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Abstract

The correct definition and implementation of non-trivial type

systems is difficult and requires expert knowledge, which

is not available to developers of domain-specific languages

(DSLs) in practice. We propose Veritas, a workbench that

simplifies the development of sound type systems. Veritas

provides a single, high-level specification language for type

systems, from which it automatically tries to derive soundness

proofs and efficient and correct type-checking algorithms.

For verification, Veritas combines off-the-shelf automated

first-order theorem provers with automated proof strategies

specific to type systems. For deriving efficient type checkers,

Veritas provides a collection of optimization strategies whose

applicability to a given type system is checked through

verification on a case-by-case basis. We have developed a

prototypical implementation of Veritas and used it to verify

type soundness of the simply-typed lambda calculus and of

parts of typed SQL. Our experience suggests that many of

the individual verification steps can be automated and, in

particular, that a high degree of automation is possible for

type systems of DSLs.

1. Introduction

Most type systems in practice are shipped without an in-

vestigation of the type system’s soundness. Practical type

systems are often too complex to permit an affordable formal

investigation, especially since language developers often lack

the necessary expertise. This is particularly true for domain-

specific languages (DSLs) routinely developed in practice

nowadays [10, 12, 14]. Our vision is to enable software engi-

neers and developers of DSLs to devise provably sound type

[Copyright notice will appear here once ’preprint’ option is removed.]

systems and to derive efficient and correct implementations

of type checking and type inference algorithms.

Automated verification of type soundness is a long-

standing open problem. In 2005, leading researchers in the

field defined the POPLMARK challenge [2], a benchmark

for type-soundness verification featuring first-class functions,

records, parametric polymorphism, and subtyping. While one

of the goals was to foster automated verification techniques,

to date there is no fully automated solution to the challenge.

Techniques that can automatically verify the POPLMARK

challenge or at least parts of the challenge are likely to

yield a high degree of automation for the verification of type

systems of DSLs, which tend to use more specialized, but

conceptually simpler type-system features.

A sound type system is only half of the story: It is equally

important to deliver efficient and correct implementations in

the form of type checkers and type inference algorithms. Yet,

often there is no guarantee that the type-checking algorithms

actually implement the specification of the type system. Incor-

rect implementations of sound security protocols have been

found to include extensive vulnerabilities [13]. It is impor-

tant to avoid similar problems for type systems, especially

when a language’s security model depends on the type sys-

tem and its correct implementation, as is the case for JVM

bytecode [21]. Detecting a discrepancy between specification

and implementation becomes harder due to optimizations

applied to implement a type checker efficiently. For example,

to avoid costly backtracking, it is necessary to reformulate

a type system in algorithmic form; while this reformulation

is crucial for performance, the transformation is difficult to

conduct and, without formal reasoning, may jeopardize the

correctness of the implementation. Another source of errors

is the adoption of efficient data structures that deviate from

the mathematical objects used in the formalization. For exam-

ple, Oracle’s implementation of the HotSpot bytecode verifier

comprises more than 3000 lines of C++ code. While efficient,

the correctness of the implementation is not guaranteed and

hard to check manually.

We present Veritas, a workbench for developing sound

type systems with efficient type checking. Figure 1 gives a

high-level overview of Veritas’s design, consisting of: (1) A
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reduce(λx:S. e) = None

Figure 1. High-level architectural overview of Veritas.

specification language for the syntax, dynamic, and static

semantics of a language, (2) a verification infrastructure re-

sponsible for proofs about type-system properties, and (3)

a type-checker generator infrastructure responsible for de-

riving efficient and correct type checkers and type inference

algorithms. The checker generator internally uses the verifi-

cation infrastructure to select applicable optimizations. It is

important to note that Veritas only requires users to develop

a single type-system specification, from which Veritas de-

rives soundness proofs and efficient type checkers that are

consistent with respect to each other.

For proving type soundness, we use automated first-order

theorem proving in combination with automated proof strate-

gies that incorporate domain knowledge about type systems.

As type soundness in most type systems is not a first-order

property, proof strategies are necessary, for example, to syn-

thesize and apply domain-specific induction schemes from

the specification. Moreover, the proof strategies synthesize

the main theorems and auxiliary lemmas, such as progress

and preservation as well as substitution lemmas.

To generate efficient type checkers, we define a set of

optimization strategies that apply type-system domain knowl-

edge to identify inefficiencies and rewrite the type system

into a form that is algorithmically more efficient. To be ef-

fective, the optimizations have to make assumptions about

the type system. We capture these assumptions in conserva-

tive applicability conditions of the optimizations and use the

automated verification scheme from above to select soundly

applicable optimizations. This is essential to guarantee that

the final optimized type checker is correct by construction,

that is, it conforms to the high-level type-system specification

and the soundness proof carries over to the implementation.

A more long-term vision is to support the modular speci-

fication and verification of language features, such that lan-

guage developers can pick and choose language features as

needed. Of course, we must guarantee the composed type

system to be sound. To ensure scalability, we want to reuse as

much of the individual proofs as possible. In contrast to most

prior work, we are willing to accept that proof composition

sometimes fails, in which case we discard the invalid proofs

and automatically verify the involved lemmas again in the

composed language.

While this project is at an early stage, our experiments so

far support the feasibility of Veritas. We have been able to use

a prototypical implementation of Veritas with the automated

first-order theorem prover Vampire [19] to verify the type

soundness of the simply-typed lambda calculus and of parts

of a typed variant of SQL. For these proofs, we generated

auxiliary lemmas by hand and manually applied induction.

Moreover, we have successfully devised and applied optimiza-

tion strategies that bring a context-free subtyping relation into

an algorithmic form. Specifically, our optimization strategy

eliminates generic reflexivity and transitivity subtyping rules,

thus improving performance significantly. While far from

conclusive, our experiments so far are very encouraging. In

summary, we make the following contributions:

• We present the design of Veritas, a workbench for devel-

oping sound type systems with efficient type checkers.

Veritas provides a high-level specification language and

derives a soundness proof and an efficient checker from a

single type-system specification.

• Veritas utilizes the power of modern automated first-order

theorem provers for non-inductive reasoning. On top of

that, Veritas provides automated support for induction and

type-system-specific verification strategies.

• Veritas identifies sources of inefficiency in a type system

and includes optimization strategies to rewrite a type

system into an optimized form. To ensure optimizations do

not change a type system, Veritas verifies the applicability

condition of an optimization before applying it.

• We developed a prototypical implementation of Veritas

and conducted case studies on the simply-typed lambda

calculus and on a typed variant of SQL.

2. The Veritas approach

In this section, we describe the design of Veritas and how

we approach the derivation of type-soundness proofs and of

optimized type systems. We illustrate our approach using
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C |- e : T reduce(e) = some(e
Õ

)

=================================== Preservation

C |- e
Õ

: T
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Generated theorem (example)

sorts Exp Typ

syntax

var: ID -> Exp

abs: "λ" ID ":" Typ "." Exp -> Exp

app: Exp " " Exp -> Exp

function is-value : Exp -> Bool [...]

function subst : ID Exp Exp -> Exp [...]

function reduce : Exp -> Option[Exp]

reduce(λx:S. e) = none

reduce((λx:S. e1) e2) = some(subst(x, e2, e1))

reduce(e1 e2) = let e
Õ

1 = reduce(e1) in

if is-some(e
Õ

1)

then some(get-some(e
Õ

1) e2)

else none

reduce(x) = none

syntax TArrow: Typ "->" Typ -> Typ

contexts VarContext: ID{I} x Typ{O}

judgments VarContext{I} "|-" Exp{I} ":" Typ{O}

rules

x : T in C

============ T-Var

C |- x : T

(C; x : T1) |- e2 : T2

======================== T-Abs

C |- λx:T1. e2 : T1 -> T2

C |- e1 : T1 -> T2 C |- e2 : T1

=================================== T-App

C |- e1 e2 : T2

Figure 2. Example specification for the simply-typed lambda calculus.

the simply-typed lambda calculus and subtyping as running

examples and highlight the involved challenges.

2.1 Specification of type systems

We aim at automatically deriving soundness proofs and effi-

cient checkers from a single specification of a type system.

This requires a specification language that supports proof au-

tomation and optimizations of type checkers. We designed a

preliminary domain-specific language for specifying abstract

and concrete syntax, dynamic semantics for the specified

syntax, typing contexts, typing judgments, and typing rules.

For type soundness verification, Veritas generates axiomatic

specifications and auxiliary lemmas from a specification. For

supporting optimizations, our language supports the annota-

tion of input and output positions in the declaration of typing

contexts and typing judgments. The type-checker generator

of Veritas uses these annotations for applying optimizations

and for generating efficient type-checker implementations.

In the upper part of Figure 2, we exemplify our specifica-

tion language with the simply-typed lambda calculus. On the

left-hand side, we specify the sorts, syntax, and dynamic se-

mantics of the calculus, where sort ID is predefined. We define

the semantics as a small-step call-by-name operational se-

mantics in function reduce. On the right-hand side, we define

the type system of the calculus including syntax for function

types, a typing context, a typing judgment, and typing rules.

Using input and output annotations, we declare that the typ-

ing context VarContext maps variable identifiers of sort ID

to types of sort Typ. Similarly, the declared typing judgment

takes a context and an expression as input and produces a

type as output. In the premises of rules T-Var and T-Abs, we

use the built-in syntax for contexts to look up and insert a

variable binding, respectively. Veritas generates this syntax

using the input and output annotations of the typing context

specification.

From a specification, Veritas generates axiomatic specifi-

cations in the standardized TPTP format [33], which can be

processed by many theorem provers. TPTP syntax consists

of axioms and conjectures in the from of first-order formulas

on function terms. Consequently, Veritas first translates all

declared constructors, typing contexts, the generated lookup

and insertion syntax, and typing judgments into function sym-

bols. Next, Veritas synthesizes axioms about the equality and

inequality of the function terms that represent constructors

and form a term algebra. We translate function definitions

into first-order implications, where each individual case of a

function definition becomes a separate implication. Typing

rules are translated similarly: Veritas translates all premises

(above the bar) and all conclusions (below the bar) to TPTP,

and the conjunction of the premises implies the conjunction

of the conclusions.

The column Axioms of Figure 3 gives a high-level

overview of the axioms that Veritas generates. For exam-

ple, Veritas translates the app constructor from Figure 2 to

a function vapp with two arguments. The generated axioms

specify that two app terms are equal if and only if the two
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Axioms Theorems/lemmas

Term algebra

Axiomatic specifications

Predicate decl., axiomatic specification

Functions for lookup and for insertion

Inversion lemmas, substitution lemma

Inversion lemma, Progress & Preservation

Structural properties (e.g., weakening)

Specification

Abstract syntax tree

Reduction, Substitution

Typing rules

Typing context

Figure 3. Overview of generated axioms, theorems, and lemmas for the specification of the simply-typed lambda calculus.

arguments to vapp are equal and that a function term vapp

is never equal to a function term modeling constructors var

or abs. Veritas translates the four function equations for the

function reduce into five TPTP axioms by splitting the if ex-

pression in the third equation into two separate cases. The

translation of function definitions also takes the order of the

function equations into account. For example, the TPTP rep-

resentation of the last equation of reduce explicitly requires

the argument x to be unequal to any of the argument patterns

from the previous cases.

Consistency checks. Type-system specifications can be hard

to get right. Undesired logical inconsistencies might creep

into the function definitions or typing rules by mistake. For

example, the conclusion of a typing rule might contradict

its premises. It is also possible that no single definition of

a specification is inconsistent by itself, but that definitions

yield a inconsistency in combination. Inconsistencies of this

kind can be very hard to discover manually.

Veritas provides a lightweight approximate consistency

check to help developers in discovering such logical incon-

sistencies even before attempting a full type-soundness proof.

The consistency check collects the axioms generated from a

specification and passes them to a first-order theorem prover,

asking it to prove false from the set of axioms. If this proof

succeeds, a logical inconsistency was discovered and Veritas

reports the function definition equations or typing rules that

cause the inconsistency. If the first-order theorem prover can-

not construct a proof for false in the given time, then either

there is no logical inconsistency in the definitions or there

is an inconsistency that is too complex to be discovered in

the given time. Our experiments with the consistency check

show that a first-order theorem prover like Vampire [19] can

discover even complex logical inconsistencies within a few

seconds.

Challenges. The specification language should support the

specification of arbitrary programming-language features. For

example, we plan to incorporate support for variable-length

data structures such as records. Furthermore, the specification

language should provide notation comprehensible to software

engineers and developers of DSLs. Our current notation is

based on literature on type systems. We plan to revise this in

the future, for example, by building on the syntax used by

Spoofax [37].

2.2 Automated metatheory

Veritas contains a verification infrastructure that automates

type-soundness proofs as far as possible by applying domain-

specific knowledge about type systems. The verification

infrastructure automatically derives soundness theorems,

or more specifically, progress and preservation theorems

(see [27]). For example, for the specification of the simply-

typed lambda-calculus described above, we prove the preser-

vation theorem shown at the bottom of Figure 2.

Typically, the proofs of such theorems require induction,

which is a higher-order reasoning technique. However, we

discovered that the proofs of individual induction cases often

only require first-order reasoning if the appropriate induction

hypotheses are locally given as axioms. This is possible

because the formulation of preservation and progress only

requires first-order logic. Veritas exploits this observation by

applying domain-specific proof techniques to break down

proofs into subgoals that can be solved by automated first-

order theorem provers.

The domain-specific proof techniques include, for exam-

ple, the generation of several inversion lemmas, such as inver-

sion of the typing relation and of the reduction semantics. For

our running example of the simply-typed lambda-calculus,

Veritas generates the the inversion lemma T-inv shown in

Figure 4. Lemma T-inv states that, given a well-typed e, one

of the three typing rules from Figure 2 must have succeeded

on e. Veritas displays T-inv to the user in the format of our

specification language for inspection, and Veritas includes

the TPTP translation of T-inv in the axiom set that is used as

input to the automatic first-order theorem prover.

Other lemmas that are typically used in type-soundness

proofs are lemmas on preservation and progress of auxiliary

functions used in the reduction semantics. Veritas automat-
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C |- e : T
============================== T-inv
OR

=> exists x.
e == x and

x : T in C
=> exists x, e2, T1, T2.

e == λ x:T1. e2 and

T == T1 -> T2 and

(C; x : T1) |- e2 : T2

=> exists e1, e2, S.
e == app(e1, e2) and

C |- e1 : arrow(S, T) and

C |- e2 : S

Figure 4. Inversion lemma for typing relation from STLC

ically generates such auxiliary lemmas for combinations of

auxiliary functions and typing judgments. In general, Veritas

conservatively generates more lemmas than may be necessary

for proving type soundness, but only verifies those lemmas

that are actually required.

For example, in the simply-typed lambda-calculus from

Figure 2, function reduce uses function subst for substitution

and contains one typing judgment. Hence, Veritas generates

one lemma stating that substitution makes progress on well-

typed expressions and one lemma stating that substitution

does not change the type of a well-typed expression. The later

lemma is commonly known in the literature as substitution

lemma [27]. It is required in the proof of the preservation

theorem from Figure 2. The lemma on progress of substitu-

tion, however, is not required in the progress proof for the

simply-typed lambda-calculus and will hence be discarded.

Apart from lemmas for auxiliary functions, preservation

and progress proofs often require lemmas about structural

properties of the typing context. Some of these lemmas can be

readily derived based on the annotation of the context’s input

and output positions. As shown in Figure 2, the context of the

simply-typed lambda calculus takes variable names as input

and maps them to their type. This entails that the context is

not order-sensitive and ignores duplicates. Other structural

properties such as weakening or strengthening depend on

the type system at hand. Veritas generates such lemmas

but only verifies those that are required by the soundness

proof. For the simply-typed lambda-calculus example, Veritas

generates strengthening and weakening lemmas, both of

which are required in the soundness proofs. The right column

of Figure 3 gives an overview of all lemmas which Veritas

generates for the soundness proof of the type system of the

simply-typed lambda calculus.

Induction. Beyond lemmas from the provided specification,

we also derive induction schemes for structural induction, for

induction on recursive functions, and for induction on typing

derivations. We automatically apply these induction schemes

in proofs, starting with the main progress and preservation

theorems. We use domain knowledge and heuristics to select

an induction scheme and induction variables. For example,

structural induction is often applied on expressions of the

specified language and not, for example, on the context. When

applying an induction scheme, we generate induction cases as

subgoals along with the corresponding induction hypotheses.

We translate each induction subgoal into the TPTP format

and pass it to an automated first-order theorem prover. To each

induction subgoal, we add the available induction hypotheses

and the previously generated auxiliary lemmas and axiomatic

specifications as axioms. Based on these axioms, we invoke

the first-order prover to derive a proof for the induction

subgoal. We interpret the result returned by the prover to

decide how to proceed with the proof. If the proofs of all

induction subgoals are successful, we determine which of the

generated lemmas were used within the proofs and proceed

with proving each of these lemmas using the same overall

approach.

For example, consider the preservation theorem for the

simply-typed lambda calculus at the bottom of Figure 2. Our

verification infrastructure applies structural induction on the

input expression of the typing judgment. The application case

of the preservation theorem with e = e1 e2 looks as follows:

consts e1, e2 : Exp

goal

reduce(e1 e2) = some(e
′

)
C |- (e1 e2) : T
======================== Pre-app

C |- e
′

: T

axioms

reduce(e1) = some(e
′

) C |- e1 : T
=============================== Pre-app-IH1

C |- e
′

: T

reduce(e2) = some(e
′

) C |- e2 : T
=============================== Pre-app-IH2

C |- e
′

: T

We fix the subexpressions e1 and e2 locally as constants to en-

sure the induction hypotheses Pre-app-IH1 and Pre-app-IH2

only apply to these subexpressions; all other variables are

universally quantified. Our infrastructure translates the induc-

tion case to TPTP and passes it to an automated first-order

theorem prover, along with the induction hypotheses as well

as inversion and substitution lemmas. The automated proof

succeeds as we report in Section 4.

Challenges. In general, automated verification does not scale

well with the size of the input theory. An experiment that we

conducted confirms that even for the simply-typed lambda

calculus, the first-order prover sometimes fails to find a proof

within a reasonable amount of time when providing it with

all available lemmas (that is, including unnecessary ones).

Hence, it is important to provide as few lemmas to the prover
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User-supplied types and subtyping relation:

judgments Type{I} "<:" Type{I}
syntax TArrow: ... -> Typ
syntax TInt: "int" -> Typ

S = T
====== S-Refl
S <: T

T1 <: S1 S2 <: T2

===================== S-Arrow
S1 → S2 <: T1 → T2

Unfolded reflexivity typing rule:

int = int
======== S-Refl-1
int <: int

int = T1→T2

=========== S-Refl-2
int <: T1→T2

S1→S2 = int
=========== S-Refl-3
S1→S2 <: int

S1→S2 = T1→T2

=============== S-Refl-4
S1→S2 <: T1→T2

Optimized subtyping relation (S-Refl-2 and S-Refl-3 are unsatisfiable; S-Arrow subsumes S-Refl-4):

======== S-Refl-1
int <: int

T1 <: S1 S2 <: T2

===================== S-Arrow
S1 → S2 <: T1 → T2

Figure 5. Optimizing reflexivity of subtyping by unfolding and subsumption.

as possible. To this end, we will design type-system-specific

heuristics for selecting lemmas a priori. For example, we

can leave out lemmas on functions that are not transitively

called within the current proof goal. Another challenge is

handling variable binding, recognized as one of the main

challenges in the POPLMARK challenge [2]. Our current

approach uses a notion of α-equivalence based on nominal

logic [28]. Since our specification language abstracts from

the actual encoding of typing contexts in first-order logic, we

will experiment with different alternatives, potentially using

multiple approaches side-by-side. Another challenge is to

derive all relevant induction schemes and auxiliary lemmas

such that the automated verification of subgoals succeeds.

Guided by our experiments with the POPLMARK challenge

and other calculi, we will extend our proof strategies to

derive relevant lemmas, incorporating techniques developed

by others that proved successful [1, 20, 29].

2.3 Deriving efficient type checkers

Given a type-system specification, we generate the correct

and efficient implementation of a type checker. The cor-

rectness of the implementation is mandatory to establish a

link between the implementation and the specification with

its metatheoretical properties. However, the generated type

checker also has to be efficient to be useful in practice.

The main source of inefficiency of type checking comes

from typing rules that are not syntax directed, that is, typing

rules with overlapping conclusions. Given an input program

and overlapping typing rules, we cannot statically decide

which typing rule to apply, but instead have to use costly

backtracking. Another source of inefficiency is the use of

inefficient data structures. In particular, pure mathematical

data structures such as associative lists or an immutable

representation of types often yield insufficient performance.

To generate efficient type checkers, we eliminate overlapping

typing rules by refactoring the type system and we select

efficient data structures based on the user-supplied annotation

of input and output positions. We then translate the type

system into a constraint system. Here, we focus on the

elimination of overlapping typing rules.

We declare a refactoring as a set of optimization strategies.

Each strategy defines a transformation of the type system and

an applicability condition that captures the optimization’s

assumptions on the type system. An applicability condition

can be an arbitrary first-order formula. We use our verification

infrastructure to check if an optimization is applicable to

the current type system. We prove the correctness of the

transformation itself by hand.

For example, we provide optimizations to eliminate typing

rules with unsatisfiable premises and to remove premises that

are tautologies. The applicability condition of these optimiza-

tions is the premise whose unsatisfiability or tautology needs

to be shown. Other optimizations handle overlapping typing

rules. For example, we provide an optimization that unfolds

typing rules by replacing metavariables in input positions of

the conclusion with all possible combinations of syntactic

constructors in order to narrow down overlapping rules to

single syntactic constructs. As final example, we provide an

optimization that checks subsumption of overlapping typing

rules. Given two typing rules
Pi

C
and

Qj

D
such that D ⇒ C

and
∧
Pi ⇒

∧
Qj , we eliminate the former rule and only

keep the stronger, latter rule.

Using these optimizations, we can for example automati-

cally optimize the declarative specification of reflexive sub-

typing as shown in Figure 5, where we added base type int.

The rule for reflexivity S-Refl overlaps with rule S-Arrow.

We can eliminate the overlap by first unfolding metavariables

S and T in S-Refl, eliminating rules S-Refl-2 and S-Refl-3

with unsatisfiable premises as well as rule S-Refl-4, which is

subsumed by S-Arrow.

To support informative type-error messages, we adopt

a proposal by Heeren et al. to annotate error messages on
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premises in typing rules [17]. However, Heeren et al. directly

use type constraints as premises such that the constraint solver

can report the error messages attached to those constraints

that fail. We found using type constraints too invasive on DSL

developers because type constraint are relatively low-level

and we would rather allow DSL developers to use arbitrary

logical premises (as we did in the above examples). For this

reason, we developed and adopted a variant of Heeren et

al.’s approach that supports error annotations on arbitrary

premises, where error messages can refer to metavariables

available in the typing rule. When generating constraints,

we propagate error messages to type constraints and report

corresponding errors when a constraint fails during constraint

solving.

Challenges. To identify relevant optimizations, we will in-

vestigate different type systems, from lambda calculi to DSLs

and languages like Java, and analyze the occurring overlap-

ping typing rules. This will also provide insights into heuris-

tics that govern the order of applying optimizations. Further

challenges include the efficient handling of type systems that

use type normalization and the automated selection of effi-

cient data structures that behave equivalent to the ones used

in the formalization.

2.4 Language and proof composition

To enable scalability of our verification and type-checking

infrastructures, we support the composition and extension

of specifications together with the associated proofs and

type checkers. We handle large languages by deriving and

composing proofs and optimized type checkers of smaller

parts of the language. To this end, we do not aim at deriving

open-world proofs and type checkers in the sense that they

already account for potential extensions of the type system.

Rather, we aim at porting proofs and type checkers derived

under a closed-world assumption to an extended closed world,

reusing as much of the previous proofs and type checkers as

possible.

We adapt our specification language to provide extension

points that allow for adding new constructors to a syntactic

domain, new equations to a function definition, and new

typing rules for a typing judgment [11, 23]. We track the

use of closed-world reasoning within our proofs in order

to determine which parts of a proof are affected by the

new definitions. Often we can restore the proof by only

considering the added definitions instead of redoing the proof

from scratch. We do the same for proofs that were used to

validate the applicability of optimizations and incrementally

apply optimizations to the new typing rules.

For example, consider adding syntax, reduction rules, and

typing rules for numeric literals and addition to the simply-

typed lambda calculus. The extension weakens the previously

derived induction schemes and inversion lemmas by adding

alternative cases. Thus, we have to reconsider every proof

that uses an outdated induction scheme or inversion lemma.

For example, we used structural induction in the proof of type

preservation. We extend the proof by adding induction cases

for numeric literals and addition. Only when no monotone

extension of a proof is possible, we start the proof from

scratch.

Challenges. To track the use of closed-world reasoning, we

must inspect the used proof strategies and proofs generated

by the first-order theorem prover in order to derive delta-

theorems whose proof suffices to extend the original theorem

to the extended system. Another challenge is to derive incre-

mental versions of type-system optimizations. It is not obvi-

ous if our prior work on incremental query execution [24] is

applicable here.

3. Prototypical implementation

We have developed a prototypical implementation of Veritas

using the Spoofax language workbench [18]. The source

code of our prototype is available online.
1

Figure 6 shows a

screenshot of our prototype.

Our prototype provides a specification language like the

one presented in Section 2.1 but excludes concrete syntax

and includes modules for scoping definitions. Given a speci-

fication, our implementation automatically generates a term

algebra for the abstract syntax, axiomatic specifications and

inversion lemmas for functions, and TPTP proof goals for

lemmas and theorems. Currently, we add progress and preser-

vation theorems as well as auxiliary lemmas to the specifi-

cation by hand. Our Spoofax-based implementation comes

with an Eclipse plug-in that performs syntactic and semantic

analysis of a specification.

Our Eclipse plug-in allows developers to trigger consis-

tency checking as well as the verification of proof goals. For

every proof goal, we collect all axioms and lemmas that are

available in the lexical context of the proof goal. We translate

the axioms, lemmas, and the proof goal into the standard-

ized TPTP format [33]. In our current implementation, we

apply induction schemes by hand as explained in Section 2.2.

In fact, we currently delegate all proof goals to first-order

theorem provers.

As first-order theorem prover, our prototype uses Vam-

pire [19]. Vampire is a state-of-the-art automated theorem

prover that has won the system competition of the conference

of automated deduction in the category unrestricted first-order

problems continuously since 2002. Vampire reads proof goals

in the TPTP format and yields either a proof that the goal

is valid, a proof that the goal is invalid, or a timeout. If the

Vampire yields a proof, it is possible to extract the proof tree

and check it for correctness.

Our prototype supports the optimization and generation

of type checkers for simple type systems. To this end, we

first make all patterns in typing rules linear and then apply

optimizations in a fixpoint iteration, using the optimizations

1
https://github.com/stg-tud/type-pragmatics

7 2015/5/28

https://github.com/stg-tud/type-pragmatics


Figure 6. Our Veritas prototype provides an Eclipse plug-in for editing specifications and triggering verification.

described in Section 2.3. We use the optimized typing rules

for constraint generation. The set of supported constraints

is currently limited to equality and subtype constraints. In

case optimizations leave overlapping typing rules, we use

backtracking to consider alternative constraint sets.

4. Case study 1: Simply-typed λ-calculus

In our first case study, we used our prototype of Veritas to

model the type system of the simply-typed lambda calculus.

Most of this case study was already covered in Section 2.

Here, we provide some further details.

Verification of type soundness. Vampire was able to auto-

matically prove most of the given induction cases, including

rather complicated cases that require lots of auxiliary lemmas

and proof steps. For example, the proof of preservation for the

application case uses 24 auxiliary statements, some of which

result from function definitions, some of which result from

type-rule definitions, and some of which refer to previously

proved lemmas. In particular, the proof used its induction

hypothesis and the substitution lemma.

Figure 7 gives an overview of our specification of the

simply-typed lambda calculus. In our current version, we

defined 10 axioms for conducting the proofs. These axioms

include inversion lemmas that our prototype of Veritas does

Defined functions 11

Defined axioms 10

Induction hypotheses 18

Verified lemmas 9

Proof by induction 5

Goals submitted to Vampire 25

Total Vampire run-time 72.277 sec

Figure 7. Statistics on the simply-typed lambda calculus.

not generate automatically yet. Furthermore, the 10 axioms

include axioms about name-binding: We implemented a

substitution function that replaces bound variables with fresh

variables to avoid capture. We specified the generation of

fresh variables axiomatically by requiring that a fresh variable

cannot occur freely in an expression. We also introduced a

predicate for determining whether two expressions in the

simply-typed lambda calculus are α-equivalent. Again, we

defined this predicate axiomatically instead of implementing

a concrete function. This is similar to models of name-binding

in nominal logic [28]. As mentioned earlier in Section 2.2, we
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syntax

table: AttrList RowList -> Table
named-ref : TName -> TRef

tvalue : Table -> Query
select-all-from : TRef -> Query
select-some-from : AttrList TRef -> Query
union : Query Query -> Query

Figure 8. Syntax for a subset of SQL.

are not yet committed to a specific approach to name-binding

and used axiomatic specifications instead.

Type checking. We used our prototype to derive a type

checker for the simply-typed lambda calculus with numbers

and subtyping. The specification includes declarative rules for

reflexivity and transitivity, which our prototype successfully

eliminates through optimization. We also have experimented

with a strategy to eliminate the subsumption rule using an

optimization that composes typing rules by inlining one rule

into the premise of another. We have yet to implement and

evaluate this optimization. If successful, the resulting type

checker contains no overlapping typing rules and will not

require any backtracking.

Summary. Our first case study confirms two of our central

hypotheses, namely that automated first-order theorem prov-

ing is capable of verifying induction cases of type-soundness

proofs and that optimizations with applicability conditions

can be implemented and used for deriving efficient type

checkers.

5. Case study 2: Typed SQL

SQL is a query language for data tables that is not statically

typed. Hence, SQL queries that access non-existent tables or

attributes of tables will be executed, but fail at run-time. We

started a case study in our prototype on the development of a

sound type system for a statically typed variant of SQL. We

fully modeled SQL’s syntax, reduction semantics, and typing

rules and successfully verified type preservation and progress

for four selected language constructs.

Syntax. Figure 8 shows part of our syntactic model for

SQL. We model tables (sort Table) as a list of attribute

names (AttrList) and a lists of rows, which are in turn lists

of fields. SQL queries (Query) evaluate into table values

(constructor tvalue). Constructor select-all-from models pro-

jection of all attributes of a table (SELECT * FROM TRef).

Here, we only show named table references (named-ref), but

SQL also features references to joined tables. Constructor

select-some-from models projection of a table to a given

list of attributes (SELECT AttrList FROM TRef). Construc-

tor union combines two SQL queries by building a single

duplicate-free table that contains all rows yielded by the two

queries.

function

reduce : TStore Query -> Option[Query]
reduce(ts, tvalue(t)) = none
reduce(ts, select-all-from(ref)) =

let t = lookup-ref(ref, ts) in

if is-some(t)
then some(tvalue(get-some(t)))
else none

reduce(ts, select-some-from(al, ref)) =

let t = lookup-ref(ref, ts) in

if is-some(t)
then let projected = project(al, t) in

if is-some(projected)
then some(tvalue(table(al, get-some(projected))))
else none

else none

reduce(ts, union(tvalue(t1), tvalue(t2))) =

let t = table-union(t1, t2)
if is-some(t)
then some(tvalue(get-some(t)))
else none

reduce(ts, union(tvalue(t1), q2)) =

let q
′

2 = reduce(ts, q2)

if is-some(q
′

2)

then some(union(tvalue(t1), get-some(q
′

2)))
else none

reduce(ts, union(q1, q2)) =

let q
′

1 = reduce(ts, q1)

if is-some(q
′

1)

then some(union(get-some(q
′

1), q2))
else none

Figure 9. Reduction semantics for a subset of SQL.

Reduction semantics. Figure 9 shows an excerpt of the dy-

namic semantics of SQL. We modeled the dynamic semantics

as a small-step structural operational semantics that assumes

a table store, which we modeled as a list of bindings from

table names (TName) to tables (Table). The projection cases

select-all-from and select-some-from look up a table refer-

ence (TRef) in a given table store, using auxiliary function

lookup-ref (not shown). In the case of select-all-from, the se-

mantics simply yields the table that results from the lookup.

In the case of select-some-from, the dynamic semantics first

looks up the referenced table and then consecutively tries

to find columns for each attribute selected, using auxiliary

function project. The dynamic semantics gets stuck if the

referenced table is unbound or if the projection selects an

attribute not provided by the referenced table.

For union queries, we specified three reduction rules.

We defined one contraction rules for building the union of

two table values, and we defined two congruence rules for

recursively performing a reduction step on either of the two

subqueries. Reduction of a union query gets stuck if either of
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welltyped-table(TT, table(al, rows))
=============================== T-tvalue
TTC |- tvalue(table(al, rows)) : TT

clookup(ref, TTC) == some(TT)
=============================== T-select-all-from
TTC |- select-all-from(al, ref) : TT

clookup(ref, TTC) == some(TT)
project-type(al, TT) == some(TTp)
================================== T-select-some-from
TTC |- select-some-from(al, ref) : TTp

TTC |- q1 : TT
TTC |- q2 : TT
======================== T-union
TTC |- union(q1, q2) : TT

Figure 10. Typing rules for a subset of SQL.

the two subqueries gets stuck or if the subqueries yield tables

that define different attributes.

Note that for the current subset of SQL which we consider,

reduce never changes the table store. In the future, we plan

to add SQL expressions that create, update, or delete tables

from the table store.

Typing. Well-typed SQL queries do not get stuck, but fully

evaluate to well-typed tables. We define the type of an SQL

query as the type of the table that this SQL query yields when

evaluated. The type of a table is a list of pairs of attribute

names and field types, that is, a typed table schema. A field

type in a typed table schema fixes the type of all fields in

a corresponding column. Analogously to the table store in

the dynamic semantics, we use a table-type context in the

type system. A table-type context is a list of bindings from

table names to table types. We use the metavariable TT to

denote table types and metavariable TTC to denote table-type

contexts.

Figure 10 shows some of the typing rules of SQL. For

type checking table values (TValue) with regard to a table

type TT, we require that predicate welltyped-table is satisfied.

Predicate welltyped-table checks whether the attribute names

in TT and in the attribute list al of the table are the same, and

whether the values stored in the rows of the table adhere to

the field types in TT. This implicitly includes a check that all

rows have the same length.

We type check a projection select-all-from by resolving

the table reference ref in the context, using auxiliary function

clookup. Note that this lookup can fail if ref cannot be resolved

in TTC. Our typing rule explicitly requires that the lookup

succeeds and yields some table type TT. For select-all-from,

this type is the result type of the query. For select-some-from,

Defined functions 31

Function tests 34

Defined axioms 7

Induction hypotheses 10

Verified lemmas 17

Proof by induction 9

Goals submitted to Vampire 35

Total Vampire run-time 142.749 sec

Figure 11. Statistics on the current status of typed SQL.

we first project the table type to attribute list al using function

project-type, which fails if not all required attributes are

defined by the type. The result type of the query becomes the

result of the call to project-type. To type check a union query,

we require that both subqueries are not only well-typed but

actually provide tables of the same type.

Type soundness. To prove our specification of typed SQL

sound, we need to show that well-typed SQL queries do not

get stuck but evaluate to well-typed tables. To this end, we

define preservation and progress theorems:

theorem

reduce(ts, q) = some(q
′

)
TTC |- q : TT
StoreContextConsistent(ts, TTC)
============================ SQL-Preservation

TTC |- q
′

: TT

theorem

!is-value(q)
TTC |- q : TT
StoreContextConsistent(ts, TTC)
============================= SQL-Progress

exists q
′

. reduce(ts, q) = some(q
′

)

The preservation and progress theorems both require that

the table store ts used in the dynamic semantics and the

table-type context TTC used in the typing rules are consistent

with each other (predicate StoreContextConsistent). Predicate

StoreContextConsistent checks whether all tables in the table

store are well-typed according to the corresponding type in

the table-type context.

So far, we have successfully verified preservation and

progress for tvalue and select-all-from, preservation for

select-some-from, and progress for union. Figure 11 sum-

marizes our efforts. We defined and proved 17 lemmas, 9

of which required an induction proof. In total, we submitted

35 proof goals to Vampire, which ran for a total of 142.749

seconds.

Summary. Our experience so far with using Veritas for

specifying a sound type system for SQL suggests Veritas is
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well-suited for developing sound type systems for DSLs. In

particular, we are confident that we can automate significant

portions of finding type-soundness proofs in subsequent

versions of Veritas.

6. Discussion

As described in the previous Section, we have applied Veritas

to model the simply-typed lambda calculus and a typed vari-

ant of SQL. In this section, we report on our experience with

applying Veritas. We describe shortcomings of the Veritas

prototype and suggest features to remedy these shortcomings.

6.1 Metatheory for DSL developers

The targeted audience of Veritas are DSL developers who

want to augment their DSL with a type system but lack the

required knowledge about type systems. Our vision is that a

DSL developer only specifies the DSL’s semantics and type

system, from which Veritas automatically derives a soundness

proof and an efficient type checker. To provide good usability

to DSL developers, it is important to hide the technical details

of how Veritas conducts proofs and selects optimizations.

Therefore, Veritas must provide a high degree of automation

and must reduce user interaction to a minimum.

One of the reasons we believe a high degree of automa-

tion is possible for DSLs is that DSL type systems are often

conceptually simpler than type systems of general-purpose

languages. For example, many DSLs do not make use of

polymorphic language constructs and only require reasoning

about simple types. Our SQL case study supports this hypoth-

esis: All operations act upon tabular data and there are no

language constructs for abstraction. Similar properties hold

for DSLs of other domains, for example, state machines [14],

digital forensics [36], or questionnaires [12].

Another aspect of addressing DSLs is that the language

specification and the derived type checker must represent

DSL programs in a format chosen by the DSL developer. This

is important so that the type checker can be integrated with

other DSL tools such as an IDE or a compiler. For this reason,

Veritas adopts a generic syntax-tree representation instead

of using a representation that is potentially easier to reason

about, as done by other metatheory systems. For example,

Twelf uses higher-order abstract syntax [26] and Coq-based

formalizations often adopt a nameless representation (e.g., de

Bruijn indices) [5] or a locally nameless representation [6].

Such representations not only require DSL developers to

model their syntax twice and provide translations between

them, such representations also preclude DSLs with non-

standard name binding. In contrast, the generic syntax-tree

representation used by Veritas is flexible enough to support

most DSL designs, but proofs involving names may be harder.

6.2 Proof automation and proof guidance

To support DSL developers, proof automation is paramount in

Veritas. In many cases, we get proof automation by submitting

proof obligations to an automated first-order theorem prover

such as Vampire. However, clear enough, the first-order

theorem prover may fail to find a proof. Typically, this

happens for one of two reasons. First, the submitted proof

obligation may not be first-order verifiable, for example

because it requires second-order reasoning by induction or

because the proof obligation is false. Second, the theory

required to verify the submitted proof obligation may be

too complex for the prover to find a proof within the given

time frame.

To this end, Veritas will feature proof strategies for recov-

ering after a first-order theorem prover failed to verify a sub-

mitted proof obligation. Our strategies will try to determine

where the proof got stuck by applying forward reasoning to

find intermediate proof goals. We submit the intermediate

proof goals as proof obligations to the first-order theorem

prover. If the prover succeeds but the required time increased

severely compared to the previous goal, this calls for an aux-

iliary lemma for the proof obligation in order to avoid an

explosion of the search space. If the prover succeeds quickly,

we continue to apply further forward reasoning and to submit

proof obligations. If the prover fails and the proof obligation

refers to one or more recursive functions, this calls for an

inductive proof.

Using these and other strategies, we hope to provide a

high degree of automation to DSL developers. Nevertheless,

Veritas’s specification language will also feature constructs

for guiding the prover, for example, for manually selecting a

timeout or for manually providing auxiliary lemmas.

6.3 Detecting specification flaws

When verifying the soundness of a type system, it may turn

out that the design or specification of the type system is

flawed and needs fixing. One indication for a flaw in the type

system is that the soundness proof fails. In our case studies,

we manually specified test cases alongside the reduction

semantics and type system in order to detect flaws early on.

This proved to be very useful. We plan to integrate automated

methods for finding counterexamples such as QuickCheck [8]

into Veritas in order to find and present counterexamples to

the DSL developer. For test execution, we currently use the

first-order theorem prover, but we could generate Prolog code

just as well.

However, a different kind of flaw is much harder to de-

tect: If the specification is logically inconsistent, lemmas may

be provable even though they are invalid. As described in

Section 2, Veritas provides support for finding such inconsis-

tencies through an approximate consistency check that can

be invoked by the developer. In our case studies, this check

identified multiple inconsistencies in earlier versions of our

specifications, which we were able to subsequently fix.

Since the consistency check is approximate, it may fail to

find all inconsistencies. While conducting our case studies,

we sometimes detected irregularities when inspecting the

proof provided by Vampire. Typical examples of irregularities
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include an inductive proof that does not make use of the

induction hypothesis or a proof showing that a function has

some property, but the definition of the function was not

used. Sometimes, these irregularities turned out to result

from an inconsistent specification, which we were able to

subsequently detect by applying the consistency check for a

longer time on the set of lemmas occurring in the irregular

proof. We plan to augment Veritas with automated support

for detecting inconsistencies this way. Concretely, we plan

to incorporate patterns of proof smells that trigger a detailed

examination of the specification’s consistency.

6.4 Optimizing a specification for first-order proving

While working with our case studies, it turned out that

minor changes to the formulation of a proof goal can impact

the performance of first-order theorem provers significantly.

For example, in one case of the SQL case study, a proof

became verifiable for Vampire only after inlining the premise

table = cons(row, rest) into the other premises and into the

conclusion of the lemma. More generally, it seems that

the performance of Vampire improves significantly after

inlining as many equations as possible. We plan to integrate

such optimizations into Veritas in order to generate proof

obligations in a form that can be efficiently dealt with by

first-order theorem provers. Moreover, we plan to make use

of multi-core machines and submit proof obligations to first-

order theorem provers in parallel.

7. Prior work

Our approach targets the automated verification of type

soundness and the derivation of an efficient type checker

from a single type-system specification. Despite several

existing solutions to the POPLMARK challenge [4, 7, 22,

38], there has been no automated solution to date. The

probably highest potential of full automation among the set of

solutions submitted to the POPLMARK challenge is the Twelf

approach [16]. Twelf is a special-purpose theorem prover for

properties of logics and programming languages. It provides

an interactive proof mode as well as support for automated

inductive theorem proving [31]. However, encoding a type

system specification and a corresponding soundness proof in

Twelf requires thorough knowledge of logical frameworks. In

contrast, we target DSL developers, which most likely do not

have this expertise. In particular, Twelf employs higher-order

abstract syntax [26], which often does not align well with the

syntax of a DSL.

Meta-theory tools such as Ott [32] target the non-automated

verification of language definitions by generating definitions

and proof stubs in interactive theorem provers like Coq, Is-

abelle, and Twelf. The language workbench Spoofax also

targets verification of type soundness, but it is not clear how it

aims to automate such proofs [37]. Syme and Gordon present

a semi-automated technique for type-soundness proofs of

virtual machines that do not involve inductive reasoning

[34]. Their approach requires that a user indicates relevant

reduction rules to control for example the unwinding of re-

cursive definitions in the proof. This guided reduction serves

as input to a decision procedure. Roberson et al. present a

model-checking approach for verifying the soundness of type

systems [30]. They check whether a finite set of program

states induced by the given semantics satisfies progress and

preservation. The approach effectively detects errors in type-

system specification in many cases, but cannot prove the

absence of errors.

Delaware et al. propose a theory for modularizing type-

soundness proofs targeting open-world reuse [9]. Lorenzen

and Erdweg present an automated method for type-soundness

proofs that is limited to desugared language extensions [23].

More generally, there are various techniques for automated

verification [1, 20, 29], some of which we plan to incorporate

into our tool as proof strategies.

For generating type checkers, Gast introduces an approach

that uses proof search based on unification and backtracking,

but also supports manually stipulated optimizations [15].

Bergan presents a framework Typmix for implementing

extensible type systems that also relies on backtracking in

case type-checking clause fails [3]. Ortin et al. describe a type-

checker generator TyCC that generates non-optimized type-

checker implementation for object-oriented languages, where

typing rules are defined by implementing a specific Java

interface [25]. Tomb and Flanagan use Prolog to implement

type checking and inference in a two-phase approach similar

to constraint generation and solving, but do not address

overlapping typing rules [35].

8. Conclusion

DSL developers define type systems, but lack the necessary

knowledge to devise sound specifications in combination

with correct and efficient type checkers. We presented the

design of Veritas, a workbench for developing sound type sys-

tems with efficient type checkers that does not require expert

knowledge. Veritas automatically derives soundness proofs

and efficient algorithms from a single type-system specifica-

tion to ensure that the soundness guarantees carry over to the

implementation. Veritas combines off-the-shelf automated

first-order theorem proving with automated proof strategies

tailored toward type systems. Automated verification is also

important for deriving efficient type checkers, because the

applicability of an optimization strategy needs to be verified.

We developed a prototypical implementation of Veritas

that submits proof goals to the automated first-order theorem

prover Vampire. While our prototype does not yet support

automated proof strategies beyond using Vampire, we have

been able to construct proofs by applying simple proof

strategies by hand. Based on our experience with formalizing

the simply-typed lambda calculus and part of SQL, we are

confident that it is possible to automate such proofs in Veritas.

We hope that, through the development of Veritas, we can
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empower DSL developers to accompany their DSLs with

sound and efficient type checking.
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