
Type Ia Supernova Light Curve Inference: 

Hierarchical Models in the Optical and Near-

infrared

Citation
Mandel, Kaisey S., Gautham Narayan, and Robert P. Kirshner. 2011. “TYPE Ia SUPERNOVA LIGHT 
CURVE INFERENCE: HIERARCHICAL MODELS IN THE OPTICAL AND NEAR-INFRARED.” The 
Astrophysical Journal 731 (2): 120. https://doi.org/10.1088/0004-637x/731/2/120.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:41399776

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:41399776
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Type%20Ia%20Supernova%20Light%20Curve%20Inference:%20Hierarchical%20Models%20in%20the%20Optical%20and%20Near-infrared&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=b11fb7fcbb2339ff02ce4bba06547a30&department
https://dash.harvard.edu/pages/accessibility


The Astrophysical Journal, 731:120 (26pp), 2011 April 20 doi:10.1088/0004-637X/731/2/120

C© 2011. The American Astronomical Society. All rights reserved. Printed in the U.S.A.

TYPE Ia SUPERNOVA LIGHT CURVE INFERENCE: HIERARCHICAL MODELS IN THE
OPTICAL AND NEAR-INFRARED

Kaisey S. Mandel, Gautham Narayan, and Robert P. Kirshner
Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA; kmandel@cfa.harvard.edu

Received 2010 November 23; accepted 2011 February 1; published 2011 April 1

ABSTRACT

We have constructed a comprehensive statistical model for Type Ia supernova (SN Ia) light curves spanning optical
through near-infrared (NIR) data. A hierarchical framework coherently models multiple random and uncertain
effects, including intrinsic supernova (SN) light curve covariances, dust extinction and reddening, and distances.
An improved BayeSN Markov Chain Monte Carlo code computes probabilistic inferences for the hierarchical
model by sampling the global probability density of parameters describing individual SNe and the population.
We have applied this hierarchical model to optical and NIR data of 127 SNe Ia from PAIRITEL, CfA3, Carnegie
Supernova Project, and the literature. We find an apparent population correlation between the host galaxy extinction
AV and the ratio of total-to-selective dust absorption RV . For SNe with low dust extinction, AV � 0.4, we find
RV ≈ 2.5–2.9, while at high extinctions, AV � 1, low values of RV < 2 are favored. The NIR luminosities are
excellent standard candles and are less sensitive to dust extinction. They exhibit low correlation with optical peak
luminosities, and thus provide independent information on distances. The combination of NIR and optical data
constrains the dust extinction and improves the predictive precision of individual SN Ia distances by about 60%.
Using cross-validation, we estimate an rms distance modulus prediction error of 0.11 mag for SNe with optical and
NIR data versus 0.15 mag for SNe with optical data alone. Continued study of SNe Ia in the NIR is important for
improving their utility as precise and accurate cosmological distance indicators.
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1. INTRODUCTION

Type Ia supernova (SN Ia) rest-frame optical light curves
have been of great utility for measuring fundamental quantities
of the universe. As standardizable candles, they were critical
to the detection of cosmic acceleration (Riess et al. 1998;
Perlmutter et al. 1999). SNe Ia have been used to constrain
the equation-of-state parameter w of dark energy (Garnavich
et al. 1998), and recent efforts have measured w to ∼10%,
(Wood-Vasey et al. 2007; Astier et al. 2006; Kowalski et al. 2008;
Hicken et al. 2009b; Kessler et al. 2009; Freedman et al. 2009;
Amanullah et al. 2010). SNe Ia have also been used to establish
the extragalactic distance scale and measure the Hubble constant
(Freedman et al. 2001; Jha et al. 1999; Riess et al. 2005, 2009a,
2009b).

SN Ia distance indicators exploit empirical relations between
peak optical luminosities of SNe Ia and distance-independent
measures such as light curve shape observed in the sample
of nearby low-z SNe Ia (Hamuy et al. 1996a; Riess et al.
1999; Jha et al. 2006; Hicken et al. 2009a). Methods include
Δm15(B) (Phillips 1993; Hamuy et al. 1996b; Phillips et al.
1999; Prieto et al. 2006), multicolor light curve shapes (MLCS;
Riess et al. 1996a, 1998; Jha et al. 2007), “stretch” (Goldhaber
et al. 2001), CMAGIC (Wang et al. 2003), SALT (Guy et al.
2005, 2007), and SiFTO (Conley et al. 2008). One of the
largest systematic uncertainties limiting the precision of distance
estimates from rest-frame optical light curves is dust extinction
in the host galaxy and the confounding of dust reddening with
the intrinsic color variations of SNe Ia (Conley et al. 2007).
Current approaches differ conceptually and practically on how
apparent colors, intrinsic colors, and dust effects are modeled.
While most methods make use of the optical-luminosity–light-
curve-width correlation, some methods, such as MLCS (Riess

et al. 1996a, 1998; Jha et al. 2007), attempt to separately model
the intrinsic colors of the SN Ia and host galaxy dust reddening
and extinction, whereas others model both effects with a single
factor (e.g., SALT2; Guy et al. 2007).

Early observations of SNe Ia in the infrared were made by
Kirshner et al. (1973), Elias et al. (1981), Elias et al. (1985),
Frogel et al. (1987), and Graham et al. (1988). Observations of
nearby SNe Ia in the NIR revealed that the peak near-infrared
luminosities of SNe Ia have a dispersion smaller than 0.20 mag
(Elias et al. 1985; Meikle 2000; Krisciunas et al. 2004a, 2004c).
Wood-Vasey et al. (2008, hereafter WV08) compiled a sample
of NIR SN Ia observations taken with the Peters Automated
InfraRed Imaging TELescope (PAIRITEL; Bloom et al. 2006).
They found that the H-band peak absolute magnitude had small
scatter σ (MH ) ≈ 0.15 mag and could provide distance estimates
competitive with those derived from optical light curve shapes.
The effect of dust extinction is significantly diminished at NIR
wavelengths, relative to the optical. The combination of optical
and NIR observations of SN Ia light curves could lead to even
better estimates of SN Ia distances (Krisciunas et al. 2007).

A significant source of puzzlement in the analysis of SN Ia
light curves is the nature of the apparent color and brightness
variations among supernovae (SNe), which are comprised of
color and luminosity variations intrinsic to the SN Ia population,
and also random reddening and extinction by dust in the host
galaxies of SNe Ia. The function of dust absorption over
wavelength is typically parameterized by the ratio of total to
selective extinction, RV = AV /(AB − AV ). This ratio has an
average value of 3.1 for interstellar dust in the Milky Way
Galaxy, although it can vary between 2.1 and 5.8 (Draine
2003). Studies of external galaxies have found similar extinction
curves; for example, Finkelman et al. (2008, 2010) found
average values of RV ≈ 2.8. Early studies of SNe Ia found
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values of RV < 1 (c.f. Branch & Tammann 1992 for a review),
although these analyses did not take into account relationships
between the luminosity, color, and light curve shape of the
events. Using the first version of the MLCS (Riess et al. 1996a)
to model these relationships for SN Ia optical light curves, Riess
et al. (1996b) analyzed the colors of 20 nearby SNe Ia and
found RV = 2.6 ± 0.3, consistent with the Milky Way average.
Tripp (1998) and Tripp & Branch (1999) found RV ≈ 1, but
they modeled intrinsic color and dust reddening as a single
factor. More recently, Conley et al. (2007) found that the relation
between SN Ia optical luminosity and apparent color, controlling
for light curve shape, required a low value of RV ≈ 1–1.7, if
the total color variation is interpreted as interstellar dust in the
host galaxy. An analysis of the color curves of SNe Ia by Nobili
& Goobar (2008) found RV ≈ 1–1.7. Hicken et al. (2009b)
found that a dust absorption profile with RV = 1.7 was favored
using the MLCS2k2 model for the CfA3 sample (Hicken et al.
2009a). These studies assumed that a universal color or dust
absorption profile applied to all SNe Ia. Recently, Wang et al.
(2009a) separately fit RV ≈ 1.6 for a subset of SNe Ia with high
ejecta velocities, and RV ≈ 2.4 for a subset with normal ejecta
velocities. However, Foley & Kasen (2011) find RV ≈ 2.5 for
both subsets if the reddest SNe are excluded. For individual,
highly extinguished SNe with multi-wavelength coverage, RV

can be fit precisely and values of 1.5–1.8 have been reported
(Krisciunas et al. 2007; Elias-Rosa et al. 2006, 2008; Wang et al.
2008). It has been suggested that low RV values could result from
scattering by circumstellar dust in the local environment of the
SN (Wang 2005; Goobar 2008).

Contreras et al. (2010) have recently presented the initial
sample of nearby SN Ia light curves observed by the Carnegie
Supernova Project (CSP), a subset of which were observed in
the optical and near-infrared. Folatelli et al. (2010) compared
the apparent colors of the SN to a subset suspected of having
no contamination by dust, and found a dust law slope RV ≈ 1.7
best fit the SN sample, assuming a global value of RV . However,
when the two reddest SNe were removed from the sample, this
global value changed to RV ≈ 3.2. When minimizing dispersion
in the Hubble diagram, they found RV ≈ 1–2, both with or
without the reddest SN. The different and unusual values of
RV in the literature are problematic for the proper analysis
and interpretation of SN Ia observables and for cosmological
applications.

Mandel et al. (2009) presented a hierarchical Bayesian
approach to constructing probabilistic models for SN Ia light
curves. This strategy was applied to the modeling of the extant
near-infrared (NIR) light curves of SNe Ia from PAIRITEL
(WV08) and the literature in the JHKs passbands. Using a
Markov Chain Monte Carlo (MCMC) algorithm (BayeSN)
designed specifically for hierarchical SN Ia light curve models,
they computed coherent probabilistic inferences for individual
SNe and the population, taking into account multiple sources
of randomness and uncertainty. It was found that the variances
of the peak absolute magnitudes were small, particularly in the
H band: σ (MH ) ≈ 0.11 ± 0.03 mag. Since observations in the
NIR passbands are insensitive to dust extinction, the estimation
of host galaxy dust extinction was omitted from the NIR-only
analysis in that paper.

In this paper, we expand upon the hierarchical modeling
approach for SNe Ia first described by Mandel et al. (2009),
and apply it to statistical modeling of SN Ia light curves
in both the optical and near-infrared, including the effects
of host galaxy dust. We describe a general mathematical

representation of SN Ia light curves in terms of multiple
decline rates over phase in different passbands. This differential
decline rates representation is employed within a hierarchical
model incorporating multiple random effects: measurement
error, peculiar velocities, dust extinction, and intrinsic variation.
In particular, the intrinsic correlation structure of the light curves
over phase and over wavelengths spanning optical to near-
infrared is explicitly modeled and estimated. We also model
the joint distribution of dust extinction and RV . To estimate the
parameters of individual SNe and the characteristics of the host
galaxy dust distribution and intrinsic SN Ia populations, we
have implemented a new BayeSN MCMC algorithm. This new
algorithm incorporates enhancements to improve efficiency and
convergence in the global parameter space.

We apply the hierarchical model to optical (BVRI) and NIR
(JH) data of nearby SN Ia light curves from the PAIRITEL,
CfA3, CSP samples, and the literature. We present inferences
about the host galaxy dust population and the correlation
structure of the intrinsic SN Ia light curve population. To check
the fit of the hierarchical model to the sample of data, we
compare posterior predictive replications from the model to
the observed parameter distributions of colors, magnitudes, and
light curve shapes. We quantify the utility of including NIR
observations of SNe Ia for improving estimates of host galaxy
dust properties and distance predictions. Analyzing optical and
NIR light curves within the same model, we demonstrate that
distance moduli to SNe Ia observed with optical and near-
infrared light curve data can be predicted more accurately
and precisely (rms = 0.11 mag) than with optical data alone
(rms = 0.15 mag).

This paper is organized as follows. In Section 2, we describe
our hierarchical Bayesian approach to constructing statistical
models for SN Ia light curves. In Section 3, we outline a new
version of the BayeSN algorithm for computing probabilistic
inferences with the hierarchical model using the SN data. In
Section 4, the application of the hierarchical model to nearby SN
Ia data in the optical and near-infrared is described, and posterior
inferences about the dust and SN Ia light curve populations are
summarized in Section 5. In Section 6, we describe checks on
our model inferences. In Section 7, we employ cross-validation
(CV) to construct a Hubble diagram of predicted distances to
SNe Ia, and demonstrate the advantages of including the NIR
data for making more precise inferences about dust extinction
and luminosity distances. We conclude in Section 8.

In Appendix A, we describe a non-parametric representation
for individual light curves used by our model. In Appendix B,
we describe the calculation of K-correction and Milky Way
extinction effects based on spectral templates. Hyperprior dis-
tributions are stated in Appendix C. Mathematical details of the
new BayeSN algorithm are given in Appendix D.

2. STATISTICAL MODELS FOR SN Ia LIGHT CURVES

Inferences in SN cosmology are based on statistical models
built from empirical data. The application of statistical models
for SNe Ia to constraining the cosmological parameters has
focused on using information in the apparent, optical light
curves of SNe Ia to infer their peak luminosities and to
estimate the luminosity distances. In particular, these models
capture empirical light curve width and color correlations with
luminosity that allow SNe Ia to be used as “standardizable
candles” (Phillips 1993; Hamuy et al. 1996b; Phillips et al. 1999;
Riess et al. 1996a, 1998; Goldhaber et al. 2001; Prieto et al. 2006;
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Jha et al. 2007; Guy et al. 2005, 2007). Recent work has explored
the utility of using spectral ratios or characteristics of spectral
lines correlated with the luminosity to predict distances (Bailey
et al. 2009; Blondin et al. 2011). These methods show promise,
but need to be validated on larger spectroscopic samples to be
competitive with light curve methods.

The observed SN Ia light curve data are the result of the
combination of multiple random effects. Different “normal”
SNe Ia can have intrinsically distinct absolute light curves, peak
luminosities, and colors. Each event can be extinguished and
reddened by a different, and random, amount of host galaxy dust
along the line of sight, and this dust may have different extinction
laws as a function of wavelength for each event. Before the light
curve is recorded by an astronomer, it is subject to redshift
effects, absorption due to Milky Way dust, and measurement
error. The measured redshift of each SN host galaxy is different
from the cosmological redshift by a random peculiar velocity.
Sensible statistical models for SN Ia light curves must account
for these multiple random effects in the data.

In the absence of the other effects, the apparent colors
(e.g., B − V ) of SNe Ia at any phase are the sum of random
intrinsic colors (e.g., (B − V )int ≡ MB − MV ) and random
amounts of reddening by host galaxy dust (AB − AV ≡
E(B − V )dust). Hence, the joint distribution of the apparent
colors over different wavelength ranges and at different phases
is the convolution of the intrinsic color distribution and the dust
reddening distribution. Similarly, when the SN distances are
known, the extinguished absolute magnitudes (e.g., V (t)−μ) at
different wavelengths and phases are the sum of random intrinsic
absolute light curves (e.g., MV (t)) and random amounts of dust
extinction (e.g., AV ) over wavelength. The joint distribution
of extinguished absolute light curves is the convolution of the
intrinsic absolute light curve distribution and the dust extinction
distribution. Since dust extinction only makes objects appear
dimmer and redder, the convolution with the dust distribution
distorts the intrinsic distribution into the apparent distribution
in the following ways. Clearly, the apparent distribution will
have a dimmer and redder average light curve. The distribution
of extinguished absolute magnitudes will be wider than the
intrinsic distribution at any phase or wavelength. The dust will
also induce or increase apparent positive correlations between
absolute magnitude and color (in the redder–dimmer sense),
between two colors (redder–redder), and between absolute
magnitudes (dimmer–dimmer) at different wavelengths and
phases. If we want to use SN Ia light curves to understand
the statistical intrinsic properties of these physical events, or
those of dust in distant galaxies, it is necessary to deconvolve
these two effects in the observed data.

Selecting a subsample of the observed SN, for example, the
apparent blue end of the full sample, as representative of the
“intrinsic” distribution, does not necessarily alleviate these dis-
tortions. Some previous studies have selected an “unreddened”
subsample based on auxiliary data, such as elliptical host galax-
ies or large physical separation of the SN from the center of the
galaxy, which may suggest lack of dust extinction. However,
unless these auxiliary criteria can guarantee negligible dust ef-
fects, the resulting subsamples may still be distorted if there is a
chance for some dust extinction. Hicken et al. (2009b) showed
with the large CfA3 sample (Hicken et al. 2009a) that SNe with
moderate estimated dust extinction (AV ≈ 0.4 mag) are found
in elliptical host galaxies or at large projected galactocentric
distances between the host galaxy and the SN. Furthermore, se-
lecting an “intrinsic” subsample based on auxiliary data might

distort inferences if the auxiliary properties are correlated with
intrinsic properties, the distribution of which one is trying to
identify.

Statistical errors in the estimates of the random effects can
distort inferences of the intrinsic distribution. For example, if
distances to nearby SNe Ia are estimated via recession veloc-
ities and the Hubble law to infer absolute magnitudes, the ef-
fects of random peculiar velocities on distance errors can dis-
tort the inferred intrinsic distributions of SN Ia absolute light
curves. Even in the absence of dust, a histogram of simple
point estimates of peak absolute magnitudes for each SN (e.g.,
V0 − μ(z)) will appear broader than the true, intrinsic distri-
bution, P (MV ). Similarly, random peculiar velocities can ap-
parently induce or strengthen a positive correlation between the
absolute magnitudes at two wavelengths, and distort correlations
of absolute magnitudes with other observables if these random
effects are not properly modeled. Measurement errors and er-
rors in dust extinction corrections will also tend to distort joint
distributions of inferred variables. Since extinction in the NIR is
greatly diminished relative to the optical, inferences on the dis-
tribution of intrinsic SN Ia light curve properties in the NIR are
much less vulnerable to distortions by dust, but are still affected
by the other sources of error. SNe far enough into the Hubble
flow, so that peculiar velocity effects are negligible, will still be
vulnerable to dust effects, especially at optical wavelengths.

Hierarchical Bayes provides a framework for the probabilis-
tic modeling of multiple sources of randomness and uncertainty.
Its application to statistical modeling of SNe Ia was first pre-
sented by Mandel et al. (2009) who constructed hierarchical
models for SN Ia light curves in the near-infrared. The hier-
archical framework provides a unified method of inference for
populations and individuals of those populations. It includes a
population distribution that models intrinsic variations and cor-
relations of SN Ia light curves, a population distribution for the
host galaxy dust to each SN, and models individual light curves,
dust extinction, distances, and redshifts. Using Bayes’ theorem,
probabilistic estimates for the unknown parameters of individ-
ual SNe, as well as the hyperparameters of the populations, can
be computed coherently and consistently.

Statistical inference with hierarchical models provides a prin-
cipled method of probabilistic deconvolution of physically dis-
tinct and random effects that are combined in the observed data.
Probabilistic inference allows for not only the estimation of each
separate effect, but also the exploration of the joint uncertainties
and tradeoffs between the multiple effects. It enables the esti-
mation of the statistical characteristics of an underlying intrinsic
population distribution while accounting for the distortions in
the observed distribution caused by measurement error or other
random effects. Similar issues regarding inferring the intrinsic
distributions of inferred quantities in the presence of random er-
ror have been discussed and specific Bayesian techniques have
been applied by Kelly (2007), Kelly & Bechtold (2007), Hogg
et al. (2010), Loredo & Hendry (2010), among others, in other
astrophysical contexts.

Statistical modeling of SN Ia light curves is inherently
a multi-dimensional problem. Light curve observations are
essentially noisy, usually irregular time series in multiple filters
at different wavelengths. However, the absolute light curves
exhibit regularities; for example, the fast declining light curves
tend to be intrinsically dimmer. Existing models for optical
light curves, e.g., MLCS (Riess et al. 1996a, 1998; Jha et al.
2007), SALT (Guy et al. 2005, 2007), and Δm15(B) templates
(Hamuy et al. 1996b; Prieto et al. 2006) attempt to capture
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regularities by assuming strong functional forms, governing the
“global” behavior of light curves over a wide range in phase and
wavelength, and controlled by one or two parameters (e.g., Δ;
x1, c; Δm15(B), respectively). Although these formulations can
be useful as a form of dimensionality reduction to project gross
variations in high-dimensional data onto a small-dimensional
latent parameter space, it is not clear that this reduction can be
done cleanly without loss of statistical information contained
in the light curves. Detailed studies of well-sampled light
curves reveal that, for example, SNe with the same Δm15(B)
measurement (the magnitude change in the B-band light curve
after 15 days from the peak) can display significant differences
in their multi-band light curves over a range in phase (Folatelli
et al. 2010; Höflich et al. 2010), signifying that a single
light curve shape parameter does not capture the full variety
of light curve signals that are generated by the underlying
explosion physics. Furthermore, these global parameters lack
direct interpretability: even with a continuously well-sampled
SN light curve, it is impossible to estimate the Δ parameter
without knowing the particular templates that attempt to project
it onto the latent parameter space.

In this paper, we take a different approach to modeling the
light curves. Instead of adopting a strong parameterization of
the global behavior of the absolute light curves, we take a non-
parametric approach that models the shape of the light curves
“locally.” This does not mean that there are no parameters;
rather, we use local parameters, describing the variations in
signal in each neighborhood of phase and wavelength, to build
up a model for the light curve over the full range of phase
and wavelength. We develop a differential decline rates model
(Section 2.1, Appendix A) to represent the light curves in
filters at multiple wavelengths using the decline rates over
intervals in phase in each passband. Regularities underlying the
population of light curves are then captured, not by one or two
global parameters, but by inferring the correlations between
the local parameters in the training set of well-sampled SNe.
From this perspective, the light curves are modeled as stochastic
processes with covariance structure over phase and wavelength
that must be estimated. The correlation structure in the light
curves is modeled in the intrinsic population distribution for SN
Ia light curves. Although there may be many local parameters,
they are not each statistically independent once the correlation
structure of the population is learned. Indeed, the intrinsic
dimensionality of the light curves (i.e., the effective number
of “global” degrees of freedom) is implicit in the estimated
covariance structure, and does not need to be fixed a priori.
By incorporating this non-parametric light curve model in the
hierarchical Bayes framework, we can coherently estimate the
joint uncertainties in the correlation structure and incorporate
them into distance predictions for SNe Ia.

The probabilistic hierarchical approach also provides a prin-
cipled framework for dealing with missing data. The observa-
tions are typically not obtained at an exactly regular cadence:
observation times often can be random or clustered, with gaps
in temporal coverage due to weather or instrumentation. The
SNe in a given sample may not all be observed in the full set
of passbands; in this paper, the SNe are observed in the optical
filters, but only a subset is observed in the NIR. The Bayesian
approach deals with this by marginalizing over the unobserved
light curves in the posterior distribution, thus incorporating this
lack of information into inferences without omitting good in-
complete data, which would be necessary if the analysis required
the entire data set to be complete. In the absence of complete

zs

Ds

µs

AppLCs

s = 1 , . . . , NSN

As
V ,Rs

V

AbsLCs

Training

PredictionA
p
V ,R

p
V

µp

DpAppLCpAbsLCp

Dust

Pop

SN Ia

AbsLC

Pop

Figure 1. Hierarchical framework for statistical inference with SN Ia light
curves. The global posterior density of the hierarchical model parameters given
the full SN data set is represented formally with a directed acyclic graph.
Unknown parameters are represented by open nodes. Observed data (redshifts
z and measured light curves D) are represented by shaded nodes. Each arrow or
link describes a relationship of conditional probability. The hierarchical model
coherently incorporates randomness and uncertainties due to measurement error
(purple), intrinsic SN variations (green), dust extinction and reddening (red),
and peculiar velocities and distances (blue) into inferences about individual SNe
and the population. The graph can be understood as a generative model for the
data. “SN Ia AbsLC Pop” represents parameters describing the population of
SN Ia light curves, including intrinsic variations and correlations in shape,
color, and luminosity across multiple wavelengths. From this population, each
SN randomly draws a set of multi-wavelength light curves “AbsLC.” The box
“Dust Pop” represents parameters governing the population distribution of host
galaxy dust values. Each SN randomly draws dust parameters AV , RV from
this distribution. These dust parameters combine with the individual absolute
light curves and distance modulus to generate an apparent light curve “AppLC,”
which is sampled with noise to produce the observed multi-wavelength light
curve data D. In the nearby universe, the distance modulus is related to the
observed recession velocity or redshift through the Hubble law plus a noise
term representing random peculiar velocities of host galaxies. This random
generative process is conceptually repeated for each SN in the data set. The
difference between “training” and distance prediction is that the latter does not
condition on the redshift–distance likelihood information of the SN (bottom).

(A color version of this figure is available in the online journal.)

data, the model makes the best estimates and predictions given
the available observed data.

We have built upon the basic framework described by Mandel
et al. (2009). The overall structure of the hierarchical Bayesian
model is depicted by Figure 1. We describe each component of
the model in turn.

2.1. Representation of Apparent Light Curves

An apparent light curve model at phase t in rest-frame filter F

with parameters F0 and θF = (θF
L , θF

NL) is generally described
by

LCF (t;F0, θ
F ) = F0 + lF (t, θF )

= F0 + lF0
(

t; θF
NL

)

+ l
F
1

(

t; θF
NL

)

· θF
L , (1)

where F0 is the apparent magnitude at t = 0 in rest-frame

filter F and lF (t; θF ) is the normalized light curve in filter
F, so that lF (0) = 0. The vector of linear light curve shape

parameters is θF
L , and θF

NL is a vector of nonlinear light curve
shape parameters. The phase is defined in the rest frame of the
SN, with t = 0 corresponding to the time of maximum light in

4



The Astrophysical Journal, 731:120 (26pp), 2011 April 20 Mandel, Narayan, & Kirshner

B, T0: t = (T − T0)/(1 + z), where z is the measured redshift
and T is the time of observation. For a multi-wavelength model
using light curve observations corresponding to rest-frame filters
F 1, . . . , FN , the apparent light curves of an SN are described
by a vector of apparent light curve parameters

φ =
(

F 1
0 , . . . , FN

0 , θF1 , . . . , θFN
)

(2)

and the time of maximum light in B, T0.
The models employed in this paper do not use nonlinear shape

parameters, so θF = θF
L . To specify the light curve functions

lF0 (t) and l
F
1 (t), we construct a representation in terms of

differential decline rates, as described in Appendix A. In

this representation, the light curve shape parameters θF for
each filter are simply the changes in magnitude over disjoint

intervals in phase. Let d
F be a vector of decline rates of a

light curve in filter F on a grid in phase, set to τ = (−12,−8,
−4,−2, 0, 2, 4, 6, 8, 10, 12, 15, 18, 23, 30, 37.5, 45) days. The
decline rates are positive after maximum light and negative
before peak in each filter. For a given set of decline rates

θF = d
F , the normalized light curve for each filter at arbitrary

phase is constructed with a smooth curve defined by non-
parametric regression cubic spline. In this representation, the
light curve function lF0 (t) = 0, and l1(t) is determined by a

linear smoothing spline: LCF (t;F0, θ
F ) = F0 + l

F
1 (t) · θF .

2.2. Likelihood Function for Apparent Light Curves

In this section, we describe the likelihood function for the
apparent light curve model parameters, conditional on the
observed light curve data. The likelihood function explicitly
accounts for K-corrections from the rest-frame filter to the
observer-frame filter, Milky Way extinction, and photometric
measurement error.

A light curve measurement in the observer frame O at time
T is mO. This observation differs from the apparent light curve
model in the rest frame through K-corrections (to account for
the redshifting of the SN spectrum), Milky Way extinction,
and measurement error. At each redshift, we construct a unique
mapping between each observer-frame filter O and a rest-frame
filter F (in this paper, O,F ∈ {B,V,R, I, J,H }):

mO = kcOF (t; z,φ) + gxOF (t; z,φ, EMW)

+ LCF (t;F0, θ
F ) + ǫ. (3)

The K-correction for the redshift z SN magnitude at
phase t from rest-frame filter F to observer-frame filter O is
kcOF (t; z,φ). The K-correction has a dependence on the SN
spectral energy distribution (SED), and this is modeled as a
function of apparent color. Thus, it depends on the apparent
light curve parameters φ only through the apparent model col-
ors at the same phase. For example, at low redshifts z < 0.05, if
the observer-frame filter is O = B, then the rest-frame filter is
F = B, and the dependence of kcOF (t; z,φ) on the model light
curve parameters φ is through the apparent color B − V at phase
t. The effective Milky Way extinction, gxOF (t; z,φ, EMW), also
depends on the SN SED through the colors, and is also a func-
tion of the estimated color excess due to Milky Way dust,
EMW ≡ E(B − V )MW, which is obtained from the Schlegel
et al. (1998) dust maps. Details regarding the calculation of
K-corrections and Milky Way extinction for SNe Ia are pre-
sented in Appendix B. The variance of the random error term
ǫ includes photometric error, and estimated uncertainties in
K-corrections and Milky Way extinction.

For each measurement in observer-frame filter O at observed
time T, we can write down Equation (3) relating the measure-
ment to the rest-frame light curve model. Let the observations
in filter O be arranged into a time-ordered vector m

O , with
each observation listed from earliest to latest. The correspond-
ing equations can also be time-ordered. If the SN light curve is
observed in multiple filters, O1, . . . , ON , we can arrange the full
data in time-filter ordering, so that m = (mO1 , . . . , m

ON ), with
the observer-frame filters ranked from the shortest to the longest
central wavelength. With this arrangement, a time-filter-ordered
vector equation can be written for each SN:

m = KC(T0; z,φ) + GX(T0; z,φ, EMW) + L2(T0, z)φ + ǫ. (4)

We suppress the explicit dependence on the known obser-
vation times T. Each of the terms depends on the time of
maximum T0 and the time-dilating redshift through the phase
t = (T − T0)/(1 + z). Each element of the vectors KC and GX
corresponds to the K-correction or Milky Way extinction scalar
in Equation (3). Here L2 is the unique matrix that, when multi-
plied with the apparent light curve parameter vector φ, computes
the rest-frame apparent light curve model corresponding to each
time-filter-ordered observation in m. Its rows are constructed
from the individual vectors l1(t).

If the random errors ǫ are normally distributed, the likelihood
function of the unknowns T0, φ for the full data set for a single
SN is

P (m| T0,φ, z) = N [m| KC(T0; z,φ) + GX(T0; z,φ, EMW)

+ L2(T0, z)φ, W ], (5)

where W is the error covariance matrix and N (x|μ,�) is a mul-
tivariate Gaussian probability density with mean vector μ and
covariance matrix �. In general, W can be a full positive definite
symmetric matrix, if the errors due to photometric calibration,
K-corrections, and Milky Way extinction are correlated across
the observer filters and observation times. Our algorithms allow
for this to be a full matrix, but for this paper, we take the simple
approach of assuming it is diagonal, using only the measurement
error variances. We symbolize the light curve data, the observed
magnitudes and times, and the error covariance for each SN, as
Ds = {m, W , T }.

2.3. Redshift–Distance Likelihood Function

The theoretical relation between the cosmological redshift
zc and the luminosity distance dL to an SN in a smooth
cosmological model depends on the cosmological parameters
ΩM , ΩΛ, w, and the Hubble constant h = Ho/100 km s−1.
At low redshifts, distances are insensitive to the cosmological
model, and if we are concerned only with ratios of distances (or
differences of distance moduli), then it is sufficient to fix h. For
this paper, we are not concerned with constraining cosmological
parameters, but on the statistical properties of SN Ia light curves,
so we fix ΩM = 0.73, ΩΛ = 0.27, w = −1, and h = 0.72. The
cosmological redshift may differ from the measured redshift
z through measurement error and random peculiar velocities.
The expected value of the distance modulus at redshift z is
f (z) = 25 + 5 log10[dL(z) Mpc−1]. As described in Mandel et al.
(2009), the likelihood function of the distance modulus given
the measured redshift

P (μ| z) = N
[

μ | f (z), σ 2
μ = [f ′(z)]2

(

σ 2
z + σ 2

pec

/

c2
)]

. (6)
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In the low-z regime, where dL(z) is linear in z (the Hubble
law), the variance is

σ 2
μ =

(

5

z ln 10

)2
[

σ 2
z +

σ 2
pec

c2

]

, (7)

where σ 2
z is the redshift measurement variance and σ 2

pec is the
expected variance due to random peculiar velocities. In this
paper, we have alternately taken σpec = 150 (Radburn-Smith

et al. 2004) and 300 km s−1. Our results are consistent between
the two values. We used the measured redshifts corrected to the
cosmic microwave background frame and the local infall flow
model of Mould et al. (2000).

In this paper, we are only concerned with evaluating distance
predictions for low-z SNe Ia, so the cosmological parameters
are fixed to their concordance values. The dependence of the
redshift–distance relation on the cosmological parameters could
be made explicit by writing P (μ| z; ΩM , ΩΛ, w) and allowing
them to be free parameters that appear in the global posterior
density (Equation (19)) of a cosmological sample of SNe Ia.

2.4. Latent Variable Model and Host Galaxy Dust

The vector φ in Equation (2) encodes the information needed
to construct the apparent light curve model in the rest-frame
filters. Using the differential decline rates representation, this
vector encodes the peak apparent magnitudes and the decline
rates of the apparent light curve in multiple filters over intervals
in phase. The latent parameter vector ψ encodes the information
for constructing the absolute light curve model in the rest-frame
filters: the peak absolute magnitudes in rest-frame filters and
the decline rates of the absolute light curves. The two sets
of parameters are related by host galaxy dust extinction and
distance:

φ = ψ + A + vμ. (8)

The vector A = AV (α + β/RV ) represents the effect of
extinction on the absolute light curve parameters, and is a
function of the host galaxy extinction, AV , and the slope of
the extinction law, RV , using the dust extinction law of Cardelli
et al. (1989). We model the effect of host galaxy extinction as
described in Jha et al. (2007). For a given (AV , RV ), the effective
dust extinction in filter F at phase t is

AF (t) = AV ζF (t)(aF + bF /RV ). (9)

The coefficients aF and bF model the effect of dust extinction
on the SN SED within each passband F at the time of maximum
light. The functions ζF (t) model the change of this effect with
phase due to the evolving SN SED. The constant vector α is
constructed with components

αj =

⎧

⎨

⎩

aF , if φj is a peak magnitude, F0

Δζ k
F aF , if φj is a decline rate in filter F

between phases τk and τk+1,

(10)

where Δζ k
F ≡ [ζF (τk+1) − ζF (τk)]. The constant vector β is

defined analogously, in terms of ζF and bF. This accounts for
the effect of dust extinction on the apparent magnitudes and
light curve shape through the evolving SN Ia SED with phase.

Since distance only changes the magnitude, but not the
shape of the light curve (after accounting for time dilation),
the constant vector v is defined with components

vj =
{

1, if φj is a peak magnitude, F0

0, otherwise.
(11)

With these constructions, we use Equation (8) to relate
the apparent light curve parameters φ to the latent variables
of extinction AV , RV , the distance modulus μ, and absolute
(intrinsic) light curve parameters

ψ =
(

MF1, . . . ,MFN , θ̃
F1

, . . . , θ̃
FN )

, (12)

where θ̃
F

contain the decline rates of the absolute model
light curves in each rest-frame filter. Since the model for the
extinction in each passband and phase, Equation (9), is linear

in the inverse of RV , we find it useful to define rV = R−1
V to

simplify the notation.

2.5. Population Distribution Model for Intrinsic
Absolute Light Curves

Even normal SNe Ia do not all have the same luminosities,
intrinsic colors, or light curve shapes. The heterogeneities of
these properties in the population of SNe Ia—which cannot be
explained by dust or distance—are called intrinsic variations.
Estimation of the covariances in the population of SN Ia light
curves is crucial to the utility of SNe Ia as standardizable
candles for distance estimation. For example, the well-known
width–luminosity correlation of optical light curves (Phillips
1993; Hamuy et al. 1996b; Phillips et al. 1999) allows us to
estimate the distance modulus to an SN to ∼0.2 mag.

To model and capture intrinsic correlations between the
absolute magnitudes at multiple wavelengths and the shapes
of their light curves, we need to specify a general correlation
structure for the population distribution of ψ . Ideally, the
population distribution P (ψ) would be specified by reliable
astrophysical theory. However, current explosion models for
SNe Ia do not provide such detailed guidance regarding the
expected distribution of absolute light curve properties. Thus,
we seek to model the population distribution of light curves
generally and infer the statistical properties of the intrinsic
variations from the data. We capture the intrinsic variations
and correlations of SN Ia absolute light curves by modeling
the distribution of the intrinsic parameters ψ as a multivariate
Gaussian:

ψ s ∼ N (μψ ,�ψ ) (13)

with mean vector μψ and intrinsic covariance matrix �ψ .
The intrinsic covariance matrix models population correlations
between the peak absolute magnitudes at different wavelengths,
correlations between the light curve decline rates at different
phases and wavelengths, and correlations between peak absolute
magnitudes and light curve decline rates at different phases
and wavelengths. By capturing the population correlations
of the absolute light curves in multiple filters at different
wavelengths, we implicitly also model the correlation structure
of the intrinsic colors. The intrinsic covariance matrix can be
readily decomposed into a matrix of intrinsic correlations, Rψ ,
and a vector of intrinsic standard deviations, σψ , one for each

component ψ i : �ψ = diag(σψ )Rψ diag(σψ ). Each element
of Rψ is a correlation coefficient between −1 and 1. A valid
�ψ must be positive definite and symmetric. Since ψ directly
describes the multi-band absolute light curves, Equation (13)
models them as a stochastic (Gaussian) process.

Suppose the intrinsic parameters vector ψ = (ψu,ψo) of
a particular SN can be partitioned into parameters ψo tightly
constrained by its observations and parameters ψu that are not
directly observed. For example, ψo may be the decline rates
describing the shapes of this SN’s light curves, and ψu may
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be the peak absolute magnitudes of this SN under distance
prediction. With this population model for intrinsic light curve
variations, it is simple to estimate ψu given ψo. The full
hyperparameters can be partitioned in the same way:

μψ =
(

μu
ψ

μo
ψ

)

, �ψ =
(

�uu
ψ �uo

ψ

�ou
ψ �oo

ψ

)

. (14)

Using standard theorems for the multivariate normal dis-
tribution, the expected value of ψu, conditional on ψo, is
E[ψu| ψo] = μu

ψ + �uo
ψ (�oo

ψ )−1(ψo − μo
ψ ), and its con-

ditional covariance (uncertainty) is Cov[ψu| ψo] = �uu
ψ −

�uo
ψ (�oo

ψ )−1�ou
ψ . This example demonstrates how this model

uses the correlation structure of the absolute light curves to
relate inferred variables to observable quantities and vice versa.

In the absence of host galaxy dust (AV = 0) and measurement
error, an estimator for the predicted distance can be derived
straightforwardly for well-sampled light curves. Suppose that
apparent light curve parameters φ could be measured perfectly
for well-sampled light curves with vanishing measurement error.
If the intrinsic mean μψ and covariance �ψ were known, then
the posterior prediction of the distance modulus has mean

μ̂ = V̂μvT �−1
ψ (φ − μψ ) and variance V̂μ = (vT �−1

ψ v)−1.

In fact, μ̂ is the minimum variance unbiased linear estimator
of the distance modulus, a result that does not depend on the
Gaussianity of the intrinsic distribution of ψ , the absolute light
curve parameters. This can be shown by noting that μ̂ is the
generalized least-squares solution of Equation (8) and invoking
the Gauss–Markov theorem. However, the presence of a random
amount of host galaxy dust for each SN, and finite sampling and
measurement error of the light curves necessitates modeling
these other aspects of the hierarchical structure.

Modeling intrinsic variations of ψ in the population using the
covariance structure of a multivariate Gaussian is the simplest
choice. However, if non-Gaussianities become important then
it will be possible to replace this simple assumption with more
complex distributions. For example, a Gaussian mixture model
could be used to describe a multi-modal population, Student-t
distributions can be employed to model fat-tailed populations,
and nonlinear regression could capture nonlinear correlation
structure. Alternatively, one might seek a representation or
parameterization (Section 2.1) for ψ that makes its population
distribution more amenable to modeling with a simple form. For
the application in this paper, we did not find these more advanced
approaches to be necessary, so we postpone their discussion for
future work.

Observables that are not derived from light curve data, such
as host galaxy masses (e.g., Kelly et al. 2010; Sullivan et al.
2010) or spectroscopic measurements (e.g., Bailey et al. 2009;
Blondin et al. 2011; Foley & Kasen 2011), can be correlated
with the intrinsic absolute light curves. They can be included in
this framework by augmenting ψ with an auxiliary parameter
and specifying a likelihood function describing the uncertainty
in the new observable. The joint distribution P (ψ) would model
the covariance structure of the intrinsic light curves along with
the auxiliary property, which can be leveraged to compute
distance predictions using the extra information.

2.6. Population Models for Host Galaxy Dust

We also adopt models for the population distribution of
host galaxy dust parameters AV and rV for each SN. Their
joint population distribution can be factored as P (AV , rV ) =

P (rV | AV )P (AV ). The extinction AV values are assumed to
be drawn from an exponential distribution describing dust
along lines of sight from SN host galaxies (Jha et al. 2007):
AV ∼ Expon (τA). The probability density is

P (AV | τA) =
{

τ−1
A e−AV /τA , AV > 0

0 AV � 0
(15)

with an unknown hyperparameter, the exponential scale length
τA, which is inferred from the hierarchical posterior probability
density conditional on the data.

Even along lines of sight within the Milky Way, interstellar
dust can cause varying amounts of reddening for a given
amount of absorption or extinction. This ratio is captured by the
parameter RV ≡ AV /E(B − V ). Although the average value
within the Milky Way is 3.1, it can range from 2.1 to 5.8, and
depends on the nature of the dust grains (Cardelli et al. 1989;
Draine 2003; and references therein).

Previous studies have focused on treating RV as a constant
for all SNe, either set to the Milky Way value, or left as a fit
parameter. However, this is a rather strong assumption, so here
we consider the possibility that the RV of dust within the distant
host galaxies of SNe Ia may vary within a common distribution.
We also wished to explore whether RV could be systematically
different for SNe with different AV dust extinctions. To test for
and capture potential population correlations between AV and
rV , we consider several models for the conditional population

distribution rV ≡ R−1
V given AV . We consider six cases with the

following assumptions.

1. RV = 3.1. The host galaxy dust law slope is fixed to the
Milky Way interstellar average for all SNe.

2. CP: (RV = const). Complete pooling; RV has the same
value for each SN, but this value is unknown and inferred
from the posterior density.

3. NP. No pooling. {rs
V } for each SN are completely indepen-

dent with a flat prior P (rs
V ) ∝ 1 on each.

4. PP: m = 0. Partial pooling. {rs
V } are conditionally inde-

pendent draws from a common Gaussian population distri-
bution independent from the magnitude of extinction AV :

rs
V ∼ N

(

μr , σ
2
r

)

. (16)

The mean μr and variance σ 2
r of this population are

unknown and inferred from the posterior density.

5. PP: m = 1. Partial pooling. {rs
V } are conditionally indepen-

dent draws from a common population distribution with a
mean linearly dependent on AV :

rs
V |AV ∼ N

(

β0 + β1A
s
V , σ 2

r

)

. (17)

The regression coefficients β and residual variance σ 2
r of

this population are unknown and inferred from the posterior
density. The intercept β0 represents the population mean rV

value at vanishing extinction and β1 captures a potential
trend of rV with increasing AV .

6. PP: Steps. Partial pooling with the step function distribu-
tion. The range in AV is divided up into two or four intervals
(c.f. Tables 2 and 3). Within each interval, rs

V for each SN is
a conditionally independent draw from a common Gaussian
distribution with mean μr and variance σ 2

r (Equation (16)).
These hyperparameters are estimated from the posterior
density.
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In all cases, we limited RV to an allowed range: 0.18 < rV <
0.7 (1.4 < RV < 5.6).

Cases 4, 5, and 6 perform partial pooling, or shrinkage
estimation, of the rV parameters, which is characteristic of
hierarchical Bayes models. In the complete pooling case, it
is assumed that the dust in the host galaxies of SNe all have
the same values of RV , and thus all the information in the
sample of SNe is used (“pooled”) to infer the single RV value.
In the case of no pooling, it is assumed that the host galaxy
dust for different SNe can have different, independent values
of rV , and that only the information from each SN is used
to infer the RV value for that SN. These two cases are limits
of partial pooling, in which the information for each SN is
combined with that of the population to produce the individual
RV estimates. The appropriate weight between the individual
SN information and that of the population is negotiated by
the inferred population variance, σ 2

r , and the precision with
which RV can be estimated independently for each SN. As
σ 2

r → 0, we obtain complete pooling, and for σ 2
r → ∞, we have

effectively no pooling. At intermediate values, partial pooling
finds a middle ground between the noisy and possibly unstable
estimates of no pooling and the possibly unrealistic strong
assumptions of complete pooling. The hyperparameter σ 2

r can
be understood as the residual variance of rV in the sample after
accounting for the other sources of error for each individual SN.
Shrinkage accounts for the fact that a histogram or scatter plot
of individual, simple, point estimates of derived quantities will
be wider than the true, intrinsic distribution of those quantities,
if those point estimates have significant uncertainties, and it
reduces the mean squared error of each parameter estimate.
From a non-Bayesian perspective, shrinkage can be regarded
as an adaptive regularization that determines from the data
how much to allow an individual estimate to deviate from the
population average or trend. Shrinkage estimation with multi-
level models has been discussed recently by Loredo & Hendry
(2010).

We can test the hypothesis that the dust law parameter rV

has no dependence on host galaxy extinction AV by comparing
the results from fitting Cases 4 and 5. Since Case 4 is a nested
case of Case 5 with β1 = 0, we can check to see whether or
not the marginal posterior density of β1 is consistent with zero
when fitting Case 5. Similarly, with Case 6, we can check to
see whether the population means μr in each interval in AV are
consistent with each other across the range of AV , or if there are
significant differences.

For brevity and specificity, in subsequent sections describing
statistical computation, we adopt the assumptions of Case 5;
the hyperparameters governing the rV population are β and
σ 2

r . For other cases, the hyperparameters are μr and σ 2
r and

the algorithms are appropriately modified to account for the
different models.

2.7. Specifying the Hyperpriors

Diffuse, or non-informative, hyperpriors are adopted on
the highest-level hyperparameters of the hierarchical model:
μψ ,�ψ for the SN light curve population and τA, μr , or β,

and σ 2
r for the host galaxy dust population. As the number of

well-observed SNe, NSN, becomes larger, the influence of the
hyperpriors on the posterior estimates of the hyperparameters
diminishes. Thus, so long as we include a sufficient number of
SNe in the hierarchical model, we can choose the particular,
analytic forms of diffuse hyperpriors for computational conve-
nience. We discuss some mathematical details in Appendix C.

2.8. Global Posterior Probability Density

Mandel et al. (2009) derived the global posterior probability
density over all the SNe in the training set as a product of the light
curve and redshift–distance likelihood functions for individual
SNe, population distributions for SN Ia light curves and host
galaxy dust, and the hyperpriors on the hyperparameters of the
population distributions. We construct the global posterior using
the new component probability models described above. Let the
time-filter-ordered light curve data in the observer frame for SN
s be Ds , with measured redshift zs. The unknown parameters for
an individual SN are the apparent light curve parameters φs , the
distance modulus μs , the extinction As

V , the slope of the dust law
rs
V , and the time of maximum T s

0 . For a given set of population

hyperparameters, μψ ,�ψ , τA,β, σ 2
r , the conditional posterior

density for an individual SN is

P
(

φs, T
s

0 , μs, A
s
V , rs

V

∣

∣Ds, zs;μψ ,�ψ , τA,β, σ 2
r

)

∝ P
(

ms | T s
0 ,φs, zs

)

× P (μs | zs)

× P (ψ s = φs − vμs − As | μψ ,�ψ )

× P
(

As
V , rs

V

∣

∣ τA,β, σ 2
r

)

. (18)

The training set data are comprised of the light curve
data for all the SNe in the training set D = {Ds} and
their redshifts Z = {zs}. The unknown hyperparameters of
the populations are the mean and covariance of the absolute
light curve parameters μψ ,�ψ , the exponential scale of the
extinction distribution τA, and the hyperparameters describing

the R−1
V distribution. The global joint posterior density of all

SN observables {φs}, distance moduli {μs}, dust parameters
{As

V , rs
V }, and the population hyperparameters conditioned on

the database D,Z is proportional to the product of NSN

individual densities multiplied by the hyperpriors:

P
({

φs, T
s

0 , μs, A
s
V , rs

V

}

;μψ ,�ψ , τA,β, σ 2
r

∣

∣D,Z
)

∝
[

NSN
∏

s=1

P
(

ms

∣

∣T s
0 ,φs, zs

)

× P (μs |zs)

×P (ψ s = φs − vμs − As |μψ ,�ψ )

×P
(

As
V , rs

V

∣

∣τA,β, σ 2
r

)

]

× P (μψ ,�ψ ) × P
(

τA,β, σ 2
r

)

.

(19)

To predict the distance of an SN using its light curve
data, one sets the redshift–distance likelihood P (μ̃s | z̃s) ∝ 1
in Equation (18), where we use tilde on parameters and
data for prediction set SNe. The tilde redshift z̃s is used
for time-dilation and K-correction in the light curve likeli-
hood function, but not to constrain the distance modulus in
the redshift–distance likelihood. The marginal posterior pre-

dictive density is P (μ̃s | D̃s, z̃s;D,Z), obtained by integrating
Equation (19).

Equation (19) is an explicit statement of the objective func-
tion for statistical inference for both training and prediction
with the hierarchical model. By computing Equation (19), we
solve for the most likely distributions of host galaxy dust and
intrinsic luminosities, colors, and light curve shapes that best
account for the apparent distributions, conditional on the model
assumptions. A directed acyclic graph (DAG) representing the
hierarchical model and the global posterior density is shown in
Figure 1. The graph depicts a generative probabilistic model
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linking together the populations and individuals, and param-
eters and hyperparameters to the data (Mandel et al. 2009).
For simplicity, we have not shown the dependence of the light
curve likelihood function on redshift through time-dilation and
K-correction, and only show the redshift–distance dependence,
which is the key difference between training and prediction.

3. IMPROVED MCMC WITH BayeSN

It is important to distinguish between the tasks of statistical
inference and statistical computation. The former entails deriv-
ing estimators for unknown quantities, conditional on data, and
the assumptions of the statistical model. We have done that in
the previous section by deriving the global posterior probabil-
ity density, Equation (19). The task of statistical computation
is accomplished by specifying, constructing, and implementing
algorithms for computing the numerical values of these estima-
tors for the observed values of the data, under the assumptions of
the model. In this section, we describe our strategy for statistical
computation of the posterior estimates by stochastic sampling
from the global posterior probability density, Equation (19).

We perform a fully Bayesian inference of the hier-
archical model using MCMC sampling methods such as
the Metropolis–Hastings algorithm (Metropolis et al. 1953;
Hastings 1970) and Gibbs sampling (Geman & Geman 1984).
Mandel et al. (2009) presented the first MCMC algorithm
(BayeSN) for hierarchical Bayesian inference with SN light
curves. We have made many modifications to the original
BayeSN algorithm to incorporate the modeling of host galaxy
dust, K-corrections from the rest-frame model light curves to
the observer-frame measured magnitudes, and to improve the
computational speed and convergence rate of the chains. The
new algorithm is largely comprised of Gibbs sampling and
Metropolis–Hastings jumps that do not require the user to
“tune” jump sizes for each SN, as would be required for or-
dinary Metropolis steps. Instead, the algorithm only requires
the specification of a jump size for the scalar time of maximum
for each SN, T s

0 , which is a relatively easy task: an rms jump
proposal of ∼0.5 day was generically successful for rapid con-
vergence for all SNe. Movement along the other dimensions of
parameter space is accomplished by Gibbs sampling or more
general Metropolis–Hastings proposals that exploit the condi-
tional structure of the posterior distribution to adaptively pro-
pose more global moves. By minimizing the amount of manual
tuning required before running the MCMC, we have increased
the ease-of-use and practical applicability of MCMC for fitting
comprehensive hierarchical models for SNe Ia. A basic intro-
duction to MCMC algorithms for SN Ia probabilistic inference
was given by Mandel et al. (2009); statistical references include
Liu (2002), Gelman et al. (2003), and Robert & Casella (2005).

We use this new BayeSN code to sample from the
global posterior probability distribution of all individual
parameters and the population hyperparameters of SN Ia light
curves and host galaxy dust, conditioned on the SN light curve
data and redshifts. Here, we sketch the improved BayeSN Gibbs
sampling algorithm. Further mathematical details can be found
in Appendix D. The state of the chain is determined by the
current values of all the parameters and hyperparameters:

S =
({

φs, T
s

0 , μs, A
s
V , rs

V

}

,μψ ,�ψ , τA,β, σ 2
r

)

. (20)

We generate random samples from the global posterior
distribution P (S|D,Z) using a Markov chain, conditioned on
the photometric light curve data for all SNe D = {Ds}, and

their redshifts Z = {zs}. We begin with crude, randomized
guesses of the individual SN parameters {φs, T

s
0 , μs, A

s
V , rs

V }
for all SNe s in the data set. In each step, we update a subset,
or block, of parameters from their conditional posterior density
with the complement set of parameters (and the data) fixed to
their current values. The choice of parameter blocks exploits the
conditional independence structure of the DAG of the inference;
see Figure 1.

1. Compute the absolute light curve parameters {ψ s} us-
ing Equation (8). The conditional posterior density of
the light curve hyperparameters is P (μψ ,�ψ | ·,D,Z) =
P (μψ | �ψ ; {ψ s})P (�ψ | {ψ s}). We update �ψ from the
second factor, and then update μψ given �ψ from the first
(see Appendix D for details). (We use the notation (·) to in-
dicate all the other parameters and data that have not been
explicitly indicated.)

2. Draw a new extinction scale hyperparameter τA from
the conditional distribution P (τA| ·,D,Z) = P (τA| {As

V }),
by drawing a random number from an inverse gamma
distribution.

3. Obtain new values of β and σ 2
r from P (β, σ 2

r | ·,D,Z) =
P (β| σ 2

r , {rs
V , As

V })P (σ 2
r | {rs

V , As
V }). First draw a new σ 2

r

from an inverse gamma distribution. Conditional on that
value, draw a new β from a Gaussian.

4. Repeat the following steps for each SN s.

(a) Propose a new time of maximum T ∗
0,s ∼ N (T0,s, s

2
T )

according to a random walk from the previous estimate.
It is usually sufficient to use sT ≈ 0.5 day. Given T ∗

0,s ,
propose a new set of apparent light curve parameters
for all filters, φ∗, from the distribution in Appendix D.
Compute the Metropolis–Hastings ratio r to decide
whether to accept the joint proposal (T ∗

0 ,φ∗) or to stay
at the current values (T0,φ).

(b) Update the new distance modulus μs from the
conditional probability density P (μs | ·,Ds, zs) =
P (μs | φs, A

s
V , rs

V ;μψ ,�ψ ; zs) by sampling from a
Gaussian distribution.

(c) Draw a new host galaxy extinction As
V from the condi-

tional posterior probability density P (As
V | ·,Ds, zs) =

P (As
V |φs, μs, r

s
V ;μψ ,�ψ , τA,β, σ 2

r ). This can be
shown to be a truncated Gaussian distribution in
As

V > 0.

(d) Draw a new host galaxy dust law slope rs
V

from the conditional posterior P (rs
V | ·,Ds, zs) =

P (rs
V |φs, μs, A

s
V ;μψ ,�ψ ,β, σ 2

r ) by evaluating the
probability density function (pdf) on a fine grid on
0.18 < rV < 0.7 and using griddy Gibbs sampling
(Ritter & Tanner 1992).

(e) (optional) Perform a translation in the space of distance
versus extinction: (As

V , μs) → (As
V , μs) + γ (1,−x).

Here, x determines a random direction along the
tradeoff. We select a random γ using generalized
conditional sampling (Liu 2002), and then translate
to update (As

V , μs).

5. Finally, record the current state of the chain S. Repeat all
steps until convergence.

This algorithm generates an irreducible and ergodic Markov
chain that will converge to a stationary distribution equal to the
global posterior density, Equation (19), according to standard
theorems (e.g., Robert & Casella 2005). It converges without
Step 4e, but this step speeds the exploration of the tradeoff
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between extinction and distance for each SN. We found that
including this step reduces the auto-correlation scale for the
slowest converging As

V by a factor of ∼3.

4. APPLICATION

4.1. Data Sets

In this section, we describe the application of the hierarchical
framework to inference with nearby SNe with optical and NIR
light curve observations (BVRIJH).

Mandel et al. (2009) analyzed a sample of SNe with near-
infrared JHKs light curve observations compiled from the
PAIRITEL sample (WV08), and available published light curves
from the literature (Jha et al. 1999; Hernandez et al. 2000;
Krisciunas et al. 2000, 2001; Di Paola et al. 2002; Valentini et al.
2003; Krisciunas et al. 2003, 2004b, 2004c, 2007; Elias-Rosa
et al. 2006; Pastorello et al. 2007; Stanishev et al. 2007; Pignata
et al. 2008). Nearly all of the SNe in the PAIRITEL sample were
also observed in optical filters UBVRI or UBVr′i′ by Hicken
et al. (2009a), and nearly all of the SNe from the literature were
also observed at optical wavelengths. We selected the same set
of SNe with NIR light curves used in Mandel et al. (2009)
with the following exceptions: SN 2005ao was omitted for lack
of quality data points and SN 2006lf was omitted because its
position was near the Galactic plane, so its Milky Way dust
reddening estimate was very large and unreliable. Extensive
studies of two of the well-sampled SNe, SN 2005cf and SN
2006X, were presented by Wang et al. (2008, 2009b).

Since the number of SNe Ia with NIR light curves is still small,
we supplemented this set with SNe from the recent CfA3 sample
of nearby SNe Ia (Hicken et al. 2009a) that had well-sampled
optical light curves. The additional light curves increase the
statistical strength in the optical bands and stabilize estimation
of the full hierarchical model. They also provide a set of optical-
only light curves to compare against the set of SNe with optical
and NIR light curves (Section 7). We included SNe with high-
quality light curve data at 0.01 < z < 0.065, with more than
five observations in B band, and with the first observation in B
occurring less than 10 days past maximum. Since these light
curves lack NIR data, the model marginalizes over the missing
light curves for all inferences. Some of the SNe in the CfA3
sample were observed in the RI passbands, while some were
observed in the r ′i ′ passbands. In both cases, we map these
observer-frame passbands to rest-frame RI passbands, and in
the latter case, the K-correction takes into account the cross-
filter transformation. The K-corrections for observations in the
B and V filters mapped them to rest-frame B and V filters. The
J and H observations were mapped to rest-frame J and H filters
defined by the Two Micron All Sky Survey (2MASS).

We use only normal SNe Ia with B decline rates 0.75 <
Δm15(B) < 1.6. As discussed by Hicken et al. (2009a),
fast decliners and SN 1991bg-like objects have different
luminosity–light-curve-shape relations than normal SNe Ia, and
should be modeled separately, so we do not include them in our
analysis. We have also excluded the peculiar SN 2006bt from
the sample (Foley et al. 2010). The full “CfA+literature” sample
consists of 110 SNe, 37 of which have NIR observations.

We modeled the rest-frame BVRIJH light curves of this set
of SNe listed in Table 4. For each SN, if there were data in an
observer-frame passband mapping to a given rest-frame filter,
we list the fitted peak apparent magnitude in the rest-frame filter.
If there were no observations for a given rest-frame passband,
then the estimated peak magnitude is not listed. We have omitted

ultraviolet data for the analysis in this paper. Kessler et al.
(2009) found that differences in the U-band model between
MLCS2k2 and SALT2 lead to large (Δw ∼ 0.2) differences
in the cosmology using high-redshift samples. As this work
focuses on low-redshift data, we have omitted the U data to avoid
calibration and standardization problems, selection effects, and
S-corrections between the u and U bands. Future work, applying
our framework to high-redshift SN Ia samples for cosmological
analysis, will carefully incorporate U-band data.

Contreras et al. (2010) have recently published light curve
observations for a set of nearby SNe as part of the CSP, and an
analysis of these data was discussed by Folatelli et al. (2010).
These are high-quality well-sampled light curves with optical
coverage, and a subset included contemporaneous NIR obser-
vations as well. Comparison of the CSP and PAIRITEL data
reduction and calibration for SNe observed in both samples is
ongoing. For joint analysis of the current published photometry
of these sets, in Section 7, we augment our sample with 27 SNe
with CSP data passing the criteria and examine the distance
predictions for each set as a consistency check. Twenty of these
SNe have joint optical and NIR light curve observations.

4.2. Statistical Computation

We ran the new BayeSN code (Section 3) to coherently
fit the apparent light curves with the differential decline rates
model (Section 2.1), to estimate host galaxy dust extinction
(Section 2.4) and distance moduli (Section 2.3), and to infer
intrinsic variations and correlations (Section 2.5) and the host
galaxy dust population (Section 2.6). The code samples the
global posterior density (Equation (19)) over all unknowns given
the data.

We seeded each chain with random, initial values of the SN
and dust parameters {φs, A

s
V , μs}. In many cases, the B light

curve was sufficiently well sampled that the time of maximum
could be unambiguously determined. In these cases, we fixed
the T0 to that value and did not re-estimate it when running
the sampler (by setting sT = 0 in step 4a). For SNe with more
uncertain T0 we re-estimated it during the fitting (sT = 0.5d).
Under Case 1 (Section 2.6), the initial values of RV were all fixed
to 3.1. For all other rV cases, the initial {rs

V } were randomized.
The initial dust configuration of the SN set is random, and we

do not make an initial estimation of the As
V value before running

BayeSN. Thus, it is possible that this randomized initialization
of dust values may assign a high As

V to an apparently blue
SN, and a low As

V to an apparently red object. If we see
that multiple chains starting with different and random initial
dust configurations eventually converge to the same posterior
estimate, we can be reassured that our final inferences are
independent of the initial assignments of AV , rV values, and
that the probabilistic inference has sorted out the probable
dust values over the set of SNe. In Figure 2, we show that
four independent and parallel chains training the hierarchical
model over the set of SNe, each starting with a different initial
value for the host galaxy extinction, converge to the same final
estimates in the long run of the MCMC. This shows that our
final inferences for the trained model are robust to the initial
values of host galaxy dust, and indicates the self-consistency
of estimates and convergence of the algorithm to a unique joint
solution over the full set of SNe.

To perform training and prediction, the BayeSN code gener-
ated four parallel, independent chains of 2×104 complete cycles
(Steps 1–5). The initial values for each chain were generated by
using different random numbers for each independent chain. We
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Figure 2. Example sample paths of Markov Chain Monte Carlo (MCMC) chains
generated by the BayeSN MCMC sampling code. The full chain stochastically
samples the parameter space of all individual SNe in the set, and the populations
of SN Ia light curves and the dust. This plot focuses on the coordinates of
the chain concerning the visual extinction AV to particular SN. Each color
represents an independent chain starting from a randomized initial guess. The
chains explore the full parameter space and converge within a few hundred
iterations upon the same global posterior distribution. The posterior uncertainty
in the estimate is reflected in the distribution (variability) of the chain samples
upon convergence. The plot depicts the simultaneous convergence of the chains,
both for the estimate of a single SN and for estimates of the ensemble of SNe,
ensuring the attainment of a consistent global solution for the SN population.
Each color represents one of the four independent chains. For example, the blue
line in each panel is a different coordinate (projection) of the same MCMC
chain.

(A color version of this figure is available in the online journal.)

thinned out the chains by recording only every 40th value. This
reduces the autocorrelation between successive recorded sam-
ples and saves memory. To assess convergence, we computed
the Gelman–Rubin (G-R) statistic (Gelman & Rubin 1992) for
each parameter in the chain to compare the coverages of the
independent chains. We considered a maximum G-R ratio less
than 1.10 to indicate convergence. We discarded the first 20%
of each chain as burn-in, and the chains were concatenated for
analysis.

5. RESULTS: POSTERIOR INFERENCES

In this section, we report the posterior inferences of light
curves and the population when the training set consists of all
the SNe and their redshifts (D,Z). We report the posterior
inference obtained when adopting Case 5 (m = 1) for the
(AV , rV ) population model, which models linear trends between
the dust slope rV and the dust extinction AV . Posterior inferences
can be described in terms of light curve fits and dust estimates
for individual SNe, intrinsic covariances in the population of SN
light curves, and the population distribution and correlations of
host galaxy dust properties.

5.1. Individual Supernovae

Optical and NIR light curve fits in the rest frame are shown
for one SN, SN 2005eq, in Figure 3. The points are the
measured magnitudes in the observer frame minus the estimated
K-corrections and Milky Way extinction in each passband.
The black curves represent the fitted apparent light curves in
each rest-frame passband, with each light curve represented by
the differential decline rates model (Appendix A). The peak
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Figure 3. Top: optical (CfA3; Hicken et al. 2009a) and NIR (PAIRITEL; WV08)
observations of nearby SN Ia 2005eq are fitted with a multi-band light curve
model. The points are the observed magnitudes in each filter minus estimated
K-corrections and Milky Way extinction. Bottom: optical and NIR light curves
of SN 2005eq are used to infer the host galaxy dust extinction properties. The
hierarchical model enables coherent inference of host galaxy dust properties
(AV , RV ) (assuming a CCM dust law), while marginalizing over the posterior
uncertainties in the dust and SN light curve populations. The cross indicates the
marginal bivariate mode, and the two black contours contain 68% and 95% of
the posterior probability. The inferred NIR extinction AH is much smaller than
the optical extinction AV and has much smaller uncertainty. This SN exhibits
moderate extinction and reddening due to host galaxy dust.

(A color version of this figure is available in the online journal.)

apparent magnitudes for each SN and the decline rate Δm15(B)
are listed in Table 4.

We also depict the posterior inferences of the dust properties:
the visual extinction AV , the NIR extinction, AH , and the slope of

the extinction law rV ≡ R−1
V . The bivariate marginal probability

densities were estimated from the MCMC samples using kernel
density estimation. The marginal distributions integrate over
the posterior uncertainties in individual light curve fits and the
population distribution. For SN 2005eq, we find a moderate
amount of visual extinction, AV ∼ 0.3 mag. We can see from the
side-by-side comparison that not only is the H-band extinction
about five times smaller, but its uncertainty is also much smaller.

Since dust extinction is nonnegative, AV � 0, the posterior
probability densities of the dust parameters is highly non-
Gaussian for SNe with low extinction. For example, from
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Figure 4. Left: post-maximum optical decline rate Δm15(B) vs. posterior
estimates of the inferred optical absolute magnitudes MB (black points) and the
extinguished magnitudes B0 − μ (red points). Each black point maps to a red
point through optical dust extinction in the host galaxy. The intrinsic light-curve-
width–luminosity Phillips relation is reflected in the trend of the black points,
indicating that SNe brighter in B have slower decline rates. The blue line is the
linear trend of Phillips et al. (1999). Right: inferred absolute magnitudes and
extinguished magnitudes in the near-infrared H band. The extinction correction,
depicted by the difference between red and black points, is much smaller in H

than in B. The absolute magnitudes MH have no correlation with Δm15(B). The
standard deviation of peak absolute magnitudes is also much smaller for MH

compared to MB.

(A color version of this figure is available in the online journal.)

Table 4, we infer that SN 2006ax has little host galaxy dust
extinction with the most likely value being AV = 0.01 mag.
However, it is uncertain enough that AV = 0.12 still lies within
68% highest posterior density (HPD) contour. By contrast, the
AH estimate is near zero, and the 68% contour lies within
AH < 0.03. Even SNe with low extinction benefit from
observations in the H-band by reducing the uncertainty in the
dust estimate. Table 4 lists summary statistics of the marginal
posterior distribution of each host galaxy dust parameter for
each SN, obtained from the MCMC samples.

5.2. Intrinsic Correlation Structure of SN Ia Light
Curves in the Optical–NIR

We use the hierarchical model to infer the intrinsic corre-
lation structure of the absolute SN Ia light curves. This cor-
relation structure captures the statistical relationships between
peak absolute magnitudes and decline rates of light curves in
multiple filters at different wavelengths and phases. We summa-
rize inferences about light curve shape and luminosity across the
optical and near-infrared filters; a more detailed analysis of the
intrinsic correlation structure of colors, luminosities, and light
curve shapes will be presented elsewhere.

5.2.1. Intrinsic Scatter Plots

The hierarchical model fits the individual light curves with
the differential decline rates model and infers the absolute
magnitudes in multiple passbands, corrected for host galaxy
dust extinction. For each individual SN light curve, we can use

the inferred local decline rates d
F to compute the Δm15(F ) of

the light curve in each filter. In the left panel of Figure 4, we
plot the posterior estimate of the peak absolute magnitude MB

versus its canonical Δm15(B) decline rate with black points.
The error bars reflect measurement errors and the marginal
uncertainties from the distance and inferred dust extinction.
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Figure 5. Inferred absolute magnitudes MF (blue points) and the extinguished
magnitudes F0−μ (red points) vs. colors relative to NIR H (intrinsic: blue points;
apparent: red points). Only SNe with complete BVRIJH data are plotted. The
intrinsically optically bright SNe tend to be intrinsically bluer in the optical–NIR
color. The H-band absolute magnitudes have no trend with intrinsic J − H colors,
which have a comparatively narrow distribution. Note that the magnitude and
color axes have the same scale in each panel.

(A color version of this figure is available in the online journal.)

This set of points describes the well-known intrinsic light curve
decline rate versus luminosity relationship (Phillips 1993). We
also show the mean linear relation between MB and Δm15(B)
found by Phillips et al. (1999), who analyzed a smaller sample
of SNe Ia. The statistical trend found by our model is consistent
with that analysis. The red points are simply the peak apparent
magnitudes minus the distance moduli, B0 − μ, which are the
extinguished peak absolute magnitudes MB + AB . Whereas the
range of extinguished magnitudes spans ∼3 mag, the intrinsic
absolute magnitudes lie along a narrow, roughly linear trend
with Δm15(B).

In the right panel, we plot the intrinsic and extinguished ab-
solute magnitudes of SNe Ia in the H band. In contrast to the left
panel, the differences between the intrinsic absolute magnitudes
and the extinguished magnitudes are nearly negligible. Notably,
there is no correlation between the intrinsic MH in the NIR and
optical Δm15(B). This was noted previously by Krisciunas et al.
(2004a) and WV08. The standard deviation of absolute magni-
tudes is much smaller in H than in B, demonstrating that the NIR
SN Ia light curves are good standard candles (Krisciunas et al.
2004a, 2004c; WV08; Mandel et al. 2009). Theoretical models
of Kasen (2006) indicate that NIR peak absolute magnitudes
have relatively weak sensitivity to the input progenitor 56Ni
mass, with a dispersion of ∼0.2 mag in J and K, and ∼0.1 mag
in H over models ranging from 0.4 to 0.9 solar masses of 56Ni.
The physical explanation may be traced to the ionization evolu-
tion of the iron group elements in the SN atmosphere.

These scatter plots convey some aspects of the population
correlation structure of optical and near-infrared light curves
that is captured by the hierarchical model. In the next section,
we further discuss the multi-band luminosity and light curve
shape correlation structure in terms of the estimated correlation
matrices.

Figure 5 shows scatter plots of optical–near-infrared colors
(B − H,V − H,R − H, J − H ) versus absolute magnitude
(MB,MV ,MR,MH ) at peak. The blue points are the posterior
estimates of the inferred peak intrinsic colors and absolute
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(A color version of this figure is available in the online journal.)

magnitudes of the SN, along with their marginal uncertainties.
Red points are the peak apparent colors and extinguished
absolute magnitudes, including host galaxy dust extinction and
reddening. These plots show correlations between the peak
optical–near-infrared colors and peak optical luminosity, in the
direction of intrinsically brighter SNe having bluer peak colors.
In contrast, the intrinsic J − H colors have a relatively narrow
distribution, and the near-infrared absolute magnitude MH is
uncorrelated with intrinsic J − H color.

5.2.2. Intrinsic Correlation Matrices

Using the hierarchical model, we compute posterior infer-
ences of the population correlations between the different com-
ponents of the absolute light curves of SNe Ia. This includes
population correlations between peak absolute magnitudes in
different filters, ρ(MF ,MF ′ ), correlations between the peak ab-
solute magnitudes and light curve shape parameters (differential

decline rates) in different filters, ρ(MF , d
F ′

), and the correla-
tions between light curve shape parameters in different filters,

ρ(dF , d
F ′

). They also imply correlations between these quanti-
ties and intrinsic colors. This information and its uncertainty are
captured in the posterior inference of the population covariance
matrix �ψ of the absolute light curve parameters {ψ s}. The pos-
terior estimate of the absolute light curve population integrates
over the posterior uncertainties in the individual light curves and
the host galaxy dust estimates.

In Figure 6, we have distilled some of the information in
this intrinsic covariance matrix to show the inferred intrinsic
correlations. For brevity, instead of depicting correlations with
every differential decline rate dF

t , we only show correlations
with the canonical 15 day post-maximum decline rate in each
filter, Δm15(F ). The correlations range from −1 to 1 and are
color coded according to strength. The joint uncertainties of the
correlations are computed but not shown. The bottom matrix

shows the posterior inferences of the correlation matrix of peak
absolute magnitudes. The optical luminosities and light curve
shapes are strongly correlated with each other, but not with
the NIR. The J and H luminosities are strongly correlated with
each other, but not with the optical. Since the NIR luminosities
have low intrinsic correlation with the optical luminosities, they
provide independent information on the distance.

The top left matrix shows the posterior inferences of the
correlation matrix of the Δm15 decline rates and the peak
absolute magnitudes in each filter. The decline rates Δm15

in BVR exhibit strong correlations with peak optical absolute
magnitudes, but they show low correlation with peak NIR
absolute magnitudes in J and H. The decline rates Δm15 in IJH
exhibit little correlation with luminosities in any of the optical
or near-infrared filters.

The top right matrix shows the posterior estimates of the
correlations between the Δm15 light curve decline rates in
each filter. The correlation matrix exhibits a band structure,
with the largest correlations neighboring the diagonal. The
decline rate Δm15 in a particular filter is typically most strongly
correlated with the Δm15 in filters at neighboring wavelengths.
This can be seen by examining each row of the correlation
matrix. The optical decline rates in B and V are strongly or
moderately correlated with each other, but have low correlation
with NIR decline rates. Similarly, the decline rates in IJH show
strong or moderate correlation with each other, but have lower
correlation with the decline rates in B,V . The lack of strong
correlation across the whole matrix indicates that the light curve
shapes across optical and NIR wavelengths are unlikely to be
adequately modeled with one degree of freedom.

These matrix plots depict some of the salient population
correlation information of the SN Ia absolute light curves
captured by the hierarchical model. This inferred correlation
structure is used by the model to estimate luminosities from the
light curves and to make distance predictions.
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(A color version of this figure is available in the online journal.)

5.3. Posterior Inference of the Host Galaxy Dust Population

5.3.1. Linear Correlation Dust Population Model

In this section, we describe posterior inferences for the host
galaxy dust population. From the samples of the global posterior,
Equation (19), we can estimate the host galaxy dust extinction,
AV , and the slope of the extinction law, rV = 1/RV , for each
object and their uncertainties from their marginal distributions.
We also estimate the characteristics of the dust population
through the hyperparameters, τA,β, and σ 2

r , while accounting
for global uncertainties.

In Figure 7, we display the histogram of the AV estimates
for each SN in the sample, along with the individual marginal
estimates and their uncertainties. This is compared against an
exponential probability distribution with the marginal estimate
of the extinction scale τA = 0.37 ± 0.04. There appears to
be an overabundance of objects at AV > 1.5 compared to the
exponential distribution. We explore this further in Section 6.

In Figure 8, we display the estimates of (AV , RV ) for the m = 1
population model, described in Section 2.6. This model assumes
that the mean trend of rV versus AV is linear in AV . Fitting the
hierarchical model then entails computing posterior estimates
of (AV , rV ) for individual objects and the population trend,
parameterized by β, σ 2

r . For SNe at low AV , the rV parameter
for each individual SN cannot be estimated precisely, since it
only enters into the extinction model, Equation (9), and thus,
the likelihood, multiplied by AV . For these SNe, there is not
enough information in individual light curves to distinguish
between the individual rV estimates, and so the model pools
them toward the group mean or trend. At high AV , the rV

parameter can be estimated more precisely for each SN, so they
can be individually distinguished. In the top panel, we show
the AV , RV values for each SN for three joint samples from the
MCMC chain. A joint sample of {As

V , Rs
V },β, σ 2

r represents a
single probable realization of these parameters given the data,
and is labeled by a single color. The RV estimates at low AV show
considerable scatter between samples, reflecting the underlying
uncertainty. At high AV , there is less scatter between individual
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Figure 8. Apparent correlation between host galaxy dust visual extinction AV

and dust law slope RV in the sample of SNe Ia. This model assumes a dust

population where R−1
V has a linear trend with AV with some rms scatter σr . The

linear regression coefficients and residual scatter (β, σ 2
r ) are estimated from

the marginal global posterior distribution. Top: the points of each color and the
regression relation are different probable realizations of (AV , RV ) for each SN
and dust population hyperparameters, β and σ 2

r , obtained from snapshots of
the MCMC. The RV estimates at low extinctions have more uncertainty than
those at high extinctions, as reflected by the scatter of points with different
colors. Bottom: averaging over all probable realizations, we plot the inferred
marginal posterior mode of (AV , RV ) and their marginal uncertainties for each
SN with the marginal estimates of the regression model. When the individual
RV estimates for single SN are very uncertain, they tend to be pulled toward the
population mean value (for its extinction AV ) using partial pooling. The data

favor an apparent non-zero correlation between AV and the dust slope R−1
V .

SN Ia light curves with low to moderate extinction are consistent with the Milky
Way average RV ∼ 3.1 for interstellar extinction, but for highly extinguished
SNe, a low value of RV � 2 is favored.

(A color version of this figure is available in the online journal.)

SNe and between samples, reflecting the increased precision for
estimating RV . In the bottom panel, each point and error bar
represents the marginal estimate, averaging over all the MCMC
samples, of (AV , RV ) for each SN.

In Figure 9, we show the bivariate marginal probability
density of the regression parameters β = (β0, β1), obtained from
the MCMC samples. The joint mode and the 68% and 95% HPD
contours are shown. The intercept β0 represents the population
mean value of rV at vanishing AV → 0, and β1 represents
the population mean linear trend of rV against AV . Also shown
is the value of rV corresponding to the Milky Way interstellar
average RV = 3.1. The intercept β0 at vanishing AV is uncertain,
but consistent with the Milky Way average within 1σ . The
regression slope β1 is positive with zero excluded from the 95%
credible region. The marginal estimates of each of the regression
parameters are listed in Table 1. The marginal estimate of
β0 = 0.35 ± 0.05 can be compared against rV = 0.32 for the
Milky Way average. The characteristic value of RV as AV →
0, β−1

0 , is uncertain because of the difficulty of determining RV

for low-extinction objects. The marginal posterior density of β−1
0

has a non-Gaussian profile: the mean is 2.9, the mode is 2.7, and
the interval containing 68% of the highest probability density is

[2.3, 3.3]. The marginal probability that β−1
0 < 2 is p = 0.02.

The marginal estimate of the slope is β1 = 0.15 ± 0.03. This is
a strong indication of a differential trend of rV versus AV in the
host galaxy dust population of nearby SNe.

These results were consistent when changing the peculiar
velocity dispersion σpec from 150 to 300 km s−1. The poste-

rior mean of β−1
0 was 2.8, the mode was 2.5, and the 68%
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Figure 9. Marginal posterior distribution of the linear regression coefficients

of the dust population model assuming a linear mean trend between R−1
V and

AV . The parameter β1 is the slope of R−1
V against extinction AV , and β0 is the

population mean value of R−1
V in the low-extinction limit. The two-dimensional

mode is marked, and the inner and outer solid black lines contain 68% and
95% of the marginal probability, respectively. The posterior estimate of β0

is consistent with RV = 3.1 (vertical red dashed line) and inconsistent with
RV < 2, P (β0 > 0.5) = 0.02. The posterior estimate of the regression slope
β1 is extremely inconsistent with zero (horizontal dashed line).

(A color version of this figure is available in the online journal.)

Table 1

μ Prediction Errors for RV Scenarios

Assumptions Inferred Opt. Opt+NIR

on RV Population Hyperparameters (mag) (mag)

RV = 3.1 · · · 0.20 0.13

Complete pooling RV = 1.6 ± 0.1 0.15 0.13

No pooling · · · 0.16 0.12

PP: m = 0 μ−1
r = 1.7 ± 0.1, 0.16 0.12

σr = 0.04 ± 0.02

PP: m = 1 β0 = 0.35 ± 0.05 0.15 0.11

β1 = 0.15 ± 0.03

σr = 0.04 ± 0.02

PP: 4-Steps c.f. Table 3 0.15 0.11

Notes. Optical and optical+NIR rms prediction errors at cz > 3000 km s−1 for

different dust population models. Estimates of hyperparameters are the marginal

posterior means and standard deviations. The rms prediction errors are the 0.632

bootstrap cross-validation estimates. Sampling variance of prediction errors is

typically ±0.01 mag.

interval containing highest probability density was [2.1, 3.3].
The marginal estimate of the slope is β1 = 0.14 ± 0.04.

Figure 10 plots the posterior estimate of the inferred optical
reddening E(B − V ) ≡ AB − AV due to host galaxy dust
versus the estimated dust extinction AV , assuming the linear
correlation model. The reddening estimates at AV > 1.5 favor a
RV = 1.7 reddening law, whereas at lower extinction, AV < 1,
the reddening estimates are consistent with 2.4 � RV � 3.1.

5.3.2. Step Function Dust Population Model

The linear correlation model, m = 1, assumes that the mean
trend of rV with AV is linear across the entire range of AV .
However, we do not know if this assumption is true. To test
the sensitivity of the apparent differential trend in rV versus
AV to the linear correlation assumption of the m = 1 model,
we fit alternate models using the “Step” Case 6 of Section 2.6.
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Figure 10. Marginal posterior estimates of inferred color excess E(B − V ) due
to host galaxy dust vs. inferred extinction AV , assuming the linear correlation

model. This model assumes a dust population where R−1
V has a linear trend

with AV with some rms scatter σr . The SNe Ia at lower extinction (AV � 1)
have implied color excesses consistent with RV = 2–3. The SNe Ia at higher
extinction favor a dust law with RV < 2.

(A color version of this figure is available in the online journal.)

Table 2

Inference for the “2-Step” RV Population Model

AV Range μ−1
r μr σr ptail

[0, 0.8] 2.3 ± 0.3 0.45 ± 0.06 0.04 ± 0.02 0.008

>0.8 1.7 ± 0.1 0.59 ± 0.04 0.06 ± 0.03 · · ·

Notes. The hyperparameter μr is the population mean R−1
V for SNe in each

interval in AV . The hyperparameter σ 2
r is the population variance of R−1

V in

each interval. Estimates are marginal posterior means and standard deviations.

The marginal posterior density of σr is highly non-Gaussian. The estimate of

μ−1
r is not precisely the inverse of the estimate of μr , because of uncertainty

and the nonlinear transformation. The marginal probability that μr is larger than

μr of the high extinction bin is ptail.

Instead of using all the SNe over the range of AV to determine
a linear correlation in the host galaxy dust population, this
case groups together only SNe in the same interval of AV to

determine their group mean and variance of rV = R−1
V in each

bin. We have retrained the hierarchical model using the step
function assumptions, first by dividing the range in AV into
“high” (AV > 0.8) and “low” (AV < 0.8) extinction bins.
Second, we subdivided those bins and retrained the model using
four bins in extinction, AV .

Marginal posterior estimates for the “2-step” model are listed
in Table 2. The low extinction bin, with AV < 0.8, has a group
RV mean of 2.3 ± 0.3, while the high extinction bin, AV > 0.8,
has a group RV mean of 1.7 ± 0.1. We examined the marginal
posterior probability of the difference between the group means
μr at low and high extinction. This calculation takes into account
the posterior covariance between the estimates and marginalizes
over uncertainties in the other parameters. The tail probability
that μr of the low extinction bin is greater than μr of the
high extinction bin is denoted ptail, and is computed directly
from the MCMC samples. We find less than 1% probability
that the difference is positive, suggesting that the difference is
significant.
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Table 3

Inference for the “4-Step” RV Population Model

AV Range μ−1
r μr σr ptail

[0, 0.4] 2.9 ± 0.7 0.35 ± 0.08 0.03 ± 0.02 <0.001

[0.4, 0.8] 2.3 ± 0.3 0.45 ± 0.06 0.03 ± 0.03 0.005

[0.8, 1.25] 2.1 ± 0.2 0.48 ± 0.04 0.03 ± 0.03 0.004

>1.25 1.6 ± 0.1 0.63 ± 0.03 0.04 ± 0.03 · · ·

Notes. The hyperparameter μr is the population mean R−1
V for SNe in each

interval in AV . The hyperparameter σ 2
r is the population variance of R−1

V in

each interval. Estimates are marginal posterior means and standard deviations.

The marginal posterior density of σr is highly non-Gaussian. The estimate of

μ−1
r is not precisely the inverse of the estimate of μr , because of uncertainty

and the nonlinear transformation. The marginal probability that the mean μr of

each bin is larger than μr of the highest extinction bin is ptail.

For the “4-step” model, the posterior inferences of the
hyperparameters in each of the four intervals in AV are listed in
Table 3. The group means, μr , for each interval display the same
trend of lower RV for higher AV . The bin with 0 � AV < 0.4 has
a group mean consistent with RV ≈ 3, the interstellar average
for the Milky Way. However, the group mean for the lowest
extinction SN is uncertain due to the difficult of determining rV

at low AV . The marginal posterior density of the characteristic
RV in the lowest extinction bin, μ−1

r , is non-Gaussian: the
mean is 2.9, the mode is 2.5 and the interval containing 68%
of the highest probability density is [2.1, 3.3]. The marginal
probability that μ−1

r of the lowest extinction bin is less than 2
is p = 0.04. The highest extinction bin, AV > 1.25, favors a
group mean RV = 1.6 ± 0.1. We calculated ptail, the marginal
probability that the group mean μr of each bin is greater than
μr of the highest extinction bin. Each of the lower extinction
bins had significantly different group mean μr estimates than
that of the highest extinction bin.

For an assumed peculiar velocity dispersion σpec =
300 km s−1, the results were consistent. For the lowest extinc-
tion bin, the non-Gaussian marginal probability density of μ−1

r

had a peak at 2.5, with mean 2.7 and a 68% interval [2, 3]. The
posterior mean and standard deviation of μ−1

r in the highest
extinction bin was 1.5 ± 0.1. The inferences for the alternate
step function model confirm the trend seen in the m = 1 linear
correlation model. We discuss the implications of these findings
in Section 8.

5.3.3. Other Dust Population Models

Posterior inferences of the hyperparameters using the other
models for the host galaxy dust population (Section 2.6) are
listed in Table 1. In the case of CP, in which it is assumed that
all SNe have the same value of RV , the marginal estimate of
that value is RV = 1.6 ± 0.1. In the population model m =
0, in which each rV is drawn from a Gaussian with mean
independent of AV , we find a population mean with a similar
value (μ−1

r = 1.7 ± 0.1). These results indicate that the highly
extinguished SNe dominate the estimate of the global constant
or population mean in these cases, since their individual RV

estimates are the most precise. The CP and m = 0 are special
cases of the m = 1 model. If the m = 0 model were favored then
when fitting the m = 1 model we should have found β1 ≈ 0. If
CP were favored then we would have also found that σ 2

r = 0.
We inferred none of those in the expanded m = 1 model; this
illustrates the pitfalls of those simpler assumptions.
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Figure 11. Comparison of the cumulative distribution of peak apparent B − V

colors to those of posterior predictive replication sets randomly generated from
the trained model. Top: when the hierarchical model is trained on our full
sample, the distribution of apparent colors of the observed sample has a thicker
tail toward the extreme red (B − V � 0.8–1 mag) than most of the replicated
sets. Bottom: when the hierarchical model is retrained on a sample restricted to
apparent B −V < 1, the apparent color distribution agrees well with replicated
SN sets. This suggests that the exponential model population distribution for
extinction inadequately accounts for the number of SNe observed at very high
reddening.

(A color version of this figure is available in the online journal.)

6. MODEL CHECKS

After fitting the hierarchical model by computing the global
posterior density, Equation (19), using our BayeSN code, we
checked the model fit using several methods. We did this to
ensure first that the MCMC code was fitting the assumed
statistical model to the data set, and to diagnose technical or
algorithmic errors. Second, we checked the fit of the hierarchical
model to the observed sample to look for disagreements between
the assumptions and the observed data. Third, we tested the
robustness of the model to the training set and evaluated
the distance prediction error by performing extensive CV
(Section 7.2). For individual SNe, we inspected the fits of the
light curve model to the photometric data (Section 5.1).

To check the fit of the model population distributions to the
apparent distributions of the data set, we performed posterior
predictive model checks (Rubin 1984; Gelman et al. 1996,
2003). From the trained hierarchical model, we generated a
new random set of apparent light curves of the same size
as the observed sample. The replicated set was generated by
sampling forward through the DAG, Figure 1. The distribution of
apparent properties of the replicated light curves was compared
to those of the observed set. We illustrate such a comparison of
peak apparent B − V optical colors in Figure 11. We generated
1000 replications, each containing the same number of SNe as
the observed sample. The apparent colors of the SNe within
each replicated set have a cumulative distribution function.
The distribution of apparent B − V colors is the convolution
of the intrinsic B − V color distribution and the dust E(B − V )
color excess distribution implied by the extinction distribution.
The set of replications form an ensemble of color distributions,
reflecting random sampling variation and posterior uncertainty
in the model. For each value of the B − V color we show
the median, 2.5% and 97.5% quantiles of the ensemble of
cumulative distribution functions (CDFs) at that value. The
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black curve is the CDF of the apparent colors of the observed
data set. If the observed CDF lies outside the 95% range of the
replications, then the observed distribution disagrees with the
model’s replications.

In the top panel of Figure 11, the observed distribution of peak
apparent B − V colors has a significantly thicker tail toward
redder (positive) colors than the replicated distributions. This
suggests that the number of very red SNe with B − V > 1 is
large compared to what can be expected with the exponential
model for the dust population. The abundance of very red SNe in
the nearby sample might be a consequence of preferred selection
of these events for follow-up observation.

To test whether the model distribution adequately describes
the SNe with less reddening, we removed the 4% of SNe
with apparent B − V > 1 from the training set, retrained
the whole hierarchical model, and again generated posterior
predictive replciations (bottom panel, Figure 11). There is
good agreement between the apparent color distributions of
the ensemble of replications and the observed data set. With
the color cut, the estimated exponential scale of the extinction
distribution decreased from τA = 0.37 ± 0.04 mag to τA =
0.28 ± 0.04, so that the model captures a dust extinction
distribution with a thinner tail, which implies a narrower
apparent color distribution. We found that β was consistent
within the uncertainties with the values found by using the whole
sample. This demonstrates that the trend is not determined just
by the reddest outliers of the SN sample.

A key assumption of the model is that the two populations,
the SN Ia light curves and the dust extinction, are statistically
independent. This entails that an intrinsically faint or red SN
has the same chance of encountering a particular level of host
galaxy dust extinction as an intrinsically bright or blue SN.
We expect that the amount of extinction to SNe should be
uncorrelated with the intrinsic properties of the SN Ia light
curves. A significantly non-zero relationship between the two
might indicate a miscalibration of the model, possibly related to
a confusion between intrinsic color variation and dust extinction.
We tested this hypothesis, as shown in Figure 12, where we
plot the fitted intrinsic Δm15(B) decline rates and the inferred
intrinsic B − I color of SN Ia light curves versus the inferred
dust extinction. The plots show the expected lack of correlation
between the parameters from the two populations, and is a
consistency check on the model fit.

7. DISTANCE PREDICTION

7.1. Hubble Residuals under Resubstitution

After training the model on all the SNe in the sample
(D,Z), the distance modulus for each SN can be estimated
by resubstituting each light curve set into the model and

computing the posterior predictive density P (μ̃s | D̃s, z̃s;D,Z),
which marginalizes over the uncertainty in the trained model.
The expected value of this density is μs

resub. The Hubble residual
is the difference between the resubstitution distance modulus
and the distance modulus expected from the redshift and the
Hubble law, f (zs) = E(μs |zs). The estimates E(μs |zs), σμ,s ,
and μresub are listed in Table 5. The uncertainty-weighted mean
square resubstitution error, err2

resub, is computed as a sum over
all SNe, using Equation (31) of Mandel et al. (2009). For the
m = 1 dust model, the error-weighted rms of the Hubble
residuals at cz > 3000 km s−1 is 0.13 mag for the full sample.
However, for the SNe with NIR data, the resubstitution error at
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Figure 12. Top: fitted intrinsic Δm15(B) decline rate of SN Ia light curves vs.
inferred dust extinction. There is no significant trend between Δm15(B) and AV .
Bottom: inferred intrinsic B − I color at peak vs. the inferred dust extinction.
There is no significant trend between peak intrinsic B − I and AV .

cz > 3000 km s−1 is 0.10 mag, and those with only optical data
have a resubstitution error of 0.14 mag.

7.2. Cross-validation and Prediction Error

For finite samples, the rms Hubble diagram residual
of the training set SN is an optimistic estimate of the ability
of the statistical model to make accurate distance predictions
given the SN observables. This is because it uses the SN data
twice: first for estimating the model parameters (training) and
second for evaluating the residual error. To evaluate predic-
tive performance and guard against overfitting with a statistical
model based on finite data, we should estimate the prediction
error for SNe not included in the training set (“out-of-sample”).
We use cross-validation to evaluate the utility of optical and
NIR light curves for accurately predicting distances in the Hub-
ble diagram, and to test the sensitivity of the model to the finite
training set. The importance of cross-validating statistical mod-
els for predicting SN Ia distances has been discussed by Mandel
et al. (2009) and Blondin et al. (2011).

To estimate the distance prediction error of our statistical
model, we have performed bootstrap CV. This method was first
used for assessing distance predictions of SN Ia light curve
models by Mandel et al. (2009). From the full set of SNe,
a new bootstrapped training set is created by sampling with
replacement individual SNe up to the same size as the original
set. The complement of this new training set forms a validation
or prediction set. The training set light curves and redshifts
are used to build the statistical model for SN Ia light curves,
with the model hyperparameters estimated using hierarchical
Bayesian inference and MCMC. The prediction set light curves
are used to generate distance predictions for those SNe, which
are then compared to the Hubble distances expected from their
redshifts.

We randomly bootstrapped 30 training sets, so that on average
each SN was held out for distance prediction 11 times. For
each SN s, the expected value of the posterior predictive

probability density, μs
pred,B ≡ E(μ̃s |D̃s, z̃s;DB ,ZB ), is a point

estimate of the distance modulus prediction under the training
set data D

B,ZB for training set B. The .632 bootstrap estimate
(Efron 1983; Efron & Tibshirani 1997) of rms prediction error

17



The Astrophysical Journal, 731:120 (26pp), 2011 April 20 Mandel, Narayan, & Kirshner

Table 4

Apparent Light Curve and Dust Estimates for Individual SNe Ia

SN B0
a Δm15(B) V0

b R0 I0 J0 H0 ÂV
c 68%(AV )d RV

e Ref.f

SN1998bu 12.11 ± 0.01 1.03 ± 0.02 11.80 ± 0.01 11.65 ± 0.01 11.65 ± 0.01 11.74 ± 0.02 11.87 ± 0.03 0.97 [0.85, 1.07] 2.2 ± 0.3 J99,H00

SN1999cl 14.86 ± 0.03 1.17 ± 0.07 13.74 ± 0.02 13.27 ± 0.03 13.08 ± 0.03 12.96 ± 0.04 13.03 ± 0.04 1.95 [1.86, 2.10] 1.6 ± 0.1 K00

SN1999cp 13.93 ± 0.04 0.97 ± 0.07 13.98 ± 0.04 14.04 ± 0.04 14.32 ± 0.04 14.66 ± 0.05 14.90 ± 0.06 0.07 [0.00, 0.20] 2.7 ± 0.6 K00

SN1999ee 14.85 ± 0.01 0.96 ± 0.01 14.59 ± 0.01 14.51 ± 0.01 14.65 ± 0.02 14.95 ± 0.02 15.14 ± 0.03 0.77 [0.62, 0.81] 2.1 ± 0.2 K04b

SN1999ek 15.63 ± 0.02 1.14 ± 0.03 15.52 ± 0.02 15.41 ± 0.02 15.54 ± 0.02 15.82 ± 0.02 16.07 ± 0.02 0.46 [0.37, 0.58] 2.3 ± 0.3 K04c

SN1999gp 15.98 ± 0.03 0.86 ± 0.04 16.01 ± 0.02 16.02 ± 0.03 16.31 ± 0.03 16.83 ± 0.08 17.12 ± 0.09 0.23 [0.11, 0.33] 2.6 ± 0.5 K01

SN2000E 12.81 ± 0.04 1.08 ± 0.05 12.72 ± 0.03 12.66 ± 0.04 12.91 ± 0.05 13.41 ± 0.05 13.67 ± 0.06 0.43 [0.26, 0.53] 2.4 ± 0.4 V03

SN2000bh 15.89 ± 0.07 1.10 ± 0.09 15.90 ± 0.05 15.92 ± 0.05 16.22 ± 0.06 16.55 ± 0.06 16.79 ± 0.07 0.18 [0.08, 0.31] 2.7 ± 0.5 K04b

SN2000bk 16.92 ± 0.10 1.47 ± 0.10 16.80 ± 0.07 16.74 ± 0.07 16.78 ± 0.08 16.96 ± 0.10 17.17 ± 0.10 0.50 [0.36, 0.68] 2.4 ± 0.4 K01

SN2000ca 15.58 ± 0.03 0.95 ± 0.04 15.63 ± 0.03 15.69 ± 0.03 16.00 ± 0.03 16.52 ± 0.02 16.81 ± 0.03 0.01 [0.00, 0.10] 2.8 ± 0.6 K04b

Notes.
a Apparent magnitude at maximum light in the rest-frame B filter, corrected for Milky Way extinction and K-corrections. Estimates only listed if SN was observed in

the filter.
b Apparent magnitude in rest-frame V at the time of maximum in B, corrected for Milky Way extinction and K-corrections.
c Marginal posterior mode of extinction AV .
d Highest posterior density interval containing 68% of the marginal probability.
e Marginal posterior mean and standard deviation.
f Reference: CfA3: Hicken et al. 2009a; WV08: Wood-Vasey et al. PAIRITEL; 2008; WC3: WV08+CfA3; J99: Jha et al. 1999; H00: Hernandez et al. 2000; K00:

Krisciunas et al. 2000; K01: Krisciunas et al. 2001; DP02: Di Paola et al. 2002; V03: Valentini et al. 2003; K03: Krisciunas et al. 2003; K04b: Krisciunas et al. 2004b;

K04c: Krisciunas et al. 2004c; K07: Krisciunas et al. 2007; ER06: Elias-Rosa et al. 2006; ER07: Elias-Rosa et al. 2008; Pa07: Pastorello et al. 2007; St07: Stanishev

et al. 2007; P08: Pignata et al. 2008.

(This table is available in its entirety in a machine-readable form in the online journal. A portion is shown here for guidance regarding its form and content.)

Table 5

Distance Modulus Predictions for SNe Ia

SN cz μLCDM|z σμ|z μresub μ̄pred spred σpred Ā
pred
V

(km s−1) (mag) (mag) (mag) (mag) (mag) (mag) (mag)

SN1998bu 708.90 29.97 0.46 30.00 29.95 0.02 0.10 0.97

SN1999cl 957.00 30.62 0.39 30.94 30.94 0.05 0.12 1.94

SN1999cp 2909.10 33.05 0.11 33.16 33.12 0.04 0.11 0.06

SN1999ee 3296.10 33.32 0.10 33.19 33.19 0.03 0.09 0.74

SN1999ek 5190.90 34.32 0.06 34.16 34.10 0.03 0.10 0.54

SN1999gp 8112.90 35.31 0.04 35.22 35.21 0.03 0.11 0.25

SN2000E 1803.00 32.00 0.18 31.59 31.61 0.04 0.12 0.46

SN2000bh 6765.00 34.90 0.05 34.98 34.94 0.03 0.12 0.14

SN2000bk 7976.10 35.27 0.04 35.34 35.34 0.06 0.17 0.50

SN2000ca 6989.10 34.98 0.05 34.88 34.89 0.03 0.10 0.01

Notes. μLCDM|z is the distance modulus expected from the redshift assuming

h = 0.72, ΩM = 0.27, ΩΛ = 0.73, and w = −1. Its magnitude variance,

assuming peculiar velocity dispersion σpec = 150 km s−1, is σ 2
μ. μresub is

the distance modulus estimated under resubstitution. Under bootstrap cross-

validation, the mean prediction over bootstraps is μ̄pred and the standard

deviation of predictions over boostraps is spred. Zero values of spred are less

than 0.005 mag. The average standard deviation of uncertainty of a prediction

is σpred. The marginal posterior mode of AV under prediction, averaged over the

prediction sets for each SN, is Ā
pred
V .

(This table is available in its entirety in a machine-readable form in the online

journal. A portion is shown here for guidance regarding its form and content.)

is computed using the sum of uncertainty-weighted squared
prediction errors over all bootstrapped sets, as described by
Equations (32) and (33) of Mandel et al. (2009). For the m = 1
dust model, we list in Table 5 the predicted distance modulus
for each SN, averaged over all the training sets B that do not
include that SN, as μ̄pred. The standard deviation of predictive

uncertainty, i.e., the square root of Var[μ̃s | D̃s, z̃s;DB ,ZB ],
averaged over the training sets B not containing that SN, is σpred.
This measures the precision with which the trained model makes
a distance prediction for a particular SN. The standard deviation

of the point estimates μs
pred,B over all of those training sets,

spred, is a measure of the sensitivity of the predicted distances to
resampling the training set.

Figure 13 shows the predicted distances to the SN using
bootstrap CV. For Hubble flow SN at cz > 3000 km s−1, the
cross-validated prediction error is 0.15 mag overall. For the SNe
with optical and NIR data, the prediction error is estimated to
be 0.11 mag, and for the SNe with optical light curves alone, the
rms prediction error is 0.16 mag. The predicted distances to SNe
with optical and NIR light curve measurements have a smaller
scatter in the Hubble diagram than those with only optical data.
These estimates of Hubble diagram scatter can be compared to
the 0.18–0.22 mag rms found for the CfA3 sample using the
MLCS2k2 and SALT2 methods (Hicken et al. 2009b).

The weighted rms prediction error measures the total
Hubble diagram scatter, comprised of at least two components:
a dispersion associated with unknown and random peculiar ve-
locities with respect to the Hubble expansion, and an intrinsic
variance that represents a floor to the precision of distance pre-
dictions. We compute this intrinsic component of the predic-
tion error using the maximum likelihood estimator described
in Appendix B of Blondin et al. (2011). Assuming a velocity
dispersion σpec = 150 km s−1, the rms intrinsic prediction er-
ror was 0.15 ± 0.01 mag for SNe with optical data only, and
0.10 ± 0.02 for SNe with optical and near-infrared light curves.
For σpec = 300 km s−1, the weighted rms prediction error re-
mains the same, but the scatter attributed to intrinsic prediction
error is 0.13 ± 0.02 mag for SNe with optical data only, or
0.08 ± 0.03 mag for SNe with optical and NIR light curve data.
These estimates of intrinsic prediction error are smaller when
a larger σpec is assumed because more of the Hubble diagram
scatter is attributed to random galaxy motions.

The predictive variance σ 2
pred measures the uncertainty with

which the hierarchical model predicts the distance modulus of
each individual SN, after marginalizing over the uncertainties in
the training set, SN Ia, and dust populations. Figure 14 shows the
distributions of predictive uncertainties (standard deviations) in
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Figure 13. Cross-validated Hubble diagram computed with BayeSN for the low-z nearby set of CfA and literature SNe. Red points indicate the SN with joint optical
BVRI and near-infrared JH data. Black points have only optical data. The dashed (dotted) line indicates the magnitude uncertainty in μ(z) for σpec = 150 (300) kms−1.
We perform CV with 30 bootstrapped training sets to estimate the out-of-sample prediction error and test the sensitivity of the model predictions to the finite sample.
The rms prediction error in distance modulus for SNe with optical light curve data only at cz > 3000 km s−1 is 0.16 mag. The SNe with optical and near-infrared
light curve data have an rms prediction error at cz > 3000 km s−1 of 0.11 mag. The maximum likelihood estimate of the rms intrinsic prediction error is shown in
parentheses, assuming σpec = 150 km s−1. For a velocity dispersion σpec = 300 km s−1, the total rms prediction error remains the same, but the scatter attributed to
the intrinsic prediction error is 0.129 ± 0.016 mag for SNe with optical data only, or 0.081 ± 0.026 mag for SNe with optical and NIR light curve data. These results
indicate that one can make more accurate distance predictions with SNe Ia with combined optical and NIR data than with optical data alone.

(A color version of this figure is available in the online journal.)

the individual SN distance moduli predicted from this model.
The cumulative distribution of the predictive posterior standard
deviations for SNe with optical light curve data only is compared
to that of SNe with optical and NIR data. For SNe Ia with
joint optical and NIR data, the predictive uncertainties are
typically between 0.10 and 0.12 mag, whereas for SNe Ia with
optical data only, the uncertainties mostly lie between 0.12 and
0.16 mag. A simple Kolmogorov–Smirnov test verifies that these
precision distributions are inconsistent. This demonstrates that
the hierarchical model estimates the distances to SNe Ia with
optical and NIR light curves with smaller uncertainty than those
of SNe Ia with only optical data.

The sample variance of the distance predictions for a single
SN over bootstrapped training sets, s2

pred in Table 5, is always

much smaller than the uncertainty variance σ 2
pred of a single

prediction, and is smaller than the mean square error over the
set of SNe in the Hubble diagram. The typical value of spred

over the set of SNe is ∼0.03 mag. This demonstrates that our
model’s distance predictions to individual SNe are fairly robust
to perturbing the composition of the training set; the sensitivity
of predictions to resampling is of order a few hundredths of a
magnitude. With a larger set of optical and NIR light curves,
this sensitivity could be reduced further.

We examined the CV prediction errors to check for systematic
trends against observable or inferred quantities, as possible signs
of model misfit. In Figure 15, we show a scatter plot of the
prediction error for each SN versus an observable or inferred
quantity. We find no significant trends of prediction error versus
predicted dust extinction AV , the apparent optical colors at
peak (e.g., B − V), apparent optical–near-infrared colors at peak
(e.g., V − H), or optical light curve shape, summarized by the
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Figure 14. Cumulative distributions of the marginal predictive uncertainties of
distance moduli of SNe Ia. The uncertainty in the predicted distance modulus is
represented by a probability density after integrating over the other uncertainties
in the dust estimates, light curve fits and K-corrections, and the population.
We show the CDFs of the standard deviations of the predictive probability
distributions of the individual SN distance moduli. The SNe with optical and
NIR light curve measurements (red) typically have smaller distance uncertainties
(higher precision) than those with only optical light curve data (blue). The
dashed lines represent 95% confidence intervals of the respective CDFs. The two
distributions are highly discrepant according to the Kolmogorov–Smirnov test.
Using combined optical and NIR light curve data, the hierarchical model makes
distance predictions with smaller estimated uncertainty and higher precision
than it does with optical data alone.

(A color version of this figure is available in the online journal.)
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(A color version of this figure is available in the online journal.)

canonical Δm15(B). Linear regressions fit to the prediction errors
versus each quantity yield both slopes and intercepts that are
statistically consistent with zero.

7.3. Distance Error Comparison with CSP Light Curves

We augmented our SN sample with 27 nearby SNe recently
published by the CSP (Contreras et al. 2010), and again
performed the CVs to produce predictions for each SN. There
were 10 SNe that were contained both in the CSP sample and
the CfA3+PAIRITEL sample. To avoid including duplicate light

curves for the same SN in the joint sample, we selected the CSP
light curves in those cases, since this resulted in the retention
of the most optical and NIR data. We recomputed training and
prediction under the m = 1 dust population model. The Hubble
diagram of these distance predictions is shown in Figure 16.
The results are consistent with the previous Hubble diagram: the
total rms dispersion at cz > 3000 km s−1 was 0.15 for SNe with
optical data only and 0.11 for SNe with optical and near-infrared
light curves. We compared the distribution of distance modulus
errors μ̄pred−f (z) for Hubble flow SN with optical and NIR data
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Figure 17. Effect of adding NIR light curve data on statistical uncertainties on distance modulus μ and extinction AV for SN 2002bo. Left: predictive probability
density of μ using BV light curve data only (blue), BVRI data only (green), and BVRIJH data (red), computed from the trained optical–near-infrared statistical model.
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and near-infrared data. The two-dimensional modes are marked, and the inner and outer contours contain 68% and 95% of the highest probability regions. Whereas
with BV data only the distance is uncertain due to the uncertain extinction by host galaxy dust, with BVRIJH data, the uncertainties in extinction, and thus in distance,
are reduced significantly.

(A color version of this figure is available in the online journal.)

from the CSP sample with that of the “CfA+literature” sample.
Using a two-sample Kolmogorov–Smirnov test we cannot rule
out that they are from the same distribution (p = 0.88). The
distance predictions of each set are statistically consistent, so it
is reasonable to analyze the combined set.

7.4. Cross-validation with Different RV Assumptions

In this section, we investigate the effect of different model
assumptions about the dust population on distance predictions.
For each case of Section 2.6, we computed cross-validated
distance predictions for SNe in the Hubble flow at cz >
3000 km s−1 by generating 20 bootstrapped sets for training and
predicting the distance moduli for the complementary validation
set. For these computations, we used the “CfA+CSP+literature”
sample of 127 SNe Ia. Table 1 displays the results of these
calculations, including the marginal posterior estimates of the
hyperparameters in each case, and the 0.632 estimate of total
prediction error for the SNe with optical light curves only, and
for the SNe with both optical and near-infrared data.

The case with fixed RV = 3.1 (the Milky Way interstellar
average) for all SNe leads to the worst distance predictions
(0.20 mag for optical, 0.13 mag for optical and near-infrared).
The cases of complete pooling (all SNe have RV with the same
value) or partial pooling with m = 0 (the RV come from a
population independent of the AV value), or even no pooling
(each RV estimated independently for each SN), rms prediction
errors are about 0.15 mag to 0.16 mag for optical light curves
only, and 0.12–0.13 mag for optical plus NIR light curves.

If we model a potential population correlation between AV

and R−1
V , using either linear or step function models, we find

the smallest cross-validated distance prediction errors, both for
the SNe with optical data only (0.15 mag) and for the SNe
with optical and NIR light curves (0.11 mag). These are both
significant improvements over the rms prediction errors under
the assumption that RV = 3.1 has the mean value for Milky Way
interstellar dust, and are also marginally better than those of
the other cases. However, the statistical sampling uncertainty is
about ±0.01 mag, so it is difficult to draw significant distinctions
between the rms cross-validated prediction errors of the latter
five cases. An analysis of a larger, future sample of optical and

NIR light curves will help to further discriminate between these
competing cases.

It is notable that the change in the rms distance modulus
prediction error for SNe with optical light curves alone is
0.05 mag between the worst case and best case dust population
models, whereas this change for SNe with optical and NIR
light curves is only 0.02 mag. This highlights the advantage
of including the NIR data; since the H band provides a good
standard candle, the model can rely mostly on the NIR light
curves to provide distance estimates that are both less vulnerable
to host galaxy dust and less sensitive to the assumptions about
the dust.

7.5. Improving Constraints on Dust and Distance
with Optical and NIR Data

In this section, we demonstrate the effect of using NIR
light curve observations in conjunction with optical data
for constraining extinction and for making more precise
predictions. In Figure 17, we show the posterior predictive den-
sities for the distance modulus and the joint probability den-
sities for SN 2002bo, an event with high extinction. With the
trained probability model, we computed the joint probability

P (μ̃, ÃV | D̃s, z̃s;D,Z) under prediction where the light curve

data D̃s alternately included the SN 2002bo observations in
the BV , BVRI, or BVRIJH filters. Recall that, under predic-
tion, the tilded redshift z̃s is only used for K-corrections and
Milky Way extinction, but not in the redshift–distance likeli-
hood function. The data set used for training is denoted as D,Z .
We also compute the marginal posterior predictive probabil-

ity P (μ̃| D̃s, z̃s;D,Z) for each case. The probability density in

(μ̃, ÃV ) integrates over the uncertainties in the SN light curve fit,
and the dust and SN populations. The marginal density in μ̃ ad-

ditionally integrates over the uncertainty in ÃV , as a “nuisance”
parameter. These marginal probability densities were computed
directly from the MCMC samples, obtained under prediction,
using kernel density estimation. They are not Gaussian approx-
imations of the posterior probability density.

For comparison we mark the expected distance modulus for
the observed redshift and its expected magnitude uncertainty
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(A color version of this figure is available in the online journal.)

for a 300 km s−1 velocity dispersion. The marginal probability
density in μ integrates to one, so that the taller pdfs make the
most precise distance predictions, and the shorter pdfs make the
most uncertain predictions. The figure demonstrates that adding
observations in the redward filters greatly improves the precision
of distance predictions, with the full optical and NIR data set
yielding the greatest precision with this model. We also show
the mode and 68% and 95% highest probability density regions

of the joint probability P (μ̃, ÃV | D̃s, z̃s;D,Z). When only the
blue BV data are used, there is a strong degeneracy between
the uncertainty in distance modulus and the uncertainty in host
galaxy dust extinction. Both the uncertainty in the distance
modulus and in dust extinction are reduced when we condition
on the available NIR light curve observations. The predictive
precision (the inverse variance) of the distance modulus of an
individual SN is, on average, improved by a factor of 2.2 using
BVRI and by a factor of 3.6 using BVRIJH data, compared
to using BV light curves alone. The predictive precision is
improved by 60%, on average, using optical and NIR BVRIJH
data versus optical BVRI data alone, and can be improved by up
to a factor of 2.6, based on the current sample.

In Figure 18, we illustrate these inferences for a different
event, SN 2005el. This SN appears to have near zero host galaxy
extinction. However, even with near zero dust extinction there
is uncertainty in AV due to the intrinsic variance of SN colors.
This uncertainty is in the direction of positive extinction, and

hence the joint distribution P (μ̃, ÃV | D̃s, z̃s;D,Z) appears non-
Gaussian. Although this event has close to zero extinction, there
is still a strong degeneracy in the uncertainties between μ and
AV under prediction with the BV data alone. The combination of
optical and near-infrared data constrains this joint uncertainty
and yields improved precision of distance predictions even for
low extinction events.

8. DISCUSSION AND CONCLUSION

We have constructed a comprehensive hierarchical model for
SN Ia light curves in the optical and near-infrared (BVRIJH).
We model the apparent light curves as the sum of random draws
from an absolute light curve population distribution and from
a host galaxy population distribution, plus the distance moduli.
While fitting the individual SN Ia light curves, we also estimate

the characteristics of the two populations. These include the
intrinsic correlation structure of the absolute light curves, and
the joint distribution of extinction AV and the slope of the
dust law RV in SN Ia host galaxies. The application of our
new BayeSN MCMC algorithm enables coherent probabilistic
inference of the unknown parameters and hyperparameters
given the observed data. We also use it to generate distance
predictions for SNe while marginalizing over the uncertainties
in the population models and training set.

The inferred correlation matrices of the intrinsic light curve
properties (Section 5.2.2) show that the peak optical absolute
magnitudes (BVRI) are strongly correlated with each other,
but have weaker correlation with the J and H near-infrared
absolute magnitudes. Similarly, while the peak optical absolute
magnitudes are correlated with optical decline rates (particularly
Δm15(B)), they have low correlation with the NIR decline rates.
The near-infrared absolute magnitudes exhibit low correlation
with the optical decline rates. This indicates that the NIR light
curves provide independent information on the luminosities of
SNe Ia, which can be leveraged to improve the precision of
distance estimates.

We inferred the distribution of host galaxy extinction AV , with
an average value of τA = 0.37 ± 0.04 for our nearby sample.
However, the exponential dust distribution does not adequately
fit the fat tail of the peak apparent color distribution: excluding
the 4% of SNe in the extreme red tail, the apparent colors and
dust extinctions of the other 96% of SNe are well described
by an exponential distribution in AV with τA = 0.28 ± 0.04
and an intrinsic color distribution. Using both linear and step
function models (Section 2.6), we modeled and inferred the joint
distribution of AV and the extinction law slope parameter, RV ,
and found strong evidence for an apparent correlation. Under

the assumption of a linear trend between R−1
V and AV , we found

a positive slope. In the limit of low extinction, the marginal
estimate of RV ≈ 2.8 ± 0.5 is consistent with the Milky
Way interstellar average, RV = 3.1, and with independent
measurements of dust in external galaxies (Finkelman et al.
2008, 2010, RV = 2.8). For SNe with very high extinction,
AV > 1, values of RV ≈ 1.7 are favored. However, we do
not know if the linear assumption is valid over the whole
range of AV , so we have explored alternative models for the
potential differential behavior of RV . Under the assumption
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of a “step” function model that groups together SNe in four
bins in AV , the characteristic RV in the lowest extinction bin
(AV < 0.4) had a modal value of 2.5 and mean values of
2.7–2.9 and for the highest extinction events (AV > 1.25),
we found RV = 1.6 ± 0.1. We find that these differences are
statistically significant.

These results suggest that SNe at low extinction are seen
through lines of sight with “normal” interstellar dust, but SNe at
high extinctions are seen through dust with a steeper reddening
law. This may indicate a circumstellar dust component domi-
nating the absorption of light to high extinction events. Wang
(2005) and Goobar (2008) suggested that scattering of SN light
by circumstellar dust clouds could lead to low values of RV .
Goobar (2008) calculated that multiple scattering of SN light by
dust in the locality of the SNe would attenuate short wavelength
photons and steepen the extinction law to RV ∼ 1.5–2.5. Patat
et al. (2007) reported the detection of spectroscopic signatures
of circumstellar material around SN 2006X, a highly extin-
guished SN Ia. The effects of circumstellar dust might provide
an explanation for the unusual colors of some high extinction
events.

With consideration to the uncertainties of our inferences and
model assumptions, a conservative conclusion is that most SNe
in our sample are affected by host galaxy dust with RV in the
range of 2–3. These SNe are extinguished by AV � 1 mag. At
higher extinctions, AV � 1, the SNe are obscured by dust with
RV in the range of 1.5–2, although it is also possible that those
SNe have different intrinsic colors than the general population.
Notably, we do not find RV values lower than 1.5. This is at
odds with the RV values between 1 and 2, many of which were
below 1.5, fit for their whole sample by Folatelli et al. (2010)
by minimizing the scatter in the Hubble diagram of CSP SNe.
It is also at variance with similarly low RV values found in the
recent literature. However, those analyses assume that a single
RV value applies to all the SNe for a given fit, while we have

allowed for distributions in R−1
V that may be dependent on AV . If

we assume that every SN in our sample has exactly the same RV

(complete pooling), or that the distribution of R−1
V has a single

mean independent of AV (m = 0), we also find RV = 1.6–1.7.
This suggests that these assumptions lead to estimates of RV that
are biased toward smaller values. This is not surprising, since
RV is best determined for SNe with high AV , and as these SNe
also have apparently low RV , they dominate the estimate of a
global constant or average.

Differences are also likely to arise from the treatment of the
intrinsic covariance structure of the SN Ia light curves. In this
paper, we have modeled the intrinsic covariances between the
absolute light curves in optical and NIR wavelengths spanning
−12 to 45 days in phase and estimated them by probabilistically
deconvolving the apparent distributions using a hierarchical
model. Posterior estimates of AV , RV for each SN and all
other parameters were obtained via Equation (19) and by
marginalizing over uncertainties. In particular, as estimates of
RV for individual SNe at low extinction are difficult to determine
exactly, it is necessary to marginalize over that uncertainty
when making inferences and predictions, as we do as part of
the Bayesian inference. The inclusion of the NIR light curve
data yields an added benefit. Since the peak H-band absolute
magnitude is a good standard candle by itself, it is used to
predict precise distances that are less susceptible to error from
the dust estimate or the dust model. For example, for a single
SN with average extinction, AV ≈ 0.3 mag, the change in AH

between RV = 1.7 and RV = 3.1 is about 0.02 mag.

The linear and step function models of the joint distribution
of (AV , rV ) both suggest that the average effective RV at a given
level of AV decreases gradually with the increasing host galaxy
extinction. We might speculate on the existence of two kinds
of host galaxy dust with two different reddening laws over
wavelength. One would correspond to “normal” interstellar
dust as found in the Milky Way, RV ≈ 3, and the other
would correspond to some kind of circumstellar dust with a
reddening law with RV ≈ 1.7. If the dust affecting each SN
is comprised of random amounts of these two types of dust,
then the effective rV would roughly be an extinction-weighted
average of the characteristic rV of their respective reddening
profiles. If the circumstellar component was associated with
highly dusty environments, then this mixture could generate
an apparent trend of effective rV against total extinction. This
suggests an extension of our hierarchical model, which we will
address in a future work.

Using bootstrap CV, we have randomized the optical and
near-infrared training set to generate probabilistic estimates of
the distance moduli to out-of-sample SN. Comparing these
to the distances expected from the Hubble expansion, we
found a total rms prediction error of 0.16 mag (at cz >
3000 km s−1) for SNe with optical light curves (BVRI) only,
but a total rms error of 0.11 mag for SNe with optical and
near-infrared (BVRIJH) light curves. After accounting for the
dispersion expected from random peculiar velocities with σpec =
(150, 300) km s−1 the rms intrinsic prediction errors for these
subsets were (0.15 ± 0.01, 0.13 ± 0.02) mag for optical and
(0.10 ± 0.02, 0.08 ± 0.03) mag for optical and NIR. This
demonstrates that distances to SNe Ia observed in the optical and
near-infrared can be estimated with about twice the accuracy
(∼[0.15/0.10]2) of SNe Ia observed in the optical alone. By
conditioning on light curve data subsets (BV , BVRI, BVRIJH)
for individual SN, we show that including near-infrared light
curve data tightens the constraints on host galaxy extinction and
distance predictions (Section 7.5).

The number of published optical and near-infrared light
curves of SNe Ia is still small compared to the sample of
optically observed events. Future, larger samples of SNe Ia with
accurate, joint optical and near-infrared photometry will help
test and build the statistical strength of our conclusions on the
utility of combining optical and NIR light curves for improving
distance predictions and will help illuminate the nature of the
dust in SN Ia host galaxies. In addition to estimating the intrinsic
correlation structure of SN Ia light curves and the distribution
of host galaxy dust, our hierarchical framework can be applied
to distance prediction and analysis of a cosmological sample of
SNe Ia. Cosmological samples of SNe Ia observed in the rest-
frame NIR are possible. The improved precision and accuracy
of the inferences about the history of cosmic expansion may
justify the extra effort required to obtain these data now with
the Hubble Space Telescope, soon with the James Webb Space
Telescope, and eventually with the WFIRST mission.
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APPENDIX A

DIFFERENTIAL DECLINE RATES
LIGHT CURVE MODEL

The continuous normalized light curve is equivalent to the
specification of the total decline rates of the apparent light
curve. Let DF (t) be the total decline rate from phase zero to
phase t: DF (t) ≡ LCF (t) − F0 = lF (t). For example, the well-
known B-band decline rate from peak to 15 day past maximum
is Δm15(B) = DB(15) (Phillips 1993).

For practical purposes, it is necessary to parameterize the
continuous model for the light curve with a discrete set of
variables. Let τ be a grid in rest-frame phase. The total decline
rates to each discrete grid point, D

F = {DF
j ≡ DF (τj )},

define the normalized F-band light curve lF (t) at all times if
we choose a suitable interpolation rule. If we choose a natural
cubic spline we ensure continuity up to two derivatives, and the
normalized light curve is then linear in the total decline rates
lF (t) = s(t, τ ) · D

F and the linear smoother s(t, τ ) is specified.
The differential decline rate is dF

j ≡ DF
j − DF

j−1. The total

decline rates at the knots of τ are sums of the differential decline
rates over the span in phase. There is a simple constant matrix G

so that D
F = Gd

F , where d
F is the vector of differential decline

rates dF
j . The model for the normalized light curve in band F is

linear in the differential decline rates: lF (t) = s(t, τ ) · Gd
F .

This differential decline rates representation is a special

case of Equation (1), with lF0 (t) ≡ 0, l
F
1 (t) ≡ s(t, τ ) · G,

θF = θF
L ≡ d

F , and θF
NL = ∅. We use an irregular grid τ in

phase spanning −10 days to 45 days. The knots are placed more
densely near phases where we expect the most observations
(near phase zero) and where we expect more curvature of light
curves in certain bands.

APPENDIX B

K-CORRECTIONS AND MILKY WAY EXTINCTION

The observed SED of an SN Ia changes relative to a fixed
observer-frame passband due to the effect of cosmological
redshift and extinction in the Milky Way varying with line
of sight. To account for these differences in flux, we derive
K-corrections and Galactic extinctions for SNe Ia in observer-
frame optical and NIR filters. As a high-quality SED time
sequence is seldom available for all SNe, particularly at higher
redshifts, we use the average spectral template sequence from
Hsiao et al. (2007).

We compute K-corrections for optical and NIR passbands
following the method of Nugent et al. (2002). We model the
UBVRI filters with the “shifted” Bessell passbands (Kessler
et al. 2009) and the JHKs filters with the 2MASS passbands. We
choose a standard color that includes each passband (U:U − B,
B:B − V, V:V − R, R:R − I, I:R − I, J:J − H, H:J − H, Ks:H−Ks)
and for each model filter, we warp the SED sequence using
the RV = 3.1 extinction law (Cardelli et al. 1989) to take on
a wide range of the corresponding rest-frame color, measured
with synthetic photometry. For a given observer-frame passband
and redshift we determine the rest-frame passband with the
nearest effective wavelength. The warped SED series is then
redshifted and used to determine the K-correction as a function
of rest-frame color. This procedure does not account for spectral
features that vary with light curve shape and there is no

constraint on the SED blueward or redward of the bluest or
reddest model filter.

To compute the Milky Way Galactic extinction, we follow
a procedure, modified from that outlined in Jha et al. (2007).
For a given model filter, we use the warped SED sequence
constructed for the K-corrections and determine the unextin-
guished observer-frame magnitude with synthetic photometry
as a function of phase and rest-frame color. The sequence is
then reddened with an RV = 3.1 law for a range of values
of the Milky Way reddening EMW ≡ E(B − V ) and the ex-
tinguished observer-frame magnitude is computed. The dif-
ference between the two magnitudes is the Galactic extinc-
tion. We find that the Galactic extinction for a given phase
t and passband X is well modeled by a quadratic in EMW:
AX(t) = [αX(t, c) + βX(t, c)EMW]EMW. We solve for the poly-
nomial coefficients αX and βX for all the phases t and rest-frame
apparent color c. Further, as the rest-frame color dependence
was introduced by warping the same spectral sequence, we find
the coefficients αX and βX to be smoothly varying functions of
rest-frame apparent color c. We model the slope and intercept
by polynomials of rest-frame color with degree 4 and 5, respec-
tively. We can thereby reduce the Galactic extinction to a simple
set of polynomial coefficients of color tabulated with phase. The
value of EMW for each SN is obtained from the Schlegel et al.
(1998) maps.

APPENDIX C

SPECIFICATION OF THE HYPERPRIOR

There are two populations in this hierarchical model: the
multi-band light curve distribution and the host galaxy dust
extinction distribution for AV and RV . The hyperparameters of
the SN Ia light curves are the population mean μψ and the
covariances �ψ . The hyperparameters of the dust populations

are τA, β, and σ 2
r (e.g., for Case 5 in Section 2.6). We must make

explicit our priors on these hyperparameters, i.e., hyperpriors.
At the highest level of the hierarchical model, we use diffuse,
or “non-informative” prior distributions by default.

The dust population hyperprior is P (τA,β, σ 2
r ) =

P (τA)P (β| σ 2
r )P (σ 2

r ). We adopt uniform prior P (β|σ 2
r ) ∝ 1.

For τA and σ 2
r , we use the standard non-informative prior for

positive scale parameters, P (log τA) ∝ 1, P (log σ 2
r ) ∝ 1.

The hyperprior on the absolute light curve distribution hyper-
parameters can be conditionally decomposed: P (μψ ,�ψ ) =
P (μψ |�ψ )P (�ψ ). We assume a uniform P (μψ | �ψ ) ∝ 1.
For P (�ψ ), we require a diffuse density that has sup-
port only on the space of symmetric, positive definite, and
invertible matrices. We employ the standard inverse Wishart
distribution, which is conjugate to the normal covariance ma-
trix: P (�ψ ) = Inv-Wishartν0

(�ψ | �0) × f (σψ ). The inverse
Wishart density is multiplied by a smooth density on the
variances f (σψ ) described below. The degrees-of-freedom pa-
rameter is set to ν0 = K + 1 where K ≡ dim(ψ). This guar-
antees that the marginal prior density of any individual corre-

lation ρ(ψi, ψj ) ≡ R
ij

ψ is uniform between −1 and 1 (Barnard

et al. 2000). The scale matrix is set to �0 = ǫ0 I , where I is
a K × K identity matrix. The scale ǫ0 has the effect of setting
a floor on each σ i

ψ so that it does not fall below the value of

ǫ0/
√

NSN ≈ 0.02. Since we do not realistically expect any stan-
dard deviation σ i

ψ to be less than a few 0.01 mag, this limit is
conservative and helps to prevent the MCMC chain from getting
stuck in a region of parameter space with a near-zero variance,
where the covariance matrix may be nearly singular.
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We found it useful to stabilize the estimation of mag-
nitude variances with a power-law density: log f (σψ ) =
log f [σ (MB)] = pNSN log σ (MB) with p ≈ 0.09. We chose
the smallest value of p for which the inferences were locally in-
sensitive to its value. We have checked that the choice of p does
not significantly impact the rms prediction error. We also used
the scaled inverse Wishart distribution (Gelman & Hill 2006;
O’Malley & Zaslavsky 2008) as an alternative hyperprior and
obtained comparable results.

APPENDIX D

MATHEMATICAL DETAILS: BayeSN

In this section, we provide mathematical results for each step
of the BayeSN algorithm.

1. The goal is to sample from P (μψ ,�ψ | ·,D,Z). This
can be factored as P (μψ | �ψ , {ψ s})P (�ψ | {ψ s}). These
densities only depend on {ψ s} through the sufficient

statistics: the sample mean ψ̄ and the matrix sum of

squared deviations from the mean: Sψ =
∑NSN

s=1(ψ s − ψ̄)

(ψ s − ψ̄)T . We generate a new �∗
ψ from the proposal

density q(�∗
ψ | {ψ s}) = Inv-WishartνN

(�∗
ψ | �−1

N ), where

νN = ν0 + NSN and �N = Sψ + �0. When the (ǫ0/NSN)2

is negligible compared to the variances, the expectation of
this distribution is just the standard maximum likelihood
estimator of covariance, Sψ/NSN. If f (σψ ) ∝ 1 then the
proposal is the same as P (�∗

ψ | {ψ s}), and this is Gibbs
sampling. If not, then the Metropolis–Hastings ratio r sim-
plifies to r = f (σ ∗

ψ )/f (σψ ). The proposal is accepted

(�ψ → �∗
ψ ) with probability r. This method results in

fast convergence since it allows for updating the entire co-
variance matrix at once. A new μψ is Gibbs sampled from

P (μψ | �ψ , {ψ s}) = N (μψ | ψ̄,�ψ/NSN).
2. The conditional density for τA is P (τA| ·,D,Z) =

P (τA| {As
V }) = Inv-Gamma(τA| NSN,

∑NSN

s=1 As
V ).

3. The conditional densities P (β| σ 2
r , {rs

V , As
V }) and

P (σ 2
r | {rs

V , As
V }) are standard results of the Bayesian

analysis of ordinary linear regression of rV versus AV

(Gelman et al. 2003, chap. 14).
4. Since the subsequent steps concern only one SN at a time,

we suppress the label s on individual SN parameters.

(a) The conditional posterior density of the fit (T0,φ) for
a single SN is proportional to

P (T0,φ| ·,Ds, zs) ∝ P (m| T0,φ, zs)×N (φ| μφ,�ψ ),
(D1)

where μφ ≡ μψ + A + vμ, and the first factor is
Equation (5). We construct a proposal density
for the new fit (T ∗

0 ,φ∗) given the current one:
q(T ∗

0 ,φ∗| T0,φ) = q(φ∗| T ∗
0 ; T0,φ) × q(T ∗

0 | T0;φ).
The proposal for the new T ∗

0 is q(T ∗
0 | T0;φ) =

N (T ∗
0 | T0, s

2
T ). The proposal q(φ∗| T ∗

0 ; T0,φ) is an ap-
proximation to Equation (D1) with the K-correction
and Milky Way extinction factors fixed at the current
fit (T0,φ). These depend on φ only through the appar-
ent colors. The proposal is

q(φ∗| T ∗
0 ; T0,φ) ∝ N [m| KC(T0; z,φ)

+ GX(T0; z,φ, EMW) + L2(T ∗
0 , z)φ∗, W ]

× N (φ∗| μφ,�ψ ) (D2)

After algebraic simplifications, it can be shown that
this is a Gaussian probability density on φ∗ and thus
can be used to generate a random proposal. The joint
proposal (T ∗

0 ,φ∗) is accepted with probability

r = P (T ∗
0 ,φ∗| ·,Ds, zs)

P (T0,φ| ·,Ds, zs)
× q(φ| T0; T ∗

0 ,φ∗)

q(φ∗| T ∗
0 ; T0,φ)

. (D3)

The rejection step corrects the approximation of
the conditional, Equation (D1), with the proposal
Equation (D2). If the KC and GX factors are con-
stant with respect to SN color and phase, then r = 1
and this is just Gibbs sampling. This scheme is efficient
when KC and GX are slowly varying with phase and
apparent color.

(b) The conditional density for μ simplifies to

P (μ| ·,Ds, zs) = N (μ| μ̂, σ̂ 2
μ), where μ̃ = s2

μvT �−1
ψ

(φ − A − μψ ); s−2
μ = vT �−1

ψ v; σ̂−2
μ = s−2

μ + σ−2
μ ;

and μ̂ = σ̂ 2
μ(σ−2

μ f (z) + s−2
μ μ̃). For prediction, we take

σμ → ∞.
(c) The conditional density for AV is P (AV | ·,Ds, zs) =

P (AV |φ, μ, rV ;μψ ,�ψ , τA,β, σ 2
r ). This is a prob-

ability density on AV � 0 proportional to

N (AV |Â, s2
A) × N (rV | β0 + β1AV , σ 2

r ), where Â =
s2
Ac

T �−1
ψ [φ − vμ − μψ ] − s2

A/τA; c = (α + βrV ),

and s−2
A = c

T �−1
ψ c. This can be sampled using griddy

Gibbs sampling.
(d) The conditional posterior P (rV | ·,Ds, zs) =

P (rV |φ, μ,AV ;μψ ,�ψ ,β, σ 2
r ). Defining σ̃−2

r =
A2

V βT �ψβ; μ̃r = σ̃ 2
r βT AV �−1

ψ [φ−vμ−AV α−μψ ];

σ̂−2
r = σ̃−2

r +σ−2
r ; r̂V = σ̂ 2

r [σ̃−2
r μ̃r +σ−2

r (β0 +β1AV )],

this density is proportional to N (rV | r̂V , σ̂ 2
r ) over the

restricted range 0.18 < rV < 0.7. A new sample is
generated by evaluating the pdf on a fine grid and us-
ing griddy Gibbs sampling.

(e) (Optional) Generalized conditional sampling allows
the MCMC to move along expected degeneracies
between parameters in the posterior density that may be
oblique with respect to the natural coordinate system
defined by the chosen parameters (Liu & Sabatti
2000; Liu 2002). We expect there to be a tradeoff
between dust extinction and distance to SNe, since
both make SNe appear dimmer. Let p(AV , μ) =
P (AV , μ| ·,Ds, zs) be the conditional posterior of dust
and distance. To perform the translation (AV , μ) →
(AV , μ) + γ (1,−x), we first choose a scalar x which
sets a direction in the (AV , μ) plane to move along.
To select an appropriate direction along the tradeoff
between dust and distance, we find x̄ = minx |(α +
βrV )−xv|2. For typical values of rV , this was x̄ ≈ 0.7.
To select a translation vector near this direction, we
sample x ∼ N (0.7, 0.05). Then we sample a random
γ ∼ p(AV +γ, μ−xγ ), where AV and μ are the current
values. The sample can be generated by evaluating the
univariate density on a grid and using the inverse CDF
method. Given γ the chain can be translated into the
new position.
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