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1. Introduction

It is an important problem to understand the effects which stabilize moduli in quasi-

realistic string compactifications. Stabilized compactifications likely provide the correct

setting both for stringy models of early universe cosmology, and for string-based models

of particle phenomenology. In addition, the properties of the set of such vacua (perhaps

endowed with a preferred cosmological measure) may suggest new predictions, or at

least possible interesting phenomenological signatures, of string theory.

This problem has received a great deal of attention recently. In the framework

of low-energy supersymmetry, the most concrete constructions have appeared in the

IIB theory [1, 2, 3], while constructions which break supersymmetry at a high scale

have been described in both critical and noncritical string theories [4]. Proposals for

constructing stabilized models in the 11D, heterotic and type I limits have also appeared

[5, 6, 7, 8]. The range of constructions seems to be quite large, realizing the idea of a

discretuum [9] and probably requiring statistical analysis to get a reasonable picture of

the set of possibilities [10, 11, 12].

While the evidence for the existence of many stabilized vacua is quite suggestive,

it is fair to say that it has been hard to come by extremely controlled individual

examples. The main problem is that, by definition, any concrete example cannot have

tunable couplings left over, since the string coupling and radii have been fixed. In the

IIB context, it has proven possible to obtain supersymmetric vacua with weak string

couplings, and radii which grow as the logarithm of a tuning parameter [1]; completely

explicit examples appear in [2]. This leads to control, but only through fine tuning by

appropriate choices in a large space of flux vacua. For nonsupersymmetric IIB vacua,

it has been argued that one can obtain “large extra dimensions” as well by looking at

scaling regimes for moduli where loop and non-perturbative corrections to the potential

conspire to make this possible [3].

In this paper, we show that it is possible to construct stabilized vacua with ar-

bitrarily weak coupling gs and large radius R in the setting of type IIA Calabi-Yau

compactifications with flux. We do this by demonstrating the existence of infinite

families of vacua where gs and R have power law dependence on a flux which is un-

constrained by tadpoles, and asymptote to weak coupling and large radius in the large

flux limit. Our solutions can be seen both directly from classical 10D supergravity and

from the effective 4D framework developed in [13] and extended here. We note that it

was anticipated in the papers [14, 13] that generic fluxes should stabilize the geometric

moduli of IIA Calabi-Yau models,1 and in [15] it was shown that untwisted moduli

could be stabilized by fluxes in a particular IIA orientifold. The main advance here is

1General discussions of IIA compactifications on spaces with various G-structures appear in [16, 17].
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to provide an example with all moduli stabilized, to make the generic stabilization of

moduli explicit, and to demonstrate the existence of vacua with very large radius and

weak coupling, where it is clear that all approximations are controlled.

In Section 2, we introduce the simple toroidal orientifold compactification of type

IIA string theory that will be our example. In Section 3, we analyze this orientifold

model in the presence of fluxes using type IIA supergravity in 10 dimensions, and

show that the moduli are all classically stabilized. In Section 4 we present a general

analysis of IIA compactifications from the point of view of N = 1 supergravity in 4D,

extending the earlier work of Grimm and Louis [13]. We show using this formalism that

the classical stabilization of geometric moduli is generically possible in IIA orientifold

compactifications, and demonstrate the generic existence of families of vacua admitting

parametric control over the volume and string coupling. In Section 5 we apply the

general 4D analysis to the model of Section 2 and relate the 4D and 10D pictures in

this case. Section 6 contains a discussion of the properties of the landscape of IIA

vacua and compares to other ensembles. We conclude in Section 7. In an Appendix we

provide an elementary derivation of the type IIA Chern-Simons terms in the presence

of background fluxes which are needed for our analysis.

2. A simple model: T 6/Z
2
3

In this section we describe a simple type IIA orientifold compactification which we

will use as an example throughout this paper. The model is a T 6/Z3 orientifold,

modded out by an additional freely acting Z3 symmetry [18, 19, 20], preserving N =

1 supersymmetry in four dimensions. A discussion of the stabilization of untwisted

moduli for a T 6/(Z2 × Z2) IIA orientifold appears in [15].

This compactification has a fairly small number of moduli and is easy to analyze

explicitly. There are moduli corresponding to the sizes of the three 2-tori T 6 = T 2 ×
T 2×T 2, a B-field modulus for each T 2, and finally the dilaton and a single axion arising

from the 3-form C3; there are no complex structure moduli. Furthermore, there are

additional metric and B-field moduli associated with blow-ups of 9 singular orbifold

points.

In Section 3, we show that all these moduli are stabilized in type IIA supergravity

when the zero- and three-form fluxes F0 and H3 canceling the tadpole from the ori-

entifold fixed plane are combined with generic four-form fluxes F4. We demonstrate

this by directly calculating the potential for the zero modes. In Section 5, we consider

the N = 1 four-dimensional effective supergravity description and show that depend-

ing on the signs of the fluxes, these stabilized vacua may be supersymmetric solutions

extremizing the flux superpotential.
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Let us describe the orientifold in more detail. We parameterize the torus T 6 by

three complex coordinates zi = xi + iyi, subject to the periodicity conditions

zi ∼ zi + 1 ∼ zi + α , (2.1)

where α = eπi/3. This torus has a Z3 symmetry T under the action

T : (z1, z2, z3) → (α2z1, α
2z2, α

2z3) . (2.2)

This transformation has 27 fixed points, and the resulting orbifold is a singular limit

of a Calabi-Yau with Euler character χ = 72.2 This orbifold was constructed in [18]

and its geometry was analyzed in detail in [19], where it was also pointed out that the

resulting space has a further Z3 symmetry acting without fixed points according to

Q : (z1, z2, z3) → (α2z1 +
1 + α

3
, α4z2 +

1 + α

3
, z3 +

1 + α

3
) . (2.3)

Modding out by this additional Z3 leads to a singular limit of a Calabi-Yau with χ = 24

having 9 Z3 singularities. This compactification has h2,1 = 0 and h1,1 = 12, with 9 of

the 12 Kähler moduli arising from blow-up modes of the 9 singularities.

Following [20], we can construct an orientifold of this T 6/Z2
3 orbifold, modding

out by O = Ωp(−1)FLσ where Ωp is worldsheet parity, (−1)FL is left-moving fermion

number and σ is the reflection

σ : zi → −z̄i , (2.4)

for each i = 1, 2, 3. This gives an N = 1 supersymmetric type IIA orientifold model

with an O6 orientifold plane filling the 4 noncompact directions and wrapping a 3-cycle

on the T 6.

We are interested in the moduli of this orientifold compactification, corresponding

to constant modes of the various supergravity fields that survive the orbifold and ori-

entifold projections. Let us begin by discussing the metric on the T 6. Invariance of

the metric under the action (2.3) of Q dictates that gij = gīj̄ = gij̄ = 0 if i 6= j for

i, j = 1, 2, 3. Further, from the invariance of the metric under the action (2.2) of T , it

follows that the metric on each T 2 is diagonal. Thus, we can parameterize the metric

on the compact space as

ds2 =

3
∑

i=1

γi dzidz̄i =

3
∑

i=1

γi ((dxi)2 + (dyi)2) , (2.5)

2Note that while homotopically nontrivial curves in the original T 6 (such as a cycle wrapping once

on xi) are not all trivial after the Z3 quotient, such nontrivial cycles project to elements of the Z3

around the fixed points and are removed when these points are blown up to form a smooth Calabi-Yau,

so that the resulting CY indeed has no π1.
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with 3 real moduli γi corresponding to the size of each of 3 T 2s; all other metric degrees

of freedom, including all complex structure moduli, are projected out.

Consider now the invariant moduli associated with p-forms on the compact space.

We can determine how the various modes of each p-form field transform under the two

Z3 symmetries by using

T : dzi → α2dzi, Q : dzi → α2idzi . (2.6)

The only two-forms which are invariant under both T and Q are dzi ∧ dz̄i, which we

use to construct a basis {wi}, odd under the reflection σ (2.4),

wi = (κ
√

3)1/3idzi ∧ dz̄i ,

∫

T 6/Z
2
3

w1 ∧ w2 ∧ w3 ≡ κ , (2.7)

where we have left the overall normalization of the triple intersection κ arbitrary. For

later convenience we define a dual basis of even four-cycles {w̃i},

w̃i =

(

3

κ

)1/3

(idzj ∧ dz̄j) ∧ (idzk ∧ dz̄k) ,

∫

T 6/Z2
3

wi ∧ w̃j = δj
i , (2.8)

where j and k are the two values of 1, 2, 3 besides i.

The NSNS 2-form potential B2 is odd under the world-sheet orientifold transfor-

mation Ωp(−1)FL; hence one may have nonzero

B2 =

3
∑

i=1

bi w
i . (2.9)

These real bi combine with multiples of the γi,

vi ≡ 1

2

1

(κ
√

3)1/3
γi . (2.10)

into three complex parameters which will be identified with the Kähler moduli of the

four-dimensional supergravity studied in Sections 4 and 5.

Because H1 of the resolved orientifold is trivial, there are no moduli associated

with the R-R one-form C1. There is a single modulus associated with the dilaton φ,

as well as its partner, an axion field ξ coming from the RR potential C3, as we now

describe.

The three-forms which are invariant under T and Q are the holomorphic 3-form

Ω = 31/4 i dz1 ∧ dz2 ∧ dz3 , (2.11)
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and its complex conjugate Ω̄. The normalization is fixed to satisfy the following con-

venient condition

i

∫

T 6/Z2
3

Ω ∧ Ω̄ = 1 (2.12)

where we used i
∫

T 2 dzi ∧ dz̄i =
√

3.

We can decompose Ω into real and imaginary components

Ω =
1√
2

(α0 + i β0) (2.13)

where because under (2.4) we have σ : Ω → Ω̄, α0 and β0 are even and odd respectively

under orientifold reflection; the orientifold is hence wrapped on the α0 cycle. They

form a symplectic basis,
∫

T 6/Z
2
3

α0 ∧ β0 = 1 . (2.14)

Under the world-sheet orientifold transformation Ωp(−1)FL, C(3) is even, and hence the

single modulus ξ of the R-R three-form is

C(3) = ξ α0 . (2.15)

The axion ξ and the dilaton φ combine into the complex axiodilaton modulus.

In addition to the 4 complex moduli we have already described, 9 further (com-

plex) Kähler moduli are associated with the blow-ups of the 9 singular points of the

orientifold. Locally, each blow-up looks like a resolution of C3/Z3, and is parameter-

ized by a scale modulus and a corresponding B-field modulus. Globally, these moduli

can be described in terms of the metric and B-field degrees of freedom on a smooth

Calabi-Yau whose singular limit is the T 6/Z3 orientifold.

Although we do not have an explicit form for the metric on the smooth Calabi-

Yau, we can give a local analysis of these blow-up modes from the point of view of 10D

supergravity, which we do in Section 3. Furthermore, in the 4-dimensional picture, the

prepotential for these modes is known to leading order, allowing us to find solutions

with all blow-up moduli stabilized; this analysis is carried out in Section 5.

3. Moduli stabilization of T 6/Z2
3 in classical IIA supergravity

We will now directly calculate from the massive type IIA supergravity action the poten-

tial for the moduli of the orientifold compactification presented in the previous section.

In subsection 3.1 we describe the supergravity action on the orientifold in the presence

of fluxes. Subsection 3.2 solves the equation of motion for the R-R seven-form field C(7)
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which fixes the tadpole cancellation condition. In subsection 3.3 we stabilize the bulk

moduli of the compactification by solving the remaining supergravity equations of mo-

tion. Subsection 3.4 examines potential tachyonic directions, showing that although for

some signs of fluxes there are tachyons, their masses do not exceed the Breitenlohner-

Freedman bound, so that they do not represent true instabilities; the analysis of section

5 will show that only the vacua associated to certain choices of fluxes, all of which have

no tachyons, are supersymmetric. Finally, subsection 3.5 contains a description of the

stabilization of the blow-up modes.

3.1 Fluxes and the IIA supergravity action

In order to stabilize all moduli, we will turn on background fluxes on the orientifold.

In addition, the orientifold produces a tadpole for the C7 potential, which must be

canceled either by wrapped D6-branes or fluxes; in the next section we will show how

to satisfy the tadpole constraints with fluxes alone.

We will turn on a constant F0, as well as NS-NS three-form flux H3 and R-R

four-form flux F4. The first two are necessary to cancel the tadpole, and then the

last completes the flux stabilization. For simplicity we leave F2 = 0; we discuss the

generalization to nonzero F2 in Sections 4 and 5, and find that most choices of F2 are

physically redundant under gauge transformations, while the few physically inequiva-

lent vacua with nonzero F2 have qualitatively identical behavior to the F2 = 0 case we

consider here. F6 only comes into stabilizing the axion ξ.

Since B2 is odd under the orientifold action, the three-form background Hbg
3 must

multiply the unique odd 3-form (2.13),

Hbg
3 = −p β0 , (3.1)

while the four-form flux F4 is expanded in the basis (2.8) of even 4-cycles,

F bg
4 = ei w̃

i . (3.2)

We can also turn on four-form flux through 4-cycles associated with the blow-up modes,

as we discuss in subsection 3.5.

The presence of nonzero F0 means that instead of ordinary type IIA supergravity,

we must use the massive type IIA theory [21], with mass parameter m0 = F0. The

string frame action is then

S = Skinetic + SCS + SO6 , (3.3)
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where the action is decomposed into a Chern-Simons piece SCS, a piece from the ori-

entifold SO6, and a “kinetic” piece (everything else). The kinetic terms are3

Skinetic =
1

2κ2
10

∫

d10x
√−g

(

e−2φ(R + 4(∂µφ)2 − 1

2
|Htotal

3 |2) − (|F̃2|2 + |F̃4|2 + m2
0)

)

,

(3.4)

where 2κ2
10 = (2π)7α′4, with field strengths given by

Htotal
3 = dB2 + Hbg

3 ,

F̃2 = dC1 + m0B2 , (3.5)

F̃4 = dC3 + F bg
4 − C1 ∧ H3 − m0

2
B2 ∧ B2 ,

and |Fp|2 = Fµ1...µp
F µ1...µp/p!. We denote by B2, C3 only the fluctuation part of the

form field around the given background flux. The Chern-Simons piece takes the form

SCS = − 1

2κ2
10

∫

[

B2 ∧ dC3 ∧ dC3 + 2B2 ∧ dC3 ∧ F bg
4 + C3 ∧ Hbg

3 ∧ dC3 (3.6)

−m0

3
B2 ∧ B2 ∧ B2 ∧ dC3 +

m2
0

20
B2 ∧ B2 ∧ B2 ∧ B2 ∧ B2

]

.

The separation of the usual
∫

B2 ∧ F4 ∧ F4 Chern-Simons term into several pieces is

needed because topological fluxes must appear in the field strengths, and in the presence

of fluxes the second and third terms in (3.6) are not related by the usual integration

by parts. An elementary derivation of the relevant terms from M-theory is given in the

Appendix. In principle there should be similar contributions involving the background

fluxes in the massive IIA theory of the form m0B
3F bg

4 and m0B
2Hbg

3 C3; we do not need

such terms for the analysis here. Quantum type IIA string theory involves a number

of subtleties related to the K-theoretic classification of branes and fluxes [23], some of

which generalize the Chern-Simons terms [24]; these subtleties do not affect our results.

Finally, the contribution of the orientifold fixed plane to the action is given by

SO6 = 2µ6

∫

O6

d7ξe−φ
√−g − 2

√
2µ6

∫

C(7) , (3.7)

where µp = (2π)−pα′−(p+1)/2 is the Dp-brane charge and tension, and we have taken

into account that the charge of an Op-plane is −2p−5 that of a Dp-brane.

Before proceeding to evaluate the C7 tadpole, we remark on the quantization of

the fluxes. For a canonically normalized Fp field strength, the usual (cohomological)

3We follow the conventions of [13] for the RR fields (including m0) so we can more easily match

the 4D superpotential analysis; they are related to those of Polchinski [22] by CRR = CPolch

RR
/
√

2.
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quantization condition is

∫

Fp = 2κ2
10 µ8−p fp = (2π)p−1α′(p−1)/2

fp , (3.8)

with fp an integer; in our convention the expression for RR fields must be rescaled by a

factor of
√

2. Hence we can write the fluxes we are using in terms of integers f0, h3, f
i
4

as

m0 =
f0

2
√

2π
√

α′
, p = (2π)2α′ h3 , ei =

κ1/3

√
2

(2π
√

α′)3 f i
4 . (3.9)

The K-theoretic classification of fluxes [23] modifies the condition (3.8) in certain cir-

cumstances. The effect potentially relevant to our analysis is that when the first Pon-

tryagin class divided by two p1/2 of the tangent bundle of the compactification manifold

is odd, the f i
4 are half-integers instead of integers [25]; however this shift turns out not

to affect any of the cycles in our T 6/Z3
3 example, as p1 is always divisible by four for a

Calabi-Yau threefold.4

3.2 Cancelling the tadpole

As is evident from (3.7), the O6 plane generates a tadpole for the C7-potential Hodge

dual to C1. This can be cancelled by adding 2 D6-branes for each O6, but instead we

cancel it using the background fluxes.

One may show by analyzing the RR equations of motion and Bianchi identities, as

well as various gauge invariances in the brane actions, that

F̃6 ≡ ∗F̃4 = dC5 − C3 ∧ H3 +
m0

6
B2 ∧ B2 ∧ B2 , (3.10)

F̃8 ≡ ∗F̃2 = dC7 − C5 ∧ H3 −
m0

24
B2 ∧ B2 ∧ B2 ∧ B2 . (3.11)

The equation of motion for C7 then receives contributions from the |F̃2|2 term in (3.4),

as well as from the O6-plane in (3.7). Integrating over the β0 cycle, one finds

∫

dF̃2 = 2
√

2κ2
10 µ6 , (3.12)

which using dF̃2 = m0H3 gives the tadpole condition

m0p = −2
√

2κ2
10 µ6 = −2(

√
2π

√
α′) . (3.13)

4We thank Paul Aspinwall for comments on characteristic classes for Calabi-Yaus.
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Hence we learn that m0 and p must be of opposite sign. We note that the quantization

condition (3.9) requires

m0p = (
√

2π
√

α′)f0h3 (3.14)

with f0, h3 integers, so that the minimal charge that can be obtained from F0H3 is just

that of a single D6-brane. To satisfy the tadpole (3.13) we have a very limited set of

possibilities for the fluxes: f0h3 = −2 → ±(f0, h3) = (−1, 2), (−2, 1). Hence there is

very little freedom to tune in the H3, F0 sector; what freedom we have will come from

F4.

We note that in other models with more 3-cycles, there will be in general h2,1 + 1

tadpole conditions to satisfy; this is to be contrasted with the single C4 tadpole familiar

in IIB flux compactifications. Thus once F0 is nonzero, every mode of H3 will be

constrained by a tadpole condition.

3.3 Stabilizing bulk moduli

Having chosen the H3 and F0 fluxes so as to satisfy the tadpole cancellation condition

(3.13), we now turn to evaluating the potential for the moduli and solving the resulting

equations of motion. We insert the background fluxes (3.1), (3.2) into the supergravity

action, and write the metric, B field and 3-form field C3 in terms of the bulk moduli

using (2.5), (2.9), (2.15); to determine the potential we assume the modes γi, bi, φ, ξ

are coordinate-independent.

A more complete analysis would include the warp factors in the metric and the full

dependence of the supergravity fields on the compact directions. We leave the details

of such an analysis for future work; as we shall see, the model we are considering here

admits solutions in a regime of large volume and weak coupling where these effects are

unimportant.

We begin by considering the RR 3-form field C3. The single modulus ξ of this field

appears only in the Chern-Simons term C3 ∧ Hbg
3 ∧ dC3, and we note that given the

value (3.1) for Hbg
3 , this term is only nonzero if the remaining dC3 is polarized along

the spacetime directions; hence treating this latter mode is necessary for determining

the equation for the axion ξ. This field has no physical degrees of freedom; we shall

call it dC3|4D ≡ F0 and treat it as a Lagrange multiplier. A more careful, quantum-

mechanical treatment leading to the same result is described in [26].

For a field with couplings of the form

S = − 1

2κ2
10

∫

(F0 ∧ ∗F0 + 2F0 ∧ X) , (3.15)
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the equation of motion for F0 merely sets F0 = ∗X; substituting this back into the

action, (3.15) becomes

S = − 1

2κ2
10

∫

X ∧ ∗X . (3.16)

Hence minimization of these terms in the potential simply sets X = 0. Calculating X

for the case at hand and integrating over the compact space, we have
∫

X = 0 =

∫

(

F bg
6 + B2 ∧ F bg

4 + C3 ∧ Hbg
3 − m0

6
B2 ∧ B2 ∧ B2

)

, (3.17)

which evaluates to an equation for the 3-form axion ξ,

p ξ = e0 + eibi − κ m0 b1b2b3 , (3.18)

where we put e0 =
∫

F bg
6 .

We now solve the equation of motion for the B field components. Since there are

no zero modes of C1 and we have taken F bg
2 = 0, the |F̃2|2 and |F̃4|2 terms are at

least quadratic in bi; the Chern-Simons terms have already been accounted for in the

minimization of X. Thus (3.3) is at least quadratic in bi, meaning we can consistently

find a solution with bi = 0.

Notice that the term |F̃4|2 gives rise to an off-diagonal quadratic term for the B-

field moduli of the form (F bg
4 )abcd BabBcd. Such a term can lead to an unstable B mode.

After solving for the rest of the moduli we return to this term in subsection 3.4 and

check to see when the quadratic form for the B moduli is positive definite around the

solution.

The moduli that remain are the sizes γi of the 2-tori and the dilaton φ; we now

write the four-dimensional effective potential for these. We note first that to properly

normalize the four-dimensional Einstein term, we pass to a 4D Einstein frame with the

redefinition

gµν =
e2φ

vol
gE

µν , (3.19)

for the four-dimensional metric only. We then define the effective potential V ,

S =
1

κ2
10

∫

d4x
√−gE(−V ) , (3.20)

and find the result

V =
p2

4

e2φ

vol2
+

1

2
(

3
∑

i=1

e2
i v2

i )
e4φ

vol3
+

m2
0

2

e4φ

vol
−

√
2 |m0 p| e3φ

vol3/2
, (3.21)
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where the four terms are from the |H3|2, |F̃4|2 and m2
0 terms in (3.4) and the O6

Born-Infeld piece in (3.7), respectively; the |F̃2|2 and O6 Chern-Simons terms cancel

according to the tadpole cancelation condition (3.13). We have defined the volume of

compactification

vol ≡
∫

T 6/Z
2
3

√
g6 =

1

8
√

3
γ1γ2γ3 ≡ κ v1v2v3 , (3.22)

and written (3.21) in terms of the rescaled metric components vi (2.10). The evaluation

of the O6-plane contribution to the potential (3.21),

VO6 = −2κ2
10 µ6

e3φ

vol2

∫

d3x
√

g3 , (3.23)

was carried out using the calibration formula [27] for special Lagrangian 3-cycles, which

for us reads
∫

d3x
√

g3 = 2
√

2 vol1/2

∫

Re Ω = 2 vol1/2

∫

α0 . (3.24)

We now want to solve the equations

∂V

∂φ
=

∂V

∂vi

= 0 . (3.25)

The structure of the ∂vi
equations is

F (vol, φ)

vi
+ e2

i vi G(vol, φ) = 0, (3.26)

where F, G are some functions of vol and φ. Thus, we can reduce to two degrees of

freedom using vi = v/|ei|, giving the simplified potential

V (D, v) =
m2

0

2E
e4D v3 −

√
2 |m0 p| e3D +

p2

4

e2D

v3
E +

3

2

e4D

v
E , (3.27)

where E = |e1e2e3|/κ (vol = v3/E) and we have also introduced the 4-dimensional

dilaton

eD =
eφ

vol1/2
. (3.28)

Rescaling eD = |p|
√

|m0|/E g and v =
√

E/|m0| r2, the potential becomes

1

λ
V (g, r) =

1

2
g4 r6 −

√
2 g3 +

1

4

g2

r6
+

3

2

g4

r2
(3.29)
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where λ = p4 |m0|5/2 E−3/2.

Now, we proceed to find the extremum of (3.29). We have

g∂gV + 2r∂rV = λg4r6

[

4 − 3√
2

(

1

gr6

)

− 5

4

(

1

gr6

)2
]

= 0, (3.30)

which implies gr6 = 5/(4
√

2). Plugging in g = 5/(4
√

2r6) into ∂gV = 0 gives r8 = 25/9.

We thus have the solution

vi =
v

|ei|
=

1

|ei|

√

5

3

∣

∣

∣

∣

e1e2e3

κ m0

∣

∣

∣

∣

, (3.31)

eD = |p|
√

27

160

∣

∣

∣

∣

κ m0

e1e2e3

∣

∣

∣

∣

,

or equivalently in terms of the 10D metric and dilaton,

ds2 =

(

1

9κ

)1/6
√

5

∣

∣

∣

∣

e1e2e3

m0

∣

∣

∣

∣

3
∑

i=1

1

|ei|
dzidz̄i , (3.32)

eφ =
3

4
|p|
(

5

12

κ

|m0e1e2e3|

)1/4

. (3.33)

Note that the κ dependence cancels out when the ei are expressed in terms of the

quantized fluxes (3.9).

One can show that

6g∂gV − r∂rV = 18V + 12λ
g4

r2
. (3.34)

Thus, for the solutions (3.31) satisfying ∂gV = ∂rV = 0, the energy V is always

negative:

V = −2E

3v
e4D , (3.35)

and the 4D space-time is anti-de Sitter.

The solutions (3.31) stabilize all moduli for any choice of m0, p satisfying the tadpole

condition (3.13) and any four-form fluxes ei. Because the four-form flux parameters ei

are not constrained by the tadpole, we have an infinite family of IIA vacua with this

orientifold compactification.

The shape of the potential and AdS minima are exhibited in figures 1 and 2. Note

that the finite distance minima for dimensionless variables r and g will correspond
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Figure 1: The potential 1
λ V (r, g) on solutions for g as a function of r.
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Figure 2: The potential 1
λ V (r, g) on solutions for r as a function of g.

to minima at parametrically large radius and small coupling in terms of dimensionful

parameters.

Scaling all the ei as ei ∼ ē, we find that the metric components γi scale as ē1/2 and

hence the volume goes as ē3/2, while the string coupling eφ ∼ ē−3/4 and the vacuum

energy goes as −ē−9/2. Thus, the infinite family of compactifications has parametrically

increasing volume and decreasing string coupling. As we will discuss further in section

5.2, the solutions are effectively four-dimensional at low energies, unlike the familiar

Freund-Rubin models, which also arise in infinite families. This is (granting the con-
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trolled stabilization of the blow-up modes, which we discuss in §3.5) the primary result

of this paper: a class of four-dimensional vacua with all moduli stabilized by fluxes in

a controlled regime where corrections can be made arbitrarily small.

3.4 Stability analysis

Because the ei appear quadratically in the potential (3.21), the solution (3.31) exists

for any choice of sign on the four-form fluxes; this is manifested by the absolute values

in the solution. The sign of m0 is also arbitrary, although from (3.13) we must have

sgn (m0p) < 0.

As we shall see in Section 5, not all choices of sign for the fluxes lead to supersym-

metric vacua at large volume. This suggests that some of the solutions (3.31) could

have instabilities. We now consider the quadratic form for the fields B2 and C3 around

the solutions (3.31) and look for possible tachyonic modes.

The B2 field appears in the |F̂2|2 and |F̃4|2 terms of (3.4). In the background given

by the solution (3.31), these terms give contributions quadratic in B2 of the form

− 1

2κ2
10

∫

d10x
√−g (|F̂2|2+|F̃ 2

4 |) → − 1

2κ2
10

∫

(m2
0 B2∧∗B2−m0 B2∧B2∧∗F bg

4 ) , (3.36)

while from eliminating the Lagrange multiplier F0, we derive a mixing of B2 with C3

fluctuations (3.16), (3.17). Hence we also need the kinetic terms for both,

− 1

2κ2
10

∫

d10x
√−g (

1

2
e−2φ|H3|2 + |F̃4|2) → − 1

2κ2
10

∫

(
1

2
e−2φ dB2∧∗dB2 +dC3∧∗dC3) .

(3.37)

These expressions lead to the quadratic action for bi and ξ fluctuations around the

background (3.31),

Saxion =
1

2κ2
10

∫

d4x
√−gE

(

3
∑

i=1

[

−1

2
∂µb̃i∂

µb̃i − e4D(m2
0 vol b̃2

i − 2 m0 b̃1b̃2b̃3
eivi

b̃i

)

]

(3.38)

−1

2
∂µx∂µx − e4D

vol
(b̃1e1v1 + b̃2e2v2 + b̃3e3v3 −

p√
2
e−Dx)2

)

,

where we have normalized the kinetic terms by defining b̃i ≡ bi/vi, x ≡
√

2eDξ. The

mass-squared matrix for the coupled b̃i, x sector is then

M2
ij = 2 |m0| e4D v











34
15

3
5
s1s2 − s3

3
5
s1s3 − s2

4
5
s1

3
5
s1s2 − s3

34
15

3
5
s2s3 − s1

4
5
s2

3
5
s1s3 − s2

3
5
s2s3 − s1

34
15

4
5
s3

4
5
s1

4
5
s2

4
5
s3

16
15











, (3.39)
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where si ≡ sgn (m0ei) = ±1. It is easy to check that when

e1e2e3m0 < 0 , (3.40)

the matrix M2
ij is positive definite, whereas when e1e2e3m0 > 0, M2

ij has a negative

eigenvalue, M2
tachyon = −(2/15)(2 |m0| e4D v).

Because the vacuum solutions are in anti-de Sitter space, it is not enough to find

that a tachyonic mode exists for an instability to be present; tachyons whose negative

mass-squared is above (less negative than) the Breitenlohner-Freedman bound [28],

m2 ≥ m2
BF ≡ −3

4
|V | , (3.41)

do not generate an unstable perturbation. Using (3.35), we find

M2
tachyon

m2
BF

=
8

9
. (3.42)

Since this is less than 1, the tachyon satifies the Breitenlohner-Freedman bound, and

does not lead to an instability. Notice that this ratio is independent of the magnitudes

of any of the fluxes; in general all the quadratic b and ξ fluctuations have their masses

set by the AdS scale alone.

In principle, tachyons may also arise in the spectrum of metric or dilaton fluctua-

tions. It is fairly straightforward to expand all metric and dilaton modes around the

solution and confirm that the resulting mass matrix is positive definite.

Thus, all of our solutions (3.31) are perturbatively stable. We shall see in section 5

that only for certain signs of the fluxes are the solutions supersymmetric. The possible

existence of quantum instabilities in these vacua is an interesting question we leave for

the future.

3.5 Blow-up modes

Before closing this section, we discuss stabilizing the Kähler moduli associated to blow-

up modes of the T 6/Z2
3 orbifold. A complete treatment of these degrees of freedom from

ten-dimensional supergravity is difficult because we do not know the explicit form of

the metric for the smooth Calabi-Yau which arises when all the singularities are blown

up. In this section we simply consider the blow-up modes locally and show that they

can be stabilized by a 4-form flux on the CP2 cycle which blows up the local C3/Z3

singularity.

The local analysis we carry out here is valid as long as the scale of the blow-up mode

is much smaller than the scale of the compactification determined by the untwisted
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modes (while still very large in string units, so supergravity can be trusted). As we

shall see, this can be guaranteed by choosing the flux on the P2 to be small compared

to the untwisted fluxes ei. Because we are already making a local approximation, we

drop constant factors of order 1 in the analysis here and simply find the general form

of the stabilized blow-up modes. In Section 5 we consider the complete set of blow-

up modes from the 4D supergravity picture, where all information needed to find the

precise global form of the supergravity solution is contained in the prepotential.

Consider the noncompact C3/Z3 singularity. The resolution of this singularity by a

P2 gives a one-parameter family of metrics on a line bundle O(−3) over P2. An explicit

form of the metric is given by [29]

ds2 =
r2

2
gFS

ij̄ dzidz̄j + F (r)−1dr2 +
r2

9
F (r)(dθ − 3A)2, (3.43)

where F (r) = 1−a6/r6, a parameterizes the blow-up (r ≥ a for any fixed a), gFS
ij̄ is the

Fubini-Study metric on P2, and A is a one-form with dA = igFS
ij̄ dzi ∧ dz̄j . We want to

put an integral flux f on the P2 and consider the effect on the 4D potential when this

local blow-up occurs inside a much larger compact manifold.

The only terms in the 10D supergravity action (3.4) which are relevant are the m2
0

and |F̃4|2 terms. As in the case of the bulk moduli, when F2 = 0 we can consistently set

B2 = 0. There are potentially tachyons arising from new F4B
2
2 terms. There is only

a single F4 and a single B2; the corresponding cubic intersection form on the blow-up

cycle is nonzero (as we discuss in more detail in Section 5), so the condition that the

vacuum be tachyon-free fixes the sign of the 4-form flux allowed. The m2
0 term will, as

in (3.21), take the form m2
0 e4φ/vol where vol is the total volume of the compactification.

From the form of the metric, we see that at blow-up parameter a we have roughly

removed a region of radius a and volume a6 from the volume vol0 of the full compacti-

fication with no blow-up. More precisely, neglecting the cross-terms dθ∧A, the volume

form is
√

g = r6
√

gFS/18. Corrections to this volume form are small near r ∼ a, where

the major deformation away from the singular metric occurs. Thus, the correction to

the volume is O(a6) and so the volume is vol ∼ vol0 − B a6 where B is a constant.

We can treat the |F̃4|2 term similarly. Because (neglecting backreaction) the four-

form flux is on the P2, we have |F̃4|2 ∼ r−8f 2. Integrating this over the volume gives
∫

a
r−3 ∼ 1/a2, and using (3.19) we then have a total potential of the form

Vblow−up ∼ m2
0

e4φ

vol
+ C f 2 e4φ

a2 vol2
, (3.44)

where C is a constant and vol ∼ vol0 − B a6. The minimum of the potential for a is
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then (for small a)

a8 ∼ C f 2

B m2
0

. (3.45)

Thus, we see that

a ∼
(

f

m0

)1/4

. (3.46)

We see that as long as f ≪ ē we have stabilized the blow-up mode at a scale much

smaller than the untwisted moduli parameterizing the size of the overall compacti-

fication. So working in the regime m0 ≪ f ≪ ē, we can accomplish controlled

stabilization of the blow-up modes, in a regime where the supergravity approximation

is valid. We derive the precise formula for the stabilized blow-up moduli in Section 5

using the four-dimensional approach.

4. IIA flux vacua in 4D N = 1 supergravity

The orientifold of T 6/Z
2
3 we have studied so far is a particular case of the general class of

N = 1 supersymmetric orientifolds of Calabi-Yau compactifications of type IIA string

theory. The effective theory of these models is an N = 1 four-dimensional supergrav-

ity, characterized by a superpotential W generated by the fluxes for the moduli fields

surviving the orientifold projection.

In this section, we review the derivation of the flux superpotential by Grimm and

Louis [13] (for earlier related work see [30]; the form of these superpotentials was

proposed in [31] and also derived in [15]), and then analyze the general structure of

the supersymmetric vacua corresponding to solutions of the conditions DW = 0. The

equations for the Kähler moduli decouple from the other fields and can be solved

separately, as do the equations for the complex structure moduli; the dilaton is then

fixed by an equation involving expectation values for the rest of the fields.

We show that in general, all geometric moduli can be frozen by fluxes; axionic

partners of the complex structure moduli arising from C3 remain unfixed, however. In

the next section, we turn this analysis on the example of the T 6/Z2
3 orientifold, and

find results in agreement with the previous sections.

4.1 Orientifold projection on N = 2 moduli

The four-dimensional effective theory of type IIA string theory on a Calabi-Yau three-

fold is an N = 2 supergravity. The moduli space is a product of two factors, one

containing the vector multiplets (the Kähler moduli) and the other the hypermultiplets

(the complex structure moduli and dilaton); the metric on each factor is determined
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by a Kähler potential. The orientifold projection to an N = 1 theory reduces the size

of each moduli space, as we review below.

The orientifold projection O = Ωp(−1)FLσ is the composition of worldsheet par-

ity Ωp, left-moving fermion number (−1)FL and an antiholomorphic involution of the

Calabi-Yau σ. The involution must act on the Kähler form J and holomorphic 3-form

Ω as

σ∗J = −J , σ∗Ω = e2iθΩ , (4.1)

where θ is some phase. The fixed loci of σ are special Lagrangian three-cycles Σn

satisfying

J |Σn
= 0 , Im (e−iθΩ)|Σn

= 0 . (4.2)

Orientifold six-planes (O6s) fill spacetime and wrap the Σn. One may always eliminate

θ by a redefinition of Ω, and we shall do so in the following.

For modes of the massless ten-dimensional fields to be invariant under the orien-

tifiold projection, they must transform under the antiholomorphic involution as

σ∗gµν = gµν , σ∗B2 = −B2 , σ∗φ = φ , σ∗C1 = −C1 , σ∗C3 = C3 . (4.3)

4.1.1 Kähler moduli space

Before the orientifold projection, the vector multiplet moduli space is h1,1-dimensional,

the moduli corresponding to the expansion of the complexified Kähler form

Jc ≡ B2 + iJ , (4.4)

in a basis of (1, 1)-forms. Under the projection, the space of (1, 1)-forms H1,1 de-

composes into even and odd subspaces, H1,1 = H1,1
+ ⊕ H1,1

− , of dimensions h1,1
− and

h1,1
+ = h1,1 − h1,1

− , respectively. From (4.3) we see that the surviving modes of Jc are

associated with odd forms, and hence we find h1,1
− surviving complex moduli ta:

Jc =

h1,1
−

∑

a=1

tawa , ta = ba + iva , (4.5)

with {wa} a basis for H1,1
− .

Hence the orientifold reduces the Kähler moduli space of the N = 2 theory to a

subspace without disturbing the moduli space complex structure. The Kähler potential

for the reduced space is simply inherited from the N = 2 theory:

KK(ta) = − log(
4

3

∫

J ∧ J ∧ J) = − log(
4

3
κabcvavbvc) , (4.6)
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where we defined the triple intersection

κabc ≡
∫

wa ∧ wb ∧ wc . (4.7)

There are also N = 1 vector multiplets associated to H1,1
+ that survive the projection,

but these contain no scalars and will not interest us.

4.1.2 Complex structure moduli space

Before the projection, the hypermultiplet moduli space is quaternionic. To define

the complex structure moduli, as usual one chooses a basis for harmonic 3-forms H3,

{αK̂ , βL̂}, where K̂, L̂ = 0 . . . h2,1 and
∫

αK̂ ∧βL̂ = δK̂,L̂. One can expand the holomor-

phic 3-form in this basis,

Ω = ZK̂αK̂ − gL̂βL̂ , (4.8)

and the complex ZK̂ can be taken as homogeneous coordinates on the complex structure

moduli space; we may call the inhomogeneous coordinates zK , K = 1 . . . h2,1. The

complex space of the zK is promoted to a quaternionic space as each zK is joined by

the axionic modes ξK , ξ̃K defined as

C3 = ξK̂αK̂ − ξ̃L̂βL̂ , (4.9)

while ξ0 and ξ̃0 combine with the dilaton φ and the dual of B2 polarized along space-

time to form the universal hypermultiplet. The moduli space is thus 4(h2,1 + 1)-real

dimensional.

Under the orientifold, the relevant space of harmonic forms again decomposes into

even and odd subspaces, H3 = H3
+ ⊕ H3

−, where each of H3
+ and H3

− is h2,1 + 1-real

dimensional. The even and odd bases are {αk, βλ} and {αλ, βk}, respectively, where

k = 0 . . . h̃ and λ = h̃ + 1 . . . h2,1; the parameter h̃ determining how many αs are even

is basis-dependent. The orientifold condition (4.1) with θ = 0 requires

Im Zk = Re gk = Re Zλ = Im gλ = 0 . (4.10)

Two of these conditions are constraints on the moduli, while the other two follow

automatically for a space admitting the antiholomorphic involution σ. We see that for

each complex zk, only one real component survives the projection. The condition (4.3)

that C3 be even also truncates the space of axion fields in half to {ξk, ξ̃λ}. Consequently

for each quaternionic modulus, one complex field survives: a real or imaginary part of

the complex structure modulus and an axion.
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The universal hypermultiplet is also cut in half, as φ and one of ξ0, ξ̃0 survive. One

can summarize all the surviving moduli in the object

Ωc ≡ C3 + 2iRe (CΩ) , (4.11)

where the “compensator” C incorporates the dilaton dependence through

C ≡ e−D+Kcs/2 , eD ≡
√

8eφ+KK/2 =
eφ

√
vol

. (4.12)

Here eD is the four-dimensional dilaton, equivalent to the previous definition (3.28)

using
∫

J ∧ J ∧ J = 6 vol, and Kcs is the Kähler potential for complex structure

moduli restricted to the surviving modes

Kcs = − log(i

∫

Ω ∧ Ω) = − log 2(ImZλRe gλ − Re ZkIm gk) . (4.13)

The surviving moduli are then the expansion of Ωc in H3
+:

Nk ≡ 1

2

∫

Ωc ∧ βk =
1

2
ξk + iRe (CZk) , (4.14)

Tλ ≡ i

∫

Ωc ∧ αλ = iξ̃λ − 2Re (Cgλ) . (4.15)

Note that including the dilaton via C means all h2,1 + 1 complex modes are physical;

the compensator essentially trades the irrelevant scale factor of Ω for the physically

relevant dilaton field.

Thus in contrast to the Kähler case, where h1,1
− complex moduli are preserved and

the rest removed, for the hypermultiplet moduli space each quaternion is cut in half,

leaving always h2,1 + 1 complex moduli. How many are Nk and how many are Tλ is

basis-dependent; there is always a basis where h̃ = h2,1, and all moduli are Nk, leaving

the real parts of the complex structure moduli, the ξk and the dilaton.

The Kähler potential for the surviving fields is

KQ = −2 log(2

∫

Re (CΩ) ∧ ∗Re (CΩ) = 4D , (4.16)

where in the last step one used the identity

∫

Re (CΩ) ∧ ∗Re (CΩ) = Im (CZλ)Re (Cgλ) − Re (CZk)Im (Cgk) = e−2D/2 , (4.17)

derived using (4.13) and the definition (4.12) of D.
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4.2 Fluxes and superpotential

One may turn on nonzero fluxes of the NSNS and RR field strengths consistent with

the orientifold projection. Using (4.3), we find H3 and F2 must be odd, while F4 is

even. We write the fluxes as

H3 = qλαλ − pkβk , F2 = −mawa , F4 = eaw̃
a , F0 = m0 , (4.18)

where we have used the fact that H2,2
+ is the Poincaré dual of H1,1

− since the volume

form J ∧ J ∧ J is odd. The F0 flux m0 is the mass parameter of massive type IIA

supergravity; an additional parameter e0 =
∫

F6 will arise as well.

Dimensionally reducing the massive IIA supergravity, neglecting the backreaction

of the fluxes and other local sources, it was shown by Grimm and Louis in [13] that

the resulting potential can be written in the form

V = eK





∑

i,j,={ta,Nk,Tλ}

KijDiWDjW − 3|W |2


+ m0e
KQIm W Q , (4.19)

where K = KK + KQ, and where the superpotential W is given by

W (ta, Nk, Tλ) = W Q(Nk, Tλ) + W K(ta) , (4.20)

W Q(Nk, Tλ) =

∫

Ωc ∧ H3 = −2pkNk − iqλTλ ,

= −pkξk + qλξ̃λ + 2i [−pkRe (CZk) + qλRe (Cgλ)] , (4.21)

W K(ta) = e0 +

∫

Jc ∧ F4 −
1

2

∫

Jc ∧ Jc ∧ F2 −
m0

6

∫

Jc ∧ Jc ∧ Jc ,

= e0 + eat
a +

1

2
κabcmatbtc −

m0

6
κabctatbtc , (4.22)

with Di the Kähler covariant derivative DiW ≡ ∂iW + W∂iK. The constant term e0

comes from the space-time dual of F4 polarized in the noncompact directions, as in

Section 3.3 and as discussed in more detail in [26, 13], but may equivalently be thought

of as the integrated flux of F6.

When the tadpole conditions are satisfied, the last term in (4.19) cancels with con-

tributions from local (O6 and D6) sources, and hence is absent in the total potential.5

Consequently, the potential is completely characterized by the superpotential W (4.20).

5This term and the local contributions against which it cancels were not mentioned in [13].
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4.3 Supersymmetric vacua

The superpotential (4.20) was derived by comparing to the dimensionally reduced ten-

dimensional supergravity theory neglecting backreaction. For a general background,

such an approximation cannot be used; not only will backreaction complicate the analy-

sis, but contributions such as worldsheet instanton corrections that cannot be described

in the language of ten-dimensional supergravity will appear. Corrections of this nature

can be described naturally in the four-dimensional language; for example, worldsheet

instanton corrections to the Kähler potential are well-known and can in some cases be

calculated. In the regime of validity of effective field theory, the most useful description

of the system is in terms of the four-dimensional quantities W , K, which one may use

to attempt to determine the vacua and dynamics in terms of the properly corrected

superpotential and Kähler potential.

Supersymmetric vacua are characterized by the vanishing of the F-term conditions,

DtaW = DNk
W = DTλ

W = 0 . (4.23)

In this subsection we consider the general structure of these equations, and show that

in general all geometric moduli can be fixed by fluxes. We shall focus on the regime of

large volumes, where a geometric description is possible; however as described above,

these equations can also be applied to the small volume region if the corrections are

known.

4.3.1 Complex structure equations

The complex structure equations DNk
W = DTλ

W = 0 become

pk + 2i e2D W Im (Cgk) = 0 , (4.24)

qλ + 2i e2D W Im (CZλ) = 0 . (4.25)

The first observation is that the imaginary part of each of these equations is identical.

Given that C and D are real, one simply finds

Re W = qλξ̃λ − pkξk + Re W K = 0 . (4.26)

This turns out to be the unique condition from (4.23) involving the axions. As a result,

only a single linear combination of the ξk, ξ̃λ fields is fixed; the remaining ξk, ξ̃λ fields

are the only moduli that cannot be stabilized using fluxes.

This collapse of what was apparently h2,1 + 1 constraints into a single constraint

can be traced to the fact that the constant coefficients pk, qλ are real, and therefore do

not contain enough degrees of freedom to stabilize both the complex structure moduli

– 23 –



and the associated axions. A similar thing happens in the case of G2 flux vacua [32];

we compare these ensembles in section 6.

We found the same result in section 3.3, where the only constraint on the axions

arises from the space-time polarized F4 through the Chern-Simons term
∫

H3∧C3∧F4.

This is not an issue in our T 6/Z2
3 example because there h2,1 = 0, so the single constraint

suffices to fix the single axion arising from the dilaton multiplet. In more general

examples, Euclidean D2 instantons are expected to lift the remaining axions [33, 27].

In fact in this general class of models, the allowed H3 fluxes live in the cohomology

group H3
− while the axions come from H3

+. Hence the instantons which lift these axions

are precisely the ones allowed by both the orientifold projection and by the nontrivial

fluxes.

Turning to the real parts of (4.24), we note that ImW = 0 is incompatible with

any nonzero H3 flux; we will see upon studying the Kähler sector that Im W 6= 0 when

any RR fluxes are turned on, as long as
∫

J ∧ J ∧ J 6= 0. Given nonzero Im W , we find

that if any pk or qλ vanishes, the corresponding modulus Im gk or Im Zk must vanish.

Then for any ki or λj with nonzero pki
, qλj

, we can eliminate eD Im W to obtain

e−Kcs/2 pk1

Im gk1

= e−Kcs/2 pk2

Im gk2

= . . . = e−Kcs/2 qλ1

Im Zλ1

= . . . ≡ Q0 . (4.27)

These equations are invariant under an overall rescaling of Ω and hence depend only on

the inhomogeneous coordinates on the complex structure moduli space; combined with

the vanishing of Im gk or Im Zk for the cases when pk, qλ = 0, they constitute h2,1 real

equations that will in general fix all the h2,1 complex structure moduli, independent of

the RR fluxes or values of the Kähler moduli. The final equation from (4.24) can then

be cast as

e−φ = 4
√

2 eKK/2 Im W

Q0
, (4.28)

which determines the dilaton once the complex and Kähler moduli have been solved

for.

Before turning to the Kähler moduli, we derive a useful consequence of the com-

plex structure equations. Multiplying the equations (4.24) by Re (CZk) and Re (Cgλ),

respectively, summing over k and λ and taking the difference, we find using the identity

(4.17) that

−iW =
∑

λ

qλRe (Cgλ) −
∑

k

pkRe (CZk) ≡
1

2
Im W Q . (4.29)

Hence when the complex structure moduli satisfy their equations of motion, the vacuum

value of the superpotential can be written in terms of the Kähler moduli only:

W (ta, Nk, Tλ) = −iIm W K(ta) . (4.30)
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4.3.2 Kähler equations

The relation (4.30) allows us to decouple the Kähler sector. Using (4.30), the equations

DtaW = 0 become

∂taW
K − i∂taK

KIm W K = 0 . (4.31)

Hence we can consider these equations entirely independently from the hypermultiplet

moduli and H3 fluxes.

In the analysis that follows we will assume nonvanishing m0. It is straightforward

to show that for m0 = 0, one must either have ma = ea = 0 as well, and the Kähler

moduli are then all unfixed, or the va are driven to zero, far from the large-volume

region.

Again it is useful first to consider the imaginary parts of the equations. Since KK

depends only on va ≡ Im ta, the second term in (4.31) is real. Thus we find

Im ∂taW
K = κabcvb(mc − m0 bc) = 0 , (4.32)

(recall bc = Re tc). The regularity of the moduli space metric implies there is always

some κabc that is nonzero for any given c; assuming the 2-cycle volumes vb do not

vanish, as will be the case for example in a geometrical limit, one finds for all c:

bc =
mc

m0

. (4.33)

We see that unlike the case of the complex structure, for the Kähler moduli the axions

are generically all fixed. As we will discuss further in section 6, this can be understood as

arising from the fact that the Kähler sector has twice as many fluxes per real modulus

as the complex structure (ma, ea for the Kähler sector as opposed to pq, qλ for the

complex structure sector).

Consider now the real part of the equations (4.31). Using the axion solution (4.33),

one can write these equations as

(

3m2
0κabcvbvc + 4eam0 + 2κabcmbmc

)

(κdefvdvevf ) (4.34)

+(κabcvbvc)(6m0edvd + 3κdefmdmevf) = 0 .

Multiplying by va and summing over a, we have

3m2
0(κabcvavbvc) + 10m0eava + 5κabcmambvc = 0 . (4.35)

Substituting this back into (4.34) and cancelling an overall factor, one finds for each a,

3m2
0κabcvbvc + 10m0ea + 5κabcmbmc = 0 . (4.36)
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These h1,1
− simple quadratic equations for the h1,1

− moduli va are the final result; we

have as many equations as unknowns and expect all the moduli to be frozen. Let us

discuss a few properties of these equations.

A key feature of (4.36) is that Kähler moduli are only coupled to other Kähler

moduli with which they have a nonvanishing triple intersection; this is not obvious

from the original equations (4.31). In studying our example T 6/Z2
3 in section 5, we

shall see that this justifies treating every blow-up mode independently from the other

blow-ups, as well as from the untwisted moduli, even when the latter are not taken to

be much larger than the blow-ups.

Using (4.35), one can show that

W = −iIm W K =
2i

15
m0κabcvavbvc . (4.37)

From this we learn that W = 0 cannot occur for this class of vacua without the overall

volume
∫

J ∧ J ∧ J vanishing. This justified the assumption of Im W 6= 0 we made in

analyzing the complex structure moduli6.

Using (4.37) one can solve for the dilaton using (4.28). One can see from (4.36),

(4.37) that under a flip of the sign of all RR fluxes, W → −W . Thus to preserve the

physically correct sign for the dilaton (4.28), one must flip the signs of the H3 fluxes

as well. ( The periods Im gk and Im Zλ have definite sign fixed by the sign of Ω, which

in turn is fixed as it calibrates the special Lagrangian submanifolds on which the O6s

are wrapped.) It is familiar from studying type IIB vacua that flipping signs of the RR

fluxes without doing likewise for the NSNS fluxes leads to a solution with unphysical

dilaton, an indication that the solution preserves the opposite sign of supersymmetry;

the sign of the tadpole from the fluxes has been flipped, and in this case, those fluxes

are consistent with an anti-O6 background instead of an O6 background.

Let us summarize the equations determining the supersymmetric vacua.

Kähler moduli ba, va:

ba =
ma

m0

, 3m2
0κabcvbvc + 10m0ea + 5κabcmbmc = 0 . (4.38)

Complex structure moduli Im gk, Re Zλ:

Im gk = 0 for pk = 0 , Im Zλ = 0 for qλ = 0 , (4.39)

6A compactification with m0 6= 0 and all other fluxes vanishing (and no orientifold) was studied in

[35], where it was found that the solution is forced to
∫

J ∧ J ∧ J = 0, consistent with (4.35).
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e−Kcs/2 pk1

Im gk1

= e−Kcs/2 pk2

Im gk2

= . . . = e−Kcs/2 qλ1

Im Zλ1

= . . . ≡ Q0 , for all pki,qλj
6= 0 .

Dilaton φ:

e−φ =
4
√

2

5
√

3

m0

Q0
(κabcv

avbvc)1/2 . (4.40)

One axion qλξ̃λ − pkξk:

pkξk − qλξ̃λ = ReW K = e0 +
eama

m0
+

κabcmambmc

3m2
0

. (4.41)

These equations assume va 6= 0 and κabcvavbvc 6= 0.

Note that in general we need m0 and at least one pk or qλ to be nonzero for a

stabilized vacuum; if either condition fails, all fluxes must vanish and the moduli go

unstabilized. The minimum set of fluxes required to stabilize all geometric moduli is

m0, one pk or qλ (satisfying the orientifold tadpole) and one ea or ma for each Kähler

modulus.

It will generally be true that some fluxes will lead to solutions of (4.38) lying outside

the geometric regime; for example in section 5 we will see that for the T 6/Z2
3 orientifold

some fluxes imply some va < 0. In this regime we expect not just the Kähler potential

K, but also the superpotential W , to receive α′ corrections, and hence the result cannot

be trusted.

When some of the pk or qλ vanish, one ends up with either gk = 0 or Zλ = 0.

The vanishing of a linear combination of periods does not a priori mean that a 3-

cycle has collapsed; such vanishing occurs at a dense set of points in moduli space,

while the actual discriminant locus is of codimension one.7 In the rare case where

such a 3-cycle has collapsed, one might worry about being driven to a singularity on

moduli space where new fields become light. However in type IIA string theory, the

complex structure moduli space is embedded within the quaternionic hypermultiplet

moduli space, within which singularities have codimension four or higher. Even after

the orientifold projection, since the surviving axion partners of the complex moduli are

in general unfixed by the fluxes, one need not end up at a singular point; landing at

the singular point in moduli space will require a tuning of the axion vevs.

4.4 Gauge redundancies

There are in general modular group transformations, acting both on the moduli and

on the fluxes, that relate equivalent vacua. In particular, it is evident that there are

7We thank F. Denef for reminding us of this fact.

– 27 –



two kinds of modular transformations of infinite order, those that shift the complex

structure axions ξk, ξ̃λ by one, and those that shift the Kähler axions ba likewise. Here

we derive the action of these transformations on the fluxes; we do so using the fact that

the DW = 0 equations must transform covariantly, so solutions are mapped to other

solutions. We also heuristically describe the nature of the transformation in a T-dual

type IIB picture.

Consider first the Kähler axions. From (4.33), is is obvious that a shift of the axion

ta → ta + 1 corresponds to a shift of ma → ma + m0. Assuming m0 is fixed, the first

term of (4.35) is unchanged, thus determining the action on ea. Finally the invariance

of Re W K can be used to fix the transformation of e0. The result is, for integers ua,

ta → ta + ua , (4.42)

m0 → m0 , ma → ma + uam0 , ea → ea − κabcmbuc , e0 → e0 − eaua .

This transformation can be regarded as the T-dual of a geometric transformation.

Consider the (T 6)/Z2
3 model and a shift of t → t+1 for one of the tori, which is a shift

in B2 integrated over that T 2. Taking a single T-duality in this T 2, the shift of t is

mapped to trivial shift of the complex structure of the dual torus, while the RR fields

are mapped into modes of F1, F3 and F5, which are mixed amongst each other by this

geometrical shift in precisely the way specifying (4.42).

Next consider shifts of the complex structure axions. Consider for example ξk →
ξk + 1, which requires Re W K → Re W K + pk; this can be accomplished with a shift of

e0 alone. In general we find

ξk → ξk + Uk , ξ̃λ → ξ̃λ + Vλ , e0 → e0 + pkUk − qλVλ , (4.43)

for integers Uk, Vλ. When only one component of H3 is turned on, this transformation

can be understood as the mirror of type IIB SL(2, Z) shifts; three T-dualities take

H3 and F6 to type IIB H3 and F3 polarized along the same directions, which are then

mixed by an SL(2, Z) transformation.

5. Application to T 6/Z
2
3 model

We now apply the results of the previous section to the specific case of our T 6/Z3

model, searching for solutions in the limit where all volumes are sufficiently large that

we can neglect α′ corrections.

We shall denote the F2 and F4 fluxes associated to the untwisted cycles by mi and

ei, i = 1, 2, 3 while those on the blow-ups are nA and fA, A = 1 . . . 9; the corresponding

moduli are the untwisted Kähler modes ti and the blow-up Kähler modes tBA
. In the
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hypermultiplet sector, h2,1 = 0 and we have only the index k = 0 and no λ indices; the

unique flux is pk=0 ≡ p, and the moduli are just the dilaton φ and its axionic partner

ξk=0 ≡ ξ.

5.1 General solution

We first consider the Kähler sector. The nonzero elements of the intersection form are

κ123 = κ and κAAA = β, and consequently we can solve for each of the blow-up modes

independently of the untwisted moduli and of the other blow-up modes.8 Considering

first the untwisted moduli, the axions are fixed as (4.33),

bi = Re ti =
mi

m0
, (5.1)

while for the volumes vi = Im ti we find the equations (4.36)

6m2
0κv2v3 + 10m0e1 + 10κm2m3 = 0 , (5.2)

6m2
0κv1v3 + 10m0e2 + 10κm1m3 = 0 , (5.3)

6m2
0κv1v2 + 10m0e3 + 10κm1m2 = 0 . (5.4)

The solution to this system is

vi =
1

|êi|

√

−5ê1ê2ê3

3m0κ
, (5.5)

where we have defined the shifted flux êi invariant under shifts of ti (4.42),

êi ≡ ei +
κmjmk

m0
, (5.6)

where j and k are simply the two values other than i.

For each of the blow-up modes, the volumes vBA
satisfy

3m2
0βv2

BA
+ 10m0fA + 5βn2

A = 0 , (5.7)

with no sum over A. The solution for the complex blow-up moduli is then9

tBA
=

nA

m0
− i

√

−10f̂A

3βm0
. (5.8)

8The values of κ and β can be found by a simple modification of the results in [19], where the

intersection form of T 6/Z3 was computed. The result (correcting a minor error in [19] and accounting

for the further free Z3 action) is that κ = 81 and β = 9, but we will continue the discussion in terms

of variable κ, β.
9Note that to stay within the Kähler cone, one should choose the solution with Im tBA

< 0; this

unusual convention arises because the self-intersection of the resolving P2 of a C3/Z3 singularity is −3

times an actual curve.
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where again we defined an invariant shifted flux f̂A,

f̂A ≡ fA +
βn2

A

2m0

. (5.9)

There are no complex structure moduli, so only the dilaton and its axion ξ remain.

Using the dilaton equation (4.28), and the results Im g0 = −1/
√

2, Kcs = 0, eKK

=

3/(4κabcvavbvc), we find

e−φ = −4
√

3

15

m0

p
(κabcvavbvc)

1/2 , (5.10)

where the total volume (proportional to the 4D coupling e−D) is given by

κabcvavbvc = − 15p

2
√

2m0

e−D =
10

|m0|

√

−5ê1ê2ê3

3m0κ
+ β

∑

A

(

−10f̂A

3βm0

)3/2

, (5.11)

where we have used the fact, discussed in the next subsection, that sgn (m0ê1ê2ê3) < 0

must hold. Finally the axion ξ is fixed as (4.26)

ξ =
Re W K

p
=

1

p

(

e0 +
eimi + fAnA

m0
+

6κm1m2m3 + β
∑

A n3
A

3m2
0

)

. (5.12)

5.2 Regime of validity and agreement with 10D analysis

This solution will be valid as long as the volumes vi, vBA
are sufficiently large that α′

corrections can be neglected, and the string coupling is small enough that quantum

corrections can be neglected. One can see from (5.5) and (5.8) that the volumes are

large whenever

|êi| ≫ |m0| , |f̂A| ≫ |m0| . (5.13)

Moreover, to remain within the Kähler cone, we must ensure the untwisted volumes

are sufficiently larger than the blow-ups, requiring

|êi| ≫ |f̂A| ≫ |m0| . (5.14)

Because the four-form and two-form fluxes are not constrained by the tadpole, we are

free to scale them to be as large as we wish. Thus we can always choose some fluxes

obeying (5.14) that provide a geometric solution.

When the hierarchy (5.14) is obeyed, the behavior of physical quantities is dom-

inated by the F4 flux for the non-blow up cycles. Let us again take êi ∼ ē; we have

shown that the Kähler parameters scale as vi ∼ ē1/2, becoming large with large ē. Then
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in addition to the overall volume becoming big, the ten- and four-dimensional string

couplings become small in this limit:

vol ∼ ē3/2 , eφ ∼ ē−3/4 , eD ∼ ē−3/2 , (5.15)

suppressing quantum corrections.

One may be concerned that even though the volumes are much larger than α′,

higher derivative corrections to the 10D Lagrangian may nonetheless become relevant,

because the flux parameter ē will increase the coefficient of certain terms as it grows

large. We can estimate the size of higher order corrections involving powers of |F4|2 as

follows.

First, two powers of F4 give an explicit ē2 scaling. Next there are 4 factors of the

inverse metric in contracting the indices of the form fields, which provides a factor of

R−8 ∼ ē−2. Finally, it is a famous fact that RR vertex operators are accompanied by

an extra factor of gs, yielding an additional power of ē−3/2.

Assembling all of the ingredients, we see that relative to the leading term in the

10D Lagrangian, terms with additional powers of |F4|2 are suppressed by an expansion

parameter λ ∼ ē−3/2. Therefore, in the large ē limit, we expect corrections from both

the α′ and gs expansions to be parametrically suppressed. The existence of these SUSY

vacua is therefore robust against any known corrections.

The scalings (5.15) are the same as those found in the 10D analysis; in fact, in the

limit (5.14), where the fluxes on the non-blow-up cycles dominate the string coupling,

the solution (5.5), (5.10) agrees precisely with (3.31), and the blow-up volume (5.8)

agrees qualitatively with the estimate (3.46), with the replacement êi → ei, f̂A → fA

to reflect the special case mi = nA = 0. There is one subtlety: the signs in the 4D

analysis are more constrained than those in the 10D analysis. In particular, although

both analyses agree that a solution requires

sgn (m0p) < 0 , (5.16)

the 4D supersymmetric equations also imply a constraint on the signs of the F4 fluxes,

sgn (m0ê1ê2ê3) < 0 , sgn (m0f̂A) < 0 , (5.17)

as well as the condition

êiv1 = ê2v2 = ê3v3 , (5.18)

requiring the signs of the êi all to coincide:

sgn ê1 = sgn ê2 = sgn ê3 , (5.19)
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in order for the vi to all be positive and hence in the large-volume region. The results

of section 3, however, imply that even if the signs of the êi are not aligned, there is

still a solution at positive vi, necessarily non-supersymmetric as it violates (5.19), but

apparently lacking in instabilities. The nature of these extra solutions, and the exact

location of the supersymmetric vacuum in the small volume region, we leave for future

work.

Since W 6= 0, these supersymmetric vacua are anti-de Sitter. Hence another inter-

esting quantity to consider is the 4D cosmological constant Λ. One finds

Λ = −3eKK+KQ|W |2 ∼ ē−9/2 . (5.20)

It is natural to ask whether the vacuum can be treated as effectively four-dimensional:

this will be the case if the Hubble scale H , defined as

H2 =
Λ

M2
P

, (5.21)

with M2
P the four-dimensional Planck scale, is less than the Kaluza-Klein scale 1/R.

Using the four-dimensional Einstein frame where MP ∼ ē0, we calculate that R2 ∼ ē7/2,

leading to the result

(HR)2 ∼ 1

ē
. (5.22)

Hence there is a parametric hierarchy between the AdS radius and the Kaluza-Klein

scale, and treating the vacuum with four-dimensional effective theory makes sense.

This is to be contrasted with the case of the Freund-Rubin vacua which feature most

prominently in examples of the AdS/CFT correspondence, where the KK scale and the

scale of the cosmological constant are the same, and the background is not effectively

four-dimensional.

Hence we have demonstrated for the T 6/Z2
3 orientifold the existence of paramet-

rically tunable large volume, weak coupling flux vacua with a valid four-dimensional

description and all moduli stabilized.

6. Rudimentary IIA vacuum statistics

“To understand God’s thoughts we must study statistics, for these are the

measure of His purpose.”

— Florence Nightingale
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It would be interesting to do a thorough analysis of the statistics of type IIA flux

vacua; related M-theory models were recently studied in [32]. Here, we make a modest

contribution by analyzing the statistics in the simplest toy model, a fictitious rigid

Calabi-Yau space with a single Kähler modulus t and no complex structure moduli,

with fluxes m0, m, e, e0 and p. Taking κ = 1 we have

W K = e0 + e t +
1

2
m t2 − m0

6
t3 . (6.1)

This example may be viewed as somewhat analogous to the type IIB rigid Calabi-Yau

toy model studied in [11].

The solution for the Kähler modulus t is identical to that of (5.8) for a single

blow-up mode,10

t =
m

m0
+ i

√

−10ê

3m0
, ê ≡ e +

m2

2m0
, (6.2)

while the dilaton and axion have the solutions

e−φ ∼ m0

p
(Im t)3 , ξ =

1

p
(e0 +

em

m0
+

m3

3m2
0

) . (6.3)

While we have chosen to analyze this case for simplicity, it is easy to see that the

solutions for T 6/Z2
3 are virtually identical when e1 = e2 = e3, m1 = m2 = m3. In

fact, because of the simple form of the Kähler equations (4.36), all solutions for Kähler

moduli in the geometric regime will have the general form (6.2). Hence we are able to

capture the essential behavior of all flux-frozen Kähler moduli by studying (6.2).

The tadpole condition in general requires

0 < −m0p ≤ N , (6.4)

where N is the magnitude of the negative D6 charge induced by O6 planes wrapping the

fixed point locus of the anti-holomorphic involution σ. In the cases that the inequality

is not saturated, one can compensate by including D6 branes. In simple examples

(including our explicit case) N is O(1), and we shall assume some fixed (though possibly

large) N in the following analysis (i.e. we will not work in an N → ∞ limit). In a

more general model with some complex structure moduli, there will be a tadpole like

(6.4) for each p or q, limiting the possible values of all the NSNS fluxes.

By varying flux integers, it appears that one can easily obtain a denumerably infi-

nite number of vacua. However, the naive analysis significantly over-counts solutions,

10Unlike in (5.8), here we have chosen the positive root, assuming v is the volume of a physical

curve.
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as there are modular symmetries that relate vacua with different values of these pa-

rameters. While we will only do approximate statistics of various asymptotics in an

appropriate large flux limit, to avoid making a serious error we need to gauge fix the

modular group generators of infinite order. These are the two symmetries discussed in

section (4.4): integer shifts of Re t and of ξ, which we account for as follows.

Rather than restricting the value of the moduli with the gauge symmetries, we

choose instead to restrict possible choices of the fluxes. Using the shift symmetry

(4.42) of the Kähler axions, we can restrict

0 ≤ m < |m0| , (6.5)

leaving us with |m0| inequivalent choices of the flux m for fixed m0; in more complicated

models there will be one such symmetry for each ma, permitting them all to be restricted

in this way. We can estimate the number of such choices as

N
∑

M=1

∑

m0|M

|m0| =
N
∑

M=1

σ(M) ∼ π2

12
N2 . (6.6)

We can then fix the shift symmetry (4.43) of the axion ξ by restricting e0:

0 ≤ e0 < p , (6.7)

giving us p possible values. In fact, this is not independent of the previous discussion:

for a given partition of M ≤ N into m0p, one gets m0 choices for m and p choices for

e0, so we should replace (6.6) by the slightly more elaborate

N
∑

M=1

∑

m0|M

M =
N
∑

M=1

Md(M) ∼ N2 log N . (6.8)

Notice that in models with multiple ξ axions, further gauge fixing beyond the restriction

(6.7) will be necessary.

At this point we can see that for a given orientifold, m0 and p are constrained to

take a finite number of values, and the degeneracy of vacua from varying m and e0

is given by (6.8); almost all the fluxes have been restricted to finitely many values.

However, we are still free to vary e while satisfying all tadpole conditions, and we have

no more infinite order modular symmetries to reduce the space of choices to a finite

set. Furthermore, we see from (6.2), (6.3) and that if we are concerned with the large e

asymptotics of the solutions (as we will be), then the allowed variations of m0, m at fixed

N will have a minor effect. In the explicit example, for instance, N = O(1) and the
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additional degeneracy factors discussed here are completely irrelevant for understanding

the distribution of vacua at large e.

The upshot of this discussion is that, in this gauge fixing, the statistics are domi-

nated by the large e vacua and we shall focus henceforth on their properties.

6.1 Statistics and general comments

Although the number of vacua diverges, there are still interesting statistical questions

that one can ask. The well-posed questions are questions like: how many vacua exist

below a given volume? How many vacua exist above a given |Λ|?
It is easy to answer these questions using the scaling results of the previous subsec-

tion; essentially all that matters is the large e behavior, since this is where an infinite

number of vacua lie, with their properties dominated by e. The finite range of values

of the other fluxes then only contributes to very fine structure in the space of vacua.

Using the fact that the length scale of the compact space in string frame scales

as R ∼ e1/4, we see that (at least for sufficiently large R∗) the number of vacua with

R ≤ R∗ scales like (R∗)4:

N (R ≤ R∗) ∼ (R∗)4 . (6.9)

In previous cases, Calabi-Yau flux vacua have had distributions governed by the volume

form on the appropriate moduli space; we note here that (6.9) does not conform to a

distribution on the Kähler moduli space governed by the volume form arising from

(4.6).

For the cosmological constant, using Λ ∼ e−9/2, one has

N (|Λ| ≥ |Λ∗|) ∼ (|Λ∗|)−2/9 . (6.10)

In other words, the number distributions of vacua (without any assumptions about

a cosmological measure) favor large volume and small cosmological constant, in this

supersymmetric ensemble. Note that one should not trust the distribution (6.10) at

large |Λ| because our approximations are invalid at small e. Hence the slow power of

the decay in this limit should not cause concern; any structure in the distribution of

vacua at large |Λ| is not trustworthy.

Given the large amount of recent work on characterizing the string landscape, it

seems worthwhile to make some comments about the similarities and differences of

our results to those obtained in other ensembles. Firstly, we should emphasize that

the divergence of the number of SUSY vacua may not be particularly disastrous. A

mild cut on the acceptable volume of the extra dimensions will render the number of

vacua finite. On the other hand, one can legitimately worry that the conclusions of
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any statistical argument will be dominated by the precise choice of the cut-off criterion,

since the regulated distribution is dominated by vacua with volumes close to the cut-off.

Secondly, we should comment that our statistical results are qualitatively rather

similar to those obtained in [32] for AdS4 Freund-Rubin vacua of M-theory. A promising

difference between these two sets of vacua is the parametric ratio we obtain between

the Hubble scale and the scale of the internal dimensions, which is generally absent in

Freund-Rubin vacua.

6.2 Comparison to other ensembles of vacua

By far the most well-studied example of flux vacua in string theory is the set of type IIB

vacua with the Calabi-Yau complex structure moduli and dilaton stabilized by H3 and

F3 fluxes. In addition, recently there has been discussion [32] of statistics for moduli-

stabilized flux vacua in compactifications of M-theory on manifolds of G2 holonomy. It

is naturally interesting to compare the ensembles to the IIA system we study.

In principle any vacuum of string theory can be described in an alternate duality

frame, and so the vacua we describe should be expressible in the language of type

IIB string theory via mirror symmetry, or of M-theory by relating the string coupling

to the M-theory circle. However, our vacua need not admit a description as a flux

compactification in the dual language. In fact, generically some parameters associated

to fluxes will be mapped to geometric torsions, which are considerably more difficult

to characterize; an understanding of them on the same level as fluxes has yet to be

obtained [17, 36]. Furthermore, the global properties of the dual-spaces may even be

nongeometric [37]. Hence by studying flux compactifications of a given theory, without

torsions, we are choosing a different “slice” of all possible compactifications than we

would obtain by studying the flux compactifications of another theory.

So while by studying torsions as well as fluxes we could in principle see that two dual

descriptions of string theory have the same vacuum statistics,11 different ensembles of

flux compactifications alone will not in general agree. Hence it is interesting to compare

them.

We will take a small step in this direction by comparing the ratio of available fluxes

to moduli in four different ensembles: Type IIA Kähler, type IIA complex structure,

type IIB complex structure, and M-theory on G2. Define the ratio

η ≡ # real flux parameters

# real moduli
. (6.11)

11This is not guaranteed, however, especially if one only computes the statistics for those vacua

which are weakly coupled in the respective corners (which may be the sensible thing to do).
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In general the larger the η parameter is for a given ensemble, the more moduli can be

fixed, and the less “friendly” the distribution will be (in the language of [34]); similar

observations have been put forward in [10, 32].

The simplest ensemble is the case of M-theory on a G2 manifold [5, 32]. There

are b3 complex moduli zi, and b3 G4 fluxes N i, as well as the complex Chern-Simons

invariant c1 + ic2. Hence we have ηG2
= (b3 + 2)/(2b3) ∼ 1/2. The superpotential has

the structure

WG2
= c1 + ic2 + ziN

i . (6.12)

In this ensemble, nonzero c2 is required for solutions at finite volumes si = Im zi, and

only a single linear combination of the axions Re zi are fixed. We may understand

this heuristically as since η ∼ 1/2, there are only as many fluxes as there are volume

parameters si, and consequently the axions are left unfixed.

Consider next the type IIA Kähler sector studied in this paper; since it can be

completely decoupled from the other moduli, it makes sense to consider it indepen-

dently. There are h1,1
− complex moduli ta, and 2h1,1

− + 2 RR fluxes; hence we find

ηIIA,K = (2h1,1
− + 2)/(2h1,1

− ) ∼ 1. The superpotential

WIIA,K = e0 + taea +
1

2
κabcmatbtc −

m0

6
κabctatbtc , (6.13)

is structurally a generalization of (6.12), with the fluxes ma and m0 generating quadratic

and cubic terms. With this doubling of the number of fluxes, one finds that the axions

as well as the geometric moduli are stabilized.

Hence one sees how in passing from an M-theory description to a IIA descrip-

tion, additional parameters that were described in terms of the geometry have become

available as fluxes, and the increase in the number of fluxes allows all moduli to be

stabilized. Note that (6.13) has no precise analog of c2 in (6.12), the Chern-Simons

invariant introduced by Acharya [5] to achieve nontrivial moduli stabilization, but m0

plays a very similar role.

Next consider the other ensemble in type IIA compactifications, that of the complex

structure moduli and dilaton. There are h2,1 + 1 complex moduli, and in addition to

the h2,1 +1 H3 fluxes, one requires the complex number Im W K from the Kähler sector

as input. Hence we have ηIIA,c = (h2,1 + 3)/(2(h2,1 + 1)) ∼ 1/2. Since one has

ηIIA,c = ηG2
, one might expect a similar story, and this is what we found: as in the G2

case, the geometric moduli are frozen, but the axions are not except for a single linear

combination. Hence we see that although the G2 superpotential superficially resembles

the IIA Kähler case more strongly (they are both simple polynomials in the moduli), its
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behavior is much more like that of the IIA complex structure case, and this similarity

can be traced to their having the same value of η.

The final familiar ensemble is that of type IIB, with imaginary self-dual fluxes

stabilizing the complex structure moduli and dilaton. In this case there h2,1+1 complex

moduli, but 4(h2,1 + 1) fluxes; hence ηIIB = 4(h2,1 + 1)/(2(h2,1 + 1)) = 2. This is the

largest number of fluxes per modulus of all these ensembles; one may think of starting

with the type IIA complex structure ensemble and doubling the fluxes, as F3 contributes

as well as H3, effectively complexifying the flux. (Of course, since in IIB the RR fluxes

as well as the NSNS fluxes go into stabilizing the complex structure moduli, there are

none left to stabilize the Kähler moduli.) Not only are all moduli frozen, but additional

choices are left over, allowing a broader, less “friendly” distribution.

Thinking ahead, the inclusion of torsions as well as fluxes will naturally cause the

suitable generalization of the η parameter to grow. Hence when one considers all the

discrete choices that characterize these generalized flux compactifications, stabiliza-

tion of all moduli becomes increasingly easy, and distributions become less and less

“friendly”. It is quite reasonable to expect that a generic example of such a general-

ized flux compactification would stabilize all moduli, regardless of the particular string

theory considered.

7. Conclusions

The main striking features of the class of models described in this paper are their sim-

plicity, and the appearance of a parameter which yields power-law parametric control.

In the supersymmetric vacua of the IIB theory where all moduli are stabilized [1], the

control parameter only grows logarithmically with a tuning parameter; hence, while

one can make controlled constructions, it requires precise tuning in a large space of

flux vacua. Here, in contrast, the radii and couplings fall into a controlled regime as a

power of the F4 flux. This gives these models special appeal as a setting to do controlled

studies of fully stabilized string vacua. It also hints that finding dual CFTs, which is a

difficult problem for the AdS models of [1], may be considerably simpler here; the large

flux limit may admit a simple dual description.

It would be worthwhile to find proposals for perturbing these vacua by small pos-

itive energies to yield controlled de Sitter models, perhaps along the lines of similar

proposals in the type IIB theory [1, 38]. In addition, the inclusion of perturbative

corrections to K, worldsheet instantons (whose effects should be computable by using

mirror symmetry and co-opting the appropriate type IIB computations of prepoten-

tials), and Euclidean D2 instanton effects, could add very interesting features to these

potentials; in the analogous N = 2 setting quantum corrections certainly do seem to
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play an important role [14]. At least the worldsheet instanton effects should be some-

thing that one can incorporate at the level of statistical analyses. There has also been

great progress in constructing realistic brane world models in flux backgrounds [39] and

in using the fluxes to freeze the open string moduli [40, 41] and induce soft supersym-

metry breaking terms [42]; it would be interesting to combine these ingredients in the

setting suggested here.

Finally, it would be interesting to see if there is a direct relation between our IIA

constructions and some topological field theory construction, which could provide an

analogue of the Hartle-Hawking wavefunction [43] for these vacua – such a construction

has been obtained for some simple classes of Freund-Rubin vacua in [44]. We note here

that any naive application of the Hartle-Hawking wavefunction to obtain a measure on

this set of vacua will suffer from the same problem of cut-off dominance mentioned in

§6.1 in the context of statistical arguments. Without imposing a cut-off on the four-

form flux, the wavefunction will be badly non-normalizable (as it is for the analogous

black hole problem in [44], if one does not impose a cut-off on the allowed charges).

Imposing a cut-off, one will find that the wavefunction is peaked at the cut-off; this is

the analogue of the cut-off domination problem for statistical arguments. One proposal

to fix this problem in the more physical case of de Sitter vacua has been described in the

papers [45], which also provide references to further critical discussion in the quantum

cosmology literature. At any rate it is clearly a worthwhile and ambitious goal to find

a good measure on the space of vacua. Success will require both a detailed knowledge

of the structure of the space of vacua, and significant new insights into early universe

cosmology in string theory.
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A. IIA Chern-Simons term in presence of fluxes

In this appendix we consider the Chern-Simons term of IIA supergravity in the presence

of topological fluxes. We only consider the massless IIA theory here, which can be de-

rived through dimensional reduction from M-theory, and give an elementary derivation

of that subset of the full set of Chern-Simons terms that plays a role in the analysis

of this paper. A full treatment of the Chern-Simons terms of type IIA string theory is

rather subtle and requires dealing properly with flux self-duality, anomaly cancellation

and the classification of fluxes in K-theory [24], and leads to additional contributions

involving curvature forms and an overall sign for the exponentiated action; we neglect

such terms here.

The Chern-Simons term of IIA supergravity is well known to be given in the absence

of topological fluxes by

SCS =
1

2κ2
10

∫

H3 ∧ C3 ∧ F4 . (A.1)

In the absence of topological fluxes, this Chern-Simons term can be integrated by parts

to give

SCS = − 1

2κ2
10

∫

B2 ∧ F4 ∧ F4 . (A.2)

These two forms of the Chern-Simons contribution to the action are generally used

interchangeably. Note, however, that in the presence of a topological flux Hbg
3 or

F bg
4 there is a subtlety. When such a flux is present, the boundary terms

∫

∂
B2 ∧

C3 ∧ F4 arising from the integration by parts may not vanish, due to a large gauge

transformation which relates the forms B2, C3 at two images of the same boundary.

Thus, the two Chern-Simons terms (A.1, A.2) are not necessarily equivalent in the

presence of topological background fluxes. In fact, if we decompose Btotal = Bbg + B

and Ctotal
3 = Cbg

3 + C3, we see that the problem arises from taking either Bbg or Cbg
3

to appear without a derivative in the action. In this case, the action is not necessarily

gauge invariant under large gauge transformations.

As an explicit example of this problem, consider by analogy a simple U(1) gauge

theory on a cubic T 3 with sides of length 1, with connection Ai and field strength

Fij = ∂iAj−∂jAi. In this model the Chern-Simons term
∫

A∧F is invariant under local

gauge transformations. The topological flux Fij is quantized to be Fij = 2πnij, nij ∈ Z.
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Let us turn on an explicit F12 flux by setting Abg
2 = 2πx1, and compute the term in the

action which gives a tadpole in this background to the fluctuation A3 = λ cos 2πx1 →
F13 = −2πλ sin 2πx1. This tadpole arises from the term

∫

A2F31 =

∫ 1

0

dx1 (2π)2x1λ sin 2πx1 (A.3)

= −2πλ . (A.4)

We might try integrating this term by parts, in which case we get a boundary contri-

bution
∫

Abg
2 (∂3A1 − ∂1A3) → −

∫

Abg
2 ∂1A3 (A.5)

=

∫

F bg
12 A3 −

(

Abg
2 A3

)

|10 (A.6)

= −2πA3(x1 = 1) = −2πλ . (A.7)

Thus, the integration by parts is not valid here if the boundary term is neglected.

Furthermore, if we perform the global gauge transformation

Ai → Ai − ig−1∂ig , (A.8)

where

g = e−2πix1x2 , (A.9)

we have

Abg
1 = −2πx2 , (A.10)

Abg
2 = 0 . (A.11)

The tadpole for the fluctuation F13 = 2πλ sin 2πx1 in this background explicitly van-

ishes! Thus, the action
∫

A ∧ F is not invariant under large gauge transformations

when the background topological flux is encoded in A which appears explicitly without

derivatives in the action.

To avoid these complications, we need to find an invariant definition of the Chern-

Simons term in the presence of topological fluxes. A correct definition of a D-dimensional

Chern-Simons term Γ on a manifold MD is given by finding a (D+1)-dimensional man-

ifold MD+1 with boundary MD = ∂MD+1. Then

∫

MD

Γ =

∫

MD+1

dΓ , (A.12)
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is gauge invariant under all gauge transformations on MD which can be extended to

gauge transformations on MD+1 as long as dΓ is gauge invariant. Note that generally

Γ depends on a p-form potential C, and not just on dC, so that Γ must be extended

to MD+1 by extending C and not dC. We will use this approach to find the invariant

definition of the Chern-Simons term in M-theory, which we then reduce to type IIA. A

similar discussion of the Chern-Simons term of M-theory was given in [25].

To construct the Chern-Simons term of M-theory, we begin by making the simpli-

fying assumption that we have an M11 which decomposes as M11 = R × M̂10 , such

that there is no topological flux of the M-theory 4-form Fµνρσ with an index on the

first dimension. We define F total = dC + F bg. We can then write M11 = ∂M12 where

M11 = H+ × M̂10 with H+ the upper half-plane. We can then extend any C3 from M11

to M12 by multiplying by a function of the extra coordinate which is 1 on the boundary

and goes to 0 sufficiently rapidly in the interior. For example we could take e−r on

H+. We extend F bg trivially on M12, which amounts to choosing a particular represen-

tative F bg = dCbg and extending Cbg trivially (though note that Cbg may transform

nontrivially between charts covering M11). The four-form flux in 12D is then given by

F̃ = d(e−rC) + F bg = −dr ∧ e−rC + e−rF + F bg . (A.13)

We can then directly integrate

∫

M12

F̃ total
4 ∧ F̃ total

4 ∧ F̃ total
4 →

∫ ∞

0

dr ∧ (e−rC) ∧ (e−rF + F bg) ∧ (e−rF + F bg)

=
1

3
C ∧ F ∧ F + C ∧ F ∧ F bg + C ∧ F bg ∧ F bg . (A.14)

The coefficient of the first term is fixed to agree with the term in the absence of

background fluxes, so that using conventions of Polchinski we have

S11
CS = − 1

12κ2
11

∫

M11

C3 ∧
(

F4 ∧ F4 + 3F4 ∧ F bg
4 + 3F bg

4 ∧ F bg
4

)

. (A.15)

This fixes the Chern-Simons term of M-theory in the presence of background fluxes as

long as there is a trivial one-dimensional factor in M11.

Now, we can dimensionally reduce to 10 dimensions. Following the standard di-

mensional reduction as in [22] but using our conventions for RR fields, we have

SIIA
CS = − 1

2κ2
10

∫

[

B2 ∧ F4 ∧ F4 + 2B2 ∧ F4 ∧ F bg
4 + C3 ∧ Hbg

3 ∧ F4 (A.16)

+ B2 ∧ F bg
4 ∧ F bg

4 + 2C3 ∧ Hbg
3 ∧ F bg

4

]

,
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where we have integrated by parts where possible. Note that these terms reduce cor-

rectly to (A.1, A.2) in the absence of topological fluxes. The first line of (A.16) contains

all terms needed in the case of compactification of IIA on a 6-dimensional manifold,

where there are no terms quadratic in the topological background flux, since this would

require a nontrivial cohomology cycle of degree 7 or higher. In this case, which is the

case of interest in this paper, the Chern-Simons terms are precisely those found in [14]

to be compatible with the structure imposed by 4D supergravity.
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Lüst, “Heterotic string theory on non-Kahler manifolds with H-flux and gaugino

condensate,” Fortsch. Phys. 52 (2004) 483 [arXiv:hep-th/0310021]; G. Cardoso, G.
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