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Abstract
We investigate half-supersymmetric domain wall solutions of four maximally
supersymmetric D = 9 massive supergravity theories obtained by Scherk–
Schwarz reduction of D = 10 IIA and IIB supergravity. One of the theories
does not have a superpotential and does not allow domain wall solutions
preserving any supersymmetry. The other three theories have superpotentials
leading to half-supersymmetric domain wall solutions, one of which has zero
potential but non-zero superpotential. The uplifting of these domain wall
solutions to ten dimensions leads to three classes of half-supersymmetric type
IIB 7-brane solutions. All solutions within each class are related by SL(2,R)
transformations. The three classes together contain solutions carrying all
possible (quantized) 7-brane charges. One class contains the well-known D7-
brane solution and its dual partners and we provide the explicit solutions for
the other two classes. The domain wall solution with zero potential lifts up to
a half-supersymmetric conical spacetime.

PACS numbers: 1125, 1127, 0450, 0465

1. Introduction

Recently, much attention has been given to the study of domain wall solutions in (matter-
coupled) supergravity theories. This is due to several reasons. First of all, the possibility
of a supersymmetric RS scenario [1, 2] relies on the existence of a special domain wall
solution containing a warp factor with the correct asymptotic behaviour such that gravity is
suppressed in the transverse direction. Secondly, domain wall solutions play an important
role in the AdS/CFT correspondence [3, 4]. A domain wall in D dimensions may describe
the renormalization group flow of the corresponding field theory in D-1 dimensions. The
geometrical warp factor now plays the role of an energy scale. Finally, domain wall solutions
have been applied to cosmology (for some recent papers see, e.g., [5, 6]). In all these cases
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the properties of the domain wall crucially depend on the detailed properties of the scalar
potential.

The highest-dimensional supergravity theory that allows a domain wall solution is the
maximally supersymmetric D = 10 massive IIA supergravity [7]. This theory is a massive
deformation, characterized by a mass parameter mR, of the massless IIA supergravity theory
[8, 9]. The particular domain wall solution, the D8-brane, has been constructed in [10, 11].
In a supersymmetric theory both the scalar potential V as well as the massive deformations in
the supersymmetry transformations are often characterized by a superpotentialW . In the IIA
case the superpotential depends on just one scalar φ̂, the dilaton, and is of a simple exponential
form:

W(φ̂) = 1
4 e5φ̂/4mR. (1)

In general, the lower-dimensional supergravity theories contain more scalars and have,
correspondingly, a more complicated superpotential which is difficult to investigate. In
fact, the most general form of the superpotential is not always known explicitly. In view
of this, it is instructive to consider maximally supersymmetric D = 9 massive supergravity
theories. These theories on one hand share some of the complications of the lower-dimensional
supergravity theories and on the other hand are simple enough to study in full detail.

The most general Scherk–Schwarz reduction [12] of D = 10 IIB supergravity has been
considered in [13]1. It leads to SL(2,R)-covariant2D = 9 massive supergravity theories with
mass parameters m1,m2 and m3. By SL(2,R) transformations one can go to different mass
parameters but the quantity m1

2 + m2
2 − m3

2 is always invariant. One therefore has three
different theories depending on whether this quantity is positive,negative or zero corresponding
to the three different conjugacy classes of SL(2,R) [15]. The supersymmetry transformations
of these massive supergravities have been calculated recently [16]. The theory contains three
scalars (φ, χ, ϕ) and we find that the superpotential is given by

WIIB(φ, χ, ϕ) = 1
4 e2ϕ/

√
7 (m2 sinh(φ) +m3 cosh(φ) +m1 eφχ − 1

2 (m2 −m3) eφχ2) . (2)

The scalar potential is given in terms of this superpotential via the expression that follows
from the positive energy requirement [17]:

V = 4

(
γ AB

δW

δ�A

δW

δ�B
− D − 1

D − 2
W 2

)
, (3)

with D = 9 and �A = (φ, χ, ϕ) in this case. Here γ AB is the inverse of the metric γAB
occurring in the kinetic scalar term −γAB∂�A∂�B .

In the IIA case, the situation is more subtle. We find that there are two possibilities. Either
one performs an (ordinary) Kaluza–Klein reduction ofD = 10 massive IIA supergravity. This
leads to a D = 9 massive supergravity theory which is covered by the above superpotential
for the following choice of mass parameters (for more details, see the next section):

m1 = 0, m2 = m3 = mR. (4)

This is the massive T-duality of [11]. The other possibility is to set mR = 0 and perform a
generalized Scherk–Schwarz reduction making use of the SO(1, 1) symmetry of the action
[14]. Since the SO(1, 1) symmetry is only valid for mR = 0, i.e. the massive Romans
deformation breaks the SO(1, 1) symmetry, one cannot perform both reductions at the
same time. The Scherk–Schwarz reduction leads to an SO(1, 1)-covariant D = 9 massive

1 A Scherk–Schwarz reduction leading to two mass parameters has been considered in [14].
2 Since our analysis below is at the classical level we will work with SL(2,R) instead of SL(2,Z). It is only in
section 5 that we will consider the breaking of SL(2,R) to SL(2,Z) at the quantum level.
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supergravity containing a single mass parameterm4. It turns out that in this case the massive
deformations cannot be expressed in terms of a superpotential.

In this paper we study the domain wall solutions allowed by the SL(2,R)- and SO(1, 1)-
covariant D = 9 massive supergravities3. We find that the SO(1, 1)-covariant theory has no
superpotential and does not allow domain wall solutions. The other three SL(2,R)-covariant
theories have superpotentials that do allow half-supersymmetric domain wall solutions.

The uplifting of these domain walls to ten dimensions leads to three classes of half-
supersymmetric type IIB 7-brane solutions. All solutions within each class are related by
SL(2,R) transformations and are characterized by two holomorphic functions. The two
functions are restricted by the consistency requirement of yielding equal monodromy for the
scalars and the Killing spinors. We have explicitly checked that the solutions of our three
classes satisfy this requirement. These solutions give rise to all possible 7-brane charges.
One class contains the well-known D7-brane solution and its SL(2,R)-related partners. We
provide the previously unknown explicit solutions for the other two classes. For each class
we show which solutions survive the quantization of SL(2,R) to SL(2,Z).

We find a special domain wall solution, corresponding to a zero potential but non-zero
superpotential. This half-supersymmetric domain wall uplifts to either a fully supersymmetric
Minkowski spacetime or to half-supersymmetric conical type IIB solutions with deficit angle
3π/2 or 5π/3 and without scalars. The conical solutions have non-trivial monodromy due to
the fermionic sector.

This paper is organized as follows. In section 2, we review the IIA theory in ten and
nine dimensions and give the domain wall, or D8-brane, solution of D = 10 massive IIA
supergravity. In section 3, we discuss the IIB theory in ten and nine dimensions and give the
class of half-supersymmetric 7-brane solutions with two holomorphic functions. In section 4,
we discuss the three classes of D = 9 domain wall solutions and their uplifting to ten
dimensions. The quantization conditions on the charges of the 7-branes and mass parameters
of the domain walls are discussed in section 5. We will summarize and discuss our results in
the conclusions. Our conventions are given in appendix A.

2. IIA supergravity in ten and nine dimensions

2.1. D = 10 massive IIA supergravity

We first consider D = 10 massive IIA supergravity. This theory contains one scalar, the
dilaton φ̂. For our purposes, it is enough to consider only the kinetic terms for the graviton,
dilaton and R–R vector plus the mass term. In the Einstein frame this part of the Lagrangian
reads

LmIIA = 1
2

√
−ĝ[−R̂ − 1

2 (∂φ̂)
2 − 1

4 e3φ̂/2(∂Â)2 − V
]
, (5)

with the potential V given by a superpotential:

V = 8

(
δW

δφ̂

)2

− 9

2
W 2 = 1

2
e5φ̂/2m2

R with W = 1

4
e5φ̂/4mR. (6)

The corresponding supersymmetry transformations of the fermions are

δψ̂µ̂ =
(
Dµ̂ +

1

64
e3φ̂/4(∂Â)ν̂ρ̂ (�̂µ̂ν̂ρ̂ − 14ĝµ̂ν̂ �̂ρ̂ )�11 − 1

8
W�̂µ̂

)
ε̂,

δλ̂ =
(
/∂φ̂ +

3

8
e3φ̂/4(∂Â)µ̂ν̂ �̂µ̂ν̂�11 + 4

δW

δφ̂

)
ε̂,

(7)

3 Domain wall solutions of one of the SL(2,R)-covariant theories have been discussed in [18]. We will compare
our results with those of [18] in section 4.
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Table 1. The SO(1, 1) weights of the IIA supergravity fields.

Field ĝµ̂ν̂ B̂µ̂ν̂ eφ̂ Âµ̂ Ĉµ̂ν̂ρ̂ ψ̂µ̂ λ̂ mR

SO(1, 1) 0 1
2 1 − 3

4 − 1
4 0 0 − 5

4

whereDµ̂ε̂ = (∂µ̂ + ω̂µ̂)ε̂ with the spin connection ω̂µ̂ = 1
4 ω̂µ̂

âb̂�âb̂. All spinors ψ̂ µ̂, λ̂, ε̂ are
real Majorana spinors. The above transformation rules are the Einstein-frame version of [19]
and coincide with those of [7] up to rescalings. Note that all mR-dependent terms in both the
Lagrangian and transformation rules can be expressed in terms of the superpotential (1).

For mR = 0 the Lagrangian is invariant under SO(1, 1) transformations with weights as
given in table 1 (we include all IIA fields and use the Einstein frame metric). For mR �= 0 the
Lagrangian is invariant if one also scales the mass parametermR as indicated in table 1.

The massive IIA supergravity theory has the D8-brane solution [10, 11]

D8: d̂s2 = H 1/8 ds9
2 +H 9/8 dy2, eφ̂ = H−5/4, with H = 1 +mRy, (8)

where we only consider y such that 1 + mRy is strictly positive in order to have a well-behaved
metric. By patching this solution at, e.g., y = 0 with another solution having H = 1 −mRy,
a two-sided domain wall positioned at y = 0 can be obtained. In this paper we will always
restrict to one side. The D8-brane solution has the following non-zero spin connections
(µ̂ = (µ, y)) (for our conventions on underlined indices, see the appendix):

ω̂µ = 1
32H

−25/16�̂µymR, ω̂y = 0. (9)

It satisfies the Killing spinor equations (7) for

(1 − �y)ε̂ = 0 with ε̂ = H 1/32ε̂0, ε̂0 constant. (10)

Thus the D8-brane solution describes a 1/2 BPS state.

2.2. IIA reduction to nine dimensions

We first consider the ordinary Kaluza–Klein reduction of the massive IIA theory, i.e.
mR �= 0, to nine dimensions. We use the following reduction rules for the bosons (with
a = 1

8 , b = − 3
8
√

7
, c = 3

4 , d =
√

7
4 ):

ĝµν = eaφ+bϕgµν, φ̂ = cφ + dϕ,
(11)

ĝxx = e−7(aφ+bϕ), Âx = −2χ.

The reduction rules of the fermions are given by

ψ̂µ = e(aφ+bϕ)/4
(
ψµ + 1

4�µ(aλ + bλ̃)
)
, λ̂ = e−(aφ+bϕ)/4(cλ + dλ̃),

ψ̂x = − 7
4�x e−(aφ+bϕ)/4(aλ + bλ̃), ε̂ = e(aφ+bϕ)/4ε.

(12)

The scalar dependence is put in such a way that we obtain the conventional form of theD = 9
supersymmetry rules corresponding to a standard kinetic term for the D = 9 graviton and
gravitini. This also explains the mixing between ψµ and λ̃ in the first line, which implies that
only δλ̃ contains ∂ϕ terms. Thus the massive IIA theory (5) reduces to the D = 9 massive
Lagrangian

L = 1
2

√−g[−R − 1
2 (∂φ)

2 − 1
2 (∂ϕ)

2 − 1
2 e2φ(∂χ)2 − V

]
, (13)
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with the potential V given by a superpotential:

V = 8

(
δW

δφ

)2

+ 8

(
δW

δϕ

)2

− 32

7
W 2 = 1

2
e2φ+4ϕ/

√
7m2

R with W = 1

4
eφ+2ϕ/

√
7mR.

(14)

The supersymmetry rules (7) reduce to

δψµ =
(
Dµ +

1

4
eφ∂µχ�x�11 − 1

7
W�µ

)
ε,

δλ =
(
/∂φ − eφ/∂χ�x�11 + 4

δW

δφ

)
ε, (15)

δλ̃ =
(
/∂ϕ + 4

δW

δϕ

)
ε.

Note that the massive deformations of both the Lagrangian and supersymmetry rules can
be given in terms of a superpotential, as in ten dimensions. Later, in section 3, we will
see that the above Lagrangian and transformation rules can also be obtained via a particular
Scherk–Schwarz reduction of D = 10 IIB supergravity.

There is another massive 9D theory that can be obtained from reducing IIA supergravity.
To obtain this 9D theory one has to use the SO(1, 1) scale symmetry of the 10D theory [14].
This symmetry implies the consistency of the generalized reduction rules with a specific x-
dependence of the 10D fields, depending on their SO(1, 1) weights. This introduces a new
mass parameter, which we call m4, upon reduction to nine dimensions. Since the SO(1, 1)
symmetry is broken by nonzero mR (unless one scales it), the generalized reduction is only
applicable to massless 10D IIA supergravity. The generalized reduction rules read

ĝµν = eaφ+bϕgµν, φ̂ = cφ + dϕ +m4x,
(16)

ĝxx = e−7(aφ+bϕ), Âx = −2 e−3m4x/4χ,

with a, b, c, d as above and with the fermionic reduction rules as in the previous case,
independent of x. Thus we find the following SO(1, 1)-covariantD = 9 massive Lagrangian4:

L = 1
2

√−g
[
−R − 1

2 (∂φ)
2 − 1

2 (∂ϕ)
2 − 1

2 e2φ(∂χ)2 − 1
2 eφ−3ϕ/

√
7m2

4

]
(17)

with the supersymmetry rules

δψµ = (
Dµ + 1

4 eφ∂µχ�x�11
)
ε,

δλ =
(
/∂φ − eφ/∂χ�x�11 + 3

4m4 eφ/2−3ϕ/2
√

7�x

)
ε, (18)

δλ̃ =
(
/∂ϕ +

√
7

4 m4 eφ/2−3ϕ/2
√

7�x

)
ε.

A peculiar feature of this massive 9D theory is that the potential does not have a corresponding
superpotential.

4 Strictly speaking, the Lagrangian below is only SO(1, 1)-invariant for m4 = 0. To obtain manifest SO(1, 1)
invariance one should replace m4 by a scalar field via a Lagrange multiplier (see the conclusions). The same remark
applies to the SL(2,R)-covariant massive supergravity theory of section 4.
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3. IIB supergravity in ten and nine dimensions

3.1. D = 10 IIB supergravity

We next consider D = 10 IIB supergravity. This theory has two scalars, a dilaton φ̂ and
an axion χ̂ . We truncate to the gravity-scalar part. This part of the Lagrangian reads in the
Einstein frame:

LIIB = 1
2

√
−ĝ[−R̂ − 1

2 (∂φ̂)
2 − 1

2 e2φ̂ (∂χ̂)2
]

(19)= 1
2

√
−ĝ[−R̂ + 1

4 Tr(∂M̂∂M̂−1)
]
.

The two scalars φ̂ and χ̂ parametrize an SL(2,R)/SO(2) coset space as follows:

M̂ = eφ̂
(|τ̂ |2 χ̂

χ̂ 1

)
with τ̂ = χ̂ + ie−φ̂ . (20)

The SL(2,R) duality acts in the following way:

M̂ → �M̂�T , or τ̂ → aτ̂ + b

cτ̂ + d
, with � =

(
a b

c d

)
∈ SL(2,R). (21)

For later use we give the two elements whose products span SL(2,Z):

S =
(

0 1
−1 0

)
, T =

(
1 1
0 1

)
. (22)

The Einstein frame metric is SL(2,R)-invariant. The corresponding truncated supersymmetry
variations of the fermions read

δψ̂µ̂ =
(
Dµ̂ + 1

4 ieφ̂∂µ̂χ̂
)
ε̂, δλ̂ = (/∂φ̂ + ieφ̂/∂χ̂)ε̂∗, (23)

whereDµ̂ε̂ = (∂µ̂ + ω̂µ̂)ε̂ with ω̂µ̂ = 1
4 ω̂µ̂

âb̂�âb̂ the spin connection. All spinors ψ̂ µ̂, λ̂, ε̂ are
complex Weyl spinors. The fermions transform under the SL(2,R) transformation (21) as
[11]5

ψ̂µ̂ →
(
cτ̂ ∗ + d

cτ̂ + d

)1/4

ψ̂µ̂, λ̂ →
(
cτ̂ ∗ + d

cτ̂ + d

)3/4

λ̂, ε̂ →
(
cτ̂ ∗ + d

cτ̂ + d

)1/4

ε̂. (24)

In particular, they are invariant under the shift symmetry χ̂ → χ̂ + b which has a = d = 1
and c = 0 and the scale symmetry τ̂ → a2τ̂ which has d = a−1 and b = c = 0.

3.2. Half-supersymmetric 7-brane solutions

The D = 10 IIB supergravity theory allows for a family of 1/2-supersymmetric 7-brane
solutions containing two functions f and g, which are seperately (anti-)holomorphic. For
notational clarity we will always take both f and g to be holomorphic. In these solutions
the scalar τ̂ is given by the function f [20, 21]. This function determines the monodromy
of the scalars. The second function g appears only in the metric and in the Killing spinor.
The monodromy of the Killing spinor is determined by f and g. The requirement that the
monodromies of the scalars and the Killing spinor coincide puts restrictions on f and g. The
function g can always be transformed by a holomorphic coordinate transformation6 and only
affects global issues such as monodromy and deficit angle. The occurrence of this function
5 Note that the duality transformations of both the scalars and the fermions do not change if we replace � by −�.
Therefore these fields transform under PSL(2,R). From now on we will only consider group elements � that are
continuously connected to the unit element.
6 This and related issues have been discussed independently by Tomás Ortı́n in unpublished notes.
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in the metric was already considered in [13, 20]. The general solution with two holomorphic
functions reads7

d̂s2 = ds2
8 + Im(f ) e−Re(g) dz dz, τ̂ = f, (25)

with the holomorphicity conditions ∂ zf = ∂ zg = 0. The general 7-brane solution (25) has
the spin connection (µ̂ = (µ, z, z)):

ω̂µ = 0, ω̂i = 1
2�ij (Im(f )

−1∂i Im(f )− ∂i Re(g)), i, j = (z, z). (26)

Solution (25) satisfies the Killing spinor equations (23) for

�zε̂ = 0 with ε̂ = eiIm(g)/4ε̂0. (27)

Thus the general 7-brane solution preserves 1/2 of supersymmetry. The special case that
∂iIm(f ) = 0 (thus implying that f is constant) can lead to an enhancement of supersymmetry.
This case will be treated at the end of this section.

The holomorphic function g(z) can be eliminated locally from the general 7-brane solution
(25) via the holomorphic coordinate transformation

z′ =
∫ z0+z

z0

dz̃ e−ξ(z̃)/2 (28)

for ξ(z) = g(z). This also transforms the Killing spinor (27) to a spacetime independent
constant spinor ε̂0. More generally, given a 7-brane solution with functions f (z), g(z) the
holomorphic coordinate transformation (28) gives us an equivalent 7-brane solution with
f ′(z′) = f (z) and g′(z′) = g(z)− ξ(z). Note that although the holomorphic function g can
be transformed locally it may have implications on global issues such as the monodromy and
the deficit angle. We note that the choice g = −2B1 log(z) leads to the 7-brane solutions
of [22].

Under an SL(2,R) transformation a 7-brane solution (25) is transformed into another
member of the same class (25). In particular, under the SL(2,R) transformations (21) the
holomorphic functions transform as

f → af + b

cf + d
, g → g − 2 log(cf + d). (29)

This relates for example the D7-brane solution to its S-dual partner, the Q7-brane [13] via an
S transformation (22):

D7:
f = im log(−iz)
g = 0

S−→ Q7:
f = (−im log(−iz))−1

g = −2 log(−im log(−iz)).
(30)

It is conventional to use polar coordinates for 7-branes: z = r eiθ with 0 < r < ∞ and
0 � θ < 2π . The D7-brane given above is an example of this. The 7-brane is located at
r = 0 and therefore the monodromy is determined by going round in the θ direction [13]. The
deficit angle can be determined by going to the Minkowski spacetime locally [23]. For the
purpose of dimensional reduction we find it more convenient to use cylindrical coordinates:
z = x + iy with x � x + 2πR. The monodromy is then determined by the relation between
the fields at x and x + 2πR. The cylindrical coordinates z are related to the polar coordinate z′

by the holomorphic coordinate transformation (28) where ξ(z) = 2iz/R + 2 log(R). Thus the
cylindrical D7-brane scalars f ′(z′) = im′ log(−iz′) read in polar coordinates f (z) = mz with
m = m′/R [11]. From now on we will use cylindrical coordinates unless explicitly indicated
otherwise.
7 The solutions we consider generically do not have finite energy. To obtain a globally well-defined, finite-energy
solution one should use the so-called j (τ )-function as explained in [20].
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The SL(2,R) monodromy of the scalars and the Killing spinors corresponding to the
general solution (25) can be inferred from the relation between the fields at x and x + 2πR.
From the transformations (21) and (24) we can read off the relations

τ̂ (x + 2πR) = aτ̂(x) + b

cτ̂ (x) + d
, ε̂(x + 2πR) =

(
cτ̂ (x)∗ + d

cτ̂ (x) + d

)1/4

ε̂(x). (31)

It is convenient to parametrize the monodromy matrix � by

� =
(
a b

c d

)
= e2πRC with C = 1

2

(
m1 m2 +m3

m2 −m3 −m1

)
, (32)

where 2πRC is a linear combination of the three generators of SL(2,R). The constants
	m = (m1,m2,m3) can be seen as the different charges of the 7-brane solution in some basis
[13]. These charges are determined by the monodromy of the function f (z). For example,
the cylindrical D7-brane with f (z) = mz leads to the monodromy relations

f (z + 2πR) = f (z) + 2πmR ⇒ � =
(

1 2πmR
0 1

)
⇒ 	m = (0,m,m). (33)

using (21) and (32).
Acting with an SL(2,R) transformation (21) on the scalars amounts to the transformation

of the monodromy matrix

� → ���−1, or C → �C�−1. (34)

Note that this leaves α2 = − det(C) = 1
4

(
m1

2 + m2
2 − m3

2
)

invariant. Thus all SL(2,R)-
related 7-brane solutions have the same value of α2. Thus for the D7-brane and for all other
7-branes related to the D7-brane via an SL(2,R) transformation we find α2 = 0. In section 4
we will see that the uplifting of certainD = 9 domain wall solutions will give us examples of
7-brane solutions with α2 positive and negative as well.

Let us finally comment on the case of constant scalars, i.e. constant f . Solution (25) then
becomes purely gravitational and has a second Killing spinor given by

�zε̂ = 0 with ε̂ = e−iIm(g)/4ε̂0. (35)

The two Killing spinors build up a full N = 2 spinor. However, for the gravitational solution
with constant f to have unbroken supersymmetry one must require equal monodromies for
the two Killing spinors. The gravitational solution can be related locally to a Minkowski
spacetime via the coordinate transformation (28) with ξ(z) = g(z) but global issues may
prevent the identification with the Minkowski spacetime. This depends on the boundary
conditions on g. We will see an explicit example of this in section 6 where we will encounter
a half-supersymmetric conical spacetime solution.

3.3. IIB reduction to nine dimensions

We now derive the relevant part of the SL(2,R)-covariantN = 2,D = 9 massive supergravity
theories by performing a generalized Scherk–Schwarz reduction of the truncated IIB
supergravity Lagrangian (19). For more details, see [13, 16]. To be specific, we make
the following IIB reduction ansätze (µ̂ = (µ, x)):

ĝµν = e
√

7ϕ/14gµν, ĝxx = e−√
7ϕ/2, M̂ = �(x)M�(x)T , (36)
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where we have given the D = 10 dilaton φ̂ and axion χ̂ an x-dependence via the SL(2,R)
element8

�(x) = exC =

cosh(αx) + m1

2α sinh(αx) m2 +m3
2α sinh(αx)

m2 −m3
2α sinh(αx) cosh(αx)− m1

2α sinh(αx)


 (37)

with α and C defined in the previous subsection. Note that this reduction ansatz implies the
identification of the monodromy matrix of 7-brane solutions in 10D with the mass matrix of
domain walls in 9D. Thus the charges of the 7-branes provide the masses of the domain walls
upon reduction [13].

These reduction ansätze lead to the following truncatedN = 2,D = 9 SL(2,R)-covariant
massive supergravity Lagrangian9:

L9D = 1
2

√−g[−R + 1
4 Tr(∂M∂M−1)− 1

2 (∂ϕ)
2 − V (φ, χ, ϕ)

]
. (38)

The potential V (φ, χ, ϕ) is given by

V (φ, χ, ϕ) = 1

2
e4ϕ/

√
7 Tr(C2 + CM−1CTM),

= 8

(
δW

δφ

)2

+ 8 e−2φ

(
δW

δχ

)2

+ 8

(
δW

δϕ

)2

− 32

7
W 2, (39)

with the superpotentialW(φ, χ, ϕ):

W(φ, χ, ϕ) = 1
4 e2ϕ/

√
7
(
m2 sinh(φ) +m3 cosh(φ) +m1 eφχ − 1

2 (m2 −m3) eφχ2
)
. (40)

The supersymmetry transformations corresponding to the D = 9 massive action (38) follow
from reducing the massless D = 10 supersymmetry rules (23) with the reduction ansätze

ψ̂µ = e
√

7ϕ/56

(
cτ ∗ + d

cτ + d

)1/4 (
ψµ +

1

8
√

7
�µλ̃

∗
)
, λ̂ = e−√

7ϕ/56

(
cτ ∗ + d

cτ + d

)3/4

λ,

ψ̂x = −
√

7

8
�x e−√

7ϕ/56

(
cτ ∗ + d

cτ + d

)1/4

λ̃
∗
, ε̂ = e

√
7ϕ/56

(
cτ ∗ + d

cτ + d

)1/4

ε.

(41)

We have given theD = 10 fermions an x-dependence via the same SL(2,R) element (37), i.e.
the values of c and d in (41) are given by

c = m2 −m3

2α
sinh(αx), d = cosh(αx)− m1

2α
sinh(αx). (42)

The same considerations concerning the eϕ-dependence and mixing of ψµ and λ̃
∗

apply as
in the IIA case (12). The x-dependence via c and d is put in to ensure that the 9D theory
is independent of x. With these reduction ansätze we obtain the following D = 9 massive
supersymmetry rules:

δψµ =
(
Dµ +

i

4
eφ∂µχ +

i

7
�µxW

)
ε,

δλ =
(

�∂φ + 4i�x
δW

δφ
+ i eφ

(
�∂χ + 4 i�x e−2φ δW

δχ

))
ε∗, (43)

δλ̃ =
(
/∂ϕ + 4 i�x

δW

δϕ

)
ε∗,

with the superpotential given by (40). These were also derived in [16].
8 The precise rule for assigning the x-dependence is: (i) replace � by �(x) in the D = 10 SL(2,R) transformation
rule and (ii) replace the D = 10 fields occurring in the transformation rule by x-independent D = 9 fields.
9 Strictly speaking the D = 9 Lagrangian is also covariant under an additional SO(1, 1) which acts on the scalars as
ϕ′ = ϕ + c for constant c. Therefore the full symmetry group is GL(2,R) = SL(2,R)⊗ SO(1, 1).
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The inclusion of the three mass parameters breaks the SL(2,R) invariance. Rather, the
duality transformation now maps between theories with different mass parameters:

C → (�T )−1C�T . (44)

It is in this sense that the theory is covariant under SL(2,R) transformations. Note that the
relation is of the same form as (34): in fact the duality relations between 7-branes in 10D and
domain walls in 9D is identical. Again this transformation preservesα2 = 1

4

(
m1

2 +m2
2−m3

2
)
.

Thus one must distinguish three different theories depending on whetherα2 is positive, negative
or zero corresponding to the three different conjugacy classes of SL(2,R) [15]. For each class
it is convenient to make a specific choice of basis for 	m = (m1,m2,m3). For later use we give
the explicit form of the potential in each class:

class I: α2 = 0, 	m = (0,m,m): V (φ, ϕ, χ) = 1
2 e4ϕ/

√
7+2φm2,

class II: α2 > 0, 	m = (m, 0, 0): V (φ, ϕ, χ) = 1
2 e4ϕ/

√
7(1 + e2φχ2)m2,

(45)
class III: α2 < 0, 	m = (0, 0,m): V (φ, ϕ, χ) = 1

2 e4ϕ/
√

7(sinh2(φ)

+ χ2(2 + e2φ(2 + χ2)))m2.

Comparing with the IIA results one finds that for the values 	m = (0,mR,mR) (class I)
the reduction of IIB supergravity equals the reduction of massive IIA supergravity. Also the
superpotentials and hence the supersymmetry transformations are equal for these values of the
mass parameters. This corresponds to the massive T-duality between the D8-brane solution (8)
and the D7-brane solution [11]. The other massive deformation of IIA, coming from the
SO(1, 1) scale symmetry, cannot be reproduced by the IIB reduction. This is obvious from
the lack of a superpotential at the IIA side. Thus one can construct four different massive
deformations of D = 9, N = 2 supergravity from considering both its IIA and IIB origin.

4. Domain wall solutions and their upliftings

We are now ready to investigate domain wall solutions for the three classes of nine-dimensional
massive supergravity theories coming from the IIB side (classes I–III) and the massive
supergravity theory coming from the IIA side (class IV). We do not consider seperately
the theory obtained by reducing 10D massive IIA supergravity since, as mentioned above, this
9D theory coincides with class I if we set m2 = m3 = mR and m1 = 0.

We will start by constructing half-supersymmetric solutions to the Killing spinor equations
in nine dimensions that follow from the supersymmetry rules (43) and (18). Our only input
will be a domain wall ansatz; i.e., we assume a diagonal 8 + 1 split of the metric with all fields
depending only on the single transverse y direction. These solutions automatically define
half-supersymmetric domain wall solutions to the full equations of motion. After that we
will uplift these solutions to ten dimensions. We find that all 10D 7-branes fall in the general
class (25) with two holomorphic functions, as indicated in table 2.10 The D = 9 domain
walls correspond to the potential (39) with mass parameters 	m = (m1,m2,m3). These mass
parameters automatically define the charge of the D = 10 7-brane solutions [13].

We find that there are three independent 7-brane solutions carried by scalars D7, R7
and T7. These cannot be related by SL(2,R) transformations since their charges give rise to
different SL(2,R)-invariant α2. Unlike the well-studied D7-brane solution and its SL(2,R)-
related partners, the R7- and T7-branes are new solutions which in the present context occur on
the same footing as the D7-brane. We also find a G7 domain wall solution which has vanishing

10 For clarity we have taken the constants C1 and C2 which appear later equal to C1 = 1 and C2 = 0.
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Table 2. The table indicates the different solutions for the three classes. It gives the 	m charges
and the functions f (z) and g(z) of the D = 10 7-brane solutions that follow from uplifting of the
D = 9 domain walls.

Class α2 	m f (z) g(z)

I 0 (0,m,m) D7: mz 0
II 1

2m
2 (m, 0, 0) R7: i emz mz

III − 1
2m

2 (0, 0, m) T7: tan( 1
2mz) −2 log(cos( 1

2mz))

G7: i imz

potential but non-vanishing superpotential. It can be uplifted to a half-supersymmetic conical
spacetime without scalars but with Killing spinors, giving rise to a non-trivial monodromy.

In this section we will present the explicit form of the solutions, both in D = 9 and
D = 10, corresponding to the charges given in table 2.

4.1. Class I: α2 = 0

We find the following half-supersymmetric domain wall solution:

DWI:

{
ds2 = (C1my)

1/7 ds2
8 + (C1my)

8/7 dy2,

eφ = (my)−1, eϕ = (C1my)
−2/

√
7, χ = C2,

(46)

where the constant C2 is arbitrary while C1 is strictly positive. The range of y is such that my
is strictly positive in order to have a well-behaved metric. We have used here the freedom of
making a reparametrization in the transverse direction in order to make the solution fall into
the general class of 7-branes (25) after uplifting to ten dimensions. We can also solve for the
Killing spinor giving

ε = (my)1/28ε0, (47)

where ε0 is a constant spinor satisfying11 (1 − i�xy)ε0 = 0.
Uplifting the above domain wall solution to ten dimensions yields (with x being the

reduction direction)

D7:




d̂s2 = ds2
8 + C1my (dx2 + dy2),

eφ̂ = (my)−1,

χ̂ = mx + C2.

(48)

The uplifted Killing spinor is constant and still satisfies (1 − i�xy)ε̂ = 0. The scalars and
spinors satisfy the monodromy requirement (31) with a = 1, b = 2πmR, c = 0 and d = 1.
We find that this solution is a special case of the general 7-brane solution (25) with

f = mz + C2, g = −log(C1), (49)

We can thus identify the two free parametersC1 andC2 in the solution as coming from scalings
(while keeping mz fixed) and shifts of the coordinates, respectively.

4.2. Class II: α2 > 0

In this class we find the following half-supersymmetric domain wall solution:

DWII:




ds2 = (C1 cos (my))1/7 ds82 + (C1 cos(my))8/7 dy2,

eφ = ( eC2 cos (my))−1, χ = −eC2 sin(my),

eϕ = (C1 cos(my))−2/
√

7,

(50)

11 The chirality is determined by our convention that we choose the transverse vielbein to be positive.
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where C2 is arbitrary, C1 is strictly positive and the range of y has to be restricted so that
cos (my) is strictly positive. The Killing spinor corresponding to the present solution is
given by

ε = (C1 cos (my))1/28 eimy/4ε0, (51)

where (1 − i�xy)ε0 = 0.
Note that in this class there is no solution with constant axion. This is consistent with the

fact that for zero axion the potential corresponding to class II reads

V (ϕ) = 1
2m

2 e4ϕ/
√

7, (52)

which, using the terminology of [24, 25], is a � = 0 potential for which the standard domain
wall solution does not work.

The uplifting of this solution to ten dimensions is given by

R7:




d̂s2 = ds2
8 + C1 cos(my)(dx2 + dy2),

eφ̂ = e−mx−C2 (cos(my))−1,

χ̂ = −emx+C2 sin(my),
(53)

where the Killing spinor is now given by

ε̂ = eimy/4ε̂0. (54)

The scalars and spinors satisfy the monodromy requirement (31) with a = emπR, b = 0, c = 0
and d = e−mπR . This solution falls in our general class of 7-branes (25) with

f = i emz+C2 , g = mz + C2 − log(C1). (55)

Thus the constants C1 and C2 have the same origin as in the class I solution: scalings and
shifts of the coordinates.

4.3. Class III: α2 < 0

This class is divided into two subclasses depending on whether the dilaton φ is non-zero (class
IIIa) or zero (class IIIb).

4.3.1. Class IIIa: α2 < 0 and φ �= 0. For non-zero dilaton we find the following half-
supersymmetric domain wall solution:

DWIIIa:




ds2 = (C1 sinh (my))1/7 ds2
8 + (C1 sinh (my))8/7 dy2,

eφ = cos(C2) + cosh (my)

sinh (my)
, χ = sin(C2)

cos(C2) + cosh (my)
,

eϕ = (C1 sinh (my))−2/
√

7,

(56)

where C2 is an arbitrary angle between12 −π/2 and π/2, C1 is a strictly positive constant and
the range of y is restricted by requiring sinh(my) to be strictly positive. The Killing spinor for
this solution is given by

ε = (C1 sinh(my))1/28 eiβε0, β = 1

4
arccot

(
1 + cos(C2) cosh(my)

sin(C2) sinh(my)

)
, (57)

where (1 − i�xy)ε0 = 0.

12 It is of course possible to extend the domain of C2, but with the choice of −π/2 to π/2 no solutions are related via
SL(2,Z) and in this sense C2 covers the space of solutions exactly once.
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Lifting solution (56) to ten dimensions gives

T7:




d̂s2 = ds2
8 + C1 sinh(my)(dx2 + dy2),

eφ̂ = cos(mx + C2) + cosh(my)

sinh(my)
,

χ̂ = sin(mx + C2)

cos(mx + C2) + cosh(my)
.

(58)

The Killing spinor can also be lifted using (41) yielding

ε̂ = eiβ ε̂0, β = 1
2 arctan

(
tan
(

1
2 (mx + C2)

)
tan

(
1
2my

))
. (59)

Note that here the Killing spinor acquires non-trivial x-dependence. We have explicitly checked
that the monodromy requirement (31) is satisfied with a = cos(mπR), b = sin(mπR), c =
−sin(mπR) and d = cos(mπR). We note that also this class falls into the general class of
7-brane solutions (25) with

f = tan
(

1
2 (mz + C2)

)
, g = −2 log

(
cos

(
1
2 (mz + C2)

))− log(C1). (60)

4.3.2. Class IIIb: α2 < 0 and φ = 0. For the case with vanishing dilaton we find the
following half-supersymmetric domain wall solution13:

DWIIIb:

{
ds2 = emy/7 ds2

8 + e8my/7 dy2,

eϕ = e−2my/
√

7, φ = χ = 0,
(61)

where the range of y is unrestricted. The corresponding Killing spinor reads

ε = emy/28ε0, (62)

with (1 − i�xy)ε0 = 0.
We note that for this solution, since χ = 0, the potential and superpotential read

V (φ, ϕ) = 1
2m

2 e4ϕ/
√

7 sinh2(φ), W(φ, ϕ) = 1
4m e2ϕ/

√
7coshφ. (63)

The above potential has occurred recently, see equation (77) of [5], in the context of a
possible inflation along flat directions. An interesting feature of this case is that the flat
direction, φ = 0, corresponds to a vanishing potential, V (ϕ) = 0, despite a non-vanishing
superpotential, W = 1

4m e2ϕ/
√

7. Such a situation has occurred recently in the context of
quintessence in N = 1 supergravity (see section 3 of [6]).

Lifting this solution to ten dimensions leads to the following purely gravitational
solution14:

G7:

{
d̂s2 = ds2

8 + emy(dx2 + dy2),

φ̂ = χ̂ = 0.
(64)

For the lifted Killing spinor we find

ε̂ = eimx/4ε0. (65)

Again, this solution falls in the class of purely gravitational solutions discussed in section 3.1
with the identifications

f = i, g = imz. (66)
13 This solution is related by a coordinate transformation to that of [18], where, contrary to our result, it was claimed
that in order to preserve a fraction of the supersymmetry m should be zero, reducing the solution to the Minkowski
spacetime with arbitrary constant scalars.
14 Other examples of domain walls that lift up to purely gravitational solutions have been given in [26].
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As discussed in section 3.2, the holomorphic function g can be transformed: the coordinate
transformation (28) takes the form r = 2

m
emy/2 and θ = 1

2 (π −mx). The compactness of x
translates into θ ∼ θ +mπR.

We can now impose three different quantization conditions (to be discussed in section 5).
The conditionm = 1/(2R) implies that this solution describes a conical spacetime with deficit
angle 3π/2. In other words, this is a half-supersymmetric Mink8 ×C/Z4 spacetime with non-
trivial monodromy, the bosonic part of which was also mentioned in [20]. The second
quantization condition m̃ = 1/(3

√
3R) can only be applied to an SL(2,R)-related partner

of the G7-brane and gives rise to a deficit angle of 5π/3. This is a half-supersymmetric
Mink8 × C/Z6 spacetime with non-trivial monodromy. The third quantization condition
m = 2/R yields the identification θ ∼ θ + 2π and indeed this is fully supersymmetric Mink10

spacetime. The monodromy is trivial and there is a second Killing spinor ε̂ = e−imx/4ε0 with
opposite chirality. For the previous two quantization conditions this second Killing spinor had
a different monodromy and was therefore not consistent.

4.4. Class IV: m4

We first substitute the domain wall ansatz in the Killing spinor equations, which are in this class
given by (18). We find that we cannot construct a projector, yielding a 1/2 supersymmetric
domain wall, out of the �-matrices appearing in the supersymmetry rules unless the scalars
have a time dependence, i.e. the transverse direction has to be the time direction. In this
respect class IV is fundamentally different from classes I–III. For time-dependent solutions
we cannot assume that a solution to the Killing spinor equations is automatically a solution
to the full equations of motion. A counter-example is provided by considering a scalar �
that does only occur in the transformations of the spin-1/2 fermions as ( �∂�)ε. Clearly the
Killing spinor equations can be solved for a flat metric and � = �(u), γvε = 0 where we
use lightcone coordinates u = x + t, v = x − t . The non-zero scalar leads to a nonzero
uu-component of the energy–momentum tensor and the Einstein equations are not solved.

On the other hand, examples of time-dependent 1/2 supersymmetric BPS solutions are
known. An example is the gravitational wave solution. For the present case, however, we find
that it is not possible to construct a domain wall solution, time-dependent or not, preserving
any fraction of the supersymmetry.

5. Quantization conditions

It is well known that at the quantum level the classical SL(2,R) symmetry of IIB supergravity
is broken to SL(2,Z)15. We would like to consider the effect of this on the solutions discussed
in the previous sections. In particular, it implies that the monodromy matrix must be an
element of the arithmetic subgroup of SL(2,R):

M̂(x + 2πR) = �M̂(x)�T with � = e2πRC ∈ SL(2,Z). (67)

This will imply a charge quantization of the 7-brane solutions in 10D. Since these charges
give rise to the mass parameters upon reduction, at the same time this requirement therefore
implies a mass quantization.

We will apply the following procedure. The mass parameters will be parametrized by
	m = m̃(p, q, r). Then, given the radius of compactification R and the relative coefficients
(p, q, r) of the mass parameters, one should choose the overall coefficient m̃ such that the
monodromy lies in SL(2,Z). This is not always possible; a necessary requirement in all but
15 A similar quantization condition does not apply to the SO(1, 1) symmetry of IIA supergravity.
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Table 3. The table summarizes the different SL(2,Z) monodromies. It is organized according to
the trace of the monodromy and gives the diophantic equation for (p, q, r). Explicit examples are
given with the corresponding monodromies. For cases I and III all diophantic solutions are related
by SL(2,Z) to the examples given. In case II there are other conjugacy classes [27, 28].

Class α2 Tr (�) p2 + q2 − r2 (p, q, r) �

I =0 2 0 (0, n, n) T n =
(1 n

0 1

)
n ∈ Z

II >0 n n2 − 4 (±n, 0,±2) (ST−n)±1 =
( 0 1
−1 n

)±1
3 � n ∈ Z

III <0 0 −4 (0, 0,±2) S±1 =
( 0 1
−1 0

)±1

1 −3 (±1, 0,±2) (T −1S)±1 =
( 1 1
−1 0

)±1

2 −4 1 =
(1 0

0 1

)

one case will be that (p, q, r) are integers and satisfy a diophantic equation. Furthermore, we
must require q and r to be either both even or both odd. Only in class III will it be possible
to quantize for non-integers (p, q, r). Thus we get all SL(2,Z) monodromies that can be
expressed as the products of S and T (and their inverses) as defined in (22). These SL(2,Z)
conjugacy classes have been classified in [27, 28]. The ones corresponding to classes I and III
have also been discussed in [29]. The situation is summarized in table 3. We consider each of
the three classes separately.

• For class I with α2 = 0 the monodromy matrix reads

� =
(

1 +m1πR (m2 +m3)πR

(m2 −m3)πR 1 −m1πR

)
. (68)

We find that � is an element of SL(2,Z) provided we have

class I: m̃ = 1

2πR
and p2 + q2 − r2 = 0. (69)

All the solutions of the diophantic equation are related via SL(2,Z) to the D7-brane
solutions with (p, q, r)= (0, n, n) with n an arbitrary integer [27–29], which is the
explicit choice we have used for class I. This gives rise to the monodromy� = T n. The
quantization on m̃ is the same charge quantization condition as found in [11].

• For class II with α2 > 0 the monodromy matrix reads

� =
(

cosh(α2πR) + m1
2α sinh(α2πR) 1

2α (m2 +m3) sinh(α2πR)
1

2α (m2 −m3) sinh(α2πR) cosh(α2πR)− m1
2α sinh(α2πR)

)
. (70)

We find that � is an element of SL(2,Z) provided we have

class II: m̃ = arccosh(n/2)

πR
√
n2 − 4

and p2 + q2 − r2 = n2 − 4, (71)

for some integer n � 3. This has solutions (p, q, r) = (±n, 0,±2) with monodromy
� = (ST −n)±1 but not all other solutions are related by SL(2,Z) [27, 28]. Note that
the explicit choice we have made for class II with (p, q, r) = (p, 0, 0) does not solve
the diophantic equation. Thus the R7-brane is not consistent at the quantum level but
particular SL(2,R) partners are.
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• For class III with α2 < 0 the monodromy matrix reads (using α = im)

� =
(

cos(m2πR) + m1
2m sin(m2πR) 1

2m(m2 +m3) sin(m2πR)
1

2m(m2 −m3) sin(m2πR) cos(m2πR)− m1
2m sin(m2πR)

)
. (72)

Here we find that there are three distinct possibilities for� to be an element of SL(2,Z).
For the first possibility we must have

class III: m̃ = 1

4R
and p2 + q2 − r2 = −4. (73)

This is the explicit choice we have made for the T7- and G7-brane solution with
(p, q, r) = (0, 0,±2) and� = S±1. In fact all other solutions to the diophantic equation
are related by SL(2,Z) [27–29]. For the second possibility one must require

class III: m̃ = 1

3
√

3R
and p2 + q2 − r2 = −3. (74)

We have not explicitly considered this case but one solution is (p, q, r) = (±1, 0,±2)
with monodromy � = (T −1S)±1. Again all other solutions are related by SL(2,Z)
[27–29]. If neither of these two possibilities applies, one can always choose

class III: m̃ = 1

R
and p2 + q2 − r2 = −4, (p, q, r) ∈ R, (75)

where (p, q, r) are not required to be integer-valued. This gives rise to trivial monodromy
� = 1.

6. Conclusions

One of the aims of this paper is to study domain wall solutions in a nine-dimensional setting.
The advantage of picking out nine dimensions is that it is simple enough to investigate in full
detail but also shares some of the complications of the lower-dimensional supergravities. In
section 4 we constructed several half-supersymmetric domain wall solutions and we gave their
uplifting to ten dimensions. This uplifting introduces a non-trivial dependence of theD = 10
solution on the compact coordinate.

In the IIB case we thus found three classes of 7-brane solutions in ten dimensions, which
are all characterized by two holomorpic functions (25). One class contains the D7-brane and
its SL(2,R)-related partners but the R7-brane and T7-brane solutions we found for the other
two classes are not related to the D7-brane by SL(2,R) duality. It would be interesting to see
their interpretation in terms of the type IIB superstring theory. Together the solutions provide
a set of half-supersymmetric 7-branes with arbitrary charges that are consistent in the sense
that the monodromies of the scalars and Killing spinors coincide. Our method of uplifting
domain walls also leads to half-supersymmetric conical G7-brane solutions with deficit angle
3π/2 or 5π/3, not carried by any scalars. The non-trivial monodromies sit in the fermionic
sector. The G7-brane solution can also be uplifted to the Minkowski spacetime, in which case
we have supersymmetry enhancement upon uplifting. It would be interesting to further study
the properties of the D = 9 domain wall solutions and their D = 10 7-brane origins and to
see whether some of the features we find also occur for D < 9 domain walls.

The three distinct massive supergravities corresponding to the IIB case are SL(2,R)-
covariant and characterized by the SL(2,R)-invariant α2. One of them, with α2 = 0, has a
singular mass matrix and therefore, following a similar statement made in [30], does not seem
to correspond to a gauged supergravity theory. The class with α2 < 0 has been shown to be
an SO(2)-gauged supergravity [18]. We conjecture that the remaining class with α2 > 0 is an
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SO(1, 1)-gauged supergravity. Interestingly, in a recent paper it is stated that both the α2 = 0
and the α2 > 0 cases correspond to SO(1, 1)-gauged supergravities [29]. The distinction
between different theories does not occur in the compact case, i.e. when the symmetry group
would be SU(2) rather than SL(2,R). Such a situation occurs, for instance, when gauging the
U(1) ⊂ SU(2) R-symmetry group inN = 2, D = 5 supergravity coupled to vector multiplets.
Here all choices for the mass parameters are physically equivalent leading to a single-gauged
supergravity theory (see, e.g., [31]).

In the IIA case we performed two reductions, one leading to the m4 deformation and
one leading to class I. In the case of the m4 deformation we find that there is no domain
wall solution preserving any supersymmetry. The reason that we could not perform both IIA
reductions at the same time was that the SO(1, 1) symmetry is only valid for mR = 0. One
might change this situation by replacing mR by a scalar field M(x) and a 9-form Lagrange
multiplier A(9) [19] via

L(mR) → L(M(x)) +M(x)∂A(9). (76)

Unfortunately, the reduction of the second term leads to an additional term in nine dimensions
containing a 9-form Lagrange multiplier. The equation of motion of this Lagrange multiplier
leads to the constraintM(x)m4 = 0 which brings us back to the previous situation. A similar
thing happens in 11 dimensions if one tries to use the same trick to convert the scale symmetry
of the equations of motion to a symmetry of the action by replacing the gravitational constant
by a scalar field. The elimination of the Lagrange multiplier brings us back to the analysis
of [32].

Let us finally comment on the relation between different massive deformations of
N = 2 D = 9 supergravity and T-duality. The massless theory can be obtained from the
reduction of both IIA and IIB massless supergravity [33]. This follows from the T-duality
between the underlying IIA and IIB string theories. However, the Scherk–Schwarz reductions
of IIA and IIB supergravity to nine dimensions give rise to four different massive deformations
of the unique massless theory. Only one of these deformations (class I) can be reproduced by
both IIA and IIB supergravity. It is not clear what the IIA or M-theory origin is of the other
two deformations (classes II and III)16. Similarly, it is not clear what the IIB origin is of the
class IV deformation.

To understand massive T-duality it might be necessary to explicitly include massive
winding multiplets17 (while in supergravity reduction one only keeps the states without
winding). Massive T-duality suggests the existence of a maximally supersymmetric massive
supergravity theory containing all four mass parameters (m1,m2,m3,m4). The existence
of such a theory is not implied by the massive supergravities with seperate deformations
(m1,m2,m3) and m4. This massive supergravity has already been suggested for different
reasons in [13] and it would be interesting to see whether it can be constructed [37].
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Appendix. Conventions

We mostly use plus signature (− + · · · +). Hatted fields and indices are ten dimensional while
unhatted ones are nine dimensional. Greek indices µ̂, ν̂, ρ̂ . . . denote world coordinates and
Latin indices â, b̂, ĉ . . . represent tangent spacetime. They are related by the vielbeins êµ̂â

and inverse vielbeins êâ µ̂. Explicit indices x, y are underlined when flat and not underlined
when curved. We antisymmetrize with weight one, for instance, (∂Â)µ̂ν̂ = 1

2 (∂µ̂Âν̂ − ∂ν̂Âµ̂).
Omitted indices are contracted without numerical factors, e.g., (∂Â)2 = (∂Â)µ̂ν̂(∂Â)

µ̂ν̂ . The
covariant derivative on fermions is given by Dµ̂ = ∂µ̂ + ω̂µ̂ with the spin connection
ω̂µ̂ = 1

4 ω̂µ̂
âb̂�âb̂.

We have chosen all �-matrices real. Curved indices of hatted �-matrices �̂µ refer to
the ten-dimensional metric while curved indices of unhatted �-matrices �µ refer to the nine-
dimensional metric. Furthermore

�11 = �0···9, �11
2 = 1. (77)

In the IIA theory we have real Majorana spinors of indefinite chirality. In the IIB theory we
have complex spinors of definite chirality. To switch between Majorana and Weyl fermions
in nine dimensions one must use

1
2 (1 + �11)ψ

M
µ = Re

(
ψWµ

)
, 1

2 (1 − �11)ψ
M
µ = Im

(
�xψ

W
µ

)
,

1
2 (1 + �11)λ

M = Im(�xλW ), 1
2 (1 − �11)λ

M = Re(λW ),
1
2 (1 + �11)λ̃

M = Im(�xλ̃W ), 1
2 (1 − �11)λ̃

M = Re(λ̃W ),
1
2 (1 + �11)ε

M = Re(εW ), 1
2 (1 − �11)ε

M = Im(�xε
W),

(78)

for positive
(
ψWµ , ε

W
)

and negative (λW , λ̃
W
) chirality Weyl fermions.
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