 0 if φ

j
s and ψ

j
s are shape parameters. The

non-zero components depend on the host galaxy reddening
law and H-band extinction, AGal

F,s is the Galactic extinction, and
AF (As

H , Rs
V ) is the dust extinction in filter F as a function of

As
H and Rs

V using the dust law. The relationship between the
intrinsic and observable parameters of SN s can then be written
compactly as

φs = ψ s + vμs + As . (16)

This equation encodes the relationship between apparent mag-
nitudes, absolute magnitudes, extinction, and distance moduli.
In this expression, neither dust nor distance modify the light-

curve shape parameters, θF
s , common to both the observable φs

and intrinsic ψ s vectors. The joint posterior probability den-
sity for the parameters of a single SN, conditioned on the val-
ues of the hyperparameters and the data, is proportional to the
product of
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1. the probability of observing the photometric data given the
apparent light curve,

2. the probability of the distance modulus given the measured
redshift,

3. the probability of an absolute light curve equal to the
apparent light curve minus the distance modulus and
extinction, and

4. the probability of the extinction value and the dust law,

conditioned on the population hyperparameters of the absolute
light curves and dust properties:

P
(

φs, μs, A
s
H , Rs

V

∣

∣Ds, zs;µψ ,Σψ , τA, αR

)

∝ P (Ds |φs) × P (μs | zs)

× P (ψ s = φs − vμs − As | µψ ,Σψ )

× P
(

As
H , Rs

V

∣

∣ τA, αR

)

.

(17)

Now consider the full database of SN Ia light curves D =
{Ds} with measured cosmological redshifts Z = {zs}. The
global joint posterior density of all SN observables {φs},
distance moduli {μs}, dust parameters

{

As
H , Rs

V

}

, and the
population hyperparameters conditioned on the database D,Z
is proportional to the product of NSN individual conditional
posterior densities multiplied by the hyperpriors:

P
({

φs, μs, A
s
H , Rs

V

}

;µψ ,Σψ , τA, αR

∣

∣D,Z
)

∝

[

NSN
∏

s=1

P (φs, μs, A
s
H , Rs

V

∣

∣Ds, zs;µψ ,Σψ , τA, αR)

]

× P
(

µψ ,Σψ ) × P (τA, αR

)

.

(18)

For full generality we have derived the global joint posterior
density in the case that we wish to estimate the probable val-
ues of the hyperparameters αR from the data. If we fix the Rs

V

to a fixed global value αR , this is equivalent to evaluating the
above joint density conditioned on Rs

V = RV = αR . All fully
Bayesian inferences on the remaining parameters and hyper-
parameters are based on mapping out this global joint poste-
rior density. The marginal posterior density of the hyperparam-
eters, P (µψ ,Σψ , τA|D,Z, RV ) or P (µψ ,Σψ , τA, αR|D,Z),
is obtained by integration over the individual SN parameters
{

φs, μs, A
s
H , Rs

V

}

or
{

φs, μs, A
s
H

}

.
We refer to the set of SNe in D,Z as a training set, and

“training” means computing the marginal posterior density of
the hyperparameters, conditioned on these data. In the Bayesian
paradigm we are interested not just in point estimates of the

hyperparameters, e.g., “best values” µ̂ψ , Σ̂ψ , τ̂A, but on their
joint posterior probability density as a quantification of their
uncertainties.

2.2.7. The Predictive Posterior Density

The ultimate purpose of SN Ia light-curve inference is to
estimate luminosity distances to distant SN that are not included
in the nearby, low-z training set. That is, given observations of

a new SN’s multiband light curve D̃s , we wish to fit the light-
curve model and to predict the distance modulus. Prediction
differs from training in the fact that we do not use any prior
information on the distance (from, e.g., the redshift) in our
probability calculus. The predictive posterior density for the

new SN s̃ (with parameters denoted by tilde) conditioned on the

population hyperparameters and the new light-curve data D̃s is

P
(

φ̃s, μ̃s, Ã
s
H , R̃s

V | D̃s;µψ ,Σψ , τA, αR

)

∝ P (D̃s |φ̃s)

× P (ψ̃ s = φ̃s − vμ̃s − Ãs | µψ ,Σψ )

× P
(

Ãs
H , R̃s

V | τA, αR

)

.

(19)

We must also incorporate our (joint) uncertainties of the hy-
perparameters. This is encapsulated in the marginal posterior
density of the hyperparameters from the training set. The full
predictive posterior probability density for the new SN s̃ is the
previous expression multiplied by the training posterior density
P (µψ ,Σψ , τA, αR|D,Z) and integrated over the probability
of the hyperparameters µψ ,Σψ , τA, αR . The marginal predic-
tive posterior density of the new SN’s distance modulus μ̃s ,

P (μ̃s | D̃s,D,Z), is obtained by integrating this over the re-

maining parameters, φ̃s, Ã
s
H , R̃s

V .

2.3. Representation as a Directed Acyclic Graph

We have constructed the posterior density of all individual
parameters and population-level hyperparameters conditioned
on the observed data set of multiband SN Ia light curves. This
was done by layering relationships of conditional probability.
All hierarchical joint probability densities of data and param-
eters can be represented in terms of a probabilistic graphical
model known as a directed acyclic graph. The graph consists
of nodes representing parameters and data connected by arrows
that represent probabilistic dependences. It obeys the restriction
that there are no directed cycles, i.e., it is impossible to move
from any node along the arrows and return to the same node.
The acyclic requirement ensures that inference from the poste-
rior density contains no loops of circular logic. It is useful to
represent complex inference problems, involving many poten-
tial sources of randomness with an equivalent directed acyclic
graphical model. Although all the information about the model
and data is expressed by writing the joint probability density
explicitly, probabilistic graphical models serve as a useful vi-
sual representation of the structure of the hierarchical model
and their interface with data. Formal graphical models have not
been used before in SN Ia inference, and they are not prevalent
in astronomy, so we provide a basic introduction below. Further
background and theory of graphical models can be found in
Bishop (2006), Jensen (2001), and Pearl (1988).

The directed graph is constructed as follows. Each param-
eter or datum corresponds to a node (or vertex). Conditional
relationships between nodes are encoded using directed links
or arrows (edges). Hence the joint probability of two variables
P (x, y) = P (x)P (y|x) is represented by x → y. For obvious
reasons, the parameter x is termed the parent and y is termed the
child. More generally, in a high-dimensional problem, if there
exists a directed path of any length between node x and another
node y, then y is a descendant of x. The joint probability distribu-
tion over N random variables θi represented by a directed graph
can be written as the product of the conditional probabilities
(the factorization):

P ({θi}) =

N
∏

i=1

P (θi |{Parents of θi}). (20)
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Figure 1. Directed acyclic graph for hierarchical Bayesian inference from a
training set of SN Ia light curves. This is a graphical representation of the
joint distribution of unknown parameters and observations for a training set
of N SNe Ia. Each parameter is represented by a node, and the links between
nodes indicate relationships of the conditional probability. The variables in
the far left column are the hyperparameters, which describe the population
probability distribution of SN characteristics, and the population distribution of
extinction values. The variables in the middle left column describe the distances,
extinctions, and absolute light curves of individual SNe. The variables in the
middle right column are the observable parameters that describe the apparent
light curves of individual SNe Ia. The final column contains the observations
of the redshifts and multiband light curves of individual SN Ia. The open nodes
describe unknown and hidden parameters, whereas the shaded nodes describe
observed values that are conditioned upon in the posterior density.

If a parameter is observed (and thus conditioned on), its node
is shaded. If the parameter is unknown and hidden, it is left
open. The graph clearly distinguishes between the observed
data and the hidden variables that are inferred. Graphical
models are most useful in inference problems involving many
potentially interacting components or sources of randomness.
The complexity of the problem is reflected in the connectedness
of the graph. The links between the nodes encode statements of
conditional independence (Appendix A).

2.3.1. Directed Graph for Model Training

The directed graph corresponding to the global posterior
density conditioned on the training set D of N SNe Ia is shown
in Figure 1. The pathways from the roots to the data can be
understood as a generative model for a data set of SN Ia light
curves. At the highest hierarchical level (far left) the population
distributions for SNe Ia and dust extinction are described by
unknown hyperparameters µψ ,Σψ , and τA. At the next level,
each SN s draws intrinsic light curves ψ s and extinction values
As from these populations as independently and identically
distributed random samples. These hidden parameters combine
with the SN distance modulus μs to produce the observable light
curve φs , which is sampled with measurement noise to produce
the photometric light-curve data Ds . In addition, the (hidden)
distance modulus is associated with a redshift zs , observed with
both measurement noise and peculiar velocity uncertainty. For
a sample of SN Ia light curves, this process is replicated NSN

times. Our goal is to compute the joint posterior density of all
the open nodes conditioned on the data in the shaded nodes.

The conditional independence properties of the graph and
model imply that, although the individual parameters of one
SN are conditionally independent from those of a different SN,

given the population hyperparameters, they are not marginally
independent. The hidden hyperparameters are unknown a priori;
they must be learned from the data jointly with the individual SN
parameters. Thus, the full graph does not factor into independent
NSN subgraphs. We must condition the whole graph and the
global joint density on a database of many SN Ia light curves
simultaneously rather than on each SN individually.

Figure 1 shows that the SN Ia population hyperparameters
µψ ,Σψ are conditionally independent of every other parameters
and the datum in the graph, given the intrinsic SN parameters
{ψ s}: P (µψ ,Σψ | ·,D,Z, {ψ s}) = P (µψ ,Σψ |{ψ s}). Here we
use (·) to indicate all the other parameters in the global joint
density that have not been denoted explicitly. Similarly, given
all the extinction values of the SNe, {As}, the extinction
population exponential scale is conditionally independent of
all other parameters (and data), so that P (τA| ·,D,Z, {As}) =
P (τA| {As}).

The graph also shows that ψ s , μs and As are conditionally
dependent in the posterior distribution, because their descendant
Ds is observed, even though they are a priori independent ran-
dom variables. This dependence reflects the tradeoffs involved
in explaining the observed light curves as a combination of
random fluctuations due to dust, intrinsic randomness of the
absolute light curves, and distance uncertainties attributed to
peculiar velocities. The Bayesian approach is not to pick out
just one possible combination of the separate factors, but to
consider the probability distribution over the whole ensemble
of hypotheses.

Another consequence of this conditional dependence is that
there are unblocked paths between the SN Ia population hyper-
parameters, µψ and Σψ , and the dust extinction hyperparameter
τA. These paths pass through the conditionally dependent pa-
rameters As , ψ s , and φs for each SN. Thus, the population
hyperparameters are also conditionally dependent. This implies
that posterior inferences of µψ ,Σψ and those of τA cannot be
separated. That is why we take the global approach, conditioning
the global posterior density on the entire data set simultaneously
and exploring the complete joint parameter space.

The conditional independence structure implied by the
graph depends neither on the choices of distributions made in
Section 2.2, nor on the particular functional light-curve model
that is assumed. We depicted the directed graph for inference
with fixed RV . If we wish to learn about RV , it would become a
random variable with a population distribution. Hence the graph
would include nodes for each Rs

V and a node for the hyperpa-
rameters αR , with the appropriate links.

2.3.2. Directed Graph for Prediction

The directed graph for the prediction task using data from a
new SN is presented in Figure 2. We depict the entire training
set of SNe on a plate which is understood to represent NSN

different instances. The quantities relevant to the prediction
SN are labeled with tildes. The essential difference between
training and prediction is that in the training set we use distance
information from the redshift, whereas in prediction we do not.
The task of prediction is to infer the joint probability density of

the hidden quantities μ̃, Ã, and ψ̃ by fitting the light-curve data

D̃ described by the observable parameters φ̃ plus measurement
noise. The unblocked paths between the training set and the
prediction set depict how information from the training set
constrains the population hyperparameters (i.e., by informing
the posterior density), which in turn pass that information (and
its uncertainty) onto the prediction variables. The marginal
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Ã

˜

˜
D̃

Prediction

µs

ψ

ψ

ψ, ψ

τ

φ

φ

Figure 2. Directed acyclic graph for training and prediction with Type Ia SN
light curves. The rectangle depicts a plate representing the NSN SNe Ia in the
training set. The tilde parameters describe a new SN for which we seek to predict
the distance modulus. The open nodes describe unknown and hidden parameters,
whereas the shaded nodes describe observed values that are conditioned upon
in the predictive posterior density.

predictive posterior density for the new SN’s distance modulus is
obtained by integrating over the uncertainties in the population

hyperparameters µψ , Σψ , and τA, and over the extinction Ã,

magnitudes, and the shape parameters, φ̃.

2.4. Statistical Computation of the Global Posterior Density

The global posterior probability density of all parameters and
hyperparameters of the full model conditioned on the training
set database of SN Ia observations, Equation (18), is a function
of many variables. Consider a minimal model that does not
account for dust extinction. We suppose that it has one shape
parameter θ , and models light curves in three filters. There are
four observable parameters, plus one for the distance modulus,
for each SN. In addition, the hyperparameters µψ and Σψ

contain four plus ten variables (since the covariance matrix
of the absolute magnitudes and light-curve shape parameters
must be symmetric). Suppose a minimal training set contained
observations of 40 SN Ia light curves in the three filters. The
total number of variables, which is the dimensionality of the
space over which the global posterior density is defined, is
214. Clearly, mapping the joint posterior on a rectangular
multidimensional grid is intractable. Even a relatively crude
grid, with only five points per dimension, would require more
than 10149 evaluations of the posterior density.

To address the complexities of hierarchical inference with
realistic data sets, it would be practically useful to construct a
statistical inference approach without appealing to the asymp-
totic results from large-sample theory. The only way to account
for all uncertainties in the model parameters consistently is to
compute the full hierarchical joint density, Equation (18), and
estimate all individual parameters and hyperparameters simul-
taneously, conditioned on the entire SN Ia database. Marginal
estimates of parameters are obtained by integration over non-
Gaussian uncertainties. However, the obstacles to this approach
are two-fold: (1) we must compute the global posterior density
in a parameter space with hundreds of dimensions, and (2) the

marginal estimates of single parameters require integration of
the posterior density over hundreds of other parameters.

We tackle both these problems by using stochastic simulation
techniques to sample the full parameter space efficiently. In
this section we describe the construction and operation of
an MCMC algorithm that takes advantage of the conditional
independence structure evident in the directed acyclic graph
(Figure 1) of Section 2.3 to sample the global posterior density,
Equation (18).

2.4.1. Metropolis Hastings and the Gibbs Sampler

MCMC is a general and well established technique for
statistical analysis and is well suited for Bayesian computations.
It is employed, for example, in CMB and joint cosmology
analyses (Lewis & Bridle 2002; Tegmark et al. 2004), for
fitting light-curve models (Mandel & Agol 2002) to planetary
transit observations (Holman et al. 2006), and for radial velocity
analysis of extrasolar planetary systems (Ford 2005). Since
MCMC has not been used previously in SN Ia light-curve
inference methods, we briefly review some basic elements of
MCMC to establish terminology. More thorough treatments of
MCMC methods and theory can be found elsewhere (Gilks et al.
1995; Liu 2002; Gelman et al. 2003).

The purpose of an MCMC algorithm is to generate a Markov
chain stochastic process that is irreducible and ergodic, and
converges in probability to a stationary distribution that is the
same as the target distribution (the posterior density). Upon
convergence, the probability that the chain is in a particular state
is equal to the posterior density of the state, and the proportion
of time the chain spends in a given region of parameter space is
proportional to the posterior probability of that region. Hence,
MCMC can be used to generate many samples from an arbitrary,
complex probability distribution (which cannot be sampled from
directly), and those samples can be used to represent the target
distribution and compute characteristics of the distribution, such
as means, modes, intervals, and integrals.

The cornerstone of many MCMC implementations is the
Metropolis–Hastings algorithm. Suppose our target posterior
probability density is P (θ |D) for a vector of generic parameters
θ , and can be computed up to a normalization constant. The
MCMC algorithm generates a sequence of samples. Let θ t

denote the tth sample. We start with some initial estimate θ t=1,
and generate subsequent values of the chain as follows. We select
a proposal (or jumping) probability density Q(θ∗|θ ), giving the
probability of proposing θ∗ for the next value given that the
current state is θ . This proposal density is chosen so that it can
be directly sampled (e.g., a Gaussian). If the current state is θ t ,
then we generate a proposal θ∗ from Q(θ∗|θ t ). We then compute
the Metropolis–Hastings ratio:

r =
P (θ∗|D)/Q(θ∗|θ t )

P (θ |D)/Q(θ t |θ∗)
. (21)

The proposal θ∗ is accepted (θ t+1 = θ∗) with probability
min(r, 1). If it is not accepted, the proposal is rejected and the

next value of the chain is the same as the current value θ t+1 = θ t .
In the next iteration a new proposal is generated from Q(θ∗|θ t+1)
and the algorithm repeats.

A special case of Metropolis–Hastings is the random-walk
Metropolis algorithm in which the proposal distribution is
symmetric Q(θ∗|θ) = Q(θ |θ∗) and the proposal is centered
around the current position, e.g., θ∗ ∼ N (θ , σ 2 I). The Gibbs
sampling is another very useful case of the Metropolis–Hastings
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rule and proceeds by simply drawing from the conditional
probability of each block of parameters in turn, conditioning
on the others as fixed, until all the parameters have been
sampled. We can employ Gibbs sampling in our hierarchical
SN Ia framework because the model is built up from conditional
relations, and many of the conditional posterior distributions can
be directly sampled. Our BayeSN algorithm uses a combination
of these strategies to generate efficient MCMC chains.

2.4.2. The BayeSN Algorithm—Training

We describe the BayeSN MCMC algorithm in the context of
computing the global posterior in Equation (18) for fixed RV .
Let S = ({φs, μs, A

s
H },µψ ,Σψ , τA) be a vector containing all

the current values of the parameters and hyperparameters in the
model (the “state” or position). BayeSN utilizes a sequential
Gibbs sampling structure that updates blocks of parameters
in S. After a full scan (after all parameters have been given
a chance to update), the current state of S is recorded as an
MCMC sample. To begin a chain we populate S with a set of
initial positions. The BayeSN MCMC algorithm works in two
stages: (a) sampling the population hyperparameters conditional
on the individual parameters, and (b) sampling the individual
SN parameters conditional on the population hyperparameters.
An outline of the Gibbs scan follows; more details are presented
in Appendices B and C.

1. Update the SN Ia population hyperparameters, µψ ,Σψ ,
conditional on the current values {ψ s}, obtained from the
current parameters: ψ s = φs − vμs − As . This is done
by Gibbs sampling directly from the conditional posterior
density P (µψ ,Σψ | ·,D,Z) = P (µψ ,Σψ | {ψ s}).

2. Gibbs sample the extinction population hyperparameter τA

from the conditional density P (τA|·,D,Z) = P (τA|{As
H }).

Next we update the individual SN parameters, conditional
on the population hyperparameters we have just sampled.
The individual parameters of one SN are conditionally inde-
pendent of those of another SN, given the hyperparameters.
We cycle s through the list of SNe Ia, and for each SN s
we repeat steps 3a to 3c to update observable parameters

for each passband F. Let φ−F0

s , φ−L,F
s , and φ−NL,F

s denote
all the observable parameters in φs other than the apparent
magnitude, linear shape parameters, and nonlinear shape
parameters in F, respectively.

3a. Gibbs sample the apparent magnitude F0,s by drawing

directly from the conditional posterior P (F0,s | φ
−F0

s , μs, As;
µψ ,Σψ , τA,Ds, zs).

3b. Gibbs sample the linear shape parameters θF
L,s in fil-

ter F by drawing directly from the conditional density,

P (θF
L,s | φ

−L,F
s , μs, As;µψ ,Σψ , τA,Ds, zs).

3c. Random-walk Metropolis update the nonlinear shape

parameters in band F, θF
NL,s , using a jumping ker-

nel Σ
NL,F
jump,s to move through the conditional density

P (θF
NL,s | φ

−NL,F
s , μs, As;µψ ,Σψ ,Ds, zs).

3d. Update the distance modulus μs using Metropolis–
Hastings. We propose a new μs drawn from a Gaus-
sian approximation to the conditional posterior density
P (μs | φs, As;µψ ,Σψ , τA,Ds,Zs), and use Metropolis–
Hastings rejection to correct for the approximation.

3e. Update the extinction As
H using a random-walk Metropo-

lis step along the conditional density P (As
H | φs, μs;µψ ,

Σψ , τA), with a jumping scale σ 2
jump,s .

4. Steps 3a to 3e are repeated for all SNe Ia in the data set. After
all parameters have been updated, we record the current
state of S as an MCMC sample, and return to step 1.
After we have iterated n times we finish with a Markov
chain S = (S1, . . .St , . . .Sn).

2.4.3. BayeSN Algorithm—Prediction

The prediction mode of BayeSN follows essentially the same
algorithm. We assume that the prediction set is sampled from
the same population as the training set. This could be false,
for example, if the SNe Ia in the prediction set had extremely
different observed light curves. This would also be false if either
observational selection effects or progenitor evolution caused a
distant prediction set to sample a different portion of the SN
Ia population, or a physically different population, that is not
represented in the nearby training set. Training and prediction
actually can be conducted simultaneously in a single run of
the Gibbs sampler. The main distinction is we do not condition
on the redshifts of the SNe in the prediction set, i.e., the factor
P (μs |zs) would be replaced by P (μs) ∝ 1 in step 3d above. With
this change, the BayeSN algorithm will generate inferences
on the graphical model in Figure 2, for both the training and
prediction set SNe simultaneously.

In many cases, however, we may wish to train the model on
the training set SNe once, and store the posterior inferences of
the population hyperparameters. To make predictions for new
SNe, we would recall this information and repeatedly apply it to
the new data, without updating the training posterior inferences.
We can do this by making two changes to the above algorithm.
The goal is to generate a Markov chain SP that samples the
predictive posterior density. We assume that we have already
done a training MCMC and have a chain S that samples the
training posterior density conditioned on the training set D,Z .
Steps 1, 2 and 3d change to:

1P & 2P. Draw the population hyperparameters µψ ,
Σψ , and τA from the marginal posterior training density
P (µψ ,Σψ , τA|D,Z). This is easily done by picking a random
sample from the training chain S and using the values of the
hyperparameters in that sample.

3dP. Gibbs sample the predictive μs from P (μs | φs, As;µψ ,
Σψ , τA,D,Z), omitting the factor P (μs |zs) since we do not
condition on the redshift for prediction SN s.

With these steps the algorithm is run to build up a Markov
chain SP of samples from the predictive posterior density.

3. CONSTRUCTING TEMPLATE MODELS FOR
NEAR-INFRARED SN Ia LIGHT CURVES

To complete the statistical model we must specify functional

models for the normalized light curves, lF (t; θF ), such that

F0 + lF (t; θF ) describes the apparent light curve. The function

lF (t; θF ) captures variations in the light-curve shapes in the
observed filters. There is significant freedom in defining these
functions and they will generally depend on the application. For
the remainder of this paper, we apply the hierarchical model
described above to the SN Ia data in the JHKs NIR bands. In
this section, we describe our methods for generating empirical
template light-curve models in the JHKs bands.

In the H and Ks bands, we model the light curves using
maximum likelihood templates that assume the normalized light
curves of all the SNe are identical, at least between −10 and
20 days from maximum light in B. In the J-band, where the
PAIRITEL photometry is better, we construct a light-curve
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model that captures the shape variations, specifically the timing
and amplitudes of the initial decline, trough, second rise, second
peak, and the subsequent decline. This Flexible Light-curve
Infrared Template (FLIRT) model is constructed over the range
−10 to 60 days past maximum light in B and depends on four
light curve shape parameters to describe the features of the J-
band light curve.

3.1. Maximum Likelihood Light-curve Templates

The simplest possible light-curve model assumes that the
normalized light curves in filter F of all SNe are identical.
The normalized light-curve data from all SNe are sampled
with noise from an underlying light-curve function of the rest-
frame phase lF (t). A strategy for describing this function is to
construct a template that is defined by a set of knots { pF , τ }
and an interpolation method. The knots are defined such that
lF (t = τi) = pF

i , and lF (t) = s(t; τ ) · pF , where the vector
s(t; τ ) is defined by an interpolation method that is linear in
the knot values pF . We choose a natural cubic spline rule,
which ensures smoothness in the template up to two continuous
derivatives (Press et al. 2007). It is convenient to choose the τi

to lie on a regular grid with spacing ∆τ such that one of the
τj = 0 coincides with the reference time (TBmax), forcing the

corresponding pF
j = 0, so that lF (t = τj = 0) = pF

j = 0 for
the normalized light curve.

The NF
s photometric data points from SN s are sampled

with Gaussian noise from the model template plus a constant
apparent magnitude offset F s

0 . The joint posterior of the apparent

magnitude offsets and the template for the data sets DF
s

consisting of measurements from NSN SNe in one band F is
proportional to the likelihood:

P
({

F s
0

}

, pF |
{

D
F
s

})

∝

NSN
∏

s=1

N
(

mF
s |1F s

0 + S pF , WF
s

)

, (22)

where S is a matrix with the ith row equal to s(t si ; τ ). The
joint maximum likelihood estimates (MLEs) of the apparent

magnitudes {F̂ s
0 } and the template p̂

F
is obtained by maximizing

the log joint likelihood function subject to the linear constraint
f (0) = pj = 0. This can be accomplished using the method of
Lagrange multipliers. The quadratic optimization problem can
be solved easily using non-iterative linear methods and yields a
unique solution. The maximum likelihood template light-curve

model produced this way is defined as lF (t) = s(t; τ ) · p̂
F

for
band F. The H and Ks band templates are depicted in Figure 3

and the values p̂
F

are listed in Table 1.

3.2. Flexible Light-curve Infrared Template

3.2.1. Definition

Although the J-band light curves are very similar in shape
near the peak, past 10 days after Bmax, there are variations in
the time and depth of the trough and the time and height of the
second peak. This behavior may be explained by the changes in
the ionization states of iron in the SN atmosphere (Kasen 2006).
We describe an empirical model for J-band light curves that
transform with simple scalings to mimic the individual decline
timescales, trough depths, second rise timescales, and second-
peak amplitudes of each SN light curve. These scalings are
suggested by an inspection of the light curves.

We posit a J-band fiducial normalized light curve f (λ)
that can be transformed to accommodate the variations in
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Figure 3. Maximum likelihood templates (gray curves) with the H and Ks band
data. The H and Ks normalized light curves of different SNe are very similar
between −10 and 20 days.

Table 1
JHKs FLIRT and Max. Likelihood Templates

T − T0 J − J0 H − H0 Ks − Ks0

−10 0.74 0.34 0.48

−5 −0.11 −0.18 0.03

0 0.00 0.00 0.00

5 0.44 0.09 0.22

10 1.36 0.21 0.40

15 1.63 0.08 0.30

20 1.44 −0.13 0.18

25 1.15 . . . . . .

30 0.91 . . . . . .

35 1.33 . . . . . .

40 1.82 . . . . . .

45 2.23 . . . . . .

50 2.60 . . . . . .

55 2.91 . . . . . .

60 3.29 . . . . . .

Notes.

All templates are interpolated using natural cubic splines.

characteristic timescales and amplitudes observed in individual
J-band light curves. Here λ is a feature timescale describing the
timings of features in the fiducial light curve. We can map this
timescale to the chronological timescale t of a particular SN by
introducing a time-warping function that allows the pre-trough
phase to be scaled independently from the post-trough phase.
The rate at which the feature time maps to the chronological
time is

dt

dλ
=

{

α, if λ � λt

β, if λ > λt ,
(23)

where the parameters α, β are positive constants and of order
one and λt is the feature time of the trough in the fiducial light
curve. The solution is t(λ) = α min(λ, λt ) + β(λ − λt )

+ where
u+ = max(u, 0). This function can be inverted as

λ(t) =

{

α−1t, if t � αλt

β−1t + λt (1 − α/β), if t > αλt .
(24)

These equations represent simple transformations between the
chronological and feature time axes, or the “horizontal” dimen-
sions.
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Even after adjusting for variations in the two timescales, there
are still variations in the depth of the trough and the amplitude
of the second peak. This suggests that an individual normalized
light curve is related to the standard light curve f (λ) as

lJ (t;α, β, d, r)

=

{

d[f (λ(t)) − f0], λ(t) � λt

d[f (λt ) − f0] + r[f (λ(t)) − f (λt )], λ(t) > λt ,
(25)

where f0 = f (0) ≡ 0, and the parameters d and r are positive
constants of order 1. The decline parameter d controls the
depth of the trough by scaling the decline from maximum light,
“vertically” in the magnitude dimension. A larger d will produce
a deeper trough and a faster decline rate (in magnitudes per day).
At the trough the magnitude is J (Ttr ) = J0 + d[f (λt ) − f0]
and the rise parameter r controls the rise in flux toward the
second maximum relative to the trough magnitude. A larger r
will produce a higher second peak and a faster rise rate. This
parameterization is constructed to preserve continuity in the
light curve even as different phases are scaled in amplitude. This
quantitative parameterization of two constants (α, β) to control
timescales and two constants (d, r) to control amplitudes in two
different regimes of the light curve is sufficient to describe the
variation in J-band light curves. This is a simple transformation
from the fiducial light curve to the realized light curves of
individual SNe.

After the fiducial light curve f (λ) is solved as a continuous
function of feature time λ, one can easily measure any key
features, such as the feature time of trough minimum (λt ),
the feature time of the second peak (λp2), and the normalized
magnitudes at these points, f (λt ) and f (λp2). For any particular
SN’s J-band light curve, we can measure these features using
the solved parameters. The chronological time of the trough
is Ttr = t(λt ) = αλt , the trough-to-second-peak time is
T2 −Ttr = β(λp2 −λt ), the depth of the trough is J (Ttr) − J0 =
d[f (λt )−f0] and the height of the second peak above the trough
is J (T2) − J (Ttr) = r[f (λp2) − f (λt )]. The parameters of the
model can be directly related to the observable features of light
curves.

3.2.2. Maximum Likelihood Construction of the FLIRT model

The FLIRT model described above is completely specified by
the fiducial normalized light-curve function f (λ). We represent
this function in the same way as the Maximum Likelihood light-
curve Template (Section 3.1). A set of knots ( p, τ ) is defined
on a regular grid, such that f (λ) = s(λ; τ ) · p, where the vector
s(λ; τ ) is fully specified by natural cubic spline interpolation.
Once p is known, an individual SN light curve can be fitted
with the FLIRT model by means of nonlinear maximization of
the likelihood to get point estimates of the light-curve shape

parameters θJ
s = (ds, rs, αs, βs) and apparent magnitude F s

0 .
All that is now required is an estimate of the fiducial template
p. The joint posterior over the SN parameters and the fiducial
template is proportional to the likelihood function

P
({

J s
0 , θJ

s

}

, p|
{

D
J
s

})

∝

NSN
∏

s=1

N
(

mJ
s | J s

0 + S̃
(

θJ
s

)

p, WF
s

)

,

(26)

where the matrix S̃(θJ
s ) is derived from the defining

Equations (24) and (25) and the interpolation method s(λ; τ ). If
{

J s
0 , θJ

s

}

are estimated and fixed, then the conditional maximiza-

tion of log P ( p | {J s
0 , θJ

s }, {DJ
s }) with respect to the template p
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Figure 4. FLIRT model for J-band light-curve shape variations. In each panel,
the fiducial FLIR template with parameters (d/α, r/β, α, β) = (1, 1, 1, 1) is
shown as the middle curve along with models with one parameter varied while
keeping the others fixed. For example, the first panel depicts (0.7, 1, 1, 1) and
(1.3, 1, 1, 1). The parameters correspond to the initial decline rate, the second
rise rate, the time from the peak to the trough and the time from the trough to
the second peak.

subject to the constraint that f (λ = 0) = pj = 0 is a linear
problem.

It is straightforward to solve for the FLIRT model template
iteratively. We select a subset of SN light curves that are
well sampled. First we pool the photometric data together
and estimate the Maximum Likelihood light-curve Template
p̂0 (Section 3.1) as a first approximation. Then we fit the
FLIRT model using this template to each SN light curve

by conditional maximization of P (J s
0 , θJ

s , | p̂0, {D
J }) to get

estimates Ĵ s
0 , θ̂

J

s . Next we fix the SN parameters and update the
fiducial template by constrained conditional maximization of

P ( p | {Ĵ s
0 , θ̂

J

s }, {DJ
s }) to get a new template p̂1. We iterate until

the maximum likelihood template p̂ converges. The template
is rescaled so that the sample median values of the fitted SN
shape parameters (d, r, α, β) are equal to 1 (so that the fiducial
template model, which has shape parameters equal to 1, reflects
a typical light curve).

In practice, it is convenient to measure the relative decline
rates d/α and the relative rise rates r/β rather than the depths
and heights directly. The light-curve shape parameters are then

θJ = (d/α, r/β, α, β). The maximum likelihood J-band FLIRT
fiducial template p̂J is listed in Table 1, and depicted in
Figure 4, which also shows the effects of varying each of the
parameters. The trough of the fiducial template is located at
(λt , f (λt )) = (14.43 days, 1.64 mag) and the second peak is
(λp2, f (λp2)) = (29.55 days, 0.90 mag).

In Figure 5 we display the J-band FLIRT fiducial light curve,
along with the J-band photometry for the 39 SNe listed in
Table 2, shown in gray. We have also transformed each SN
light-curve data set using the fitted light-curve parameters in
Table 2 to the same scales as the fiducial light curve by inverting
Equation (25). The dramatic reduction of dispersion from 5 to
60 days shows that the FLIRT model successfully captures the
shape variations in the J-band SN Ia light curves. The double-
peaked light-curve structure is also seen in the H, K, and I bands.
In the future, it may be worth exploring FLIRT models in these
bands.
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Table 2
Posterior Summary of SN Ia JHKs Light-Curve Parameters

SN TBmax
a J0 H0 Ks0 d/α r/β α β References b

(MJD) (mag) (mag) (mag)

SN1998bu 50952.40 11.75 (0.01) 11.87 (0.01) 11.58 (0.01) 0.88 (0.03) 0.94 (0.08) 1.12 (0.02) 1.02 (0.13) J99,H00

SN1999cl 51342.20 12.94 (0.01) 13.01 (0.01) 12.66 (0.01) 1.10 (0.03) 1.12 (0.08) 0.76 (0.02) 1.05 (0.13) K00

SN1999cp 51363.20 14.66 (0.02) 14.93 (0.03) 14.64 (0.07) 0.85 (0.07) 0.86 (0.08) 1.15 (0.06) 1.06 (0.26) K00

SN1999ee 51469.30 14.96 (0.01) 15.19 (0.01) 14.94 (0.13) 0.80 (0.01) 0.85 (0.02) 1.20 (0.01) 1.08 (0.01) K04b

SN1999ek 51481.80 16.30 (0.01) 16.42 (0.01) 16.27 (0.09) 0.97 (0.02) 1.09 (0.07) 1.00 (0.02) 0.97 (0.26) K04c

SN1999gp 51550.10 16.95 (0.17) 17.17 (0.12) 16.75 (0.12) 1.00 (0.18) 0.84 (0.11) 0.98 (0.17) 1.10 (0.27) K01

SN2000E 51577.20 13.58 (0.01) 13.90 (0.02) 13.49 (0.03) 0.93 (0.02) 0.88 (0.04) 1.09 (0.01) 1.16 (0.03) V03

SN2000bh 51636.00 16.53 (0.03) 16.88 (0.01) 16.69 (0.02) 1.03 (0.03) 0.97 (0.02) 1.06 (0.01) 1.09 (0.01) K04b

SN2000bk 51647.00 17.15 (0.04) 17.43 (0.01) 17.52 (0.22) 0.84 (0.04) 1.23 (0.05) 1.04 (0.02) 0.58 (0.01) K01

SN2000ca 51666.20 16.53 (0.01) 16.78 (0.02) 16.62 (0.20) 0.83 (0.02) 0.83 (0.09) 1.14 (0.03) 0.97 (0.25) K04b

SN2000ce 51667.30 15.98 (0.12) 16.28 (0.02) 15.87 (0.03) 0.94 (0.11) 0.89 (0.07) 1.06 (0.04) 1.05 (0.25) K01

SN2001ba 52034.20 17.19 (0.01) 17.51 (0.02) 17.27 (0.02) 1.03 (0.02) 1.00 (0.04) 1.06 (0.02) 1.10 (0.03) K04b

SN2001bt 52062.90 15.55 (0.01) 15.82 (0.02) 15.51 (0.02) 1.03 (0.02) 0.96 (0.03) 0.99 (0.02) 0.96 (0.02) K04c

SN2001cn 52071.00 15.64 (0.03) 15.91 (0.02) 15.61 (0.05) 0.96 (0.03) 1.01 (0.03) 1.09 (0.02) 0.98 (0.02) K04c

SN2001cz 52103.40 15.53 (0.03) 15.91 (0.05) 15.63 (0.06) 0.96 (0.04) 0.89 (0.06) 1.16 (0.04) 1.08 (0.04) K04c

SN2001el 52182.10 13.03 (0.01) 13.11 (0.01) 12.86 (0.02) 0.75 (0.02) 0.93 (0.01) 1.14 (0.01) 0.88 (0.01) K03

SN2002bo 52356.00 13.78 (0.02) 14.08 (0.01) 13.99 (0.02) 0.90 (0.03) 0.92 (0.03) 1.02 (0.02) 0.97 (0.02) K04c

SN2002dj 52450.60 14.68 (0.02) 14.91 (0.01) 14.64 (0.01) 0.86 (0.02) 0.88 (0.04) 1.13 (0.02) 0.92 (0.02) P08

SN2003cg 52729.10 13.71 (0.04) 13.92 (0.01) 13.45 (0.01) 1.04 (0.04) 0.93 (0.04) 0.95 (0.04) 1.12 (0.03) ER06

SN2003du 52765.90 14.29 (0.02) 14.66 (0.02) 14.35 (0.01) 0.95 (0.02) 0.96 (0.09) 1.20 (0.02) 1.04 (0.27) St07

SN2004S 53038.70 14.82 (0.02) 15.00 (0.01) 14.71 (0.02) 0.70 (0.01) 0.85 (0.04) 1.32 (0.03) 0.83 (0.02) K07

SN2004eo 53278.70 15.73 (0.04) 15.97 (0.04) 15.76 (0.08) 1.09 (0.09) 1.02 (0.04) 0.87 (0.05) 0.94 (0.05) Pa07

SN2005ao 53442.00 17.98 (0.07) 18.13 (0.01) 18.34 (0.02) 0.73 (0.17) 1.06 (0.12) 1.07 (0.14) 0.88 (0.20) WV08

SN2005cf 53533.60 13.93 (0.01) 14.08 (0.01) 13.99 (0.01) 0.81 (0.02) 0.91 (0.05) 1.13 (0.02) 1.12 (0.17) WV08

SN2005ch 53536.00 17.03 (0.07) 17.28 (0.03) 17.07 (0.05) 1.10 (0.08) 1.05 (0.08) 1.00 (0.04) 0.99 (0.19) WV08

SN2005el 53646.10 15.60 (0.01) 15.82 (0.01) 15.59 (0.01) 1.13 (0.01) 1.01 (0.02) 0.87 (0.01) 0.86 (0.01) WV08

SN2005eq 53653.90 16.95 (0.01) 17.34 (0.02) 16.89 (0.03) 0.76 (0.02) 0.72 (0.03) 1.19 (0.02) 1.12 (0.02) WV08

SN2005iq 53687.10 17.60 (0.05) 17.79 (0.14) 17.52 (0.20) 1.06 (0.11) 1.03 (0.10) 0.92 (0.12) 1.04 (0.26) WV08

SN2005na 53740.50 16.66 (0.08) 17.12 (0.07) 16.85 (0.13) 0.99 (0.12) 0.89 (0.06) 0.89 (0.05) 1.21 (0.06) WV08

SN2006D 53756.70 14.49 (0.01) 14.70 (0.01) 14.69 (0.01) 1.05 (0.02) 1.10 (0.04) 0.98 (0.01) 0.79 (0.02) WV08

SN2006N 53760.60 15.69 (0.08) 15.97 (0.07) 15.81 (0.10) 1.11 (0.09) 1.10 (0.07) 0.87 (0.04) 0.93 (0.03) WV08

SN2006X 53785.50 13.04 (0.02) 13.08 (0.01) 12.78 (0.01) 0.91 (0.02) 0.95 (0.01) 0.97 (0.01) 1.09 (0.01) WV08

SN2006ac 53781.20 16.64 (0.07) 16.90 (0.09) 16.67 (0.09) 0.94 (0.12) 0.90 (0.08) 0.88 (0.09) 1.31 (0.19) WV08

SN2006ax 53826.70 15.87 (0.01) 16.37 (0.03) 16.13 (0.03) 1.08 (0.02) 1.06 (0.06) 1.12 (0.02) 1.03 (0.02) WV08

SN2006cp 53896.70 16.68 (0.04) 16.91 (0.05) 16.74 (0.08) 1.10 (0.06) 1.07 (0.07) 0.94 (0.08) 1.00 (0.26) WV08

SN2006gr 54014.00 17.94 (0.10) 18.00 (0.14) 17.63 (0.18) 0.91 (0.09) 1.02 (0.10) 1.03 (0.12) 1.01 (0.27) WV08

SN2006le 54048.00 16.35 (0.03) 16.64 (0.02) 16.22 (0.05) 0.90 (0.05) 0.96 (0.05) 1.16 (0.04) 1.14 (0.04) WV08

SN2006lf 54044.80 15.78 (0.03) 15.84 (0.04) 15.56 (0.05) 1.12 (0.07) 1.12 (0.08) 0.85 (0.05) 0.79 (0.05) WV08

SN2007cq 54280.00 16.50 (0.03) 17.01 (0.24) 16.80 (0.28) 0.96 (0.21) 0.89 (0.15) 0.97 (0.30) 1.10 (0.29) WV08

Notes.
a Time of maximum light in B: Julian Date −2400000. J0, H0,Ks0 are J, H, and Ks at TB max.
b Reference codes: WV08: Wood-Vasey et al. (2008, PAIRITEL photometry); J99: Jha et al. 1999; H00: Hernandez et al. 2000; K00: Krisciunas et al.

2000; K01: Krisciunas et al. 2001; V03: Valentini et al. 2003; K03: Krisciunas et al. 2003; K04b: Krisciunas et al. 2004b; K04c: Krisciunas et al. 2004c;

K07: Krisciunas et al. 2007; ER06: Elias-Rosa et al. 2006; Pa07: Pastorello et al. 2007; St07: Stanishev et al. 2007; P08: Pignata et al. 2008.

4. APPLICATION AND RESULTS

4.1. Nearby SN Ia NIR Light Curves

A comprehensive data set of nearby SN Ia light curves in the
near-infrared was compiled by WV08, including observations of
21 recent SNe with the PAIRITEL taken by the CfA Supernova
Group and observations of 23 SNe from the literature (Jha et al.
1999; Hernandez et al. 2000; Krisciunas et al. 2000; Di Paola
et al. 2002; Valentini et al. 2003; Krisciunas et al. 2001, 2003,
2004a, 2004b, 2007; Elias-Rosa et al. 2006, 2008; Pastorello
et al. 2007; Stanishev et al. 2007; Pignata et al. 2008). Of these,
three (SN 2005bl, SN 2005hk, and SN 2005ke) are omitted
because they are fast-declining, peculiar SNe with “dromedary”
H-band light curves that have only one peak, whereas most
H-band light curves are “bactrian,” having two peaks. We use

the remaining data set with two exceptions. The very late
J-band secondary maximum of SN 2002cv and its extreme
reddening and estimated optical extinction (AV > 8) (Elias-
Rosa et al. 2008) suggest that this light curve is unusual, so
we have omitted it from the analysis. We have also omitted
the PAIRITEL observations of SN 2005eu, because we judged
the JHKs image subtractions to be of poor quality. The final,
edited set of observations covers 39 SNe Ia. We have only
used photometric measurements with signal-to-noise ratio > 3.
Extensive studies of two SNe in this set, SN 2005cf and
SN 2006X, were presented by Wang et al. (2008, 2009).

To construct the H and Ks-band templates (Figure 3, Table 1)
we used all the light-curve observations from the data set. For
the J-band light curves we selected a subset of 16 well-sampled
light curves to generate the fiducial FLIRT template (Figure 4,
Table 1). This subset consisted of SN1998bu, SN 1999ee, SN
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Figure 5. J-band light-curve data (blue squares) exhibit significant shape
variation after the initial decline. After fitting for these variations using the
FLIRT model, the data were transformed to the fiducial frame and overplotted
(black dots) with the fiducial FLIR template light curve (black line). This
demonstrates that the FLIRT model successfully captures these light-curve shape
variations.

2001bt, SN 2001cn, SN 2001cz, SN 2002bo, SN 2005el, SN
2005eq, SN 2005na, SN 2006D, SN 2006N, SN 2006X, SN
2006ac, SN 2006ax, SN 2006le, and SN 2006lf.

All photometric data were K-corrected to the SN rest frame
by linearly interpolating the tables of Krisciunas et al. (2004b),
and registered to a common phase by subtracting from the
Julian Day the time of B-band maximum, TBmax, as determined
by the MLCS2k2 fits to the optical light curves observed by
the CfA Supernova Group (Hicken et al. 2009a). The phases
were corrected for time dilation using the heliocentric redshifts.
Recession velocities were corrected to the CMB+Virgo infall
rest frame, as described in WV08. Furthermore, a peculiar
velocity uncertainty σpec = 150 km s−1 (Radburn-Smith et al.
2004) was assumed. Luminosity distances were computed from
the redshifts assuming an LCDM model with ΩM = 0.27,
ΩΛ = 0.73 and a Hubble constant scale of h = 0.72 (Freedman
et al. 2001; Spergel et al. 2007). At the most distant end of
the sample at z ≈ 0.04, the relative difference between the
luminosity distances in LCDM and in an Einstein-de Sitter
universe is 2%.

4.2. JHKs Light-curve Model Specification

The light-curve models we construct for the JHKs , data set
consist of maximum likelihood templates for H and Ks between
−10 and 20 days (Section 3.1, Figure 3) and the J-band FLIRT
model between −10 and 60 days (Section 3.2, Figure 4) with
∆τ = 5 days. The H and Ks models have no light-curve shape

parameters, and the J-band FLIRT model has four: θH = ∅,

θKs = ∅, and θJ = (d/α, r/β, α, β). The multiband normalized
light-curve models as defined in Equation (2) are then fully
specified by

H (t) − H0 = lH0 (t) ≡ fH (t) = S(t; τ ) · p̂
H

, (27)

Ks(t) − Ks0 = l
Ks

0 (t) ≡ fKs
(t) = S(t; τ ) · p̂

Ks , (28)

J (t) − J0 = lJ
1 (t; θJ

NL) · θJ
L, (29)

where the J-band linear parameters are θJ
L = (d/α, r/β), the

nonlinear parameters are θJ
NL = (α, β), and the vector function

lJ
1 (t; θJ

NL) is determined by Equations (24) and (25).
In the notation of the hierarchical framework described in

Section 2, the observable or apparent parameters are φs =
(J0,H0,Ks0, d/α, r/β, α, β) for each SN s, and the intrinsic or
absolute parameters are ψ s = (MJ ,MH ,MKs

, d/α, r/β, α, β)
for each SN s. The population hyperparameters are µψ = E[ψ s]

and Σψ = Cov[ψ s,ψ
T
s ] with expectations with respect to the

SN Ia NIR light-curve population randomness.
Since dust extinction and reddening have small effect on the

NIR light curves in our sample, we omit the full modeling of the
multiband extinctions As and dust population characteristic τA.
The most optically reddened SNe in the sample (SN 1999cl,
2006X, and SN 2003cg) are also at low redshifts, where
the adopted velocity model gives them little weight in the
determinations of population means and covariances of the NIR
absolute magnitudes. Hence we set all As to zero and use the
one-population model for SN Ia NIR light-curve randomness
only. In Section 4.5 we estimate the potential effect of dust
on our posterior inferences. In the near future, we will use
the full two-population model with NIR and optical data for a
simultaneous hierarchical modeling of SN Ia light-curve shapes
and dust extinction.

After plugging the specified JHKs light-curve models and
parameter dependence into the hierarchical framework of
Section 2, we perform probabilistic inference using the BayeSN

algorithm of Section 2.4 to compute the joint posterior density
over all individual parameters for the 39 SNe and population
hyperparameters. There is a total of 347 parameters and hy-
perparameters in the statistical model. Initial positions for the
Markov chains were obtained by adding random noise to the
MLEs of the SN parameters obtained in Section 3. It is not
necessary to specify initial guesses for the hyperparameters. We
set the scale of the inverse Wishart hyperprior, Λ0 = ǫ0 I , by
choosing a small value ǫ0 = 10−4. We found that our inferences
were insensitive to ten-fold changes in ǫ0.

The BayeSN MCMC algorithm was run for five independent
chains with 2 × 104 samples each. The Gelman–Rubin (G-R)
statistic was computed for all parameters: the maximum value
was 1.03 and 99% had values less than 1.02, with the mean and
median values less than 1.005. Acceptable values of the G-R
statistic are typically less than 1.10 (Gelman et al. 2003). The
first 2000 samples of each of the chains were then discarded as
burn-in and the chains were concatenated for posterior analysis.
We found that our inferences were insensitive to the burn-in
cutoff if it was greater than ∼ 1000 samples.

4.3. Posterior Inferences

The MCMC results produce samples from the global posterior
density over all parameters and hyperparameters, Equation (18).
We summarize the posterior density by examining marginal
posterior densities over subsets of parameters. Inferences at the
level of individual SNe can be summarized by the probability
density P (φs, μs |D,Z) for each SN s. Inferences at the SN
Ia NIR population level are summarized by P (µψ ,Σψ |D,Z).
This can be further broken down into the marginal densities over
mean properties of absolute light curves P (µψ |D,Z), the prob-
ability over covariances between multiband absolute magni-
tudes P (Σ[(MJ ,MH ,MKs

), (MJ ,MH ,MKs
)]|D,Z), marginal

densities over the covariances in light-curve shape: P (Σ(θ , θ )),
and marginal posterior densities over covariances between
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Figure 6. JHKs light-curve data and model fits to SN 2006X. This is a very
well sampled light curve, and the fit to the light-curve model (black curves) is
excellent. The H and Ks bands are fit to the maximum likelihood templates, and
the J- band is fit to the FLIRT model. The data of this SN tightly constrain the
light-curve parameters.

light-curve shape and absolute magnitudes: P (Σ[(MJ ,MH ,
MKs

), θ ]|D,Z). These posterior densities are integrals over the
global posterior density and can all be computed easily and di-
rectly from the MCMC chain. We show example light-curve
data and model fits in Figures 6–8.

4.3.1. SN Ia JHKs Light Curves

The univariate marginal posterior median and standard de-
viations of the individual SN light-curve parameters φs =
(J0,H0,Ks0, d/α, r/β, α, β) for each of the 39 SNe are listed
in Table 2. The light-curve fits are excellent, especially in the J-
band, where the PAIRITEL photometry is the best. The MCMC
chains quickly find the region of parameter space near the peak
of the posterior probability distribution, especially if the data
tightly constrain the light-curve fits.

The SN light-curve data in the training set are not homo-
geneously well sampled. Some SNe, e.g., SN 2006X, have
extremely good sampling in JHKs from before maximum to
well past the secondary maximum. Such well-sampled, com-
plete data sets constrain the observable light-curve parameters
very well. Other SNe are sparsely sampled or have incomplete
coverage over the range of the model, for example, SN 1999gp,
SN 2007cq, SN 2005ao. Some SNe, for example, SN 1998bu,
are well sampled in the early part of the J-band light curve but
the measurements stop before the secondary maximum. Several
SNe in our sample (SN 1999ee, SN 2000bk, SN 2000ca, SN
2005iq, and SN 2007cq) have no Ks-band data.

In these cases the advantages of the Bayesian approach are
clear. Since we have defined a joint probability density over
all data and parameters (both of which are considered random
variables) in Equation (18), we have a probability distribution
over the parameters that are not well constrained by the indi-
vidual SN data because of missing observations. The Bayesian
computation yields sensible numerical estimates of the poorly
constrained parameters and their uncertainties using the joint
probability over the observed parameters, the population distri-
bution of individual SN parameters, and the uncertainty in the
hyperparameters of the population distribution, all conditioned
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Figure 7. JHKs light-curve data and model fits (black curves) to SN 2006cp.
The light-curve data are sparse and incomplete. The BayeSN method estimates
the J-band light curve where the data are missing using the information in the
population distribution of the set of SNe and its uncertainty. For example, the
correlation of the initial decline rate with the second rise rate provides some
information. Since the population of J-band light curves exhibits significant
late-time shape variations, the late-time model fit is very uncertain, as reflected
by the gray error tube spanning the 16% and 84% quantiles of the posterior
uncertainty in the light curve.

on the actual observed data and its uncertainty. For the very
well sampled, complete light curves, the posterior density over
SN light-curve parameters will be dominated by the informa-
tion from its own light-curve data. An example of this is SN
2006X, shown in Figure 6 along with the light-curve fits. For
sparse light curves, for example, SN 2006cp (Figure 7), some of
the parameters will be informed by the population distribution
constrained by the whole training set of SNe. In an intermedi-
ate case (e.g., SN 2005cf, Figure 8, an incomplete light curve),
a balance between the existing data, observed parameters, and
the population distribution of the poorly constrained parame-
ters is achieved, and an appropriate uncertainty is computed.
These computations are already handled automatically by our
sampling of the global posterior probability density.

4.3.2. NIR Absolute Magnitudes

A summary of posterior inferences of the SN Ia NIR light-
curve population hyperparameters is presented in Table 3. The
univariate expectation of the means µψ is shown along with
the standard deviations of the univariate marginal densities.
We list the modal values of the square root of the variances
σ 2

ψ , which are the diagonal values of the covariance matrix
Σψ , and the standard deviations of their univariate marginal
posterior probability densities. We also list the modal values
of the correlations ρ(·, ·) obtained from the off-diagonal terms
of the covariance Σψ after factoring out the variances. The
marginal modes are estimated from the histogram of MCMC
samples in each quantity. In addition, we list the tail probabilities
of each correlation coefficient, defined as

ptail =

{

P (ρ < 0), if mode(ρ) > 0,
P (ρ > 0), if mode(ρ) < 0.

(30)

The smaller the tail probability, the greater the evidence that the
correlation is different from zero, either positively or negatively.
The probability densities of correlation coefficients have support



No. 1, 2009 SN Ia NIR HIERARCHICAL BAYESIAN INFERENCE 643

Table 3
Summary of Posterior Inference: Population Hyperparameters

ψ i MJ MH MKs d/α r/β α β

μ(·) −18.25 (0.03) −18.01 (0.03) −18.25 (0.04) 0.95 (0.03) 0.97 (0.03) 1.04 (0.03) 1.01 (0.04)

σ (·) 0.17 (0.03) 0.11 (0.03) 0.19 (0.04) 0.15 (0.03) 0.13 (0.03) 0.15 (0.02) 0.22 (0.04)

ρ(MJ , ·) 1.00 0.73 (0.03) 0.41 (0.09) −0.14 (0.29) 0.52 (0.03) −0.07 (0.46) −0.28 (0.18)

ρ(MH , ·) 0.73 (0.03) 1.00 0.53 (0.04) −0.03 (0.47) 0.59 (0.03) 0.24 (0.20) −0.21 (0.35)

ρ(MKs , ·) 0.41 (0.09) 0.53 (0.04) 1.00 −0.16 (0.34) 0.76 (0.01) 0.07 (0.39) −0.48 (0.11)

ρ(d/α, ·) −0.14 (0.29) −0.03 (0.47) −0.16 (0.34) 1.00 0.55 (0.02) −0.77 (0.00) 0.07 (0.41)

ρ(r/β, ·) 0.52 (0.03) 0.59 (0.03) 0.76 (0.01) 0.55 (0.02) 1.00 −0.50 (0.02) −0.43 (0.07)

ρ(α, ·) −0.07 (0.46) 0.24 (0.20) 0.07 (0.39) −0.77 (0.00) −0.50 (0.02) 1.00 −0.04 (0.47)

ρ(β, ·) −0.28 (0.18) −0.21 (0.35) −0.48 (0.11) 0.07 (0.41) −0.43 (0.07) −0.04 (0.47) 1.00

Notes. Top: population means and variances of the absolute parameters. Values in the parentheses are the standard deviations of the

marginal posterior density in each parameter. The estimates of the σ (·) are modal values. Bottom: population correlation matrix for

the absolute parameters. Estimates of the correlations ρ(·, ·) are the modal values. The parentheses contain the tail probabilities as

described in Equation (30).
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Figure 8. JHKs light-curve data and model fits (black curves) to SN 2005cf.
The light-curve data are adequately sampled in the early part of the light curve
up to second rise, but ends before reaching the second peak and decline.
The BayeSN method estimates the second maximum and late-time decline
using a combination of the constraints imposed by the data and the population
distribution of the training set. For example, the final data point provides a
lower bound for the time of the second maximum. This makes the posterior
distribution of the β parameter non-Gaussian.

between −1 and 1 and are typically asymmetric. The probability
densities of variance parameters are also non-Gaussian, since
they are forced to be positive, and have fat tails toward higher
variance. This captures the intuition that for a finite sample with
fixed scatter, it is more difficult to discount the hypothesis that
it arose from a high- variance distribution rather than a low
variance one.

The population mean absolute magnitudes are μ(MJ ) =
−18.25 ± 0.03, μ(MH ) = −18.01 ± 0.03, and μ(MKs) =
−18.25 ± 0.04 mag (on the scale of h = 0.72), and the
population standard deviations are σ (MJ ) = 0.17 ± 0.03,
σ (MH ) = 0.11 ± 0.03, and σ (MKs) = 0.19 ± 0.04 mag. In
Figure 9, we show the bivariate joint posterior density of the
mean and variance for the absolute magnitude in each band, and
the bivariate modal values. The skews in the posterior densities
for the variances are visible. The absolute magnitude in the H-
band clearly has much less intrinsic dispersion than in the J-
and K-band and is the best constrained. We have used bivariate

−18.35 −18.15

0.05

0.1

0.15

0.2

0.25

0.3

σ 
 (

M
X
)

μ(M
J
)

J

μ(M
J
) = −18.26

σ (M
J
) = 0.17

−18.1 −17.9

μ(M
H

)

H

μ(M
H

) = −18.00

σ (M
H

) = 0.11

−18.35 −18.15

μ(M
Ks

)

K
s

μ(M
Ks

) = −18.24

σ (M
Ks

) = 0.18

Figure 9. Joint posterior probability densities in the population mean μ and
population variance σ 2 of the peak absolute magnitudes in each NIR band.
The crosses and the numbers in each panel denote the mode of the bivariate
probability density. The contours contain the 68% and 95% highest posterior
density regions. These estimates were obtained directly from the BayeSN

MCMC chain of the trained statistical model. The univariate marginal estimates
of the population variances are σ (MJ ) = 0.17 ± 0.03, σ (MH ) = 0.11 ± 0.03,
and σ (MKs ) = 0.19 ± 0.04.

kernel density estimation with the MCMC samples to compute
the 68% and 95% highest posterior density contours and the
mode, as shown in the figure.

Figure 10 shows the marginal posterior estimates of the
individual SN H and J absolute magnitudes (obtained from, e.g.,
P (J s

0 − μs |D,Z)) plotted with contours representing the 68%
and 95% probability contours of the bivariate population density
P (MJ ,MH | µψ ,Σψ ) estimated using the modal values of the
covariance matrix Σψ (Table 3). We also show the marginal
posterior density of the correlation coefficient for the pair of
absolute magnitudes.

We see that the absolute magnitudes in J and H are highly
correlated (ρ ≈ 0.73) with strong evidence for positive correla-
tion (P (ρ > 0) > 0.97). The data also suggest that intrinsically
brighter SNe are typically bluer in the J − H color. Interestingly,
this parallels the “brighter-bluer” relation seen in optical light
curves (e.g., Guy et al. 2005; Jha et al. 2006). There is also evi-
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Figure 10. Strong correlation ρ between J- and H- band peak luminosities.
The gray ellipses contain 95% and 68% of the bivariate population probability
distribution using the modal values of the population covariance. The straight
lines indicate sets of constant J − H color. There appears to be a trend that bluer
J − H objects are also intrinsically brighter. The marginal posterior probability
density of the correlation coefficient obtained via MCMC is shown in the inset.
The mode is ρ = 0.73, and P (ρ > 0) = 0.97 is obtained by numerical
integration of the marginal density.

dence for positive correlations between MJ , MKs and MH , MKs,
although the modal correlations are weaker (ρ ≈ 0.4 − 0.5,
Table 3).

4.3.3. Statistical Structure of J-band Light-curve Shapes

We examine the statistical relationships between the different
features of the J-band light curve. We focus only on those
correlations, which are significantly different from zero, as
measured by the tail probabilities of the posterior distribution
(Table 3).

The peak-to-trough initial decline rate, as measured by d/α,
is moderately correlated (ρ ≈ 0.55) with the trough-to-second
peak rise rate, as measured by r/β. The posterior probability
of a positive correlation is 98%. This trend indicates that faster
pre-trough declines lead to faster post-trough rises. There is a
strong correlation (ρ ≈−0.77) in the early light curve between
the initial decline rate and the time to trough (α), demonstrating
that slower declining light curves have later troughs. There is
a moderate (ρ ≈−0.43) correlation between the post-trough
rise rate and the trough-to-second peak time (β), suggesting
that in the post-trough phase, slower risers have later secondary
maxima. The posterior probability of a negative correlation is
93%. As shown in Table 3, there is no correlation between the
early timescale (α) and the late, post-trough timescale (β).

4.3.4. Statistical Correlations between NIR Absolute Magnitudes and
Light-curve Shape

Statistical correlations between peak SN Ia absolute magni-
tudes and light-curve shape are of paramount importance to cos-
mological studies, because they relate the intrinsic luminosity,
a hidden, intrinsic parameter, to a distance-independent observ-
able measure. Relations between optical light-curve shape and
optical luminosity have been leveraged to improve the utility of
SN Ia as standard candles and distance indicators. We present
the first quantitative search and measurement of correlations be-
tween near-infrared absolute magnitudes and light-curve shape
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Figure 11. Evidence for moderate correlation between the J-band second rise
rate and the J-band peak luminosity. The gray ellipses contain 95% and 68%
of the bivariate population probability distribution using the modal values of
the population covariance. The inset shows the marginal posterior probability
density of the correlation coefficient obtained via MCMC, along with the mode
and probability of positive correlation with the absolute magnitude.
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Figure 12. Moderate correlation between the J-band second rise rate and the
H-band peak luminosity. The gray ellipses contain 95% and 68% of the bivariate
population probability distribution using the modal values of the population
covariance. The inset shows the marginal posterior probability density of the
correlation coefficient obtained via MCMC, along with the mode and probability
of positive correlation with the absolute magnitude.

as measured from the J-band light curves. Again, we only high-
light correlations having the highest posterior probability of
being non-zero as measured from the tail probability.

Figure 11 shows the MJ and r/β estimates for individual
SNe together with 68% and 95% probability contours of the
population density P (MJ , r/β| µψ ,Σψ ) using the expected
posterior estimate of the population mean and the modal
covariance matrix. The most likely correlation is moderate
(ρ ≈ 0.52). The evidence for a positive correlation is fairly
strong: P (ρ > 0) = 97%. This demonstrates that the brighter
SN Ia J-band light curves are likely to rise more slowly to the
second maximum.

Figure 12 shows a moderate correlation (ρ ≈ 0.59) of
the J-band rise rate with the H-band luminosity. There is
good evidence for a positive correlation (P (ρ > 0) = 0.97).
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Figure 13. Evidence for correlation between the J-band second rise rate and the
Ks-band peak luminosity. The gray ellipses contain 95% and 68% of the bivariate
population probability distribution using the modal values of the population
covariance. The inset shows the marginal posterior probability density of the
correlation coefficient obtained via MCMC, along with the mode and probability
of positive correlation with the absolute magnitude.

Figure 13 shows that the Ks-band luminosity has a fairly
strong correlation with the J-band rise rate (ρ ≈ 0.76) with
strong evidence (P (ρ > 0) = 99%) for a positive relation. In
these bivariate plots, we have only shown individual SNe with
posterior uncertainty smaller than the population width in each
parameter. The fully Bayesian calculation properly accounts
for the uncertainties in the parameters of individual SNe when
determining the posterior density of the population correlation.

Taken together these correlations suggest that SN Ia light
curves brighter in the NIR at peak have slower rates of evolution
at later times, as measured from the J-band light curve. A larger
sample of SN Ia light curves in the NIR is needed to confirm
these correlations. The best measured light curves tend to be
at lower redshifts, where peculiar velocity uncertainties make
the absolute magnitudes highly uncertain. SNe farther out in the
Hubble flow have better determined absolute magnitudes but
are likely to have poorer quality measurements of the whole
light-curve evolution. Continued monitoring of local SNe in the
NIR over a wide range of distances and redshifts will help to
solidify our estimates of these correlations (by narrowing their
posterior probability densities and providing better estimates of
the modal correlation coefficients).

Using the trained statistical model, we can estimate the ex-
pected precision of distance prediction for different types of
light-curve observations represented by subsets of the observ-
able light-curve parameters in φs . Suppose the observable vector

φ̃s of a new hypothetical SN can be partitioned into the observed

parameters and the unobserved parameters φ̃s = (φ̃
o

s , φ̃
u

s ). We
have computed the variance of the predictive μ̃s conditional on

φ̃
o

s , and marginalizing over φ̃
u

s and the posterior uncertainty of

the hyperparameters µψ , Σψ , for various partitions of φ̃s . We
find that the statistical model implies the following properties:
(1) if one only observes the light curve around TBmax, then the
single most valuable measurement is the H-band apparent mag-
nitude, providing a distance modulus precision of ∼ 0.14 mag;
the J- and Ks-bands do not add much more statistical power. (2)
If one monitors the J-band light curve at late times to measure
the second rise to the secondary maximum, the moderate corre-

lation of the rise rate with absolute magnitudes can be used to
decrease the uncertainty toward ∼ 0.1 mag. In the next section,
we will test the predictive performance of the model using the
NIR SN Ia sample.

4.4. The Hubble Diagram of JHKs SN Ia Light Curves

4.4.1. Hubble Residuals and Training Error

In Table 4, we list the redshifts and several estimates of the
distance moduli to the SNe Ia in our training set. We list the
redshift-based LCDM Hubble flow distance and its uncertainty,
described by Equation (8), on the Ho = 72 km s−1 Mpc−1 scale.
This describes the factor P (μs |zs), conditioning on the redshift
only, and incorporating the assumed σpec = 150 km s−1 pecu-
liar velocity uncertainty and the redshift measurement error. As
a product of the Bayesian treatment, we obtain the posterior
estimate of the distance modulus, combining the redshift infor-
mation with the statistical light-curve model and conditioning
on the entire data set to generate an “information update.” This
is expressed as the marginal posterior probability P (μs |D,Z).
The mean and standard deviation of this probability density are
listed as μpost and σpost for each SN.

The typical measure of the quality of a model for SN Ia
standard candles is the average residual in the Hubble diagram.
First, the redshift-based distance moduli and photometric light
curves are used to “train” a statistical model, by determining the
mean absolute magnitude and variance, and perhaps relation-
ships between absolute magnitude and light-curve shape. Once
these parameters of the statistical model are determined from
the training set data, the photometric light curves are fed into
the model without the redshift-based distances to “predict” stan-
dard candle distances using the model. These new distances are
compared to the Hubble flow distances to calculate the average
residual error.

This measure of “training error” may be called the resubstitu-
tion error because it involves using the redshifts and light-curve
data of the training set to train the model parameters, and then re-
substituting the light-curve data back into the model to produce
distance “predictions” as if the light-curve data were new.

In our fully Bayesian formulation, the process of “training”
corresponds to computing the (non-Gaussian) posterior density
over the hyperparameters P (µψ ,Σψ |D,Z) obtained by inte-
grating over Equation (18). This is to be contrasted with sim-
pler approaches that merely find point estimates of the model
parameters. The process of prediction uses this posterior prob-

ability together with new light curve data D̃s to compute the

predictive posterior P (μ̃s | D̃s,D,Z). The marginalization over
the hyperparameters correctly incorporates the uncertainties in
the means, variances, and correlations of the absolute magni-
tudes and light-curve shape parameters. Recall that the training
set is D = {Ds} and Z = {Zs}. The resubstitution distance

estimate is obtained by setting D̃s = Ds and computing the pre-
dictive probability P (μs |Ds,D,Z) for each SN s in the training
set.

The uncertainty-weighted mean resubstitution error is then a
sum over all resubstituted predicted distances for each SN:

err2
resub =

NSN
∑

s=1

ws ×
[

μs
resub − E(μs |zs)

]2
/

NSN
∑

s=1

ws, (31)

where the expected predictive distance is μs
resub, the variance

is σ 2
resub,s , and the weights are w−1

s = σ 2
μ,s + σ 2

resub,s . The
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Table 4
SN Ia NIR Distance Modulus Estimates

SN cza czerr μLCDM|z σμ|z μpost
b σpost μresub σresub μ̄pred spred σpred

(km s−1) (km s−1) (mag) (mag) (mag) (mag) (mag) (mag) (mag) (mag) (mag)

SN1998bu 709 20 30.00 0.46 29.84 0.10 29.85 0.09 29.84 0.09 0.12

SN1999cl 957 86 30.62 0.39 30.95 0.10 30.99 0.08 31.00 0.12 0.14

SN1999cp 2909 14 33.05 0.11 32.98 0.08 32.94 0.14 32.94 0.04 0.15

SN1999ee 3296 15 33.32 0.10 33.23 0.06 33.20 0.05 33.16 0.07 0.09

SN1999ek 5191 10 34.32 0.06 34.36 0.06 34.45 0.14 34.47 0.06 0.15

SN1999gp 8113 18 35.30 0.04 35.28 0.04 35.10 0.20 35.05 0.06 0.20

SN2000E 1803 19 32.00 0.18 31.89 0.06 31.89 0.07 31.86 0.09 0.11

SN2000bh 6765 21 34.90 0.05 34.91 0.04 34.90 0.04 34.88 0.04 0.06

SN2000bk 7976 20 35.27 0.04 35.27 0.04 35.34 0.08 35.57 0.13 0.15

SN2000ca 6989 62 34.97 0.05 34.92 0.05 34.78 0.10 34.75 0.05 0.11

SN2000ce 5097 15 34.28 0.06 34.28 0.06 34.28 0.12 34.24 0.09 0.14

SN2001ba 8718 22 35.46 0.04 35.48 0.03 35.53 0.08 35.51 0.06 0.10

SN2001bt 4220 13 33.87 0.08 33.84 0.05 33.83 0.05 33.82 0.06 0.08

SN2001cn 4454 250 33.97 0.14 33.84 0.05 33.83 0.06 33.86 0.05 0.08

SN2001cz 4506 20 34.00 0.07 33.94 0.06 33.88 0.12 33.85 0.04 0.12

SN2001el 978 10 30.70 0.33 31.08 0.07 31.10 0.03 31.17 0.08 0.08

SN2002bo 1696 20 31.88 0.19 32.19 0.06 32.19 0.05 32.21 0.11 0.12

SN2002dj 2880 22 33.03 0.11 32.95 0.05 32.94 0.05 32.92 0.07 0.09

SN2003cg 1340 24 31.37 0.25 31.92 0.07 31.97 0.06 31.97 0.18 0.19

SN2003du 2206 14 32.44 0.15 32.58 0.10 32.61 0.17 32.60 0.08 0.19

SN2004S 2607 16 32.81 0.13 32.96 0.08 33.01 0.06 33.07 0.12 0.14

SN2004eo 4859 17 34.17 0.07 34.05 0.05 33.93 0.10 33.92 0.05 0.11

SN2005ao 11828 126 36.14 0.04 36.15 0.04 36.20 0.10 36.40 0.20 0.23

SN2005cf 2018 11 32.24 0.16 32.14 0.08 32.13 0.06 32.10 0.09 0.11

SN2005ch 8094 1499 35.30 0.40 35.26 0.10 35.27 0.11 35.25 0.06 0.12

SN2005el 4349 8 33.93 0.08 33.91 0.05 33.90 0.03 33.85 0.08 0.08

SN2005eq 8535 25 35.41 0.04 35.40 0.04 35.39 0.05 35.26 0.15 0.16

SN2005iq 10102 40 35.79 0.03 35.79 0.03 35.86 0.17 35.81 0.06 0.18

SN2005na 7826 26 35.23 0.04 35.22 0.04 35.21 0.14 35.16 0.10 0.17

SN2006D 2560 18 32.76 0.13 32.73 0.06 32.72 0.06 32.76 0.12 0.14

SN2006N 4468 27 33.99 0.07 33.97 0.06 33.98 0.15 33.95 0.06 0.16

SN2006X 1091 20 30.88 0.30 31.10 0.07 31.12 0.03 31.12 0.09 0.10

SN2006ac 7123 17 35.01 0.05 35.01 0.05 34.98 0.14 34.99 0.09 0.17

SN2006ax 4955 20 34.21 0.07 34.26 0.06 34.31 0.09 34.38 0.06 0.11

SN2006cp 6816 14 34.92 0.05 34.92 0.05 34.92 0.14 34.90 0.04 0.14

SN2006gr 10547 22 35.89 0.03 35.90 0.03 36.00 0.19 36.02 0.09 0.21

SN2006le 5403 12 34.40 0.06 34.50 0.06 34.63 0.08 34.69 0.04 0.09

SN2006lf 4048 10 33.77 0.08 33.80 0.07 33.83 0.11 33.85 0.17 0.20

SN2007cq 7501 50 35.13 0.05 35.11 0.05 35.01 0.19 34.91 0.03 0.19

Notes.
a Corrected to the CMB+Virgo frame.
b μpost and σpost are the mean and standard deviation of the trained posterior density in the distance modulus. μresub and σresub are

the mean and standard deviation of the resubstituted predictive posterior of the distance modulus. μ̄pred and spred are the average and

scatter over multiple bootstrapped training sets of the expected predictive distance moduli. σ 2
pred is the quadrature sum of predictive

uncertainty and the scatter over bootstrap predictions.

resubstitution predictive distance moduli and uncertainties are
listed in Table 4. Figure 14 shows the Hubble diagram con-
structed from the resubstitution distance moduli from our
JHKs statistical model. We compute the training resubstitu-
tion error over the training set SNe with recession velocities
cz > 2000 km s−1, and find errresub = 0.10 mag.

4.4.2. Cross-validation and Prediction Error

The resubstitution error is an optimistic estimate of the
predictive, or generalization, error arising from predicting
the distances of new SN Ia light curves that were not in
the training set (“out of sample”). The resubstitution predic-
tion P (μs |Ds,D,Z) conditions on the data Ds twice: once

during training when it is included in the training set D,Z and
once in resubstitution to assess the training error. Double use
of the data for both training and evaluation is likely to lead to
optimistic measures of predictive performance, underestimat-
ing the true predictive error. It is always possible to reduce the
residuals of a fit to a finite, noisy sample by introducing arbi-
trarily more complex relations, but arbitrarily complex models
will typically not generalize well to new data. We should com-
pute the generalization error for out-of-sample cases to assess
predictive performance of the statistical model. The distinction
between the training error, or Hubble residual, and the expected
prediction error has not been fully addressed in the literature on
SN Ia light-curve inference methods. In this section, we describe
the novel application of a cross-validation procedure to assess
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Figure 14. Hubble diagram constructed by resubstitution of training set NIR
SN Ia light curves into the trained statistical model. The dotted lines indicate the
uncertainty in distance modulus due to peculiar velocities. The average residual
at cz > 2000 km s−1 is an excellent 0.10 mag. The three open circles are the
SNe with AV > 2 as measured from the optical light curves with MLCS2k2.

the prediction error and to test the sensitivity of the statistical
model to the training set SNe.

To estimate the out-of-sample prediction error and to avoid
using the light-curve data twice for training and evalua-
tion, we performed bootstrap cross-validation (Efron 1983;
Efron & Tibshirani 1997). We sample SNe with replacement
from the original training set to simulate the generation of al-
ternative training sets of the same size. Because of the ran-
dom resampling, each bootstrapped training set will typically
contain duplicate SN data sets and will be missing the others.
Each bootstrapped training set of size n SNe will be missing
approximately (1 − 1/n)n ≈ 37% of the SNe in the origi-
nal training set. The SNe missing from the bootstrap training
set form a prediction set, on which we assess the predictive
error of a model trained on the complementary training set.
Let DB,ZB be a training set bootstrapped from the original
D,Z . Then the prediction set is D\DB . To train the statistical
model we compute P (µψ ,Σψ |DB,ZB ) as in Equation (18).

For each SN light curve Ds ∈ {D\DB}, we compute the pre-
dictive density P (μs |Ds,D

B,ZB ). This random process is re-
peated so that each SN distance is predicted several times from
different bootstrapped training sets. This process avoids using
each SN light curve simultaneously for both prediction and
training.

We repeated this process 50 times for the original training set
in Table 2. On average, each SN is held out of the training set
and its distance modulus μs is predicted about 18 times. For
each SN, the average over all predictions μ̄pred and the standard
deviation spred over all predictions are listed in Table 4. We also

list the sum of the variance over predictions s2
pred and the average

uncertainty of a prediction (the variance of P (μs |Ds,D
B ,ZB ))

as σ 2
pred. Often the uncertainty of a single prediction is larger than

the scatter of the predictions from different bootstrapped training
sets, although this is not always true. In Figure 15 we show the
Hubble diagram of mean predicted distance moduli μ̄pred and
their total scatter σpred. Because we do not use the data twice for
training and prediction, the scatter about the Hubble line is less
tight than in the resubstitution Hubble diagram, Figure 14.
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Figure 15. Hubble diagram constructed using predicted distances of NIR
SN Ia light curves obtained by inferring the statistical model from 50 boot-
strapped training sets. The error bars include both the predictive posterior un-
certainty and the scatter over multiple bootstrapped predictions. The estimate of
the prediction error for cz > 2000 km s−1 is an excellent 0.15 mag. The three
open circles are the SNe with AV > 2 as measured from the optical light curves
with MLCS2k2.

The “leave-one-out” bootstrap error is computed as an
uncertainty-weighted average of squared prediction errors:

Err2
(1) =

∑50
B=1

∑

s∈{D\DB } wB
s ×

[

μs
pred,B − E(μs |zs)

]2

∑50
B=1

∑

s∈{D\DB } wB
s

, (32)

where μs
pred,B ≡ E(μs |Ds,D

B ,ZB ) and the weights are

(wB
s )−1 = σ 2

μ,s + Var[μs |Ds,D
B ,ZB ]. This bootstrap error es-

timate is known to be upwardly biased. Efron (1983) and Efron
& Tibshirani (1997) have shown that a better estimate of pre-
diction error is obtained by averaging the bootstrap error with
the resubstitution error, using the “0.632 bootstrap estimator”:

Err2
.632 = 0.632 × Err2

(1) + 0.368 × err2
resub. (33)

For the Hubble flow SNe (cz > 2000 km s−1) in our sample, we
compute this estimate of prediction error: Err.632 = 0.15 mag.
This is a larger error than the resubstitution error computed
above, as expected. However, it is a more realistic estimate of
predictive performance of distance estimation with our JHKs

light-curve model and the current SN sample. This result
confirms that NIR SNe Ia are excellent standard candles.

This process of resampling of alternative training set tests
how sensitive the predictions are to the composition of the finite
training set. If the statistical model is reasonable, and we had an
infinite training set, we would expect the original training set to
be representative of the population of NIR SNe Ia and we would
expect the resampled training sets (and also the complementary
held out sets) to look like the original, and also be representative
of the population. We would expect that the prediction error and
the resubstitution error to be almost the same. Our actual training
set is finite, so the resampled sets will not look exactly like the
original set. This procedure tests the sensitivity to the finite
sample in addition to making predictions without double use of
the light-curve data.

The gap between the estimated prediction error (0.15 mag)
and the resubstitution error (0.10 mag) tells us that the trained
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statistical model is sensitive to the finite sampling of the training
set. A larger training set would be more robust to resampling
and we expect that the future predictive uncertainty will be
in between the current resubstitution error and the estimated
predictive error. A naı̈ve argument would suggest that if this
gap of 0.05 mag between the prediction error and the training
error decreases with the square root of the number of SNe Ia
in the sample, then a set of ∼ 200 SNe Ia would reduce it to
about 0.02 mag, and a few hundred would be needed to reduce
it to ∼ 0.01 mag. To build up statistical strength and further
solidify our knowledge of the properties of SNe Ia in the NIR,
we continue our campaign to observe SNe Ia in the near-infrared
with PAIRITEL.

4.5. The Effect of Dust on the SN Ia NIR Sample

The results presented thus far have ignored the effects of dust
extinction in the NIR sample. We can examine the possibility of
extracting information about the dust distribution from the NIR
by looking at the colors J0 − H0, J0 − Ks0, and H0 − Ks0 at the
peak. From the population hyperparameters we can compute the
mean and standard deviation of these colors. The mean colors
are −0.25, 0.0, and 0.25, and their population dispersions are
0.14, 0.20, and 0.17, respectively. This means that, for optical
extinctions that are less than AV ∼ 2 − 3, dust extinction in the
near infrared cannot be clearly distinguished from intrinsic color
variations, because of the diminished effects of dust absorption
in the NIR. Only SNe with much greater NIR reddening carry
information on the dust distribution from their NIR data alone.
Estimates of the optical AV extinctions of the SNe in our
sample from MLCS analysis of optical light curves (Hicken
et al. 2009a) were reported in WV08. There are only three
highly reddened SNe with AV > 2: SN 1999cl, 2006X, and
SN 2003cg (AV = 3.49, 3.83, and 4.20, respectively) in the
sample of 39 SNe, and they are depicted in Figures 14 and
15 with open circles. Although they are redder in their NIR
colors than the population mean, their colors are only about
∼ 1 − 2σ redder, so they are barely distinguishable from the
intrinsic color variations. This conclusion does not change if
we calculate the mean and standard deviation of the colors by
including or excluding the highly optically reddened SNe.

If we take the AV estimates from the optical data at face
value, we can estimate the likely effect of dust extinction on
our posterior estimates of absolute magnitudes. The relative
weight of a particular SN in posterior inferences about abso-
lute magnitude-related quantities (means, variances and corre-
lations) is inversely proportional to its magnitude uncertainty
due to peculiar velocities: ws

M = c/σ 2
μ,s and c−1 =

∑

s σ−2
μ,s .

Comparing these weights to the AV for each SN, we find that
87% of the magnitude weight lies with SNe with AV < 0.5,
97% of the weight is in AV < 1, and 99.7% of the weight is
in AV < 2. The three SNe with AV > 2 have a total weight
of 0.32% in magnitude calculations. Although the highly red-
dened SNe have large Hubble residuals in Figures 14 and 15,
since they are at low redshifts where the contribution of pecu-
liar velocity uncertainties to their distance uncertainty is large,
they have little influence on the posterior inferences about the
NIR absolute magnitudes. Furthermore, they have no effect on
the estimates of the training error or prediction error, because
only the Hubble flow SNe at cz > 2000 km s−1 are useful for
validation of the statistical model.

The weighted mean AV value of the sample is
∑

s ws
MAs

V =
0.23 mag. Assuming a Cardelli et al. (1989) law with RV = 2,
this means that the estimated NIR absolute magnitudes would be

impacted by mean extinctions of about AJ = 0.05, AH = 0.03,
and AK = 0.02. The weighted scatters in the NIR extinctions
implied by the AV values are about σ (AJ ) = 0.08, σ (AH ) =
0.05, σ (AK ) = 0.03. If these are the dust contributions to
the measured dispersions σ (MX), then subtracting them in
quadrature yields intrinsic dispersions of σ (MJ ) = 0.15,
σ (MH ) = 0.10, and σ (MKs) = 0.19. These rough estimates
do not substantially change our results.

We conclude that the NIR sample alone contains little if
any information about the dust distribution and hence it is
not worthwhile to use the full model described in Section 2
at this time to infer the dust properties. Additionally, if we
extrapolate the AV estimates obtained from the optical data
to the near-infrared, the estimated effect of dust extinction is
fairly small. These rough estimates do not take into account
the non-Gaussianity of the dust distribution and a full Bayesian
analysis of the directed graph in Figure 1, conditioned on both
the NIR and optical data simultaneously will be required to
obtain informative inferences about the dust properties (K. S.
Mandel et al. 2009, in preparation).

5. CONCLUSION

We have constructed the hierarchical Bayesian formulation
of statistical inference with SN Ia light curves, and represented
the probabilistic structure using formal graphical models. Fur-
thermore, we have presented an MCMC algorithm that uses the
conditional independence structure of the equivalent directed
acyclic graph to efficiently sample the global posterior prob-
ability distribution over individual light-curve parameters and
population hyperparameters for training the statistical model
on the low-z data set, and for prediction on future SN Ia data.
We have applied this approach and computational method to
the JHKs light-curve data set compiled by WV08, including a
recent homogeneous set of light curves from PAIRITEL, and
computed the joint posterior probabilities over all individual
light-curve parameters (Table 2) and the statistical character-
istics of the population, including the covariance of absolute
magnitudes and J-band light-curve shape parameters (Table 3).

We summarize the assumptions of our statistical model. First,
we have assumed that the normalized H- and Ks- band light
curves of different SNe are identical between −10 and 20 days
around maximum. Furthermore, we have posited a parametric
light-curve model for the J-band between −10 and 60 days
that captures the variations in the double-peaked structure. A
quick look at the data and the template models we have con-
structed in Figures 3 and 5 reveals that these are reasonable
models for the JHKs data. The major assumption in the ap-
plication of our hierarchical model is that the parameters gov-
erning the multiband absolute light curves are drawn from a
jointly multivariate Gaussian population distribution. This is
the simplest multivariate distribution that models correlations,
and its use is reasonable in the absence of other guiding infor-
mation. Our results (Figures 9–13) reveal no obvious deviations
from this assumption, but this is certainly not a proof, espe-
cially with a small sample. This assumption must be constantly
re-evaluated in applications of the hierarchical framework to
larger or different data sets or with other light-curve models.
In this paper, we have not estimated the dust-related aspects of
Figure 1, because the effects of dust are small for our NIR
sample. However, in future studies in conjunction with optical
data, the full graph can be computed using BayeSN to per-
form probabilistic inference of the SN Ia population and dust
distribution.
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The marginal intrinsic scatter in peak absolute magnitudes
were found to be σ (MJ ) = 0.17 ± 0.03, σ (MH ) = 0.11 ± 0.03,
and σ (MKs) = 0.19 ± 0.04. We have presented the first
quantitative measurements of the correlations of NIR absolute
magnitudes with J-band light-curve shape. We showed that
with greater than 95% probability there are positive correlations
between peak JHKs absolute magnitudes and the J-band post-
trough rise rate. Intrinsically dimmer SN Ia light curves tend to
rise to the second J-band maximum faster. Since in our J-band
model, the post-second-peak decline rate is linked to the rise
rate, this also suggests that the late-time slopes of J-band light
curves are steeper for dimmer SNe. We have also quantitatively
measured correlations of the rise rate with other aspects of the
light-curve shape (Table 3), which show that faster decline rates
go with faster rise rates, shorter times to trough and shorter
times to the second maximum. These results suggest that NIR
SNe Ia are excellent standard candles at the peak, and they
can be improved by using the information in the late-time light
curve.

These relations may be useful for better understanding of
SN Ia progenitor explosions in conjunction with physical
modeling. The theoretical models of Kasen (2006) suggest
that the structure of the secondary maximum in the NIR is
related to the ionization evolution of the iron group elements
in the SN atmosphere. They also indicate that NIR peak
absolute magnitudes have relatively weak sensitivity to the input
progenitor 56Ni mass, with a dispersion of ∼ 0.2 mag in J and K,
and ∼ 0.1 mag in H over models ranging from 0.4 to 0.9 solar
masses of 56Ni. The optical and bolometric peak magnitudes
have much larger variations over the same range of mass. Further
observational studies of SNe Ia in the NIR may place valuable
constraints on theoretical explosion models.

We constructed a Hubble diagram with the training set
SNe Ia, and found an average residual of 0.10 mag for
cz > 2000 km s−1. We have also performed bootstrap cross-
validation to estimate the out-of-sample prediction error, which
was found to be an excellent 0.15 mag. The gap between these
estimates suggests that a larger sample is needed to solidify
our inferences about the population of near-infrared SN Ia light
curves. Our group continues to collect an extensive set of nearby
NIR SN Ia light curves using PAIRITEL. With an ever-growing
data set, in the near future, we will be able to expand the model
considered here to include more extensive light-curve models
in H and Ks, and to combine the NIR and optical data to gain
a better understanding of SN colors and dust extinction (K. S.
Mandel et al. 2009, in preparation).

It is worth considering whether the propitious properties of
SNe Ia in the NIR can be leveraged by future space missions
for SN Ia cosmology. The measurement of dark energy prop-
erties by the NASA/DOE Joint Dark Energy Mission will be
limited by systematic effects, in particular dust extinction. The
diminished absorption by dust and the narrow dispersion of peak
luminosities in the NIR, particularly in the H-band, may be cru-
cial to the precise measurement of dark energy, if observations
of high-z SNe can be conducted in the rest-frame NIR.
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APPENDIX A

CONDITIONAL INDEPENDENCE AND d-SEPARATION

Let P ({θi}) be a joint distribution of random variables
represented by a directed acyclic graph. Consider three disjoint
subsets of the random variables {θi} : A,B, and C. Two sets
are marginally independent if P (A,B) = P (A)P (B). Two sets,
A and B, are conditionally independent given a third set C if
P (A,B|C) = P (A|C)P (B|C). Marginal independence between
A and B can be seen in a directed graph because there will
be no links between the nodes in set A and the nodes in set
B. Conditional independence indicates that if the values of the
nodes in C are known, then the variables in A and those in
B are statistically independent. Graphically, this means that all
directed or undirected paths (ignoring the arrows) from one set
to the other are “blocked” by nodes in C.

Conditional independence between two sets of nodes given
a third set can be ascertained from a directed graph using the
d-separation property (Pearl 1988): a path between a node in
A and a node in B is blocked at node θi if (1) the intermediate
node θi is in set C and the arrows meet at θi in a tail-to-tail
or head-to-tail fashion (not convergent), or (2) the arrows meet
head-to-head (convergent) and the intermediate node θi is not
in C, and neither are any of its descendants. The nodes A are
d-separated from the nodes B given set C if all paths between
elements in A and B are blocked. If the nodes A are d-separated
from the nodes B by C, then A is conditionally independent of
B given C.

APPENDIX B

THE BAYESN ALGORITHM—MATHEMATICAL
APPENDIX

In this appendix, we present mathematical details of the

BayeSN algorithm. Let ψ
−MF

0
s , ψ−L,F

s , and ψ−NL,F
s indicate

all the intrinsic parameters in ψ s other than the peak absolute
magnitude, the linear shape parameters, and the nonlinear shape
parameters in filter F, respectively.

1. We have used the conjugate hyperprior density P (µψ ,Σψ )
defined in Equations (12) and (13) and choose the nonin-
formative limit by setting κ0 = 0, ν0 =−1, and Λ0 = ǫ0 I

for small ǫ0. Let ψ̄ be the sample mean of the {ψ s},

and let Sψ =
∑NSN

s=1(ψ s − ψ̄)(ψ s − ψ̄)T be the matrix
sum of squared deviations from the mean. The condi-
tional posterior density P (µψ ,Σψ | {ψ s}) can be decom-

posed as Σψ | {ψ s} ∼ Inv-WishartN−1

(

[Λ0 + Sψ ]−1
)

and
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µψ |Σψ , {ψ s} ∼ N (ψ̄,Σψ/NSN) (Gelman et al. 2003). We
first directly sample a new covariance matrix Σψ from the
inverse Wishart distribution. The matrix drawn in this way
is guaranteed to be a proper covariance matrix (i.e., positive
semi-definite). Conditional on that matrix we directly sam-
ple a new population mean µψ from the multivariate normal
distribution.

2. Let Ā be the sample mean of the {As
H }. The conditional

posterior density is P (τA| {As
H }) = Inv- Gamma(NSN −

1, NSNĀ).

3a. Let N−1 = 1T W−11 and F̄0 = N1T (WF
s )−1[mF

s −

LF
0 (θF

NL,s) − LF
1 (θF

NL,s)θ
F
L,s]. We can compute the pop-

ulation conditional expectation: F̃0 = μs + AF
s +

E[MF
0,s |ψ

−MF
0

s ,µψ ,Σψ ] and the population conditional

variance C = Var[MF
0,s | ψ

−MF
0

s ,µψ ,Σψ ], using the
conditioning property of the multivariate Gaussian dis-
tribution. Then the conditional density of F0,s is normal

N (F0,s | F̂0, Λ) with variance Λ = (N−1 +C−1)−1 and mean

F̂0 = Λ(N−1F̄0 + C−1F̃0).

3b. Compute N−1 = L
F,T
1 (θF

NL,s)(W
F
s )−1 LF

1 (θF
NL,s) and θ̄

F

L =

N L
F,T
1 (θF

NL,s)(W
F
s )−1[mF

s − 1F0,s − LF
0 (θF

NL,s)]. The con-

ditional population expectation and variance are θ̃
F

L =

E[θF
L,s | ψ

−L,F
s ,µψ ,Σψ ] and C = Var[θF

L,s | ψ
−L,F
s ,µψ ,Σψ ].

The conditional posterior density of θF
L,s is normal

N (θF
L,s | θ̂

F

L ,Λ) with covariance matrix Λ = (N−1 +C−1)−1

and mean θ̂
F

L = Λ(N−1θ̄
F

L + C−1θ̃
F

L ). Note that steps
3a and 3b could be combined by Gibbs sampling from

P (F0,s, θ
F
L,s | φ

−L,F
s , μs, As;µψ ,Σψ , τA,Ds, zs).

3c. Compute the expectation and covariance of the conditional

population density: θ̃
F

NL = E[θF
NL,s | ψ

−NL,F
s ,µψ ,Σψ ]

and C = Var[θF
NL| ψ−NL,F

s ,µψ ,Σψ ]. The conditional
posterior density of the nonlinear parameters in band

F, θF
NL is proportional to N (mF

s | 1F0,s + LF
0 (θF

NL,s) +

LF
1 (θF

NL,s)θ
F
L , WF

s ) × N (θF
NL,s | θ̃

F

NL, C). We obtain a pro-

posal θ
F,∗
NL,s ∼ N (θF

NL,s,Σ
NL,F
jump,s), and apply the Metropolis

rejection rule.

3d. We allow for the possibility that the probability den-
sity of the distance modulus conditioned on the redshift
only, P (μs |zs), may be mildly non-Gaussian. The condi-
tional posterior density is P (μs |φs, As;µψ ,Σψ ,Ds, zs) ∝
N (φs − As −vμs | µψ ,Σψ )×P (μs |zs), and generally can-
not be sampled directly. However, we can approximate
P (μs |zs) ≈ N (μs |μg ≡ f (zs), σ

2
μ) with a Gaussian us-

ing Equation (8). We choose the Metropolis–Hasting pro-
posal distribution to be Q(μ∗

s |φ
s, As,µψ ,Σψ ) ∝ N (φs −

As − vμ∗
s | µψ ,Σψ ) × N (μ∗

s |μg, σ
2
μ) = N (μ∗

s | μ̂, σ̂ 2
μ),

where σ̂ 2
μ = (σ−2

μ + s−2)−1, and μ̂ = σ̂−2
μ (σ−2

μ μg +

s−2μ̃) is a weighted average of the distance information
from the redshift and the light curves. The mean μ̃ =

s2vT
Σ

−1
ψ (φs − µψ − As) and variance s2 = (vT

Σ
−1
ψ v)−1

describe the distance information from the individual SN
light curves only. We draw a proposed μ∗

s from Q. The
Metropolis–Hastings ratio is computed from Equation (21)
using the above conditional posterior density and the pro-
posal density. After cancellation of terms, this simplifies
to r = P (μ∗

s |zs)N (μs | μg, σ
2
μ)/P (μs |zs)N (μ∗

s | μg, σ
2
μ). If

P (μs |zs) is actually close to the Gaussian, Equation (8),
then the M-H ratio is identically one, and the proposal μ∗

s

is always accepted, as this is the same as the Gibbs sam-
pling. If P (μs |zs) is mildly non-Gaussian, then r and the
acceptance rate will be slightly less than 1.

3dP. For distance prediction, the distance modulus μs is
Gibbs sampled from the conditional posterior density
N (μs | μ̃, s2).

3e. Sample a proposed extinction A
s,∗
H ∼ N (As

H , σ 2
jump,A,s).

The conditional posterior density of the extinction A
s,∗
H

is proportional to N (φs − vμs − As(A
s,∗
H )|µψ ,Σψ ) ×

Expon(A
s,∗
H | τA). Apply Metropolis rejection.

APPENDIX C

BAYESN—PRACTICAL CONSIDERATIONS

The chain is seeded with initial starting estimates for all the
parameters. It is useful before running the MCMC to obtain
rough point estimates of the light-curve parameters using, e.g.,
the MLE. Point estimates of the distance moduli can be obtained
from E(μs | zs). The extinction values As

H can be chosen to be
small random numbers. Random noise is added to these point
estimates to generate different starting positions of each chain,
to ensure that each chain begins in a different region.

The Metropolis steps within the Gibbs scan use jumping
kernels that must be tuned to generate efficient MCMC chains.
The scalar kernels σjump,A,s are tuned to generate ∼ 40%
acceptance rates for their respective Metropolis steps. This
is easily done by running a few preliminary short chains to
compute the average acceptance rates and adjusting the jumping

sizes accordingly. The nonlinear jumping kernel, Σ
NL,F
jump,s is

a matrix if there are more than one nonlinear parameters in
the light-curve model for band F. This can be estimated from
the inverse of the Fisher information matrix at the MLE, or
from the sample covariance of the θF

NL,s chain values, to reflect
the shape of the underlying density. The overall size of the
matrix is then scaled to produce acceptance rates of ∼ 40% in

preliminary short runs, or ∼ 23% if the dimensionality of θF
NL,s

is high (Gelman et al. 2003). Once the jumping kernels have
been set to appropriate values, long chains are run.

To assess the convergence of the MCMC, a few independent
long chains with different initial positions are run. The BayeSN

computation is easily be parallelized as each independent
MCMC chain can be run on a separate processor. The G-R
statistic (Gelman & Rubin 1992) compares the between-chain
variances with the within-chain variances in each parameter
to compare the coverages of the chains. If the chains have
converged, the G-R ratio should be close to 1. The sample paths
of representative parameters are inspected visually to ascertain
that the chains are well mixed. Upon convergence, the initial
portions of each chain are discarded as “burn-in,” and the chains
are concatenated for final inferences.
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