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1 Introduction

Since the advent of the gauge/gravity correspondence, 5-dimensional supergravity played
a prominent role in understanding strong coupling effects in 4-dimensional gauge theo-
ries. Although many interesting physical effects could be captured by studying purely
5-dimensional models, a consistent analysis generically requires the knowledge of the
underlying 10-dimensional theory, of its Kaluza-Klein (KK) spectrum and of its non-linear
interactions. Consistent truncations provide an efficient approach to take into account only
a finite number of states in the effective theory and hence to consider purely 5-dimensional
models, ensuring at the same time the lift of all their solutions to the higher-dimensional
theory. It is therefore extremely interesting to provide classes of such models, possibly
detailing the full non-linear reduction ansatz.

A key example in this context is N = 8 SO(6) gauged supergravity, which can be
obtained by restriction to the massless modes of type IIB supergravity compactified on the
5-sphere S5. This model is believed to be a consistent truncation, although a complete proof
of consistency of the reduction has yet to be given (see for instance [1] for a discussion on the
consistency of the full N = 8 and [2, 3] for consistent embeddings of further truncations of
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the massless spectrum). However, many interesting deformations and solutions of the dual
N = 4 super-Yang-Mills theory have been addressed in this 5-dimensional context, and it is
obviously desirable to have similar results for more general and less supersymmetric models.

Type IIB anti-de Sitter (AdS) vacua preserving 1/4 of supersymmetry can be con-
structed by employing Sasaki-Einstein (SE) manifolds as internal spaces. There are nowa-
days infinite classes of such manifolds with explicitly known metrics (the Y p,q and Lp,q,r

spaces, in addition to the T 1,1 coset space and the sphere S5), and all of them lead to
different dual N = 1 super-Yang-Mills theories coupled to matter. Unfortunately, for
these compactifications one cannot consistently perform massless truncations retaining the
non-abelian gauge symmetries [4]. This has led to consistent truncations where only the
supergravity multiplet is retained out of the massless modes [5, 6] and therefore most of the
interesting physics related to the gauge and flavour symmetry of the dual theories is lost.

This limited setup can be overcome by including massive modes [7, 8], possibly singlets
of some symmetry of the internal manifold. Including massive modes is indeed crucial for
obtaining new interesting physics, like the construction of string theory backgrounds with
non-relativistic conformal symmetry [8] and emergent relativistic conformal symmetry in
superfluids or superconducting states of strongly coupled gauge theories [9, 10].

In this paper we broaden these results by providing a consistent N = 4 (half-maximal)
Kaluza-Klein truncation of type IIB supergravity on general 5-dimensional squashed SE
manifolds. Besides including the modes discussed in [5, 7–9], our truncation incorporates
in a supersymmetric way all the supergravity states dual to the universal gauge sector of
the associated conformal theories. Whatever the matter content and flavour symmetry of
the dual field theory, one can always consider operators constructed by polynomials of the
super-Yang-Mills multiplet. Due to the fermionic nature of the corresponding superfield
Wα, only few such states can be constructed and, being Wα a singlet of the flavour group,
the truncation to these states allows for a consistent reduction to a model with a finite
number of states.

From a technical point of view we work along the line of similar reductions performed
on 7-dimensional SE manifolds [11, 12]. We exploit the structure group of SE manifolds
by expanding the 10-dimensional fields in terms of the differential forms defining the
structure itself (hence singlets of the structure group). This basis of forms is a closed
system under exterior differentiation and Hodge duality, and contains all the necessary
information to describe the metric sector. This is all that we will need in order to prove
that the resulting effective action is a consistent truncation of type IIB supergravity. Our
truncation is actually a reduction on squashed SE manifolds, because not only we keep
the overall volume mode, but we also allow for a squashing mode between the U(1) fibre
and the Kähler-Einstein base of SE manifolds.

Although the above discussion may lead to the expectation that our truncation should
provide minimal supersymmetric theories in 5 dimensions (as also argued in [11]), the
reduction process actually retains another gravitino, which is part of a massive multiplet
at the supersymmetric SE vacuum. We will in fact show that our 5-dimensional model fits
nicely into the general description of N = 4 gauged supergravity theories [13, 14], with the
gauging process yielding partial or complete spontaneous supersymmetry breaking. From
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the N = 4 point of view, our model includes 2 vector multiplets in addition to the gravity
multiplet. It encompasses previous truncations to the breathing mode, to pure N = 2
supergravity and to the non-supersymmetric massive truncation of [8]. Still, this model
cannot be obtained from any truncation of the N = 8 theory.

The 10-dimensional non-trivial geometry and the 5-form flux induce a gauging on the
effective 5-dimensional theory that can be described by a gauge group G being the product
of the simplest Heisenberg group with a U(1) R-symmetry: G = Heis3×U(1)R. All the 8
vector fields of the ungauged theory are in a non-trivial representation of the gauge group
and this implies that 4 of them need to be dualized to tensor fields. This is a remarkable
realization of a possibility first analyzed in the context of 5-dimensional models in [15],
i.e. tensor fields coming from the dualization of vector fields in a non-trivial representation
of a non-abelian gauge group. Gauging an extended supergravity requires a non-trivial
scalar potential, which is also present in our reduction. The analysis of this potential
shows that our truncations always admit two distinct AdS critical points, a supersymmetric
(round) one and a non-supersymmetric (squashed) one. We computed the masses of the
scalar fields, as well as those of the vector fields, at these vacua and found that there are
no unstable modes surviving our truncation. We must point out, however, that the non-
supersymmetric critical point can be related to the Pope-Warner deformation [16, 17] of
SE manifolds. Hence tachyonic modes may arise along directions that we have truncated
out, as it is known to be the case when the internal SE manifold is S5 [34].

As follows from this presentation, our action offers a number of possible applications
in the context of the AdS/CFT correspondence, incorporating previous results [8–10] and
enlarging the spectrum of possible 5-dimensional models and solutions that can be exactly
embedded in type IIB supergravity.

The paper is organized in four parts. We describe the SE structure and the necessary
techniques to perform the reduction in section 2. We provide the main result, namely
the 5-dimensional action and scalar potential, in section 3. Then in section 4 we match
this reduced theory with N = 4 gauged supergravity, discussing in detail the structure of
the bosonic sector. We conclude in section 5 with a discussion of our results and on the
possible applications in the context of the gauge/gravity correspondence. In two appendices
we provide our conventions and give more details on the reduction of the type IIB equations
of motion, completing in this way the proof of consistency of our truncation ansatz.

2 Reducing IIB supergravity on squashed SE5

Our starting point is type IIB supergravity

SIIB=
1

2κ2
10

∫ [
R ∗ 1− 1

2
dφ ∧ ∗dφ− 1

2
e−φH ∧ ∗H − 1

2
e2φF1 ∧ ∗F1 −

1
2
eφF3 ∧ ∗F3

−1
4
F5 ∧ ∗F5 −

1
4

(B ∧ dC2 − C2 ∧ dB) ∧ (dC4 + F flux
5 )

]
, (2.1)
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(we will discuss later how to take into account the self-duality of the 5-form) and its 1/4
supersymmetric AdS5 × SE5 solutions

ds2 = ds2(AdS5) + ds2(SE5),

F flux
5 = (1 + ∗)2k vol(SE5),

(2.2)

where k specifies the units of flux of the 5-form. However, we do not want to restrict
ourselves to the small fluctuations around these vacua, but perform an off-shell reduction
to 5 dimensions that also includes all possible deformations preserving the SE structure of
the internal space. To this end, we will not fix the metric of the residual 5-dimensional
space-time and simply propose a reduction ansatz for the 10-dimensional fields in terms
of the available structure forms on the compact SE manifolds. These follow from the very
definition of SE spaces and their SU(2) structure group.

A regular (respectively, quasi-regular) SE manifold Y can be seen as a U(1) fibration
over a Kähler-Einstein base manifold (respectively, orbifold) BKE :

ds2(Y ) = ds2(BKE) + η ⊗ η , (2.3)

where η denotes the globally defined real 1-form dual to the U(1) Reeb Killing vector,
which is related to the R-symmetry of the associated dual field theories. This space is
also characterized by 3 globally defined real 2-forms J i, which, together with η, satisfy the
algebraic constraints

J i ∧ J j = 2 δij vol(BKE) , η y J i = 0 (2.4)

(vol(BKE) denotes the volume form on BKE), as well as the differential conditions

dη = 2J , dΩ = 3i η ∧ Ω , (2.5)

where, for later convenience, we defined J ≡ J1 and Ω ≡ J2 +i J3. We also have the Hodge
duality relations

∗ η = vol(BKE) , ∗J i = J i ∧ η . (2.6)

Our ansatz for the dimensional reduction is then constructed by expressing the metric and
the various tensor fields of type IIB supergravity in terms of these globally defined forms.

2.1 The reduction procedure

For the reduction of the 10-dimensional metric in the Einstein frame, we follow [8]:

ds2 = e−
2
3

(4U+V )ds2(M) + e2Uds2(BKE) + e2V (η +A)⊗ (η +A) , (2.7)

where U(x) and V (x) are scalars and A(x) is a 1-form on M , the external 5-dimensional
spacetime with Lorentzian signature (−++ ++). Furthermore, we call xµ the coordinates
on M , and ym the coordinates on Y . More details about our notations and conventions
are reported in appendix A. Together the scalars U and V parameterize the “breathing
mode” and the “squashing mode” of the compact manifold: the former is given by 4U +V
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and controls the overall volume, while the latter is U − V and modifies the relative size of
the U(1) fibre with respect to the size of the Kähler-Einstein base.

While for the dilaton φ and the Ramond-Ramond axion C0 we assume trivial depen-
dence on the internal coordinates, for the reduction of the other tensor fields of type IIB
supergravity we will perform an expansion in the structure forms η, J and Ω. Since we
would like the reduction ansatz to be gauge covariant and to highlight the symmetries of
the reduced theory, non-trivial transformation properties have to be assigned to the fields
arising from the reduction. Infinitesimal gauge transformations of the 5-dimensional ac-
tion fall into two categories: Kalb-Ramond gauge transformations, which follow from the
reduction of the 10-dimensional tensor field gauge transformations, like B → B + dΛ, and
KK gauge transformations. The latter are the residual gauge transformations induced by
reparameterization of the SE fibre coordinate entering into the definition of η. The result
of this reparameterization on the various 10-dimensional fields can be computed by evalu-
ating the Lie derivative along the isometry vector, which we can identify by its parameter
ω(x): Lω = ıωd+ dıω. When applied to the vielbein associated to the U(1) fibre of the SE
manifold, namely E9(x, y) = eV (x)(η +A), we obtain that

δωE
9 = eV (x)dω(x), (2.8)

which has to be interpreted as an action on the 5-dimensional fields V (x) and A(x), so as
to have a gauge covariant reduction. We therefore deduce that A(x) is a gauge field for
the KK transformations

δωA = dω, δωV = 0, (2.9)

and for this reason 10-dimensional forms have to be expanded in terms of η + A rather
than just η .

It is important to point out that while J is invariant under these transformations, Ω
is not:

LωΩ = ıωdΩ + dıωΩ = ıω (3i η ∧ Ω) = 3i ωΩ. (2.10)

Hence the fields associated to Ω in the expansion will also inherit non-trivial transformation
properties.

As an example we provide the covariant expansion of the 2-form B:

B = b2 + b1 ∧ (η +A) + bJJ + Re(bΩ Ω) , (2.11)

where bp ≡ bp(x) are p-forms on M (throughout the paper we omit the 0 subscript for the
scalar fields). The gauge transformations of the 5-dimensional fields are

δb2 = dλ1 + λ0 dA, δbΩ = 3iωbΩ ,
δb1 = dλ0, δbJ = 2λ0,

(2.12)

where the λp ≡ λp(x) parameters come from the expansion of the 10-dimensional Kalb-
Ramond gauge 1-form

Λ = λ1 + λ0(η +A) . (2.13)
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We can also unveil more interesting features of the effective theory by analyzing the
expansion of the curvature H = dB

H = h3 + h2 ∧ (η +A) + hJ1 ∧ J + Re
[
hΩ

1 ∧ Ω + hΩ
0 Ω ∧ (η +A)

]
, (2.14)

which, recalling (2.5), leads to the identifications

h3 = db2 − b1 ∧ dA , hΩ
1 = dbΩ − 3iA bΩ ≡ DbΩ,

h2 = db1 , hΩ
0 = 3ibΩ,

hJ1 = dbJ − 2b1 ≡ DbJ .

(2.15)

While the 5-dimensional curvatures h3, h2 and hJ1 are gauge invariant, hΩ
0 and hΩ

1 transform
as a charged scalar and its covariant derivative, respectively. The non-trivial differential
relations (2.5) among the SE forms further give that hJ1 describes a Stückelberg coupling
between the axion bJ and the one-form b1, the former being a pure gauge under λ0. This
structure is common to flux compactifications, where the gauge symmetries induce on the
curvatures of the effective theory the structure of a Free Differential Algebra [18, 19]. In the
case at hand the fluxes are the flux of the type IIB Ramond-Ramond 5-form, proportional
to k, and the non-trivial curvature of the internal manifold, captured by (2.5).

The expansion of the RR 3-form F3 = dC2 −C0 dB is easy to derive along the lines of
the presentation above. Using (2.14) as a reference and naming cp and gp the coefficients
in the expansion of C2 and F3 respectively, we get that

g3 = dc2 − c1 ∧ dA− C0(db2 − b1 ∧ dA),
g2 = dc1 − C0db1, gΩ

1 = DcΩ − C0Db
Ω,

gJ1 = DcJ − C0Db
J , gΩ

0 = 3i(cΩ − C0b
Ω) ,

(2.16)

where DcJ and DcΩ read respectively as DbJ and DbΩ, with the replacement b→ c.

2.2 The self-dual 5-form

The expansion of the 5-form

F5 = F flux
5 + dC4 +

1
2

(B ∧ dC2 − C2 ∧ dB) (2.17)

follows the same logic adopted for the other forms

F5 = f5 + f4 ∧ (η +A) + fJ3 ∧ J + fJ2 ∧ J ∧ (η +A) + Re
[
fΩ

3 ∧ Ω + fΩ
2 ∧ Ω ∧ (η +A)

]
+ f1 ∧ J ∧ J + f0 J ∧ J ∧ (η +A) , (2.18)

and the identification of the various 5-dimensional field-strengths fp(x) is

f0 = 3 Im
(
bΩ cΩ

)
+ k ,

f1 = Da+
1
2
[
bJDcJ + Re

(
bΩDcΩ

)
− b↔ c

]
,

fJ2 = daJ1 +
1
2
[
bJdc1 − b1 ∧DcJ − b↔ c

]
,
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fΩ
2 = DaΩ

1 + 3iaΩ
2 +

1
2
[
bΩdc1 − b1 ∧DcΩ + 3icΩb2 − b↔ c

]
,

fJ3 = da2 − 2a3 − aJ1 ∧ dA+
1
2
[
b2 ∧DcJ + bJ(dc2 − c1 ∧ dA)− b↔ c

]
, (2.19)

fΩ
3 = DaΩ

2 − aΩ
1 ∧ dA+

1
2
[
b2 ∧DcΩ + bΩ(dc2 − c1 ∧ dA)− b↔ c

]
,

f4 = da3 +
1
2

[b2 ∧ dc1 − b1 ∧ (dc2 − c1 ∧ dA)− b↔ c] ,

f5 = fflux
5 + da4 − a3 ∧ dA+

1
2

[b2 ∧ (dc2 − c1 ∧ dA)− b↔ c] ,

where the terms containing the 5-dimensional p-forms ap(x) come from the expansion of C4.
We also introduced 0-form and 5-form fluxes parameterized by k and fflux

5 , and we defined

Da ≡ da− 2aJ1 − kA and DaΩ
1 ≡ daΩ

1 − 3iA ∧ aΩ
1 . (2.20)

The notation b ↔ c means repetition of the preceding terms within square brackets with
b and c exchanged. However, the above expansion is obviously redundant because the
5-form also has to satisfy the first order, self-duality relation

∗ F5 = F5 , (2.21)

imposing constraints on the expansion of C4, which have not been taken into account yet.
By reducing this equation (the reduction of the Hodge duality operation is reported in the
appendix, cf. eq. (A.4)), we see that the self-duality constraint amounts to the following
relations between the forms on M defined in (2.19):

f5 = −2 e−
32
3
U− 8

3
V ∗ f0, f4 = 2 e−8U ∗ f1,

fJ3 = −e−
4
3
U− 4

3
V ∗ fJ2 , fΩ

3 = −e−
4
3
U− 4

3
V ∗ fΩ

2 .
(2.22)

As a result, some of the 5-dimensional ap fields introduced in the expansion above should
be integrated out and replaced by the dual expressions following from (2.22). We therefore
need to implement this set of constraints while reducing the terms of the action (2.1)
involving the 5-form. Being F5 self-dual, its kinetic term vanishes on shell,1 and for this
reason we cannot impose the self-duality constraint in the IIB action as it is. We can,
however, proceed along the following lines.

Consider the simplified case of F5 = dC4, and focus on the duality between the 1- and
4-form field strengths in 5 dimensions, f1 and f4 respectively, also setting U = V = 0 and
dη = 0. Using our expansion ansatz, we can integrate over the internal manifold. Naming
VY = 1

2

∫
Y J ∧ J ∧ η the volume of Y , the 5-dimensional action reads

S = − VY
8κ2

10

∫
M

[ f4 ∧ ∗f4 + 4f1 ∧ ∗f1 ] (2.23)

and the duality relation between the two is f4 = 2∗f1. We obtain the correct action for the
propagating degrees of freedom if we choose to solve the Bianchi identity for f1 in terms of

1The problem of obtaining consistent equations of motion from a Lorentz invariant type IIB action has

been solved in [20, 21] by means of a single scalar auxiliary field. However, for the purpose of completing

the task of reducing type IIB on a SE manifold, the action in [20, 21] gives no advantage over (2.1).
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a 0-form potential a (in this simplified case we have df1 = 0⇒ f1 = da), while we treat f4

as an auxiliary field to be integrated out. The self-duality constraint can then be imposed
by adding a Lagrange multiplier of the form

S′ = − VY
8κ2

10

∫
M

4 f4 ∧ da (2.24)

and varying S + S′ with respect to f4. The equations of motion following from S + S′ by
varying it with respect to f4 and a are

∗ f4 + 2 da = 0 and d [2 ∗ da+ f4] = 0, (2.25)

so that together they impose the duality constraint and reproduce the f4 Bianchi identity
df4 = 0 as well as the a equation of motion d ∗ da = 0. Although substitution of the
f4 equation of motion into the action (2.23) makes the latter vanish (as it should), the
Lagrange multiplier (2.24) now becomes the action for the propagating scalar a with a
weight which is twice the original one:

S + S′ = − VY
8κ2

10

∫
M

8 da ∧ ∗da . (2.26)

In order to apply this procedure to the full IIB action we need to take into account also
the Chern-Simons couplings in the definition of the F5 curvature. We then need to reduce

SF5 =
1

2κ2
10

∫ [
−1

4
F5 ∧ ∗F5 −

1
4

(B ∧ dC2 − C2 ∧ dB) ∧ (dC4 + F flux
5 )

]
=

1
2κ2

10

∫ [
−1

4
F5 ∧ ∗F5 −

1
4
L5 ∧ F5

]
, (2.27)

where we introduced L5 ≡ B∧dC2−C2∧dB, which we expand as F5 in (2.18), with fp → lp.
Plugging the reduction ansatz in SF5 and integrating over the compact manifold we find

SF5=−
VY

8κ2
10

∫
M

[
e

32
3
U+ 8

3
V f5 ∧ ∗f5 + e8Uf4 ∧ ∗f4 + 2e

4
3
U+ 4

3
V fJ3 ∧ ∗fJ3

+ 2e
4
3
U+ 4

3
V fΩ

3 ∧ ∗fΩ
3 + 2e−

4
3
U− 4

3
V fJ2 ∧ ∗fJ2 + 2e−

4
3
U− 4

3
V fΩ

2 ∧ ∗fΩ
2

+ 4e−8Uf1 ∧ ∗f1 + 4e−
32
3
U− 8

3
V f2

0 ∗ 1 + 2l5f0 − 2l4 ∧ f1 + 2lJ3 ∧ fJ2
+2Re(lΩ3 ∧ fΩ

2 )− 2lJ2 ∧ fJ3 − 2Re(lΩ2 ∧ fΩ
3 ) + 2l1 ∧ f4 − 2l0f5

]
.

(2.28)

Also in this case we would like the self-duality constraint to be imposed so that the dual de-
grees of freedom a4, a3 and a2 can be integrated out. This can be achieved by the procedure
outlined above, taking into account that there are Chern-Simons terms to be removed from
the curvature definitions. A further special treatment has to be reserved to the duality re-
lation between aΩ

2 and aΩ
1 , given by the last equation in (2.22). Recalling (2.19), already at

first glance it is obvious that this equation cannot be really used to integrate out aΩ
2 , because

the latter appears both as a naked potential in fΩ
2 as well as a curvature in fΩ

3 . On the other
hand, we recall that in 5 dimensions 2-forms can satisfy a “self-duality” condition corre-
sponding to a first-order equation of motion (see for instance [22–24]). A complex self-dual
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2-form has the same degrees of freedom as a real 2-form satisfying a second order equation
of motion with a mass term. We should therefore interpret the last of (2.22), rewritten as

DaΩ
2 − aΩ

1 ∧ dA + e−
4
3
U− 4

3
V ∗ (DaΩ

1 + 3iaΩ
2 ) + b and c terms = 0 , (2.29)

as the first order equation of motion for aΩ
2 , and take this into account when reconstruct-

ing the action. Also, aΩ
1 are now pure gauge degrees of freedom for aΩ

2 and should be
interpreted as the vector fields eaten up by the tensors in the dualization process [23, 24].

Motivated by the above arguments, we add the following terms to the original
action (2.28):

S′=
VY

2κ2
10

∫
M

{(
f5 −

1
2
l5

)
k −

(
f4 −

1
2
l4

)
∧Da+

(
fJ3 + aJ1 ∧ dA−

1
2
lJ3

)
∧ daJ1

+ Re
[
(fΩ

3 −DaΩ
2 + dA ∧ aΩ

1 −
1
2
lΩ3
)
∧
(
DaΩ

1 + 3iaΩ
2

)]}
. (2.30)

This set of Lagrange multipliers implements the duality constraints (2.22) upon variation
of SF5 + S′ with respect to f5, f4, f

J
3 , f

Ω
3 , the latter being regarded as auxiliary fields. By

integrating out the auxiliary fields, we eventually obtain the action given in the next section.

3 The 5-dimensional action

We are now in the position to write down the action of the effective 5-dimensional model.
The reduction of the 10-dimensional Einstein-Hilbert term, as well as the reduction of
the 10-dimensional Chern-Simons couplings and of all the kinetic terms, but for F5, are
straightforward once one uses the expansions of the various forms given in the previous
sections, the reduction of the Ricci scalar following from (B.7)–(B.11), and the Hodge
duality relations (A.4). On the other hand, due to the self-duality constraint, for the F5

kinetic term we need to proceed as outlined above.
After completion of the 5-dimensional action, we have verified that it correctly re-

produces the 5-dimensional equations of motion following from a direct reduction of the
10-dimensional equations of motion. This proves that our truncation is consistent. We
discuss the reduction of the 10-dimensional equations and provide the equations of motion
for all the 5-dimensional fields in appendix B.

In the following we display the action, organized in three pieces, collecting together
the kinetic terms, the 5-dimensional topological couplings and the scalar potential:

S = Skin + Stop + Spot . (3.1)

All the definitions of the various curvatures present in this action can be read from the
discussion of the reduction ansatz presented in the previous section.

The kinetic terms in 5 dimensions are

Skin =
1

2κ2
5

∫
M

[
R ∗1− 28

3
dU ∧ ∗dU− 8

3
dU ∧ ∗dV − 4

3
dV ∧ ∗dV − 1

2
e

8
3
U+ 8

3
V dA ∧ ∗dA

−1
2
dφ ∧ ∗dφ− 1

2
e2φdC0 ∧ ∗dC0−e−

4
3
U− 4

3
V fΩ

2 ∧ ∗fΩ
2 −e

− 4
3
U− 4

3
V fJ2 ∧ ∗fJ2 −2e−8Uf1 ∧ ∗f1
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−1
2
e−φ

(
e

16
3
U+ 4

3
V h3 ∧ ∗h3+e

8
3
U− 4

3
V h2 ∧ ∗h2+2e−4UhJ1 ∧ ∗hJ1 +2e−4UhΩ

1 ∧ ∗hΩ
1

)
−1

2
eφ
(
e

16
3
U+ 4

3
V g3 ∧ ∗g3+e

8
3
U− 4

3
V g2 ∧ ∗g2+2e−4UgJ1 ∧ ∗gJ1 +2e−4UgΩ

1 ∧ ∗gΩ
1

)]
, (3.2)

where we introduced the 5-dimensional gravitational coupling constant κ2
5 ≡ κ2

10/VY . The
first line comes from the reduction of the 10-dimensional Einstein-Hilbert term, and coin-
cides with the formulae given in [8]. The first two terms in the second line are the obvious
reduction of the 10-dimensional dilaton and axion terms, while the other terms in the same
line come from the reduction of the 5-form F5. The third line arises from the reduction of
the H kinetic term and the last line comes from the reduction of the F3 kinetic term.

The 5-dimensional topological couplings read

Stop=
1

2κ2
5

∫
M

{
i

3
(DaΩ

1 + 3iaΩ
2 ) ∧D(DaΩ

1 + 3iaΩ
2 ) +A ∧ daJ1 ∧ daJ1

− 1
2

Re
[(
DaΩ

1 + 3iaΩ
2 + fΩ

2

)
∧
(
b2 ∧DcΩ + bΩ(dc2 − c1dA)− b↔ c

)]
− 1

2
(
daJ1 + fJ2

)
∧
[
b2 ∧DcJ + bJ (dc2 − c1 ∧ dA)− b↔ c

]
(3.3)

+
1
2

(Da+ f1) ∧ [b2 ∧ dc1 − b1 ∧ (dc2 − c1 ∧ dA)− b↔ c ]

− 1
2

(k + f0) [b2 ∧ (dc2 − c1 ∧ dA)− b↔ c ]
}

and follow from the reduction of the 10-dimensional topological terms (and the Lagrange
multipliers necessary to impose the self-duality constraint of the 5-form F5). Although we
put it among the topological terms, we stress once more that aΩ

2 Da
Ω
2 is the kinetic term

for the complex 2-form aΩ
2 , which satisfies first order equations.

Finally, the scalar potential terms can be collected in

Spot =
1

2κ2
5

∫
M

(
− 2V

)
∗ 1 =

1
2κ2

5

∫
M

[
24 e−

14
3
U− 2

3
V − 4 e−

20
3
U+ 4

3
V − 2 e−

32
3
U− 8

3
V f2

0

− e−
20
3
U− 8

3
V
(
e−φ|hΩ

0 |2 + eφ|gΩ
0 |2
)]
∗ 1 ,

(3.4)

where the first two terms come from the reduction of the 10-dimensional Einstein-Hilbert
action, the f0 term comes from the reduction of the 5-form terms, the hΩ

0 term arises from
the reduction of the H kinetic term and the one containing gΩ

0 comes from the reduction
of the F3 kinetic term.

4 Matching N = 4 gauged supergravity

In this section we are going to compare the action (3.1)–(3.4) with the one expected for
an N = 4 gauged supergravity in 5 dimensions, as presented in [14]. Before starting the
match, we are going to justify the claim that the effective action preserves half of the
allowed supersymmetries at the lagrangian level (the vacua will further break them).

While so far we focussed only on the bosonic sector, for this discussion we analyze the
reduction ansatz for the 10-dimensional gravitino fields. Type IIB supergravity contains 2
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Majorana-Weyl gravitinos of the same chirality Ψα
M , where α = 1, 2, while here M is a 10-

dimensional spacetime index. In order to consistently reduce these fields to 5 dimensions,
we employ once again the structure group of the internal manifold, and the fact that it can
be associated with the existence of 2 globally defined spinors ζ1,2(y), being one the charge
conjugate of the other [25]. We use these internal spinors to expand the 5-dimensional
spacetime components of each of the 10-dimensional gravitinos as

Ψα
µ(x, y) = ψα 1

µ (x)⊗ ζ1(y) + ψα 2
µ (x)⊗ ζ2(y) . (4.1)

The resulting 5-dimensional gravitinos can then be combined into 4 symplectic-Majorana
fermions ψiµ, satisfying

ψµ i ≡ (ψiµ)†γ0 = Ωij(ψjµ)TC , (4.2)

where Ωij is the USp(4) invariant symplectic form and C is the charge conjugation matrix.
The above argument is reinforced by noticing that the 5-dimensional fields obtained

in our reduction organize in N = 4 multiplets. The bosonic spectrum of the truncated
theory consists of the metric gµν , 4 vector fields (A , aJ1 , b1 , c1), 4 tensors (b2 , c2 , a

Ω
2 )

(recall that aΩ
1 does not describe degrees of freedom independent of aΩ

2 ) and 11 scalars
(U, V, C0, φ, a, b

J , bΩ, cJ , cΩ). The tensor fields in 5-dimensional gauged supergravity
arise from the dualization of vector fields. Hence we can organize these fields in the gravi-
tational multiplet plus two vector-tensor multiplets of 5-dimensional, N = 4 supergravity:

{graviton, 6 vectors, 1 real scalar}
2 ×{1 vector , 5 real scalars} .

As a further check we are going to show that the scalar fields are coordinates on the
expected coset manifold

Mscal = SO(1, 1)× SO(5, 2)
SO(5)× SO(2)

, (4.3)

with the first factor spanned by the scalar in the gravitational multiplet and the second
factor parameterized by the scalars in the vector multiplets. We will also show that the
vector fields split into 7 + 1, seven transforming in the fundamental representation of
SO(5,2) AM , and one being a singlet A0. As mentioned above, the gauging procedure will
require the introduction of tensor fields dual to 4 of the vector fields.

4.1 The ungauged theory

In order to properly recognize the couplings of the effective supergravity theory, and to
understand which are the contributions following from the gauging procedure, we need to
identify the fields in the dimensional reduction with the N = 4 supergravity fields. For this
task, we find it convenient to switch off all the gauge interactions and look at the ungauged
theory. This means that we set k = 0, i.e. switch off the Ramond-Ramond 5-form flux,
and we take the internal manifold Y to be K3 × S1, so that dη = dJ = dΩ = 0. Then
our consistent truncation, preserving the modes associated with J, Ω, η , corresponds to a
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sub-sector (2 vector multiplets only) of the N = 4 ungauged supergravity describing the
massless fluctuations around the R1,4 ×K3× S1 vacuum.

Our first step is going to be the identification of the scalar σ-model with Mscal of
equation (4.3). We start by noticing that, once we forget about all the other interactions,
the kinetic terms of the scalar fields in (3.2) are polynomial in all the fields, but U , V and φ.
This suggests that a good identification of the scalar manifold (4.3) could be obtained via
the so-called solvable parameterization, which involves a rewriting of the coset generators
in terms of the commuting Cartans and a set of nilpotent generators. We then identify
the coordinates on Mscal with the scalars of the dimensional reduction, and match its
G-invariant metric with the scalar kinetic matrix.

The generators of the so(5,2) algebra in the fundamental representation are
(tMN )PQ = δQ[M ηN ]P , where M,N,P,Q = {1, 2, . . . , 7} and η = diag{− − − − − + +},
with commutation relations

[tMN , tPQ] = ηP [M tN ]Q + ηQ[N tM ]P . (4.4)

The so(5,2) solvable subalgebra is spanned by the two Cartan generators

C1 = t16, C2 = t27 (4.5)

and by the nilpotent positive root generators

G1 =
1
2

(t17 − t26 − t67 − t12) , G2 =
1
2

(t17 + t26 − t67 + t12) ,

G3 =
1√
2

(t36 + t13) , G4 =
1√
2

(t37 + t23) ,

G5 =
1√
2

(t46 + t14) , G6 =
1√
2

(t47 + t24) ,

G7 =
1√
2

(t56 + t15) , G8 =
1√
2

(t57 + t25) .

(4.6)

Using these generators, we can pick a coset representative

L =

(
7∏
i=0

ex8−iG8−i

)
eφ2C2eφ1C1 (4.7)

and define the symmetric matrix

MMN =
(
LLT

)
MN

, (4.8)

with inverse MMN . The metric on the N = 4 scalar manifold (4.3) follows from [14]

− 1
2
ds2(Mscal) = −3

2
Σ−2dΣ⊗ dΣ +

1
16
dMMN ⊗ dMMN , (4.9)
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where Σ is the scalar parameterizing the SO(1, 1) factor. Explicitly we get

ds2(Mscal) = 3Σ−2(dΣ)2 +
1
4

[
dφ2

1 + dφ2
2 +

1
2
e−φ1(dx3 − x2dx4)2 +

1
2
e−φ1(dx5 − x2dx6)2

+
1
2
e−φ1(dx7 − x2dx8)2 +

1
2
e−φ2(dx2

4 + dx2
6 + dx2

8) +
1
2
eφ2−φ1dx2

2

+
1
2
e−φ1−φ2

(
dx1 −

1
2
x3dx4 −

1
2
x5dx6 −

1
2
x7dx8

)2]
.

(4.10)
It is then straightforward to see that this expression matches the scalar kinetic terms of
our dimensional reduction given in (3.2), provided we identify the Cartan coordinates as

φ1 = 4U − φ , φ2 = 4U + φ (4.11)

and the nilpotent ones as

x1 = 4a+ 2cJbJ + 2Re(bΩcΩ) x2 = 2C0 ,

x3,5,7 = 2
√

2 {RecΩ, ImcΩ, cJ } , x4,6,8 = 2
√

2 {RebΩ, ImbΩ, bJ } .
(4.12)

Moreover, this forces the identification of the remaining SO(1, 1) factor scalar with

Σ = e−
2
3

(U+V ). (4.13)

Having discussed the scalar manifold, we can now proceed to identify the vector fields in
our dimensional reduction with the vectors {A0, AM} in the N = 4 ungauged supergravity.
The general form of the kinetic terms is

Skin,vec = − 1
2κ2

5

∫
M

[
Σ−4 dA0 ∧ ∗dA0 + Σ2MMNdA

M ∧ ∗dAN
]
, (4.14)

where, being the theory ungauged, all vectors have abelian gauge transformations. A study
of the reduction of the gauge symmetry associated to the Ramond-Ramond potential C4

(along the lines of subsection 2.1), shows that aJ1 and aΩ
1 are not proper gauge fields, and

a field redefinition is needed. We find that the correct abelian gauge vectors are given by

ãJ1 = aJ1 +
1
2
(
cJb1 − bJc1

)
, ãΩ

1 = aΩ
1 +

1
2
(
cΩb1 − bΩc1

)
. (4.15)

Furthermore, in this ungauged case there is no obstruction to dualize b2 and c2 to 1-forms,
which we call respectively b̂1 and ĉ1. Implementing all this, the full set of vector kinetic
terms provided by the dimensional reduction reads

Skin,vec = − 1
4κ2

5

∫
e

8
3
U+ 8

3
V dA ∧ ∗dA+ e−

4
3
U− 4

3
V

{
e4U−φ(db1)2 + e4U+φ(dc1 − C0db1)2

+(dãJ1 + bJdc1 − cJdb1)2 + |dãΩ
1 + bΩdc1 − cΩdb1|2

+e−4U−φ
[
dĉ1 − 2bJdãJ1 − 2Re( bΩdãΩ

1 )

+
(
2a+ bJcJ + Re(bΩcΩ)

)
db1 −

(
(bJ)2 + |bΩ|2

)
dc1

]2
(4.16)
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+e−4U+φ
[
db̂1 + C0dĉ1 + 2(cJ − C0b

J)dãJ1 + 2Re
(
(cΩ − C0b

Ω)dãΩ
1

)
+
(

2C0a+ C0b
JcJ + C0Re(bΩcΩ)− (cJ)2 − |cΩ|2

)
db1

−
(

2a− bJcJ − Re(bΩcΩ) + C0(bJ)2 + C0|bΩ|2
)
dc1

]2
}
.

Comparing with (4.14), we derive the identifications

A =
√

2A0 , b1 = −A1 −A6, c1 = A2 +A7, ãJ1 = A5 ,

b̂1 = −A1 +A6, ĉ1 = A2 −A7, Re ãΩ
1 = A3, Im ãΩ

1 = A4 .
(4.17)

In addition, after dualizing b2 and c2 the topological term agrees with the one expected
from N = 4 supergravity.

4.2 The gauged theory

The last step in our comparison of (3.1)–(3.4) with the expectedN = 4 gauged supergravity
action is the computation of the embedding tensor Θ. This is the tensor specifying how
the gauge group is embedded into the duality group and it is all that one needs in order to
completely determine the couplings in the lagrangian once the frame of the ungauged theory
has been fixed (for a nice review on this approach and further references we suggest [26]).
In the following we show that via Θ we can match the kinetic terms of the scalar and vector
fields, the couplings between the vectors and tensors, as well as the scalar potential.

The explicit form of the embedding tensor can be deduced from the covariant derivative
acting on the scalar fields, by looking at the values of the couplings between the scalar and
vector fields identified in the previous subsection. For the case at hand, the general form
of the gauged supergravity scalar kinetic term, in the notations of [14], reads

Skin,scal =
1

2κ2
5

∫
M

[
− 3 Σ−2 dΣ ∧ ∗dΣ +

1
8
DMMN ∧ ∗DMMN

]
, (4.18)

where the covariant derivative D has been defined as

DMMN = dMMN − 2AP
[
XP
]
(M

SMN)S

= dMMN − 2
[
AP fP

QRtQR +A0ξPQtPQ
]
(M

SMN)S (4.19)

≡ dMMN + 2AP fP (M
QMN)Q + 2A0ξ(M

QMN)Q .

Here XM = ΘMαtα, with M = {0,M}, are the gauge generators, obtained from the
product of the embedding tensor Θ with the tα generators of the duality group SO(1,1) ×
SO(5,2). The tensors fMNP = f[MNP ] and ξMN = ξ[MN ] are then the embedding tensor
components2 and the indices are raised and lowered with the metric ηMN .

2This is actually a special case of the corresponding formula in [14], in that we are setting to zero the ξM

components of the embedding tensor therein. As it will be clear in the following, this is sufficient to describe

the gauged supergravity arising from the dimensional reduction considered in this paper. Furthermore, we

are reabsorbing the gauge coupling constant g appearing in [14] in the definition of the embedding tensor.
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By comparing (4.18) with the scalar kinetic terms arising from the dimensional reduc-
tion, also recalling the field identifications (4.12) and (4.17), we find that the non-vanishing
components of the embedding tensor are

f125 = f256 = f567 = −f157 = −2,

ξ34 = −3
√

2, ξ12 = ξ17 = −ξ26 = ξ67 = −
√

2 k , (4.20)

together with the ones given by cyclic permutations of the indices. The higher-dimensional
origin of fMNP resides in the geometric flux associated with the non-closure of η, dη = 2J ,
while ξ34 arises from the geometric flux dΩ = 3i η ∧ Ω. The remaining non-zero ξMN

parameters derive from the Ramond-Ramond 5-form flux described by k.
Since the embedding tensor specifies how the gauge group G is embedded into the

duality group, we can now discuss the interesting features of the gauge group of the theory
at hand. As we have already noticed, after the gauging procedure we are left with four
gauge vector fields, sitting in the adjoint of G. We name (tΛ)MN the corresponding gauge
generators, where Λ = 0, 1, 2, 3, and AΛ = {A, b1, c1, ã

J
1 } the vector fields to which they

couple, so that the gauge covariant derivative reads D = d− AΛtΛ. By direct comparison
with (4.19) we find that

t0 = −6 t34 + 4k G1 , t1 = 4
√

2G8 , t2 = 4
√

2G7 , t3 = 8G1 , (4.21)

the only non-trivial commutator being [t1, t2] = −2t3 . The resulting gauge group G is then
a product of the 3-dimensional Heisenberg group with a U(1) subgroup of the USp(4) '
SO(5) R-symmetry3

G = Heis3 ×U(1)R , (4.22)

where the U(1)R factor is generated by t34. From (4.21) we see that the vector fields that
are not in the adjoint representation of G also transform non-trivially under the action
of the gauge generators. Actually, we can split the indices of the various vector fields
according to their transformation properties. We take the original set {A0, AM} and split
it into the AΛ vectors in the adjoint of G, and the AI vectors, in a non-trivial representation
of G. With this choice of basis, we can rewrite the 4 gauge generators as

tΛ =

(
−fΛΣ

Γ (tΛ)Σ
I

0 (tΛ)J I

)
, (4.23)

where fΛΣ
Γ are the structure constants of the gauge group in the adjoint representation,

(tΛ)J I are the generators under which the vector fields are in a symplectic representation
and (tΛ)Σ

I are the generators of the gauge group that mix the vector fields in the adjoint
with the ones that are going to be dualized to tensor fields. This is the (so far known) most
general structure of the couplings between vector fields and tensor fields in 5 dimensions,
compatible with supersymmetry [15]. For the case at hand, the only adjoint structure

3As a check, we verified that the associated 5-dimensional gauge transformations match the ones de-

rived by dimensionally reducing the gauge symmetry of the 10-dimensional forms and the diffeomorphisms

reparameterizing the U(1) fibre of the internal manifold (cf. subsection 2.1).
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constant is f12
3 = −f21

3 = −2. This implies that (t3)Σ
Γ vanishes, in agreement with the

fact that, while the vector fields are in a faithful representation of the gauge group, the
adjoint representation gets rid of all the abelian ideals in the non-abelian factors (see [27]
for a general discussion of this mechanism for flux compactifications). The only non-trivial
(tΛ)J I is given by t0, the U(1) generator under which ãΩ

1 and its dual ãΩ
2 are charged, while

the (tΛ)Σ
I generators deserve a further discussion, because to our knowledge this is the first

realization of such a structure in a stringy reduction without maximal supersymmetry. The
introduction of tensor fields is motivated by the fact that whenever there are vector fields
transforming under a non-adjoint representation of the gauge group, their field strengths
do not generically transform covariantly under gauge transformations, and one needs to
employ tensor field transformations to close the Jacobi identities and make the generalized
field strengths covariant [18, 28]. For N = 4, 5-dimensional gauged supergravity the
covariant field strengths of the vector fields include 2-forms BN and read [14]

HM = dAM +
1
2
XNP

MAN ∧AP + ZMN BN , (4.24)

where XM are related to the embedding tensor as in (4.19) and ZMN = 1
2ξ
MN collects the

tensor couplings (the Z0M components vanish in our case). Employing (4.20), we see that
for our reduction the gauge group G is represented on the gauge fields by the following
curvatures in the adjoint representation:

H0 = dA0,

H1 +H6 = d(A1 +A6),
H2 +H7 = d(A2 +A7),

H5 = dA5 − 2(A1 +A6) ∧ (A2 +A7),

(4.25)

where H0 is the field strength of the U(1)R, while the other 3 curvatures are the 3-
dimensional realization of the Heisenberg group. The field strengths of the U(1)R-charged
vectors, naturally combining in a complex field, follow from the embedding tensor above
and read

H3 + iH4 = d(A3 + iA4)− 3i
√

2A0 ∧ (A3 + iA4) + 3i√
2
(B3 + iB4). (4.26)

Recalling (4.17), we identify this expression with the combination DãΩ
1 +3iãΩ

2 derived from
the dimensional reduction, where again a suitable field redefinition ãΩ

2 = aΩ
2 + 1

2(cΩb2−bΩc2)
was required. Finally, the most interesting couplings arise in the curvatures for the vector
fields in a non-trivial representation of the Heisenberg group:

H1 −H6 = d(A1 −A6) + (4A5 + 2
√

2k A0) ∧ (A2 +A7)−
√

2k (B2 −B7),
H2 −H7 = d(A2 −A7)− (4A5 + 2

√
2k A0) ∧ (A1 +A6) +

√
2k (B1 −B6).

(4.27)

The corresponding vector combinations do in fact transform under t3, as well as under the
gauge transformations of the tensor fields:

δ(A1−A6) = d(Λ1 − Λ6)− 4(A2 +A7)Λ5 + (4A5 + 2
√

2k A0)(Λ2 + Λ7) +
√

2k (Ξ2 − Ξ7),
δ(A2−A7) = d(Λ2 − Λ7) + 4(A1 +A6)Λ5 − (4A5 + 2

√
2k A0)(Λ1 + Λ6)−

√
2k (Ξ1 − Ξ6).

(4.28)
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Here, ΛM and ΞM denote the gauge tranformations of the vector and tensor fields
respectively. In the approach of [14], the 2-forms B1 − B6 and B2 − B7 are dual to the
vectors A1 − A6 and A2 − A7, and both are kept in the gauged supergravity lagrangian,
though some degrees of freedom are not dynamical. The duality relation between the
respective covariant field strengths arises as the equation of motion for the tensors, as
already mentioned in subsection 2.2 when we discussed the relation between aΩ

2 and aΩ
1 .

Now, while we identify B1−B6 and B2−B7 with the 2-forms b2 and c2, their dual vectors
are not directly obtained from the dimensional reduction procedure. When discussing the
ungauged theory in subsection 4.1, the latter were introduced by dualizing b2 and c2 to
b̂1 and ĉ1, but once we switch on the RR five-form flux k this is not possible any more.
Indeed, it can be seen that in our 5-dimensional action one can perform suitable partial
integrations and cover b2 and c2 with a derivative everywhere, but on the topological
term k(c2 ∧ db2 − b2 ∧ dc2) in (3.3), where either b2 or c2 necessarily appear naked. This
means that the obstruction against dualizing b2 and c2 to vectors is precisely the flux k.4

However, we can make contact with the formalism of [14] by noticing that the second order
equations of motion for b2 and c2 derived in appendix B have the form of a total derivative,
and can then be interpreted as first order equations stating the duality relation. Indeed,
it turns out that the equations for b2 and c2 (see (B.14) and (B.18)) can be written as

d

[(
m ∗ d− 2k ω

)( b2
c2

)
+ other terms

]
= 0 , (4.29)

where we introduced the matrices

m = e
16
3
U+ 4

3
V+φ

(
C2

0 + e−2φ −C0

−C0 1

)
, ω =

(
0 1
−1 0

)
, (4.30)

m being (e
16
3
U+ 4

3
V times) the SL(2,R) analog of the matrix M defined in subsection 4.1.

Then we deduce the first order equations(
m ∗ d− 2k ω

)( b2
c2

)
+ other terms = d

(
b̂1
ĉ1

)
. (4.31)

These can be used to replace db2 and dc2 in the dimensionally reduced action, and obtain an
action consistent with the one of [14]. In particular, the terms h3∧∗h3 and g3∧∗g3 in (3.2)
become kinetic terms for the vectors b̂1 and ĉ1, and we retrieve the full set of vector kinetic
terms (4.16) previously derived for the ungauged theory, now covariantized by means
of (4.25)–(4.27). The physical degrees of freedom propagated by the fields b2, c2, b̂1 , ĉ1 are
best seen by using the second of (4.31) to eliminate dc2 from the first of (4.29): this yields
a Proca equation for a 2-form, with a (scalar dependent) mass term proportional to k2.

We conclude this section by showing that the embedding tensor derived above also
reproduces the scalar potential obtained in (3.4), via eq. (3.16) of [14]. It is useful to split

4This can also be seen at the 10-dimensional level: without 5-form flux we would be allowed to rewrite

the Chern-Simons term in the IIB action (2.1) as dB ∧ dC2 ∧ C4, i.e. neither B nor C2 would ever appear

naked into the action.
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the scalar potential of [14] in three addends according to the powers of Σ, so that we can
compare the resulting expressions with those in (3.4) according to the powers of U and V .
An explicit computation shows that the three resulting pieces are

1
4
fMNP fQRSΣ−2

(
1
12
MMQMNRMPS+

−1
4
MMQηNRηPS+

1
6
ηMQηNRηPS

)
= 2 e−

20
3
U+ 4

3
V , (4.32)

1
16
ξMN ξPQ Σ4

(
MMPMNQ−ηMP ηNQ

)
=

9
2
e−

20
3
U− 8

3
V−φ|bΩ|2+

9
2
e−

20
3
U− 8

3
V+φ|cΩ−C0b

Ω|2

+e−
32
3
U− 8

3
V
[
3 Im

(
bΩ cΩ

)
+ k
]2
,

1
12

√
2 fMNP ξQR ΣMMNPQR = −12 e−

14
3
U− 2

3
V , (4.33)

whose sum is precisely the scalar potential V given in (3.4).

5 Discussion

The 5-dimensional supergravity model we have detailed in the previous sections describes
the physics of type IIB supergravity compactified on a squashed SE manifold. In particular,
the scalar potential V governs the deformations of the internal manifold and the vacuum
expectation values of the 10-dimensional form fields. We rewrite here its expression (3.4)
in a more explicit fashion:

V =− 12 e−
14
3
U− 2

3
V + 2 e−

20
3
U+ 4

3
V +

9
2
e−

20
3
U− 8

3
V−φ|bΩ|2

+
9
2
e−

20
3
U− 8

3
V+φ|cΩ − C0b

Ω|2 + e−
32
3
U− 8

3
V
[
3 Im

(
bΩ cΩ

)
+ k
]2
.

(5.1)

The fact that V does not depend on the scalars a, bJ and cJ was expected, since the latter
play the role of Stückelberg fields for some of the vectors.

Notice that our V is an extension of the scalar potential presented in [8], which is
recovered by taking bΩ = cΩ = 0, and choosing the flux parameter k2 = 4.

We find that the potential (5.1) has two extrema, which, for k = 2, are located at

U = V = bΩ = cΩ = 0 , with arbitrary φ and C0 , (5.2)

and at

e4U = e−4V =
2
3
, bΩ =

eiθ+φ/2√
3

, cΩ = bΩτ , τ ≡ (C0 + i e−φ) , (5.3)

where we have 3 flat directions, parameterized by φ, C0 and θ. Both vacua have a negative
value of the cosmological constant Λ ≡ 〈V〉 and therefore correspond to anti-de Sitter
vacua. The first one has Λ = −6, while Λ = −27

4 for the second one.
The first extremum is supersymmetric for any value of k and, having U = V , is

associated with the round metric (by analogy with the case where the SE manifold is S5).
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The second extremum has U 6= V , instead. Hence the internal metric is squashed and non-
Einstein. From the higher-dimensional viewpoint, it corresponds to a non-supersymmetric
solution of type IIB supergravity found in [16, 29], which is the 5-dimensional analog of
the Pope-Warner solution in 4 dimensions [17]. From the 5-dimensional point of view,
this squashed vacuum is identified with the SU(3)×U(1) invariant vacuum of the gauged
SO(6) maximal supergravity in 5 dimensions, derived in [29], as we will justify shortly.

The masses of the scalar fluctuations around the supersymmetric and non-
supersymmetric vacua (5.2) and (5.3) are obtained by computing the eigenvalues of the
mass matrix

M i
j = 2Kik ∂j∂kV (5.4)

evaluated at the critical points. Here, the index i runs over the scalar fields appearing in
V, collected in the array ϕi ≡ {U, V,Re bΩ, Im bΩ,Re cΩ, Im cΩ, φ, C0}, while the matrix Kij

is the kinetic matrix of the normalized scalar fields

− 1
2
Kij(ϕ) ∂µϕi∂µϕj . (5.5)

5.1 The supersymmetric vacuum

At the supersymmetric critical point we find that the mass eigenstates of the field fluctu-
ations can be collected in the following table, where angle brackets denote the choice of
vacuum expectation values for the dilaton and axion moduli:

Mass Eigenstate m2

4δU + δV 32

δU − δV 12

〈C0e
2φ〉Re δcΩ −

(
1 + 〈C2

0e
2φ〉
)

Re δbΩ + 〈eφ〉Im δcΩ 21

−〈C0e
2φ〉Im δcΩ +

(
1 + 〈C2

0e
2φ〉
)

Im δbΩ + 〈eφ〉Re δcΩ 21

〈C0e
2φ〉Im δcΩ −

(
1 + 〈C2

0e
2φ〉
)

Im δbΩ + 〈eφ〉Re δcΩ −3

−〈C0e
2φ〉Re δcΩ +

(
1 + 〈C2

0e
2φ〉
)

Re δbΩ + 〈eφ〉Im δcΩ −3

δφ 0

δC0 0

(5.6)

Although this expansion is general and valid for any internal SE manifold, in the following
we specialize our analysis to the case of the 5-sphere, so that we have some direct control
on the dual field theory. However, the gauge/gravity correspondence relations we derive in
this way are valid in general for any N = 1 superconformal field theory in 4 dimensions.

The first step is the identification of the linear combinations in the table above with
the appropriate states in the spectrum of KK modes in the expansion around the 5-sphere
vacuum [30, 31]. The ansatz we have chosen for the type IIB metric and tensor fields is
compatible with a truncation of the S5 spectrum to SU(3) singlets in the decomposition

SO(6) ' SU(4)→ SU(3)×U(1). (5.7)
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This is indeed the type of truncation that follows by requiring that an SU(2) structure
group is preserved on S5. This truncation leaves us with an N = 2 spectrum, which could
also be obtained by retaining the states which are left-invariant forms in the reduction on5

S5 =
SU(3)
SU(2)

, (5.8)

where the SU(2) structure group is identified with the denominator of the coset. By in-
spection of the SU(4) representations of the spectrum in [30, 31], we see that only states
in the singleton, massless graviton and in the first two KK iterations can survive the trun-
cation to singlets of SU(3) ⊂ SU(4). This indeed reorganizes the spectrum of fluctuations
around the supersymmetric vacuum in N = 2 multiplets as follows:6 the gravity multi-
plet (gµν , 2ψµ , Aµ) and a hypermultiplet (χ, 4ϕ) from the massless N = 8 graviton; a
semi-long massive gravitino multiplet (2ψ̃µ , 2Aµ, 2bµν , 4χ) from the first KK iteration; a
long vector multiplet (Bµ , 4χ , 4ϕ) from the second KK iteration. This multiplet structure
arises from the N = 4 massless multiplets of sections 2 and 4 via a spontaneous gauge
and partial supersymmetry breaking mechanism at the vacuum. From the spectrum of
the vector fields at this vacuum we can see that out of the 4 original gauge vector bosons
only one, the graviphoton associated to the U(1)R symmetry, is massless, while the other
3 vector fields have a mass, breaking completely the 3-dimensional Heisenberg group:

G = Heis3 ×U(1)R → U(1)R . (5.9)

This is easily checked by looking at the quadratic couplings of the vector fields in the kinetic
terms of the scalars, after having canonically normalized the vector kinetic terms. In detail,
we find that the linear combination ãJ1 +A has mass m2 = 24, b1 and c1 have m2 = 8, while
the combination 2 ãJ1−A remains massless. By expanding the covariant derivative d−AΛtΛ
we can also realize that the latter combination is associated to 2 t34, which is the surviving
U(1)R gauge symmetry generator. In addition, partial supersymmetry breaking gives mass
to half of the gravitino fields, which end up in the massive gravitino multiplet. All the
scalars having Stückelberg couplings to some of the vectors are removed from the analysis of
our spectrum, being simply regarded as the longitudinal degrees of freedom of those vectors.

For what concerns the scalar fields appearing in the scalar potential, we can see that
the last 4 states in the table above are part of the N = 8 gravity multiplet and, after our
N = 2 truncation, they fill a hypermultiplet. The other states are part of massive KK
iterations instead. The m2 = 21 states can be identified with scalars in the first massive
KK tower expansion of the SL(2,R)-covariant 2-form given by the complex combination of
B and C2, while the m2 = 12 state is the squashing mode and the m2 = 32 state is the
breathing mode of the SE internal manifold, both sitting in the second KK tower.

In the following we discuss the dual operators related to the various multiplets and
show the match of the conformal dimensions with the masses of the scalar fields described

5The standard parameterization of the 5-sphere S5 = SO(6)/SO(5) leads to the non-supersymmetric

truncation keeping only the breathing mode. In both cases, the consistency of the truncation follows from

arguments parallel to the ones applied in [32].
6We refer to [33] for nomenclature and for the structure of N = 2 multiplets.
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in the table above. For notation and more details on the superfield description of such
theories we follow [33] where a complete analysis of the spectrum of the T 1,1 manifold and
of the dual conformal theories has been presented. Our analysis is obviously a subcase of
the one presented there and yet it is, at the same time, more general, because it is valid
for any SE manifold and therefore for any N = 1 conformal theory.

The N = 2 massless graviton multiplet corresponds to the stress-energy tensor of the
dual gauge theory and can be described by an operator whose lowest component is the
stress-energy tensor for the gauge fields

Jαα̇ = Tr
(
WαWα̇

)
+ · · · , (5.10)

where Wα describes the gauge multiplet in the superfield language. Although what replaces
the dots, completing the explicit form of the operator, depends on the details of the theory
at hand and especially on the structure of the matter multiplets, which in turn depend
on the geometry of the internal SE manifold, we see that our reduction captures the uni-
versal part of it, in which only the gauge superfield appears. The massless hypermultiplet
corresponds to the chiral operator

Φ = Tr (WαW
α) + · · · , (5.11)

or, better, to a linear combination of this operator and the superpotential being orthogonal
to the derivatives of the Konishi multiplet. The conformal dimension of Φ is ∆ = 3 and the
masses of the associated scalar fields follow from the general gauge/gravity duality relation
between the mass of a scalar field ϕ and its dual operator Oϕ:

L2m2
ϕ = ∆Oϕ(∆Oϕ − 4), (5.12)

where L2 = 6/|Λ| is the AdS radius. In this case we have two states with m2 = −3 and
two massless states coming from the descendants with ∆ = ∆Φ + 1. Both the Jαα̇ and Φ
multiplets also appear in the truncations of the massless spectrum of N = 8 supergravity
and indeed they are the product of two singleton fields Wα . The first KK iteration follows
by taking the product of three singleton fields. The only possible operator built in this
way corresponds to our massive gravitino multiplet, and reads

Lα̇ = Tr
(
Wα̇WβW

β
)

+ · · · . (5.13)

This superfield has conformal dimension ∆L = 9/2 and contains no scalar components.
Finally, at the second iteration level we have

Q = Tr
(
W 2W 2

)
+ · · · , (5.14)

which has ∆Q = 6 and corresponds to the long vector multiplet. This operator contains
4 scalar fields associated with the conformal dimensions ∆ = ∆Q, twice ∆ = ∆Q + 1 and
∆ = ∆Q + 2. The obvious dual massive states have m2 = 12, twice m2 = 21 and m2 = 32.
While the operator Φ describes a relevant deformation of the gauge theory, Q and L are
irrelevant. We notice that additional states survive the truncation in the expansion of the
singleton multiplet, which in this case is simply Wα . These states, however, are pure gauge
states from the 5-dimensional point of view, corresponding to the fact that TrWα = 0 ,
being the Wα superfield in the adjoint representation of SU(N).
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5.2 The susy breaking vacuum

At the non-supersymmetric critical point we find that the mass eigenstates are complicated
combinations depending on the expectation values of the axio-dilaton and the θ parameter.
The masses however do not depend on these values and for the flux choice k = 2 read

m2 = { 36, 36, 27, 27, 9, 0, 0, 0 }, (5.15)

where one of the m2 = 36 states is given by the combination δU + δV . For the special
point of the parameter space 〈θ〉 = 0, 〈C0〉 = 0 and 〈φ〉 = 0, the eigenstates corresponding
to the above eigenvalues can be collected in the following table, where we also specified the
conformal dimension of the dual operators according to relation (5.12):

Mass Eigenstate m2 ∆

δU + δV 36 8
√

3
(

Im δcΩ + Re δbΩ
)

+ 8 δU 36 8
√

3
(
Im δcΩ − Re δbΩ

)
+ δφ 27 2(1 +

√
7)

√
3
(
Im δbΩ + Re δcΩ

)
− δC0 27 2(1 +

√
7)

√
3
(
Re δbΩ + Im δcΩ

)
− 4 δU 9 2(1 +

√
3)

√
3
(
Im δcΩ − Re δbΩ

)
− 2 δφ 0 4

√
3 Re δcΩ + δC0 0 4
√

3 Im δbΩ + δC0 0 4

(5.16)

We see that anomalous and irrational dimensions appear at this non-supersymmetric
vacuum. From the linear combinations of the scalar fields involved we also see that one
should generically expect a mixing of the operators in the gauge theory. Clearly these
operators cannot be written in terms of superfields, the vacuum being N = 0. Moreover,
we notice that not only supersymmetry is completely broken at this vacuum, but also our
gauge group, with all the 4 vector fields acquiring non-trivial masses

m2 = { 36, 18, 18, 9 }. (5.17)

It follows that their dual conformal operators also have irrational anomalous conformal
dimension. Indeed, from the standard relation ∆ = 2 +

√
1 + L2m2, we get

∆ = { 2 +
√

33 , 2 +
√

17 , 2 +
√

17 , 5 }. (5.18)

The masses (5.15) of the scalar fields in our truncation are all non-negative at this
vacuum, and therefore obviously respect the Breitenlohner-Freedman (BF) bound required
for stability. However, in order to prove the full stability of this vacuum we should also
compute the spectrum of fluctuations along directions orthogonal to our truncation, and
this depends on the choice of the internal SE manifold. For this reason, we cannot provide a
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general proof of (in)stability at this stage, but we are aware that in the case of the squashed
S5 manifold there are modes that develop an instability violating the BF bound [34].
Neglecting this issue for the time being, we will conclude our discussion by proposing
some applications to the gauge/gravity correspondence, with a special emphasis on the
(charged) domain-wall solutions interpolating between these vacua and their interpretation
as Renormalization Group (RG) flows.

5.3 Flows from and between the vacua

It is interesting to notice that the two critical points of the potential can be parameterized
by a single scalar field combination changing its expectation value. To discuss this,
we define a consistent truncation of the 5-dimensional theory given in section 3 — and
therefore of type IIB supergravity — which preserves the metric gµν , the 1-form A, and
sets (we chose k = 2)

−U = V = 1
2 log (coshσ),

cΩ = bΩ τ = eφ/2 eiθ τ tanhσ,

aJ1 = −A ,

(5.19)

where σ, θ parameterize the surviving complex scalar. The axio-dilaton τ = C0 + ie−φ

is fixed to an arbitrary constant, while the remaining fields are set to zero. We verified
that this is a consistent truncation by plugging (5.19) into the 5-dimensional equations
discussed in appendix B as well as into the 5-dimensional action of section 3, and by
checking their compatibility. The truncated action reads

S =
1

2κ2
5

∫
M

[
R ∗ 1− 2dσ ∧ ∗dσ − 1

2
sinh2 (2σ) (dθ − 3A) ∧ ∗ (dθ − 3A)− 3

2
dA ∧ ∗dA

+A ∧ dA ∧ dA − Veff ∗ 1
]
, (5.20)

where the truncated scalar potential is

Veff = 3 cosh2 σ [cosh(2σ)− 5] . (5.21)

This consistent truncation has been previously presented in [9] (see also [35]).7 Here we
have shown how it can be embedded in our more general N = 4 reduction.

The critical points of Veff are at σ = 0, the supersymmetric one, and at σ = 1
2 log(2 +√

3), the non-supersymmetric one. Although the scalar potential contains only one scalar
field, we stress that the kinetic term of the other scalar, θ, vanishes at the supersymmetric
critical point. This means that one needs to perform a suitable field redefinition in order
to obtain meaningful masses at that critical point. After performing such a redefinition
one can easily check that the resulting fluctuations have m2 = −3.

RG flows interpolating between the two dual conformal theories are domain-wall solu-
tions of the 5-dimensional equations of motion supported by the scalar field σ and possibly

7Up to dilaton factors, the reduction ansatz of [9] is recovered by identifying ηthere = 2σhere.
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by some vector field if they are charged. From the point of view of the dual field theory
we expect such flows to arise when relevant deformations or vacuum expectation values
of the operators are introduced. For the uncharged case, the main relevant deformation
involves the gaugino operator Tr W 2. Simply adding this operator to the dual conformal
theory gives rise to the supersymmetric flow discussed in [36] within 5-dimensional N = 8
supergravity, and lifted to type IIB supergravity in [37]. This flow obviously overshoots
the second critical point, which is non-supersymmetric, and “flows to hades”. On the other
hand, there is always the option to turn on other operators and possibly also some vevs.
This corresponds to choosing specific initial conditions, which may lead to RG flows that
may reach the second critical point and stop there. The generic deformation will involve
second-order differential equations [36]. However, stable solutions (not necessarily BPS)
will be constructed whenever the scalar potential can be written as [38]:

Veff =
9
4

(∂σW)2 − 6W2. (5.22)

In this case, starting from a domain wall metric of the form

ds2 = e2ρ(r)ds2(R1,3) + dr2, (5.23)

it is straightforward to show that solutions to the first-order differential equations

ρ′ =W , σ′ = −3
2
∂σW , (5.24)

are also solutions of the full equations of motion. The supersymmetric solutions are de-
scribed by the superpotential

W =
√

2 cosh2 σ . (5.25)

However, this superpotential has only the supersymmetric critical point and hence cannot
generate flows interpolating between the two vacua. Since (5.22) can be seen as a differential
equation defining the (fake) superpotential W, we proceeded to its numerical integration,
starting from both the critical points. We display the result in figure 1, where the (light
orange) numerical solution starting from the σ = 0, supersymmetric critical point, simply
overlaps the analytic curve parameterized by (5.25). The other numerical integration (dark
blue) starts from the non-supersymmetric critical point and approaches the supersymmetric
one for σ → 0, within numerical error. The corresponding first order flow for the scalar
field gives the desired interpolating domain-wall.

A different option that can be considered is to allow for the domain-wall solution
to be charged. The corresponding dual solution describes the critical behaviour and the
emergent relativistic conformal symmetry in superfluids or superconducting states of
strongly coupled gauge theories [10].

5.4 Further reductions

Besides the one presented in the above subsection, starting from the action in section 3
one can define further consistent truncations, encompassing several models previously
studied in the literature.
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Figure 1. Plot of the numerical solutions for the superpotential (light orange) and fake superpo-
tential (dark blue). The dashed gray line represents

√
|Veff |/6 as a function of σ.

As a first thing, one can consistently truncate the fields that are charged under the
U(1) generated by A, namely set bΩ = cΩ = aΩ

1 = aΩ
2 = 0 . This corresponds to

expanding the higher-dimensional forms in terms of J and η, excluding Ω. Since η and
J alone define a Sasakian structure, we believe that this reduction can be performed on
any Sasaki manifold. It is then straightforward to reproduce the two non-supersymmetric
consistent truncations derived in [8]: the one with vector mass m2 = 8 is obtained by
setting to zero all the fields but gµν , U, V, φ , b

J , b1, while the one with vector mass
m2 = 24 arises from keeping just gµν , U, V, A, aJ1 .

Furthermore, by projecting out all the fields except gµν and A (setting aJ1 = −A), we
get the consistent truncation to (the bosonic sector of) minimal N = 2 gauged supergravity
studied in [5]. It is also possible to truncate to N = 2 gauged supergravity coupled to
matter. In particular, there exists a consistent truncation to N = 2 gauged supergravity
with one hypermultiplet, corresponding to the intersection of our dimensional reduction
and the N = 8 theory arising from the S5 reduction. Indeed, if we take the identifications
in (5.19) and in addition give dynamics to the axio-dilaton, we obtain the following extra
pieces to the action (5.20)

S′ =
1

2κ2
5

∫
M

[
−1

2
cosh2 σ dφ ∧ ∗dφ− 1

2
e2φ cosh4 σ dC0 ∧ ∗dC0

+
1
2
eφ sinh2 (2σ) dC0 ∧ ∗ (dθ − 3A)

]
. (5.26)

These, together with the previous ones, complete the scalar σ-model to the
SU(2, 1)/SU(2)×U(1) scalar manifold of the universal hypermultiplet.

Reducing to four dimensions. Starting from the 5-dimensional theory obtained in
section 3, we can also go down to four dimensions by performing a circle reduction. In this
way we provide a consistent truncation of type IIB supergravity on the particular SU(2)
structure 6-dimensional manifold given by the direct product of a squashed Sasaki-Einstein

– 25 –



J
H
E
P
0
5
(
2
0
1
0
)
0
9
4

manifold and S1. The resulting 4-dimensional theory is a gauged N = 4 supergravity with
3 vector multiplets and 20 scalars, some of which dualized to tensors. It is straightforward
to determine the 4-dimensional gauging by applying to (4.20) the map between the 4-
dimensional and 5-dimensional embedding tensors provided in [14]. The scalar potential is
thus fixed, and it might be interesting to study some possible solutions of the theory. The
ungauged supergravity obtained by switching off both the geometric and the RR fluxes
corresponds to a consistent truncation of type IIB on K3× T 2.
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A Conventions

The Hodge dual acting on the 10-dimensional vielbeine EA is defined as

∗10 E
A1...Ap =

1
(10− p)!

εA1...Ap
Ap+1...A10 E

Ap+1...A10 , (A.1)

with ε01...9 = +1. Analogous definitions hold for the lower-dimensional Hodge duals. Recall
that in d dimensions one has ∗ ∗ Ap = (−)p(d−p)+tAp, where t = 0 for euclidean signature
and t = 1 for lorentzian signature.

Given a p-form Ap and a q-form Bq (with p ≤ q), we define the (q − p)-form

ApyBq :=
1

p!(q − p)!
AM1...MpBM1...MpMp+1...Mqdx

Mp+1 ∧ · · · ∧ dxMq . (A.2)

Then we have the relation

Ap ∧ ∗Bq = (−)p(q−p) ∗ (ApyBq) . (A.3)

Recalling (2.6), the reduction of the 10-dimensional Hodge dual to 5 dimensions leads
to the following relations between a p-form fp on M and its Hodge dual ∗fp on M :

∗10 fp = e
2p−2

3
(4U+V ) (∗fp) ∧ vol(BKE) ∧ (η +A),

∗10

[
fp ∧ (η +A)

]
= (−)p+1e

2p−2
3

(4U+V )−2V (∗fp) ∧ vol(BKE),

∗10

[
fp ∧ J i

]
= e

2p−5
3

(4U+V )+V (∗fp) ∧ J i ∧ (η +A),

∗10

[
fp ∧ J i ∧ (η +A)

]
= (−)p+1e

2p−5
3

(4U+V )−V (∗fp) ∧ J i,

∗10

[
fp ∧ 1

2J
i ∧ J i

]
= e

2p−8
3

(4U+V )+2V (∗fp) ∧ (η +A),

∗10

[
fp ∧ 1

2J
i ∧ J i ∧ (η +A)

]
= (−)p+1e

2p−8
3

(4U+V ) (∗fp) ,

(A.4)

where there is no sum on repeated indices.
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B Reduction of the equations of motion

In this appendix we briefly discuss the reduction of the 10-dimensional equations of motion
and provide the full set of equations of motion for the 5-dimensional fields. It is crucial
to remark that, thanks to the properties (2.4)–(2.6) of the expansion forms, once we plug
our truncation ansatz into the 10-dimensional equations of motion the dependence on the
internal coordinates drops out, so that the obtained equations are really 5-dimensional.

The bosonic equations of motion of type IIB supergravity in the Einstein frame are

RMN =
1
2
∂Mφ∂Nφ+

1
2
e−φ(ιMH)y(ιNH)+

1
2
e2φ(F1)M (F1)N+

1
2
eφ(ιMF3)y(ιNF3)

+
1
4

(ιMF5)y(ιNF5)− 1
8
gMN

(
e−φHyH + eφF3yF3

)
, (B.1)

d ∗ dφ = −1
2
e−φH ∧ ∗H + e2φF1 ∧ ∗F1 +

1
2
eφF3 ∧ ∗F3 , (B.2)

d
(
e−φ ∗H

)
= eφ F1 ∧ ∗F3 + F3 ∧ ∗F5 , (B.3)

d
(
e2φ ∗ F1

)
= −eφH ∧ ∗F3, (B.4)

d
(
eφ ∗ F3

)
= −H ∧ ∗F5, (B.5)

d ∗ F5 = H ∧ F3 . (B.6)

The equation of motion for F5 and its Bianchi identity dF5 = H∧F3 are actually equivalent,
due to the self-duality constraint F5 = ∗F5 .

The decomposition of the higher-dimensional Ricci tensor associated with the met-
ric (2.7) was given in [8] and we just reproduced their result. Translating the expressions
(D.2)–(D.6) of [8] to the 5-dimensional Einstein frame, we obtain (in flat indices)

R
(10)
ab = e

8
3
U+ 2

3
V

[
Rab −

28
3
∂aU∂bU −

8
3
∂(aU∂b)V −

4
3
∂aV ∂bV

− 1
2
e

8
3
U+ 8

3
V FacFb

c +
1
3
ηab�5(4U + V )

]
, (B.7)

R
(10)
ij = δij

[
6 e−2U − 2 e−4U+2V − e

8
3
U+ 2

3
V�5U

]
, (B.8)

R
(10)
99 = 4 e−4U+2V − e

8
3
U+ 2

3
V�5V +

1
4
e

16
3
U+ 10

3
V FabF

ab, (B.9)

R
(10)
ai = R

(10)
i9 = 0, (B.10)

R
(10)
a9 = −1

2
e

4
3
U− 2

3
V∇b

(
e

8
3
U+ 8

3
V Fba

)
, (B.11)

where we denote F = dA. The Ricci tensor on the left hand side of the above equations
is expressed in terms of the 10-dimensional vielbeins EA, namely R

(10)
AB = R

(10)
MNE

M
A E

N
B ,

whereas the vielbeins employed on the right hand side are the ones of the 5-dimensional
Einstein metric gµν , defining ds2(M) in (2.7). Here, the a, b indices are flat indices on M ,
while i, j are flat indices on the Kähler-Einstein base BKE of our internal manifold.
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Recalling the expressions in section 2 for the reduction of the various 10-dimensional
form fields, the reduction of the dilaton equation (B.2) is straightforward, and yields

d ∗ dφ−e2φdC0 ∧ ∗dC0 +
1
2
e−φ

[
e

16
3
U+ 4

3
V h3 ∧ ∗h3 + e

8
3
U− 4

3
V h2 ∧ ∗h2 + 2e−4UhJ1 ∧ ∗hJ1

+ 2e−4URe
(
hΩ

1 ∧ ∗hΩ
1

)
+ 2e−

20
3
U− 8

3
V |hΩ

0 |2 ∗ 1
]
− 1

2
eφ
[
hp → gp

]
= 0 , (B.12)

which is consistent with the 5-dimensional action of section 3. By hp → gp we denote
repetition of the terms in the previous parenthesis with hp replaced by gp.

Equation (B.4) yields the 5-dimensional equation of motion for the RR axion C0(x):

d
(
e2φ ∗ dC0

)
+eφ

[
e

16
3
U+ 4

3
V h3 ∧ ∗g3 + e

8
3
U− 4

3
V h2 ∧ ∗g2 + 2e−4UhJ1 ∧ ∗gJ1

+ 2 Re
(
e−4UhΩ

1 ∧ ∗gΩ
1 + e−

20
3
U− 8

3
V hΩ

0 g
Ω
0 ∗ 1

)]
= 0 . (B.13)

The H-equation of motion (B.3) gives the following four 5-dimensional expressions

d
(
e

16
3
U+ 4

3
V−φ ∗ h3

)
= e

16
3
U+ 4

3
V+φdC0 ∧ ∗g3 + 2g3f0 − 2g2 ∧ f1 + 2gJ1 ∧ fJ2

+ 2 Re
(
gΩ

1 ∧ fΩ
2 − g

Ω
0 f

Ω
3

)
, (B.14)

which is the equation of motion for b2 ,

d
(
e

8
3
U− 4

3
V−φ ∗ h2

)
− 4e−4U−φ ∗ hJ1 − e

16
3
U+ 4

3
V−φdA ∧ ∗h3 = (B.15)

=e
8
3
U− 4

3
V+φdC0 ∧ ∗g2 − 2g3 ∧ f1 + 2e−

4
3
U− 4

3
V gJ1 ∧ ∗fJ2 + 2 e−

4
3
U− 4

3
V Re

(
gΩ

1 ∧ ∗fΩ
2

)
,

which is the equation of motion for b1 ,

d
(
e−4U−φ ∗ hJ1

)
= e−4U+φdC0∧∗gJ1 +g3∧fJ2 +e−

4
3
U− 4

3
V g2∧∗fJ2 +2e−8UgJ1 ∧∗f1, (B.16)

which is the equation of motion for bJ , and

D(e−4U−φ ∗ hΩ
1 ) = e−4U+φdC0 ∧ ∗gΩ

1 + g3 ∧ fΩ
2 + e−

4
3
U− 4

3
V g2 ∧ ∗fΩ

2 + 2e−8UgΩ
1 ∧ ∗f1 −

−
(

3i e−
20
3
U− 8

3
V−φhΩ

0 − 2e−
32
3
U− 8

3
V gΩ

0 f0

)
∗ 1 , (B.17)

which is the equation of motion for bΩ. Once more, all these equations are compatible with
the ones obtained from the action of section 3.

We now consider the C2 equation given in (B.5). This is obtained from (B.3) by
performing H → F3, F3 → −H, F1 → 0 and −φ → φ. It follows that the corresponding
5-dimensional equations, to be interpreted as equations of motion for c2, c1, cJ , cΩ , are
derived from the equations above respectively for b2, b1, bJ , bΩ by implementing

hp → gp, gp → −hp, dC0 → 0, −φ → φ . (B.18)

The equations of motion coming from the reduction of the 5-form are also its Bianchi
identities, following the discussion in section 2.2. The equation of motion of aJ1 is

d
(
e−

4
3
U− 4

3
V ∗ fJ2

)
− 4e−8U ∗ f1 − fJ2 ∧ dA = DcJ ∧ (db2 − b1 ∧ dA)− b↔ c . (B.19)
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As f1 defines the covariant curvature for the field a, which is a pure gauge of the gauge
symmetry inherited from shifting the C4 potential, its equation of motion is not giving
us new independent information on the dynamics. In fact it can be obtained by exterior
differentiation on (B.19):

d
(
2e−8U ∗ f1

)
= (db2 − b1 ∧ dA) ∧ dc1 − b↔ c . (B.20)

Finally, the equation of motion of aΩ
2 reads

DaΩ
2 − aΩ

1 ∧ dA+
1
2
[
b2 ∧DcΩ + bΩ(dc2 − c1 ∧ dA)− b↔ c

]
= −e−

4
3
U− 4

3
V ∗ fΩ

2 , (B.21)

and is equivalent to the duality relation between fΩ
2 and fΩ

3 given in (2.22). The equation
for aΩ

1 is just its covariant derivative, reflecting the fact that aΩ
1 is a pure gauge degree of

freedom.
We are now left with the reduction of the higher-dimensional Einstein equation (B.1).

Also recalling eq. (B.8), we see that the block with ij indices is proportional to δij and
therefore yields a single scalar equation, which reads

�U−6e−
14
3
U− 2

3
V +2e−

20
3
U+ 4

3
V +

e−φ

4

[
−1

2
e

16
3
U+ 4

3
V h3yh3−

1
2
e

8
3
U− 4

3
V h2yh2+e−4UhJ1 yh

J
1

+e−4UhΩ
1 yh

Ω
1 + e−

20
3
U− 8

3
V |hΩ

0 |2
]

+
eφ

4

[
hp → gp

]
+ e−8Uf1yf1 + e−

32
3
U− 8

3
V f2

0 =0, (B.22)

where the metric involved in the D’Alembertian and in the contraction of the indices is
gµν . The 9 9 component of the same 10-dimensional equation reads

�V − 4e−
20
3
U+ 4

3
V − 1

2
e

8
3
U+ 8

3
V FyF +

e−φ

4

[
−1

2
e

16
3
U+ 4

3
V h3yh3 +

3
2
e

8
3
U− 4

3
V h2yh2

−e−4UhJ1 yh
J
1 − e−4UhΩ

1 yh
Ω
1 + 3e−

20
3
U− 8

3
V |hΩ

0 |2
]

+
eφ

4

[
hp → gp

]
−e−8Uf1yf1 +

1
2
e−

4
3
U− 4

3
V fJ2 yf

J
2 +

1
2
e−

4
3
U− 4

3
V fΩ

2 yf
Ω
2 + e−

32
3
U− 8

3
V f2

0 = 0 . (B.23)

The two 5-dimensional scalar equations above are equivalent to the equations of motion
for U and V .

We get no 5-dimensional equations from the Einstein equations with ai or with i 9 in-
dices, because all the terms appearing there separately vanish within our reduction ansatz.

The Einstein equation with a 9 flat indices reduces to

−d
(
e

8
3
U+ 8

3
V ∗ dA

)
+ e−φ

[
e

16
3
U+ 4

3
V h2 ∧ ∗h3 + 2e−4URe

(
hΩ

0 ∗ hΩ
1

)]
+ eφ

[
hp → gp

]
+fJ2 ∧ fJ2 + fΩ

2 ∧ fΩ
2 + 4 e−8Uf0 ∗ f1 = 0 , (B.24)

which is the equation of motion for A and is equivalent to the one derived from the action
presented in section 3.
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Finally we study the ab components of the Einstein equation, where we em-
ploy (B.22), (B.23) to get rid of the �(4U + V ) term appearing in the expression (B.7) for
the higher-dimensional Ricci tensor. This yields the 5-dimensional Einstein equation

Rab =
28
3
∂aU∂bU+

8
3
∂(aU∂b)V +

4
3
∂aV ∂bV +

1
2
e

8
3
U+ 8

3
V ιaFy ιbF+

1
2
∂aφ∂bφ+

e2φ

2
∂aC0∂bC0

+
1
2
e−φ

[
e

16
3
U+ 4

3
V ιah3y ιbh3 + e

8
3
U− 4

3
V ιah2y ιbh2 + 2e−4UhJ1 ah

J
1 b + 2e−4UhΩ

1(ah
Ω
1 b)

]
+

1
2
eφ
[
hp → gp

]
+ e−

4
3
U− 4

3
V ιaf

J
2 y ιbf

J
2 + e−

4
3
U− 4

3
V ι(af

Ω
2 y ιb)f

Ω
2 + 2e−8Uf1 af1 b

−1
3
ηab

[
24 e−

14
3
U− 2

3
V − 4 e−

20
3
U+ 4

3
V +

1
2
e

8
3
U+ 8

3
V FyF

+e−φ
(
e

16
3
U+ 4

3
V h3yh3 +

1
2
e

8
3
U− 4

3
V h2yh2 − e−

20
3
U− 8

3
V |hΩ

0 |2
)

+ eφ
(
hp → gp

)
+e−

4
3
U− 4

3
V
(
fJ2 yf

J
2 + fΩ

2 yf
Ω
2

)
− 2 e−

32
3
U− 8

3
V f2

0

]
, (B.25)

which also matches the one obtained by varying the action of section 3.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution Noncommercial License which permits any noncommercial use, distribution,
and reproduction in any medium, provided the original author(s) and source are credited.
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