
Type Inference with constrained Types

Martin Sulzmann, Martin Odersky, Martin Wehr

University of Karlsruhe

Institute for Program Structures and Data Organization

Am Fasanengarten 5, 76128 Karlsruhe, Germany

fsulzmann,odersky,wehrg@ira.uka.de

1 Introduction

There are many type systems that extend the Hindley/Mil-
ner[Mil78] system with constraints. Examples are found
in record systems [Oho95, Rem89], overloading [Jon92,
HHJW96, NP93, KC92, OWW95], and systems that
support subtyping [CCH+89, BSvG95, AW93, EST95].
Extensions of Hindley/Milner with constraints are also
increasingly popular in program analysis [DHM95, TJ92].

Even though these type systems use di�erent con-
straint domains, they are largely alike in their type-
theoretic aspects. In this paper we present a general
framework HM(X) for Hindley/Milner style type sys-
tems with constraints, analogous to the CLP(X) frame-
work in constraint logic programming [JM94]. Partic-
ular type systems can be obtained by instantiating the
parameter X to a speci�c constraint system. The Hind-
ley/Milner system itself is obtained by instantiating X
to the trivial constraint system over a one point domain.

By and large, the treatment of constraints in type
systems has been syntactic : constraints were regarded
as sets of formulas, often of a speci�c form. On the
other hand, constraint programming now generally uses
a semantic de�nition of constraint systems, taking a
constraint system as a cylindric algebra with some ad-
ditional properties [HMT71, Sar93]. Cylindric algebras
de�ne a projection operator 9�� that binds some sub-
set of variables �� in the constraint. In the usual case
where constraints are boolean algebras, projection cor-
responds to existential quanti�cation.

Following the lead of constraint programming, we
treat a constraint system as a cylindric algebra with a
projection operator. Projection is very useful for our
purposes for two reasons: First, projection allows us
to formulate a logically pleasing and pragmatically use-
ful rule (8 Intro) for quanti�er introduction. Second,
projection is an important source of opportunities for
simplifying constraints [Jon95]. In our framework, sim-
plifying means changing the syntactic representation of
a constraint without changing its denotation. For ex-
ample, the subtyping constraint

9�:� � �; � �

can safely be simpli�ed to

� �

since the denotation is the same for both constraints.
Without the projection operator, the two constraints

would be di�erent, since one restricts the variable �
while the other does not.

Two of the main strengths of the Hindley/Milner
system are the existence of a principal types theorem
and a type inference algorithm. We present su�cient
conditions on the constraint domain X so that the prin-
cipal types property carries over to HM(X). The con-
ditions are fairly simple and natural. For those con-
straint systems meeting the conditions, we present a
generic type inference algorithm that will always yield
the principal type of a term. The proofs for the prop-
erties can be found in the forthcoming technical report
[Sul96].

The rest of this paper is structured as follows: In
Section 2 we discuss some previous approaches to con-
strained type systems, and how they di�er in their quan-
ti�er introduction rule. Section 3 presents a charac-
terization of constraint systems. A general framework
HM(X) for Hindley/Milner style type systems with con-
straints is discussed in Section 4. Some instantiations
for parameter X in the frame HM(X) are examined in
Sections 6, 5 and 7. In Section 5 we consider extensible
records, in Section 6 type classes and overloading and
in section 7 subtypes. Section 8 concludes.

2 Related Work

All constrained type systems we study extend the type
judgments � ` e : � of the Hindley/Milner system
with a constraint hypothesis on the left hand side of
the turnstyle, written C;� ` e : �. Furthermore, they
extend the type schemes 8��:� of the Hindley/Milner
system with a constraint component; we write

8��:C) �

to express that the constraint C restricts the types that
can legally be substituted for the bound variables ��.

All type systems have essentially the same rule for
eliminating quanti�ers, which we write as follows:

(8 Elim);
C;� ` e : 8��:D) � 0 C ` [��=��]D

C;� ` [��=��]� 0

The rule is a re�nement of the corresponding rule in the
Hindley/Milner system. It says that only those types �
that satisfy the constraint D can legally be substituted
for the bound variables � in a type scheme 8�:D) � .

No satis�ability check [Jon92]:
C [D;� ` e : � �� 62 tv(C) [tv(�)

C;� ` e : 8��:D) �
(8 Intro-1)

Weak satis�ability check [AW93]:
C [D;� ` e : � 9D �� 62 tv(C) [tv(�)

C;� ` e : 8��:D) �
(8 Intro-2)

Strong satis�ability check [Smi94]:

C [D;� ` e : � C ` [��=��]D
�� 62 tv(C) [tv(�)

C;� ` e : 8��:D) �

(8 Intro-3)

Duplication [EST95]:
C [D;� ` e : � �� 62 tv(C) [tv(�)

C [D;� ` e : 8��:D) �
(8 Intro-4)

Figure 1: Versions of the quanti�er introduction rule

While there is agreement about the proper technique
for eliminating quanti�ers in type schemes, there is re-
markable disagreement about the proper way to intro-
duce them. Figure 1 shows four di�erent rules that
have all been proposed in the literature. We have edited
these rules somewhat to present them in a uniform style,
and have attempted to compensate for the consider-
able variations in detail between published type sys-
tems. We now discuss each of the four schemes in
turn.

In his work in quali�ed types [Jon92], Jones uses
a general framework for type quali�cation with a rule
equivalent to rule (8 Intro-1). Any constraint can be
shifted from the assumption on the left to the type
scheme on the right of the turnstyle; it is not checked
if the constraint so traded is satis�able or not. This
might lead to programs that are well-typed as a whole,
even though some parts have unsatis�able constraints.

To give an example, assume that our constraints are
subtyping constraints (�) in a type system with records.
Let us assume that there is a parameterized type List�
with a less �eld such that for all types � ,

List � � fless : List � ! Boolg:

Let us further assume that there is a value Nil of type
8�:true) List� that represents the empty list. Con-
sider the following (nonsensical) program.

Example 1

let
f: 8�:(List� � fless : Bool! Boolg)) List�! List�
f x = if x.less(true) then x else Nil

in 1
end

We use a Haskell-style notation, adding type annota-
tions for illustration purposes. Using rule (8 Intro-1),
the program in 1 is well-typed, even though we would
not expect the constraint in function f's type scheme to
have a solution, since the function type List� would not
have a less �eld of type Bool! Bool.

In the ideal semantics of types [MPS86], which rep-
resents universal quanti�cation by intersection, f 's type

would be an empty intersection, which is equal the
whole type universe including the error element wrong.
However, the whole program in 1 is still sound because
every application of f must provide a valid instantia-
tion of the constraint. Since the constraint is unsat-
is�able, no application is possible. In essence, Jones
treats constraints as proof obligations that have to be
ful�lled by presenting \evidence" at the instantiation
site. This scheme is clearly inspired by Haskell's imple-
mentation of overloading by dictionary passing. It runs
into problems if one ever wants to compute a value of a
constrained type without any instantiation sites, as in
the following slight variation of Example 1.

Example 2

let
y: 8�:(List� � fless : Bool! Boolg)) Bool
y = Nil.less(true)

in 1
end

Jones excludes this code on the grounds that y's type
is ambiguous, but it is unclear how to generalize this
restriction to arbitrary constraint systems.

In the type system of Aiken/Wimmers [AW93], mov-
ing a constraint from the left hand side of the turnstyle
to the right-hand side is allowed only if the constraint is
satis�able (i.e. has a solution). Hence, none of the pre-
vious examples would be typable with rule (8 Intro-2),
which they use. However, this example is typable.

Example 3

let
f: 8�:� ! Int
f x =

let y: 8�:(List� � fless : � ! Boolg)) Bool
y = Nil.less(x)

in 1
in f true

The constraint List� � fless : � ! Boolg has a solution,
namely � = List�. Therefore, using rule (8 Intro-2) we
can generalize y's type to

8�:(List� � fless : � ! Boolg)) Bool:

On the other hand, if we substitute the actual parame-
ter true in f's de�nition, we get again Example 2 which
is not typable under the system with (8 Intro-2). Hence,
the system with (8 Intro-2) does not enjoy the property
of subject reduction, which says that if a term is typable
then its reduction instances are typable as well.

Where Aiken andWimmers require only a weak form
of satis�ability for traded constraints, G. Smith requires
a strong one [Smi94]. In rule (8 Intro-3), the traded con-
straint D must be solvable by instantiation of only the
quanti�ed variables ��. Hence, all three previous exam-
ples would be untypable under his system. However,
(8 Intro-3) rule might seem overly restrictive, depend-
ing on the constraint system used. In a type system
in which subtyping is by declaration, assume we have a
record type

type Less a = fless: a!Boolg

with precisely the following four instances:

Int � fless: Int ! Boolg
Int � fless: Float ! Boolg
Float � fless: Int ! Boolg
Float � fless: Float ! Boolg

Now consider the following program:

Example 4

let
f x =

let g y = x.less(y)
in g 1 && g 1.0

in f 1 && f 1.0

When typing the de�nition of g, Smith's system requires
a solution of the constraint �x � Less �y, where �x is x's
type and �y is y's type. Solutions to this constraint
systems exist for both �x = Int and �x = Float. The
problem is that we have to arbitrarily pick one of these
instantiations for �x since there is no best type for x
that improves on both solutions.

The system of the Hopkins Objects Group [EST95]
di�ers from the previous three systems in that in rule
(8 Intro-4) the constraint D is copied instead of moved;
there are no restrictions on when the copying can take
place. Under this scheme, the �rst three examples would
be rejected and the fourth one would be accepted, which
corresponds fairly well to our intuition. At the same
time, rule (8 Intro-4) seems strange in that its conclu-
sion contains two copies of the constraint D, one in
which the type variables � are bound and one in which
they are free. Actually, the Hopkins Objects Group
use a slightly di�erent system in which generalization is
coupled with the let rule and one of the two constraints
undergoes a variable renaming. Still, it is di�cult to see
how one could put this into a good logical formulation.

Another possible objection to rule (8 Intro-4) is prag-
matic: Since constraints never disappear from the hy-
pothesis, we will end with a large hypothesis when typ-
ing large programs. The Hopkins Objects Group do
address this problem by investigating ways to simplify
constraints.

The framework that we present is most closely re-
lated to the one of the Hopkins Objects Group, but

instead of simply duplicating the constraint D we split
it up into two versions, one existentially quanti�ed, the
other universally quanti�ed. With this change, their
system can be seen as a special instance of our frame-
work that deals just with subtyping constraints. Fur-
thermore, our framework gives a semantic justi�cation
for the consistency requirements and their simpli�cation
techniques.

3 Constraint Systems

We present a characterizations of constraint systems
along the lines of Henkin [HMT71] and Saraswat [Sar93].

De�nition 1 (Simple Constraint System) A simple
constraint system is a structure (
; `e) where
 is a
non{empty set of tokens or (primitive) constraints 1 and
`e� p
�
 is a decidable entailment relation where p

is the set of �nite subsets of
. We call C 2 p
 a con-
straint set or simply a constraint.

A constraint system (
; `e) must satisfy for all con-
straints C;D 2 p
:

C1 C `e P wheneverP 2 C and
C2 C `e Qwhenever

C `e P for allP 2 D andD `e Q

We extend `e to be a relation on p
� p
 by: C `e D
:i� C `e P for every P 2 D. De�ne C =e D :i�
C `e D and D `e C and true := fP j; `e Pg.

De�nition 2 (Cylindric Constraint System) A cylin-
dric constraint system C is a structure
(
; `e ;Var; f9�j� 2 Varg) such that:

� (
; `e) is a simple constraint system,

� Var is an in�nite set of variables,

� For each variable � 2 Var; 9� : p
 ! p
 is an
operation satisfying:

E1 C `e 9�:C
E2 C `e D) 9�:C `e 9�:D
E3 9�:(C [9�:D) =e 9�:C [9�:D
E4 9�:9�:C =e 9�:9�:C

The next de�nition de�nes the free type variables
tv(C) of a constraint C.

De�nition 3 (Free Variables) Let C be a constraint.

tv(C) := f�j9�:C 6=e Cg

We now introduce a much more expressive constraint
system. We want to deal with types and substitutions.

De�nition 4 (Types) A type is a member of
Term(Var,!) where Term(Var,!) is the term algebra
build up from a set Var of variables and the function
constructor ! of arity 2.

De�nition 5 (Substitutions) A substitution � is an
idempotent mapping from a set of variables Var to the
term algebra Term(Var,!). Let 1 be the identity sub-
stitution.

1We also refer to such constraints as predicates.

(VAR) C;� ` x : � (x : � 2 �)

(ABS)
C;�x:x : � ` e : � 0

C;� ` �x:e : � ! � 0

(APP)
C;� ` e1 : �1 ! �2 C;� ` e2 : �1

C;� ` e1e2 : �2

(LET)
C;�x ` e : � C;�x:x : � ` e0 : � 0

C;�x ` let x = e in e0 : � 0

(8 Intro)
C [D;� ` e : � �� 62 tv(C) [tv(�)

C [9��:D;� ` e : 8��:D) �

(8 Elim)
C;� ` e : 8��:D) � C `e [��=��]D

C;� ` e : [��=��]�

Figure 2: Logical type system

De�nition 6 (Type Constraint System) A type con-
straint system D is a cylindric constraint system having
some additional properties. For types �; � 0 the token
< � = � 0 > is contained in the set of primitive con-
straints.

F1 ; `e f< � = � >g
F2 f< � = � 0 >g `e f< � 0 = � >g
F3 f< � = � >;< � = � >g `e f< � = � >g
F4 f< � = � >g [9�:(C [f< � = � >g) `e C
F5 f< �1 = � 01 >;< �2 = � 02 >g `

e

f< �1 ! �2 = � 01 ! � 02 >g
F6 for all predicates P holds:

f[�=�]Pg =e 9�:fP;< � = � >g
where � 62 tv(�)

Remark 1 Conditions F1 { F3 are quite obvious. Con-
dition F4 states that we can substitute the same with the
same. It is in fact the Leibniz principle. Condition F5
states that < = > is a congruence. Condition F6 de-
�nes how a substitution acts on a primitive constraint.

Some basic lemmas follow. The �rst states that <
= > is transitive.

Lemma 1 Let C be a constraint and �; � 0; � 00 be types.

if C `e f< � = � 0 >;< � 0 = � 00 >g
then

C `e f< � = � 00 >g

The next lemmas state some basic properties about
how a substitution acts on a constraint.

Lemma 2 Let C be a constraint and � = [��=��] a sub-
stitution.

�C
=e

9�1: : : : 9�n:(C [f< �1 = �1 > ^ : : :^ < �n = �n >g)

Lemma 3 Let C be a constraint and �1; �2; �3 be sub-
stitutions.

(�1 � (�2 � �3))C =e ((�1 � �2) � �3)C

Lemma 4 Let C;D be constraints and � be a substitu-
tion.

�(C [D) =e �C [�D

Lemma 5 Let C;D be constraints and � be a substitu-
tion.

if C `e D
then

�C `e �D

4 A General Framework HM(X) for Hind-

ley/Milner Type Systems with Constraints

This sections describes an extension of the Hindley/Milner
type system with constraints. The ingredients are very
much the same as in the original presentation [DM82].

4.1 The Type System

Expressions e ::= xj�x:ejee0jlet e = x in e`j : : :
Types � ::= �j � ! � 0j : : :
Type schemes � ::= � j8�:C) �

The only extension compared to Hindley/Milner types
is in the de�nition of a quanti�ed type scheme 8�:C)
�. Here, C is a constraint which restricts the types that
can be substituted for the type variable �. Note, that
in our logical type system we only deal with a cylindric
constraint system (
; `e ;Var; f9�j� 2 Varg).

The type rules can be found in �gure 2. They have
the following structure. Intiutively, the statement C;� `
e : � says that from a set C of global constraints and
type context � one can derive term e with type �. As

(REF) ; `i � � �

(� 8)
C [D `i � � �0 � 62 tv(�) [tv(C)

C `i � � 8�:D) �0

(8 �)
C `i [��=��]� � � 0 C `e [��=��]D

C `i 8��:D) � � � 0

Figure 3: Instance rules

usual, the type context � contains statements of the
form x : �. Now, let us have a look at the type system.
The core rules(VAR), (LET), (ABS) and (APP) are
a straightforward generalization of the original Hind-
ley/Milner rules. The most interesting rules are the
(8 Intro) rule and the (8 Elim) rule. By rule (8 Intro)
we quantify some type variables. The term 8��:D) �
is an abbreviation for 8�1:true) : : :8�n:D) � and
9��:D for 9�1: : : : 9�n:D. By rule (8 Elim) we build an
instance of an type scheme. Of course, one can think of
further extensions such as the treatment of records.

Example 5 (Hindley/Milner) The Hindley/Milner sys-
tem is an instance of our type system. We have the
following minimal cylindric constraint system:

(ftrueg; `e ;Var; f9�j� 2 Varg)

4.2 Type Inference

Now, we consider the type inference problem. Some
technical details that are used in this section can be
found in Appendix A. The type inference algorithm
can be found in Figure 4. The algorithm takes as input
a type context � and a term e and reports as output a
substitution �, a constraint C and a type � .

The most interesting rules are the (APP) and (LET)
rule. In order to get a conclusion the results of the
premises are combined and then a normalization step
is performed. Remember, we only want to deal with a
cylindric constraint system C. But, if the premises are
combined we get a constraint in the type constraint sys-
tem D. Then we have to perform a normalization step
which yields a constraint in C. For example, normaliza-
tion of < �1 = �2 ! � > in the (APP) rule computes
a solution to the uni�cation problem (�1; �2 ! �). We
give an axiomatic description of such a normalization
in the next section. Then, we introduce an instance
relation to compare the results of the type inference al-
gorithm. Finally, we state the results.

4.2.1 Normalized Constraints

In this section we study the relationship between con-
straint systems C and D: We only want to deal with
constraint system C but some constraints will be ex-
pressible only in D. Thus we must perform a nor-
malization step. Consider for example the constraint
f< int ! bool = int ! � >g. Normalization yields

(C;) where C =e 1 and = [bool=�]. Below we give
an axiomatic description of such a normalization.

Preliminaries: Assume U is a �nite set of type
variables that are of interest in the situation at hand.
We need a handle to compare two substitutions.

De�nition 7 Let �, �0 and be substitutions.

 ��0

U � :i� (�0 �)jU = �jU

We write � � if 9�0 : ��0

�. Sometimes, we omit
the set U .

Note that this makes the "more general" substitu-
tion the smaller element in the pre{order �U . This
choice, which reverses the usual convention in treat-
ments of uni�cation (e.g. [LMM87]), was made to stay
in line with the semantic notion of type instances.

We make �U a partial order by identifying substitu-
tions that are equal up to variable renaming, or equiv-
alently, by de�ning =U � i� �U � and � �U .
It follows from [LMM87] that �U is a complete lower
semi{lattice where least upper bounds, if they exist,
correspond to uni�cations and greatest lower bounds
correspond to anti{uni�cations.

De�nition 8 (Normalization) Let D be a constraint
from D and � be a substitution. Then there is a nor-
malization (C;) where C is a constraint from C and
a substitution such that

C `e D

� ��0

 C = C C is minimal

Minimal means, if there is another normalization (C 0; 0)

which satis�es the condition above then ��00

 0 and
C 0 `e �00C.
The function normalize(D;�) = (C;) computes the
normalization.

(VAR) 1; C;� `W x : � ((C; �) = new inst(�) x : � 2 �)

(ABS)
 ;C;�x:x : � `W e : � � new

 nf�g; C;� `W �x:e : (�) ! �

(APP)

 1; C1;� `W e1 : �1 2; C2;� `W e2 : �2
 0 = 1 t 2

D = C1 [C1 [f< �1 = �2 ! � >g � new
(C;) = normalize(D; 0)

 jtv(�); C;� `W e1e2 : �

(LET)

 1; C1;�x `W e : � (�;C2) = gen(C1; 1�; �)
 2; C3;�x:x : � `W e0 : � 0

 0 = 1 t 2 D = C2 [C3

(C;) = normalize(D; 0)

 jtv(�x); C;�x `W let x = e in e0 : � 0

Figure 4: Type inference

The normalization algorithm for HM(X)with exten-
sion X have following outlook.

normalize(D;�)
C := ;; (* set of normalized constraints *)
 := �; (* resulting substitution *)
while D 6= ; do

take a P 2 D; D := D n fPg;
case P of

< � = � 0 >) 0 = mgu(�; � 0);
D := 0D; := t 0;

normalization extension : X

general token P 2 D)
if unsatisfyable then fail

else D := D [ftokens generated by structural
reduction of token Pg;

mayby extend ;
normalized token P 2 C)

if 9conicting normalized token 2 D then fail
else C := C [fPg;
mayby extend ;

od
return(C;);

In case of the Hindely/Milner type system normaliza-
tion means simply computation of the most general uni-
�er. In Sections 5 and 6 we consider normalization ex-
tensions for extensible records, type classes and over-
loading.

4.2.2 The Instance Relation

In order to state the results we need a handle to compare
two type schemes � and �0 with respect to a constraint
C. This relation is expressed by the term C `i � � �0.
The rules for `i can be found in Figure 3. We introduce
some basic lemmas.

The (CUT) and (TRANS) rules are derivable.

Lemma 6 Let C and D be constraints and � and �0 be
type schemes.

if D `e C C `i � � �0

then
D `i � � �0

Lemma 7 Let C be a constraint and �1; �2 and �3 be
type schemes.

if C `i �1 � �2 C `i �2 � �3
then

C `i �1 � �3

We introduce the next de�nition in order to state
the completeness result in a convenient manner.

De�nition 9 Let C be a constraint and � and �0 be
type contexts.

C `i �0 � �
:i�

� = fe1 : �1; : : : ; en : �ng;�
0 = fe1 : �

0
1; : : : ; en : �0

ng and
C `i �0

i � �i 8i : i 2 f1; : : : ; ng

4.2.3 Main Results

We now present the desired results.

Theorem 1 (Soundness)

if ;C;� `W e : �
then

C; � ` e : �
 C = C � = �

Theorem 2 (Completeness)

if C 0;�0 ` e : �0 C 0 `i �� � �0

then
 ;C;� `W e : �

�o = gen1(C; �; �)

 ��0

tv(�)
� C 0 `i �0�o � �0

Labels L l
Expressions e ::= : : : j (e j l = e0) record extension

j e:l selection
Record types r ::= � j <> j < r j l : � >
Types � ::= r j � ! � 0

Token constructors for D
 ::= r lacks l record r has no label l
j r has l : � record r has unique label l : �
j < � = � 0 > diagonal token

Normalized token for C
 ::= � lacks l
j � has l : �

New logical rules

(select)
D;� ` e : r D `e r has l : �

D;� ` e:l : �

(r-extend)
D;� ` e : r D;� ` e0 : � D `e r lacks l

d;� ` (e j l = e0) :< r j l : � >

Figure 5: Ingredients for extensible records

Corollary 1 (Principal Types)

if C 0;�0 ` e : �0 tv(�0) = ;
then

1; C;�0 `W e : �
�o = gen1(C;�; �)
C 0 `i �o � �

One might wonder why we do not need the notion
of satis�ability for the completeness result. In fact, we
do not need the notion of satis�ability for the theoret-
ical approach. Of course, if we consider a speci�c type
system we must check whether type inference reports
a satis�able constraint. First, we give a de�nition of
satis�ability.

De�nition 10 (Satis�ability) Let C be a constraint.

C is satis�able
:i�

; `e 9��:C where �� = tv(C)

Because of the following two lemmas it is straight-
forward to take into account the satis�ability of con-
straints. If we derive an unsatis�able constraint in our
logical type system, then the rest of the derivation al-
ways yields an unsatis�able constraint, and the normal-
ization of an unsatis�able constraint always yields an
unsatis�able constraint.

Lemma 8 If the constraints of the premises of a rule of
the logical type system are satis�able then the constraint
of the conclusion is satis�able.

Lemma 9 Let D be a constraint and � be a substitu-
tion.

if �D is unsatis�able
then

normalize(D;�) = (C;) where C is unsatis�able.

Therefore it does not matter whether we test the sat-
is�ability of constraints during or after type inference.

5 Extensible Records as constrained Type

System

We walk through a program which is similar for every
language extension X in HM(X). First the language is
extended by record extension and record selection (see
�gure 5). Next the constraint system is extended to
express the lack of a label or the existence of a label.
We must extend the logical type system by rules to give
records a type. We must de�ne the operation of the
constraint entailment relation on the new constraints
which is done in �gure 6. For inference we must de�ne
the notion of a satis�ed constraint problem, leading to
the notion of normalized constraint sets. Finally we
extend the inference to work with records and extend
the normalization algorithm.

The change relative to Hindley/Milner is the intro-
duction of a new form of types the record types. The
new logical rules explain that all record formation con-
structs can only apply on record typed expressions.

5.1 Type Inference for extensible Records

Type inference should result in a normalized constraint
set C and a type � , given a typotheses � and a pro-
gram e with extensible records. The core of the infer-
ence system is unchanged (�gure 4) the extensions deal
with records (see �gure 7). The constraint set C is nor-
malized if its elements are normalized tokens and it is
consistent. The set C is inconsistent i� there exists a
pair of tokens � lacks l; � has l : � 2 C for a label l
and a type variable �, otherwise its is called consistent.
The last condition for normalized constraint set sets C
is the type uniqueness for existing labels.

� has l : � 2 C =)
8� 0::9� has l : � 0 2 C n f� has l : �g

The extension of the normalization algorithm (�gure
8 ensures these properties, or indicate a failure if the
conditions are violated.

(HAS)
D `e r lacks l

D `e < r j l : � > has l : �
D `e <> lacks l (LACKS)

(HAS-ext)
D `e r has l : �

D `e < r j l0 : � > has l : �

D `e r lacks l

D `e < r j l0 : � > lacks l
(LACKS-ext)

Figure 6: Constraint entailment relation for extensible records

Inference extension : extensible records

(select)
We �;C;�`W e : r (C 0;) = normalize(C ^ fr has l : �g; �) � new

 ;C 0;� ` e:l : �

(r-extend)
We �;C;�`W e : r �0C 0;�`W e : � (C 00; �00) = normalize(C ^ C 0 ^ fr lacks lg; � t �0)

�00; C 00;�`W (e j l = e0) :< r j l : � >

Figure 7: Inference system for extensible records

Normalization extension : extensible records

r lacks l) case r of
< r0 j l : � >) fail
< r0 j l0 : � 0 >) D := D [fr0 lacks lg

r has l : �) case r of
<>) fail
< r0 j l : � 0 >) D := D [f< � 0 = � >; r0 lacks lg
< r0 j l0 : � 0 >) D := D [fr0 has l : �g

� lacks l) if � has l : � 2 C then fail
else C := C [f� lacks lg

� has l : �) if � lacks l 2 C then fail
else for all � has l : � 0 2 D do
D := D [f< � = � 0 >g n f� has l : � 0g;
C := C [f� has l : �g;

od

Figure 8: Normalization for extensible records

Type constructors T for example f!; List ; : : :g
Class names C for example fEq, Ord, : : :g
Sorts S ::= fC1; : : : ; Cng
Signature � ::= ; j �; T (S1; : : : ; Sn)C
Token constructor for D
 ::= � : S a type belonging to a sort
Normalized token for C
 ::= � : S type variable restricted to belong to a sort
Types � ::= � j � ! � 0 j T�
Type schemes � ::= � j 8�:f� : Sg) �
Declarations d ::= class C where x : 8�:f� : Cg) � class declaration

inst T : (S1; : : : ; Sn)C where x = e instance declaration

Figure 9: Ingredients for type classes

(taut) D `e � : S (� : S 2 D)
D `e �1 : S1 : : : D `e �n : Sn T (S1 : : : Sn)C

D `e T�1 : : : �n : C
(tconst)

(sort-I)
D `e � : C1 : : : D `e � : Cn
D `e � : fC1; : : : ; Cng

D `e � : fC1; : : : ; Cng i = 1 : : : n

D `e � : Ci
(sort-E)

Figure 10: Constraint entailment relation for type classes

6 Type Classes

With the use of the proposed constraint type system
it is simple to include type classes in a Hindley/Milner
type system. We compare two approaches to realize
type classes.

First we restate the inference mechanism proposed
by Nipkow and Prehofer in [NP93]. A look at this algo-
rithm will lead to the observation that the style of this
type system is that of a constraint type system.

We then consider the approach of Jones [Jon92].
This example will shed a light on the two constraint
systems we are using, the general system D and the
normalized C. Our analysis will classify this approach
as one without the notion of normalizing.

The third example in this section is System O [OWW95].
It is a overloading type system which resolves some of
the problem of type classes.

6.1 Nipkow/Prehofer Approach

Figure 9 lists the ingredients used to extend Hindley/Mil-
ner with type classes. A program in the extended lan-
guage consists of a sequence of declarations d followed
by a expression e of the core language. The result of the
declaration will be a initialized signature �. A signature
entry T (S1; : : : ; Sn)C tells us that there is an instance
of class C for type T�1 : : : �n. Moreover the type vari-
able �i can only be bound to a type � i� there exists an
instance C 0� for every C 0 2 Si. The above lengthy con-
dition is expressed formally by the entailment relation
(see Figure 10) for the constraint system. In the �gure
we use letter D to denote a set of constraints � : S.

The normalization algorithm needs to know about
the constraints on type constructor arguments. This
access to the signature is done by

Dom(C; T) = fS1 : : : Sn j T (S1 : : : Sn) 2 �g

The result of the access is either a failure, if there is
no instance declaration for type constructor T in class
C, or the result constrains the arguments of the type
constructor. In the following you see the extension of
the normalization algorithm as given in section 4.2.1

Normalization extension : type classes

T� : S) for all C 2 S do
if no T (S1 : : : Sn)C 2 � then fail
else D := D [f�1 : S1; : : : ; �n : Sng

� : S) if � : S0 2 C
then C := C n f� : S0g [f� : S [S0g
else C := C [f� : Sg

The approach is slightly extended in taking account of
subclasses. The authors assume an ordering � on the
class names. With the restrictions of Haskell the func-
tion Dom(T;C) still works with a maximality property
leading again to the principal type property.

6.2 Jones Approach

The quali�ed types approach of Jones o�ers a improved
expressibility compared to Nipkow/Prehofer, but lacks
of a normalization. The main di�erences are as follow:

� (J) Constraint tokens C� can hold a sequence � of
types as argument$ instead of only one argument
(N/P).

� (J) The instance relation C1�
1 : : : Cn�

n) C� is
build with complex preconditions $ instead of
S1 : : : SnCT simple variable constraints �i : Si on
the arguments of type constructor T (N/P).

� (J) The subclass relation C1�
1 : : : Cn�

n) C� is
build with complex preconditions $ instead of a
simple order � on the class names (N/P).

� But there is no general notion of normalization.
In [Jon95] the idea of simplifying is proposed by
examples, but no axiomatic investigation is done.

6.3 System O

The system O can deal with overloaded parametric poly-
morphic functions. Further it has an denotational se-
mantics opposed to Haskell which can have only a trans-
lation semantics leading to complicated coherence argu-
ments. Therefore the known ambiguity problem from
Haskell does not appear in System O.

The idea is to separate the set of term variables x 2
V into the set u 2 U of unique variables and overloaded
variables o 2 O. The types of an overloaded function
must have form

�T = T �1 ::: �n ! � j 8�:C) �T

In a typotheses � multiple typings o : �T can live,
but every overloaded function o can have at most one
instance for a type constructor T . When representing
System O as a constraint type system, the two kinds of
constraints are:

General token o : � ! � 0 2 D. This kind of constraint
states the usage of a overloaded function.

Normalized token o : �! � 2 C. This kind of con-
straint restricts the instantiation possibilities for
type variable �.

(ENTAIL)
C `e f< � � � 0 >g

C `s � � � 0

(� 8)
C [D `s � � �0 � 62 tv(�) [tv(C)

C `s � � 8�:D) �0

(8 �)
C `s [��=��]� � � 0 C `e [��=��]D

C `s 8��:D) � � � 0

Figure 11: Subtype rules

(SUB)
C;� ` e : � C `e � � �

C;� ` e : �

Figure 12: Logical subtype system

While type inference the appearence a of constraint o :
� ! � 0 in constraint set D indicates an application of
overloaded functions o with argument of type � and
result of type � 0. So normalization must check wether
such an instance is de�ned. A proof of termination and
minimality of the result for the normalization algorithm
can be found in [WO96].

Normalization extension : overloading

o : T� ! � 0) if o : �T 62 � then fail
else let �T � 8�:C 0) T�! �

in D := D [[�=�]C 0[
f< � 0 = [�=�]� >g;

o : �! �) for all o : �! � 0 2 D do
D := D[
f< � = � 0 >g n fo : �! � 0g;

C := C [fo : �! �g;

7 A Type System with Subtyping

We now consider a type system with subtyping. The
subsumption rule is added to the logical type system
in �gure 2. Of course, we must introduce a constraint
system that is able to express subtyping.

De�nition 11 (Subtype Constraint System) A sub-
type constraint system SD is a type constraint system
with the following additional properties. For types �
and � 0 the token < � � � 0 > is contained in the set

of primitive constraints.

S1 f< � = � 0 >g =e f< � � � 0 > ^ < � 0 � � >g

S2
D `e f< �2 � �1 >g D `e f< �1 � � 02 >g

D `e f< �1 ! �1 � �2 ! � 02 >g

S3
D `e f< �1 � �2 >g D `e f< �2 � �3 >g

D `e f< �1 � �3 >g

Now, we introduce the subtype rules in Figure 11.
As for `i , we get that the (CUT) and (TRANS)

rules hold. These lemmas are already stated for `i in
Lemmas 6 and 7. Additionally, we have the (! Intro)
rule.

Lemma 10 Let C be a constraint and �1; �2; �3 be types.

if C `s � 01 � �1 C `s �2 � � 02
then

C `s �1 ! �2 � � 01 ! � 02

The type system can be found in Figure 12. There is
just one additional rule compared to the previous type
system, it is the (SUB) rule. Note that the (8 Elim)
rule is entailed by the (SUB) rule so there is no need
for it. Rules (VAR) { (LET) stay unchanged.

The type inference algorithm in Figure 13 is the same
except for the (APP) rule. In this extension normaliza-
tion is trivial if we only deal with subtype constraints.

Of course, we get the same results as already stated
in section 4.

Examples:
We have already discussed the type systems of Aiken,
Wimmers [AW93], G. Smith [Smi94] and Hopkins Ob-
jects Group [EST95]. Because of the di�erences in the
(8 Intro) rules there is no one to one correspondence to
our approach. As already mentioned, the type system
of the Hopkins Objects Group can be seen as a special
instance of our approach that deals with just subtyping
constraints. In other words normalization only tests if
the constraint is satis�able. Type inference reports only
a constraint and always the 1 substitution. Consider
the following example.

Example 6

1; f< � � � ! >;< � � ! � >g; ;
`W

�f:�x:f(fx) : (�! �)! �:

(APP)

 1; C1;� `W e1 : �1 2; C2;� `W e2 : �2
 0 = 1 t 2

D = C1 ^ C1 ^ f< �1 � �2 ! � >g � new
(C;) = normalize(D; 0)

 jtv(�); C;� `W e1e2 : �

Figure 13: Subtype inference

8 Conclusion

We have presented a general framework HM(X) for Hind-
ley/Milner style type systems with constraints. We
have introduced a new formulation of the (8 Intro) rule.
Also, if the constraint domain X satis�es some su�cient
conditions we get the principal type property. Several
extensions, such as the treatment of extensible records,
type classes, overloading or subtypes have been exam-
ined. To design a full language or static analysis based
on our approach, one must simply check that the con-
ditions on the constraint system are met. If this is the
case, one gets a type inference algorithm and the prin-
cipal type property for free.

References

[AW93] A.Aiken and E.L. Wimmers. Type inclu-
sion constraints and type inference. In
Proceedings of the International Conference
on Functional Programming Languages and
Computer Architecture, pages 31{41, 1993.

[BSvG95] Kim B. Bruce, Angela Schuett, and Robert
van Gent. Polytoil: A type-safe polymor-
phic object-oriented language (extended ab-
stract). In Proceeding of ECOOP, pages 27{
51, LNCS 952, 1995. Springer Verlag.

[CCH+89] Peter Canning, William Cook, Walter Hill,
Walter Oltho�, and John C. Mitchell. F-
bounded polymorphism for object-oriented
programming. In Functional Program-
ming Languages and Computer Architec-
ture, pages 273{280, September 1989.

[DHM95] Dirk Dussart, Fritz Henglein, and Christian
Mossin. Polymorphic recursion and subtype
quanti�cations: Polymorphic binding-time
analysis in polynomial time. In Alan My-
croft, editor, Proceedings of SAS, pages 118{
135. Springer Verlag, September 1995.

[DM82] Luis Damas and Robin Milner. Principal
type schemes for functional programs. In
Proc. 9th ACM Symposium on Principles of
Programming Languages, January 1982.

[EST95] J. Eifrig, S. Smith, and V. Trifonov. Type
inference for recursivly constrained types
and its application to object oriented pro-
gramming. In Electronic Notes in Theoret-
ical Computer Science, volume 1, 1995.

[HHJW96] Cordelia V. Hall, Kevin Hammond, Si-
mon L. Peyton Jones, and Philip L.
Wadler. Type classes in haskell. TOPLAS,
18(2):109{138, March 1996.

[HMT71] L. Henkin, J.D. Monk, and A. Tarski. Cylin-
dric Algebras. North-Holland Publishing
Company, 1971.

[JM94] Joxan Ja�ar and Michael Maher. Constraint
logic programming: A survey. Journal of
Loagic Programming, 19,20:503{581, 1994.

[Jon92] Mark P. Jones. Quali�ed Types : Theory
and Practice. PhD thesis, Programming Re-
search Group, Oxford University Comput-
ing Laboratory, July 1992.

[Jon95] Mark P. Jones. Simplifying and improving
quali�ed types. In Proc. FPCA'95 Conf.
on Functional Programming Languages and
Computer Architecture, 1995.

[KC92] Martin Odersky Kung Chen, Paul Hudak.
Parametric type classes. In Proc. of Lisp
and F.P., pages 170{181. ACM, 1992.

[LMM87] J. Lassez, M. Maher, and K. Marriott. Uni-
�cation revisited. In J. Minker, editor,
Foundations of Deductive Databases and
Logic Programming. Morgan Kau�mann,
1987.

[Mil78] Robin Milner. A theory of type polymor-
phism in programming. Journal of Com-
puter and System Sciences, 17:348{375, Dec
1978.

[MPS86] D. MacQueen, G. Plotkin, and R. Sethi. An
ideal model for recursive polymorphic types.
Information and Control, 71:95{130, 1986.

[NP93] Tobias Nipkow and Christian Prehofer.
Type checking type classes. POPL, pages
409{418, 1993.

[Oho95] Atsushi Ohori. A polymorphic record
calculus and its compilation. TOPLAS,
17(6):805{843, November 1995.

[OWW95] M. Odersky, P. Wadler, and M. Wehr.
A second look at overloading. In Proc.
FPCA'95 Conf. on Functional Program-
ming Languages and Computer Architec-
ture, 1995.

[Rem89] D. Remy. Typechecking records and vari-
ants in a natural extension of ML. In Proc.
16th ACM Symposium on Principles of Pro-
gramming Languages, pages 77{88. ACM,
January 1989.

[Sar93] Vijay A. Saraswat. Concurrent Constraint
Programming. Logic Programming Se-
ries, ACM Doctoral Dissertation Award Se-
ries. MIT Press, Cambridge, Massachusetts,
1993.

[Smi94] Geo�rey S. Smith. Principal type schemes
for functional programs with overloading
and subtyping. Science of Computer Pro-
gramming, 23:197{226, 1994.

[Sul96] Martin Sulzmann. Proof of the proper-
ties for constrained types. Technical report,
University of Karlsruhe, 1996.

[TJ92] Jean-Pierre Talpin and Pierre Jouvelot.
The type and e�ect discipline. In Sev-
enth Annual IEEE Symposium on Logic in
Computer Science, Santa Cruz, California,
pages 162{173, Los Alamitos, California,
June 1992. IEEE Computer Society Press.

[WO96] M. Wehr and M. Odersky. Proof of the prin-
cipal type property for system O. Techni-
cal report, Universit�at Karlsruhe, Interner
Bericht 16/96, June 1996.

A Technical Details for Type Reconstruc-

tion

De�nition 12

gen(C;�; �) = (8��n:C) �; 9��n:C)
gen1(C;�; �) = 8��n:C) �

where ��n = (tv(�) [tv(C))ntv(�).

Also, we have to compute the generic instance of a
type scheme �.

De�nition 13 The generic instance of a type scheme
�, namely new inst(�), is de�ned by the following:

new inst(�) = do inst(�; 1)
do inst(8�:C) �;D) = do inst([�=�]�; [�=�]C ^D)
do inst(�; C) = (�; C)

where � is a new type variable.

