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ABSTRACT

Lacking support for generic traversal, functional programming languages su�er from a scalability problem when

applied to large-scale program transformation problems. As a solution, we introduce functional strategies:
typeful generic functions that not only can be applied to terms of any type, but which also allow generic

traversal into subterms. We show how strategies are modelled inside a functional language, and we present a

combinator library including generic traversal combinators. We illustrate our technique of programming with

functional strategies by an implementation of the extract method refactoring for Java.
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1. Introduction

Our domain of interest is program transformation in the context of software re-engineering [5, 1,
4]. Particular problems include automated refactoring (e.g., removal of duplicated code, or goto
elimination) and conversion (e.g., Cobol 74 to 85, or Euro conversion). In this context, the bulk of the
functionality consists of traversal over the syntax of the involved languages. Most problems call for
various di�erent traversal schemes. The involved syntaxes are typically complex (50-2000 grammar
productions), and often one has to cope with evolving languages, diverging dialects and embedded
languages. In such a setting, genericity regarding traversal is indispensable [4, 18].
By lack of support for generic term traversal, functional programming su�ers from a serious and

notoriously ignored scalability problem when applied to program transformation problems. To remedy
this situation, we introduce functional strategies : generic functions that cannot only (i) be applied
to terms of any type, but which also (ii) allow generic traversal into subterms, and (iii) may exhibit
non-generic (ad-hoc) behaviour for particular types. We show how these strategies can be modelled
inside the functional language Haskell1, and we present a strategy combinator library that includes
traversal combinators.

A generic traversal problem Let us consider a simple traversal problem and its solution. Assume we
want to accumulate all the variables on use sites in a given abstract syntax tree of a Java program.
We envision a traversal which is independent of the Java syntax except that it must be able to identify
Java variables on use sites. Here is a little Java fragment:

//print details

System.out.println("name:" + _name);

System.out.println("amount" + amount);

1Throughout the paper we use Haskell 98 [11] extended with rank-2 polymorphism as available in Hugs and GHC.
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The traversal should return the list ["_name","amount"] of variables on use sites. Such collection of
variables can be based on a simple and completely generic traversal scheme of the following name and
type:

collect ::MonadPlus m ) TU m [a ]! TU m [a ]

Here, TU m [a ] is the type of type-unifying generic functions which map terms of any type to a list
of as. Besides type-unifying strategies like the above collect , we will later encounter so-called type-

preserving strategies where input and output type coincide. The strategy combinator collect maps
a type-unifying strategy intended for identi�cation of collectable entities to a type-unifying strategy
performing the actual collection. We use the combinator in the following manner to collect Java
variables on use sites:

collectUseVars :: TU Maybe [String ]
collectUseVars = collect (monoTU useVar)

useVar :: Expression ! Maybe [String ]
useVar (Identi�er i) = Just [i ]
useVar = Nothing

The traversal collectUseVars can be applied to any kind of Java program fragment, and it will return
the variables identi�ed by useVar . Note that the combinator collect is not applied directly to the
function useVar . We �rst need to extend this monomorphic function to be applicable to terms of all
sorts. This extension is performed by the combinator monoTU .

Generic functional programming Note that the code above does not mention any of Java's syntactical
constructs except the syntax of identi�ers relevant to the problem. Traversal over the other constructs
is accomplished with the fully generic traversal scheme collect . As a consequence of this genericity,
the solution to our example program is extremely concise and declarative. In the sequel, we will
demonstrate how generic combinators like collect are de�ned and how they are used to construct
generic functional programs that solve non-trivial program transformation problems.

Structure of the article In Section 2 we model strategies with abstract data types (ADTs) to be
implemented later, and we explain the primitive and de�ned strategy combinators o�ered by our
strategy library. In Section 3, we illustrate the utility of generic traversal combinators for actual
programming by an implementation of an automated program refactoring. In Section 4, we study two
implementations for the strategy ADTs, namely an implementation based on a hidden universal term
representation, and an implementation that relies on a combination of �rst-class polymorphism and
an encoding technique for type cases. The paper is concluded in Section 5. The complete code of the
strategy library and some further illustrative code is included in Appendices I and II.

Acknowledgements We are grateful to Johan Jeuring for discussions on the subject.

2. A strategy library

We present a library for generic programming with strategies. To this end, we introduce ADTs
with primitive combinators for strategies (i.e., generic functions). For the moment, we consider the
representation of strategies as opaque since di�erent models are possible as we will see in Section 4.
The primitive combinators cover concepts we are used to for ordinary functions, namely application
and sequential composition. There are further important facets of strategies, namely partiality or
non-determinism, and access to the immediate subterms of a given term. Especially the latter facet
makes clear that strategies go beyond parametric polymorphism. A complete overview of all primitive
strategy combinators is shown in Figure 1. After a discussion of the primitives, we will discuss a
number of de�ned strategies, especially traversal schemes.
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Strategy types (opaque)

data Monad m ) TP m = ::: abstract

data Monad m ) TU m a = ::: abstract

Strategy application

applyTP :: (Monad m;Term t) ) TP m ! t ! m t

applyTU :: (Monad m;Term t) ) TU m a ! t ! m a

Strategy construction

polyTP ::Monad m ) (8x : x ! m x )! TP m

polyTU ::Monad m ) (8x : x ! m a)! TU m a

adhocTP :: (Monad m;Term t) ) TP m ! (t ! m t)! TP m

adhocTU :: (Monad m;Term t) ) TU m a ! (t ! m a)! TU m a

Sequential composition

seqTP ::Monad m ) TP m ! TP m ! TP m

letTP ::Monad m ) TU m a ! (a ! TP m)! TP m

seqTU ::Monad m ) TP m ! TU m a ! TU m a

letTU ::Monad m ) TU m a ! (a ! TU m b)! TU m b

Choice

choiceTP ::MonadPlus m ) TP m ! TP m ! TP m

choiceTU ::MonadPlus m ) TU m a ! TU m a ! TU m a

Traversal combinators

allTP ::Monad m ) TP m ! TP m

oneTP ::MonadPlus m ) TP m ! TP m

allTU :: (Monad m;Monoid a) ) TU m a ! TU m a

oneTU ::MonadPlus m ) TU m a ! TU m a

Figure 1: Primitive strategy combinators.

2.1 Strategy types and application

There are two kinds of strategies. Firstly, the ADT TP m models type-preserving strategies where the
result of a strategy application to a term of type t is of type m t . Secondly, the ADT TU m a models
type-unifying strategies where the result of strategy application is always of type m a regardless
of the type of the input term. These contracts are expressed by the types of the corresponding
combinators applyTP and applyTU for strategy application (cf. Figure 1). In both cases, m is a
monad parameter [27] to deal with e�ects in strategies such as state passing or non-determinism.
Also note that we do not apply strategies to arbitrary types but only to instances of the class Term
for term types. This is sensible since we ultimately want to traverse into subterms. Recall that the
introductory example is a type-unifying traversal with the result type [String ].

2.2 Strategy construction

There are two ways to construct strategies from ordinary functions. Firstly, one can turn a parametric
polymorphic function into a strategy (cf. polyTP and polyTU in Figure 1). Secondly, one can update

a strategy to apply a monomorphic function for a given type to achieve type-dependent behaviour (cf.
adhocTP and adhocTU ). In other words, one can dynamically provide ad-hoc cases for a strategy.
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Let us �rst illustrate the construction of strategies from parametric polymorphic functions:

identity :: Monad m ) TP m

identity = polyTP return

build :: Monad m ) a ! TU m a

build a = polyTU (const (return a))

The type-preserving strategy identity denotes the generic (and monadic) identity function. The type-
unifying strategy build a denotes the generic function which returns a regardless of the input term.
As a consequence of parametricity [26], there are no further ways to inhabit the argument types of
polyTP and polyTU (unless we rely on a speci�c instance of m).
The second way of strategy construction, i.e., with the adhoc combinators, allows us to go beyond

parametric polymorphism. Given a strategy, we can provide an ad-hoc case for a speci�c type. Here
is a simple example:

gnot :: Monad m ) TP m

gnot = adhocTP identity (return � not)

The strategy gnot is applicable to terms of any type. It will behave like identity most of the time, but
it will perform Boolean negation when faced with a Boolean. Such type cases are crucial to assemble
traversal strategies that exhibit speci�c behaviour for certain types of the traversed syntax.

2.3 Sequential composition

Since the strategy types are opaque, sequential composition has to be de�ned as a primitive con-
cept. This is in contrast to ordinary functions where one can de�ne function composition in terms
of �-abstraction and function application. Consider the following parametric polymorphic forms of
sequential composition:

g � f = �x ! g (f x )
f `mseq ` g = �x ! f x >>= g

f `mlet ` g = �x ! f x >>= �y ! g y x

The �rst form describes ordinary function composition. The second form describes the monadic
variation. The third form can be regarded as a let-expression with a free variable x . An input for x is
passed to both f and g , and the result of the �rst application is fed to the second function. The latter
two polymorphic forms of sequential composition serve as prototypes of the strategic combinators
for sequential composition. The strategy combinators seqTP and seqTU of Figure 1 correspond to
mseq lifted to the strategy level. Note that the �rst strategy is always a type-preserving strategy.
The strategy combinators letTP and letTU are obtained by lifting mlet . Note that the �rst strategy
is always a type-unifying strategy. The necessary kind of lifting will be explained when we discuss
possible implementations of the strategy types.
Let us illustrate the utility of letTU . We want to lift a binary operator o to the level of type-

unifying strategies by applying two argument strategies to the same input term and combining their
intermediate results by o. Here is the corresponding strategy combinator:

comb :: Monad m ) (a ! b ! c)! TU m a ! TU m b ! TU m c

comb o s s 0 = s `letTU ` �a ! s 0 `letTU ` �b ! build (o a b)

2.4 Partiality and non-determinism

Instead of the simple classMonad we can also consider strategies w.r.t. the extended classMonadPlus

with the members mplus and mzero. This provides us with means to express partiality and non-
determinism. It is often useful to consider strategies which might potentially fail. The following
ordinary function combinator is the prototype for the choice combinators in Figure 1.
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f `mchoice ` g = �x ! (f x ) `mplus ` (g x )

As an illustration let us de�ne three simple strategy combinators which contribute to the construction
of the introductory example.

failTU :: MonadPlus m ) TU m x

failTU = polyTU (const mzero)

monoTU :: (Term a;MonadPlus m)) (t ! m a)! TU m a

monoTU f = adhocTU failTU f

tryTU :: (MonadPlus m;Monoid a)) TU m a ! TU m a

tryTU s = s `choiceTU ` (build mempty)

The strategy failTU denotes unconditional failure. The combinator monoTU updates failure by a
monomorphic function f , using the combinator adhocTU. That is, the resulting strategy fails for all
types other than f 's argument type. If f is applicable, then the strategy indeed resorts to f . The
combinator tryTU allows us to recover from failure in case we can employ a neutral element mempty
of a monoid.

2.5 Traversal combinators

A challenging facet of strategies is that they might traverse terms. In fact, any program transformation
or program analysis involves traversal. If we want to employ genericity for traversal, corresponding
basic combinators are indispensable. The all and one combinators in Figure 1 process all or just one of
the immediate subterms of a given term, respectively. The combinators do not just vary with respect
to quanti�cation but also for the type-preserving and the type-unifying case. The type-preserving
combinators allTP and oneTP preserve the outermost constructor for the sake of type-preservation.
Dually, the type-unifying combinators allTU and oneTU unwrap the outermost constructor in order
to migrate to the uni�ed type. More precisely, allTU reduces all pre-processed children by the binary
operation mappend of a monoid whereas oneTU returns the result of processing one child. The all
and one combinators have been adopted from the untyped language Stratego [25] for strategic term
rewriting.
We are now in the position to de�ne the traversal scheme collect from the introduction. We �rst

de�ne a more parametric strategy crush which performs a deep reduction by employing the operators
of a monoid parameter. Then, the strategy collect is nothing more than a type-specialized version of
crush where we opt for the list monoid.

crush :: (MonadPlus m;Monoid a)) TU m a ! TU m a

crush s = comb mappend (tryTU s) (allTU (crush s))

collect :: MonadPlus m ) TU m [a ]! TU m [a ]
collect s = crush s

2.6 Some de�ned combinators

We can subdivide de�ned combinators into two categories, one for the control of strategies, and another
for traversal schemes. Let us discuss a few examples of de�ned combinators. A complete library can
be found in Appendix I.3. Here are some representatives of the category for the control of strategies:

repeatTP :: MonadPlus m ) TP m ! TP m

repeatTP s = tryTP (seqTP s (repeatTP s))

ifthenTP :: Monad m ) TP m ! TP m ! TP m

ifthenTP f g = (f `seqTU ` (build ())) `letTP ` (const g)
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notTP :: MonadPlus m ) TP m ! TP mentity

notTP s = ((s `ifthenTU ` (build True)) `choiceTU ` (build False))
`letTP `�b ! if b then failTP else identity

afterTU :: Monad m ) (a ! b)! TU m a ! TU m b

afterTU f s = s `letTU ` �a ! build (f a)

The combinator repeatTP applies its argument strategy as often as possible. As an aside, a type-
unifying counter-part of this combinator would justly not be typeable. The combinator ifthenTP
precedes the application of a strategy by a guarding strategy. The guard determines whether the
guarded strategy is applied at all. However, the guarded strategy is applied to the original term (as
opposed to the result of the guarding strategy). The combinator notTP models negation by failure.
The combinator afterTU adapts the result of a type-unifying traversal by an ordinary function.
Let us also de�ne a few traversal schemes (in addition to crush and collect):

bu :: Monad m ) TP m ! TP m

bu s = (allTP (bu s)) `seqTP ` s

oncetd :: MonadPlus m ) TP m ! TP m

oncetd s = s `choiceTP ` (oneTP (oncetd s))

select :: MonadPlus m ) TU m a ! TU m a

select s = s `choiceTU ` (oneTU (select s))

selectenv :: MonadPlus m ) e ! (e ! TU m e)! (e ! TU m a) ! TU m a

selectenv e s 0 s = s 0 e `letTU ` �e 0 ! (s e) `choiceTU ` (oneTU (selectenv e 0 s 0 s))

All these schemes deal with recursive traversal. The combinator bu serves for unconstrained type-
preserving bottom-up traversal. The argument strategy has to succeed for every node if the traversal
should succeed. The combinator oncetd serves for type-preserving top-down traversal where the
argument strategy is tried until it succeeds once. The traversal fails if the argument strategy fails
for all nodes. The type-unifying combinator select searches in top-down manner for a node which
can be processed by the argument strategy. Finally, the combinator selectenv is an elaboration of
select to accomplish explicit environment passing. The �rst argument strategy serves for updating
the environment before descending into the subterms.

3. Application: Refactoring

Refactoring [10] is the process of step-wise improving the internal structure of a software system
without altering its external behaviour. The extract method refactoring [10, p. 110] is a well-known
example of a basic refactoring step. To demonstrate the technique of programming with strategy
combinators, we will implement the extract method refactoring for Java.

3.1 The extract method refactoring

In brief, the extract method refactoring is described as follows:

Turn a code fragment that can be grouped together into a reusable

method whose name explains the purpose of the method.

For instance, the last two statements in the following method can be grouped into a method called
printDetails.
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void printOwning(double amount) {

printBanner ();

//print details

System.out.println("name:" + _name);

System.out.println("ammount" + amount);

}

+
void printOwning(double amount) {

printBanner ();

printDetails(amount);

}

void printDetails(double amount) {

System.out.println("name:" + _name);

System.out.println("amount" + amount);

}

Note that the local variable amount is turned into a parameter of the new method, while the instance
variable _name is not. Note also, that the extract method refactoring is valid only for a code fragment
that does not contain any return statements or assignments to local variables.

3.2 Design of the algorithm

To implement the extract method refactoring, we need to solve a number of subtasks.

Legality check The focused fragment must be analysed to ascertain that it does not contain any
return statements or assignments to local variables. The latter involves detection of variables in the
fragment that are de�ned (assigned into), but not declared (i.e., free de�ned variables).

Generation The new method declaration and invocation need to be generated. To construct their
formal and actual parameter lists, we need to collect those variables that are used, but not declared
(i.e., free used variables) from the focused fragments, with their types.

Transformation The focused fragment must be replaced with the generated method invocation, and
the generated method declaration must be inserted in the class body.

These subtasks need to be performed at speci�c moments during a traversal of the abstract syntax
tree. Roughly, our traversal will be structured as follows:

1. Descend to the class declaration in which the method with the focused fragment occurs.

2. Descend into the method with the focused fragment to (i) check the legality of the focused
fragment, and (ii) return both the focused fragment and a list of typed free variables that occur
in the focus.

3. Descend again to the focus to replace it with the method invocation that can now be constructed
from the list of typed free variables.

3.3 Implementation with strategies

Our solution is shown in Figures 2 through 4.
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typed free vars :: (MonadPlus m;Eq v)
) [(v ; t)]! TU m [v ]! TU m [(v ; t)]! TU m [(v ; t)]

typed free vars env getvars declvars

= afterTU (ip appendMap env) (tryTU declvars) `letTU ` �env 0 !

choiceTU (afterTU (ip selectMap env 0) getvars)
(comb di�Map (allTU (typed free vars env 0 getvars declvars))

(tryTU declvars))

Figure 2: A generic algorithm for extraction of free variables with their declared types.

useVar (Identi�er i) = return [i ]
useVar = mzero

defVar (Assignment i ) = return [i ]

declVars :: MonadPlus m ) TU m [(Identi�er ;Type)]
declVars = adhocTU (monoTU declVarsBlock ) declVarsMeth

where declVarsBlock (BlockStatements vds )
= return (map (�(VariableDecl t i)! (i ; t)) vds)

declVarsMeth (MethodDecl (FormalParams fps) )
= return (map (�(FormalParam t i)! (i ; t)) fps)

freeUseVars env = afterTU nubMap (typed free vars env (monoTU useVar) declVars)
freeDefVars env = afterTU nubMap (typed free vars env (monoTU defVar) declVars)

Figure 3: Instantiations of the generic free variable algorithm for Java.

Free variable analysis As noted above, we need to perform two kinds of free variable collection:
variables used but not declared, and variables de�ned but not declared. Furthermore, we need to �nd
the types of these free variables. Using strategies, we can implement free variable collection in an
extremely generic fashion. Figure 2 shows a generic free variable collection algorithm. This algorithm
was adapted from an untyped rewriting strategy in [24]. It is parameterized with (i) an initial type
environment env , (ii) a strategy getvars which selects any variables that are used in a certain node of
the AST, and (iii) a strategy declvars which selects declared variables with their types. Note that no
assumptions are made with respect to variables or types, except that equality is de�ned on variables
so they can appear as keys in a map.
The algorithm basically performs a top-down traversal. At a given node, �rst the incoming type

environment is extended with any variables declared at this node. Second, either the variables used
at the node are looked-up in the type environment and returned with their types, or, if the node
is not a use site, any declared variables are subtracted from the collection of free variables found in
the children. Note that the algorithm is typeful, and fully generic. It makes ample use of library
combinators, such as afterTU , letTU and comb.
As shown in Figure 3, this generic algorithm can be instantiated to the two kinds of free variable

analysis needed for our case. The functions useVar , defVar , and declVars are the Java-speci�c in-
gredients that are needed. They determine the used, de�ned, and declared variables of a given node,
respectively. We use them to instantiate the generic free variable collector to construct freeUseVars,
and freeDefVars .
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extractMethod :: (Term t ;MonadPlus m)) t ! m t

extractMethod prog = applyTP (oncetd (monoTP extrMethFromCls)) prog

extrMethFromCls :: MonadPlus m ) ClassDeclaration ! m ClassDeclaration

extrMethFromCls (ClassDecl �n nm sup fs cs ds)
= do (pars ; body) ifLegalGetParsAndBody ds

ds 0  replaceFocus pars (ds ++ [constructMethod pars body ])
return (ClassDecl �n nm sup fs cs ds 0)

ifLegalGetParsAndBody :: (Term t ;MonadPlus m)) t ! m ([([Char ];Type)];Statement)

ifLegalGetParsAndBody ds

= applyTU (selectenv [ ] appendLocals ifLegalGetParsAndBody1 ) ds
where ifLegalGetParsAndBody1 env

= getFocus `letTU ` �s !
ifthenTU (isLegal env)
(freeUseVars env `letTU ` �pars !
build (pars ; s))

appendLocals env

= comb appendMap (tryTU declVars) (build env)

replaceFocus :: (Term t ;MonadPlus m)) [(Identi�er ;Type)]! t ! m t

replaceFocus pars ds = applyTP (oncetd (replaceFocus1 pars)) ds
where replaceFocus1 pars

= getFocus `letTP ` � !

monoTP (const (return (constructMethodCall pars)))

isLegal :: MonadPlus m ) [([Char ];Type)]! TP m

isLegal env = freeDefVars env `letTP ` �env 0 !

if null env 0 then notTU (select getReturn) else failTP

getFocus :: MonadPlus m ) TU m Statement

getFocus = monoTU (�s ! case s of (StatFocus s 0)! return s 0

! mzero)

getReturn :: MonadPlus m ) TU m (Maybe Expression)
getReturn = monoTU (�s ! case s of (ReturnStat x )! return x

! mzero)

Figure 4: Implementation of the extract method refactoring.

Method extraction The remainder of the extract method implementation is shown in Figure 4.
The main strategy extractMethod performs a top-down traversal to the class level, where it calls
extrMethFromCls . This latter function �rst obtains parameters and body with ifLegalGetParsAndBody ,
and then replaces the focus with replaceFocus . Code generation is performed by two functions
constructMethod and constructMethodCall . Their de�nitions are trivial and not shown here. The
extraction of the candidate body and parameters for the new method is performed in the same traver-
sal as the legality check. This is a top-down traversal with environment propagation. During descent,
the environment is extended with declared variables. When the focus is reached, the legality check
is performed. If it succeeds, the free used variables of the focused fragment are determined. These
variables are paired with the focused fragment itself, and returned. The legality check itself is de�ned
in the strategy isLegal . It fails when the collection of variables that are de�ned but not declared is
non-empty, or when a return statement is recognized in the focus. The replacement of the focus by
a new method invocation is de�ned by the strategy replaceFocus . It performs a top-down traversal.
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When the focus is found, the new method invocation is generated and the focus is replaced with it.

4. Models of strategies

We have explained what strategy combinators are, and we have shown their utility. Let us now change
the point of view, and explain two options for the implementation of the strategy ADTs including the
primitives.

4.1 Strategies as functions on a universal term representation

The generic functions needed for strategies have to meet the following requirements. Firstly, they need
to be applicable to values of any term type. Secondly, they have to allow for updating in the sense
that type-speci�c behaviour can be enforced. Thirdly, they have to be able to descend into terms.
One way to meet these requirements is to rely on a universal representation of terms of algebraic
data types. This model can be easily encoded in any functional language although a native language
implementation is to be preferred for performance reasons. The notion of a universal representation
is relatively simple, and it has also been proposed elsewhere to facilitate the speci�cation of generic
functionality, e.g., for the rewriting framework ELAN in [3]. The challenge is to hide the employment
of a universal representation to rule out inconsistent representations, and to relieve the programmer
of the burden to deal explicitly with representations rather than ordinary values and functions.
The following declarations set up a presentation type TermRep, and the ADTs for strategies are

de�ned as functions on TermRep wrapped by constructors MkTP and MkTU :

type TypeId = String

type ConstrId = String

data TermRep = TermRep TypeRep ConstrId [TermRep ]
data TypeRep = TypeRep TypeId [TypeRep ]
newtype TP m = MkTP (TermRep ! m TermRep)
newtype TU m a = MkTU (TermRep ! m a)

Thus, a universal value consists of a type representation (for a potentially parameterized data type),
a constructor identi�er, and the list of universal values corresponding to the immediate subterms of
the encoded term (if any). To mediate between TermRep and speci�c term types, we place members
for implosion and explosion in a class Term.

class Term t where

explode :: t ! TermRep

implode :: TermRep ! t

The instances for a given term type follow a trivial scheme (for details see Appendix II.2). In fact, we
extended the DrIFT tool [30] to generate such instances for us (see Section 5). For a faithful universal
representation it should hold that explosion can be reversed by implosion. Implosion is potentially a
partial operation. One could use the Maybe monad for the result to enable recovery from an implosion
problem. By contrast, we rule out failure of implosion in the �rst place by hiding the representation
of strategies behind the primitive combinators given below. It is easy to show that all functions on
TermRep which can be de�ned in terms of the primitive combinators are implosion-safe.
Let us now look at the de�nition of the primitive combinators (see Appendix I.2 for the complete

code). The combinators polyTP and polyTU specialize their polymorphic argument to a function
on TermRep. All the combinators for sequential composition and choice can simply be de�ned by
basically unwrapping the constructors MkTP and MkTU from each argument and re-wrapping the
result.
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polyTP f = MkTP f

polyTU f = MkTU f

unTP (MkTP f ) = f

unTU (MkTU f ) = f

seqTP f g = MkTP ((unTP f ) `mseq ` (unTP g))
seqTU f g = MkTU ((unTP f ) `mseq ` (unTU g))
letTP f g = MkTP ((unTU f ) `mlet ` (�a ! unTP (g a)))
letTU f g = MkTU ((unTU f ) `mlet ` (�a ! unTU (g a)))
choiceTP f g = MkTP ((unTP f ) `mchoice ` (unTP g))
choiceTU f g = MkTU ((unTU f ) `mchoice ` (unTU g))

The combinators for strategy application and updating are de�ned as follows:

applyTP s t = unTP s (explode t)>>= �t 0 ! return (implode t 0)
applyTU s t = unTU s (explode t)

adhocTP s f = MkTP (�u ! if applicable f u

then f (implode u)>>= �t ! return (explode t)
else unTP s u)

adhocTU s f = MkTU (�u ! if applicable f u

then f (implode u)
else unTU s u)

Since strategies are functions on TermRep, terms are always �rst exploded to TermRep before the
function underlying a strategy can be applied. In the case of a type-preserving strategy, the result of
the application also needs to be imploded afterwards. As for update, we use a type test (cf. applicable)
to check if the given universal value is of the speci�c type handled by the update. Here, we rely on the
fact that we can compare type-representations. If the type test succeeds, the corresponding implosion
is performed so that the speci�c function can be applied. If the type test fails, the generic default
strategy is applied.
The primitive traversal combinators are particularly easy to de�ne for this model. Recall that these

combinators process in some sense the immediate subterms of a given term. Thus, we can essentially
perform list processing. The following code fragment de�nes a helper to apply a list-processing function
on the immediate subterms. We also show the implementation of the primitive allTP which employs
the standard monadic map function mapM .

applyOnKidsTP :: Monad m ) ([TermRep ]! m [TermRep ])! TP m

applyOnKidsTP s = MkTP (�(TermRep sort con ks)!
s ks >>= �ks 0 ! return (TermRep sort con ks 0))

allTP s = applyOnKidsTP (mapM (unTP s))

4.2 Strategies as rank-2 polymorphic functions

Instead of de�ning strategies as functions on a universal representation type, we can also de�ne them
as a kind of polymorphic functions. Here, we rely on �rst-order polymorphism [17] combined with
class overloading [16]. The following declarations de�ne TP m and TU m a in terms of universally
quanti�ed components of datatype constructors.

newtype Monad m ) TP m = MkTP (8t : Term t ) t ! m t)
newtype Monad m ) TU m a = MkTU (8t : Term t ) t ! m a)

As an aside, this form of wrapping is the Haskell approach to deal with rank-2 polymorphism while
retaining decidability of type inference [17]. The interesting bit of this model is that the functions
which model strategies are not simply universally quanti�ed, but the domain is also constrained to be
an instance of the class Term. For the present model the term interface looks as follows:
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class Update t ) Term t where

adhocTP 0 :: (Monad m;Update t 0) ) (t 0 ! m t 0)! (t ! m t)! (t 0 ! m t 0)
adhocTU 0 :: (Monad m;Update t 0) ) (t 0 ! m a)! (t ! m a)! (t 0 ! m a)
allTP 0 ::Monad m ) TP m ! t ! m t

oneTP 0 ::MonadPlus m ) TP m ! t ! m t

allTU 0 :: (Monad m;Monoid a) ) TU m a ! t ! m a

oneTU 0 ::MonadPlus m ) TU m a ! t ! m a

Thus, some primitives have to be de�ned for all possible term types. We use primed names because
the members are only prototypes which still need to be lifted by wrapping and unwrapping. Speci�c
instances for the traversal primtives are obviously needed when we do not rely on a universal repre-
sentation type. Speci�c instances for adhocTP and adhocTU are needed to model strategy update as
a type case [8, 6] via an encoding technique adopted from [29]. For brevity, we omit the class Update
which is mentioned in the context of Term. The members in Update are needed to encode adhocTP
and adhocTU . The scheme for all the members in Term and Update is trivial (and their systematic
derivation from the datatypes is routine). We refer to Appendix II.3 and Appendix II.4 for complete
sources of the term interface for a simple example. The derivation of the actual primitive combinators
is now straightforward. As for sequential composition and choice, the de�nitions from the previous
model carry over. Here are the remaining de�nitions:

applyTP s t = (unTP s) t
applyTU s t = (unTU s) t
adhocTP s f = MkTP (adhocTP 0 (unTP s) f )
adhocTU s f = MkTU (adhocTU 0 (unTU s) f )

allTP s = MkTP (allTP 0 s)
oneTP s = MkTP (oneTP 0 s)
allTU s = MkTU (allTU 0 s)
oneTU s = MkTU (oneTU 0 s)

As for application, we simply unwrap MkTP and MkTU . The prototypes from the class Term are
turned into the proper combinators by wrapping, i.e., the prototypes are explicitely quanti�ed inside
MkTP and MkTU . The present model is not just type-safe as the previous one but the de�nitions of
TP m and TU m a do not need to be hidden any longer.

5. Conclusion

Functional software re-engineering Without appropriate technology large-scale software mainte-
nance projects cannot be done cost-e�ectively within a reasonable time-span, or not at all [5, 7, 4].
Currently, most (declarative) re-technologies are those based on term rewriting frameworks and at-
tribute grammars. There are hardly (published) attempts to employ functional programming for the
development of large-scale program transformation systems. One exception is AnnoDomini [9] where
SML is used for the implementation of a Y2K tool. The traversal part of AnnoDomini is kept to a
reasonable size by a clever normalisation that gets rid of all syntax not relevant to the speci�c Y2K
approach. However, for most re-engineering problems, such a normalisation is not obvious or feasi-
ble. Cost-e�ective solution of such problems requires generic traversal technology that is applicable
to the full syntax of the language at hand [4]. In [18], we describe an architecture for functional
transformation systems and a corresponding case study concerned with a data expansion problem.
This architecture addresses the important issues of scalable parsing and pretty-printing, and employs
an approach to generic traversal based on combinators for updatable generalized folds [21]. The func-
tional strategies described in the current paper provide a more lightweight and more generic solution
than folds, and can be used instead.
Of course, our techniques are not only applicable to software re-engineering problems, but generally

to all areas of language and document processing where traversals are desirable that are both typed
and generic. For example, our strategy combinators can be used for XML processing where, in contrast
to the approaches presented in [28], document processors can at once be typed and generic.
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Generic functional programming Related forms of genericity have been proposed elsewhere. These
approaches are rather more complex than ours and they are insu�cient for a faithful encoding of the
combinators we propose. With intensional and extensional polymorphism [8, 6] one can also encode
type-parametric functions where the behaviour is de�ned via a run-time type case. However, as-is the
corresponding systems do not cover algebraic data types, but only products, function space, and basic
data types. With polytypic programming (cf. PolyP and Generic Haskell [14, 12, 13]), one can de�ne
functions by induction on types. However, polytypic functions are not �rst class citizens: due to the
restriction that polytypic parameters are quanti�ed at the top level, polytypic combinators cannot be
de�ned. Also, in a polytypic de�nition, though one can provide �xed ad-hoc cases for speci�c data
types, an adhoc combinator which employs a type case, is absent. It may be conceivable that polytypic
programming is generalized to cover the functionality of our strategies, but the current paper shows
that strategies can be modelled within the type system already available in Haskell.

The origins of functional strategies The term `strategy' and our conception of generic programming
were largely inuenced by strategic term rewriting [23, 22, 2, 3, 19]. In particular, the overall idea
to de�ne traversal schemes in terms of basic generic combinators like all and one has been adopted
from the untyped language Stratego [25] for strategic term rewriting. Our contribution is that we
integrate this idea with typed and higher-order functional programming. In fact, Stratego was not
de�ned with typing in mind. To encode type-unifying traversals, for example, children of a term are
processed as inhomogeneous lists. Hence, the resulting traversals are inherently untyped. As an aside,
this problem is known from Prolog where one is used to inhomogeneous lists which also arise from
generic term destruction and construction via the univ-operator. Furthermore, in Stratego, one is
forced to encode type guards for type-speci�c behaviour by observing constructors. That is, there is
no correspondence to our type-dependent update of a strategy in the sense of the adhoc combinators.
In [19], the �rst author works out a typeful approach to strategic rewriting. This approach does not
rely on a term interface because combinators like all and one are regarded as true primitives of the
designed rewriting calculus. The calculus is very simple but it is not higher-order. In fact, strategies
in a higher-order settting have their speci�c merits. One can, for example, easily deal with e�ects
in a monadic fashion. Our �rst attempt to rephrase term rewriting strategies for typed higher-order
programming was briey described in [20]. There, we adapted the concept of updatable generalized
fold algebras [21] to represent strategies as records. Given a system of datatypes, basic strategy
combinators were derived. By contrast, in the present paper the stategy combinators are de�ned
generically where we only rely on a term interface to be instantiated for all term types.

Availability The strategy library StrategyLib is available as part of a generic functional programming
bundle called Strafunski at http://www.cs.vu.nl/Strafunski. Complete source of StrategyLib are
included in Appendix I.3. The bundle also contains an extended version of DrIFT (formerly called
Derive [30]) which can be used (pending native support for the Term interface) to generate the
instances of class Term according to the model in Section 4.1 for any given algebraic data type.
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Appendix I

Source of StrategyLib

This appendix lists the sources of the strategy library StrategyLib as available on the Strafunski web
page http://www.cs.vu.nl/Strafunski. The current release (version 1.0) consists of three modules:

� Module TermRep for the universal term representation,

� Module StrategyPrimitives implementing the strategy primitives according to Section 4.1,

� Module StrategyLib o�ering strategy combinators for the working generic programmer.

Most users will need to import only the top-level module StrategyLib into their application modules.

1. Module TermRep

{-----------------------------------------------------------------------------

A LIBRARY OF GENERIC TRAVERSAL COMBINATORS

StrategyLib version 1.0, August 10th, 2001

Ralf Laemmel Joost Visser

CWI & VU, Amsterdam CWI, Amsterdam

This module is part of a library of generic function combinators, including

combinators for generic traversal. The universal term representation on which

the generic function representation relies, is defined in this module. Most

users will not be concerned with any of the entities defined here.

-----------------------------------------------------------------------------}

module TermRep where
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import Monad

import Monoid

--- The universal term representation type -----------------------------------

type TypeId = String

type ConstrId = String

data TermRep = TermRep TypeRep ConstrId [TermRep]

deriving (Show,Eq)

data TypeRep = TypeRep TypeId [TypeRep]

deriving (Show,Eq)

typeRep (TermRep tr _ _) = tr

constrId (TermRep _ ci _) = ci

children (TermRep _ _ ks) = ks

--- The term interface -------------------------------------------------------

class Term t where

explode :: t -> TermRep

implode :: TermRep -> t

getTypeRep :: t -> TypeRep

-- As an aside, one could use a term interface without the member getTypeRep.

-- We do not opt for this omission for simplicity of our scheme.

implodeError t u = error ("Cannot implode to "++t++": "++(show u))

-- We use implodeError in the fall-through cases of the implode members.

-- Strategies are implosion-safe by definition. A different use of the

-- universal representation might however create implosion problems.

--- Instances for basic types and basic type constructors --------------------

-- String

instance Term String where

explode str = TermRep (TypeRep "String" []) str []

implode (TermRep (TypeRep "String" []) s []) = s

implode u = implodeError "String" u

getTypeRep _ = TypeRep "String" []

-- List

instance Term a => Term [a] where

explode xs = TermRep (TypeRep "List" [elemType]) "" (map explode xs)

where elemType = getTypeRep (head xs)
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implode u@(TermRep listType@(TypeRep "List" [elemType]) _ xs)

= let xs' = map implode xs

neededElemType = getTypeRep (head xs')

in if elemType==neededElemType

then xs'

else implodeError (show listType) u

implode u = implodeError "List" u

getTypeRep xs = TypeRep "List" [getTypeRep (head xs)]

-- Integer

instance Term Integer where

explode i = TermRep (TypeRep "Integer" []) (show i) []

implode (TermRep (TypeRep "Integer" []) i []) = read i

implode u = implodeError "Integer" u

getTypeRep _ = TypeRep "Integer" []

-- Bool

instance Term Bool where

explode b = TermRep (TypeRep "Bool" []) (show b) []

implode (TermRep (TypeRep "Bool" []) b []) = read b

implode u = implodeError "Bool" u

getTypeRep _ = TypeRep "Bool" []

-- Maybe

instance Term a => Term (Maybe a) where

explode mx = TermRep (TypeRep "Maybe" [elemType]) ""

(maybe [] (\x -> [explode x]) mx)

where elemType = getTypeRep (unJust mx)

unJust (Just x) = x

implode u@(TermRep t@(TypeRep "Maybe" [elemType]) _ mx)

= let xs = map implode mx

neededElemType = (getTypeRep (head xs))

in if elemType==neededElemType

then case xs of

[] -> Nothing

[x] -> Just x

_ -> implodeError (show t) u

else implodeError "Maybe" u

implode u = implodeError "Maybe" u

getTypeRep mx = TypeRep "Maybe" [getTypeRep (unJust mx)]

where unJust (Just x) = x

------------------------------------------------------------------------------
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2. Module StrategyPrimitives

{-----------------------------------------------------------------------------

A LIBRARY OF GENERIC TRAVERSAL COMBINATORS

StrategyLib version 1.0, August 10th, 2001

Ralf Laemmel Joost Visser

CWI & VU, Amsterdam CWI, Amsterdam

This module is part of a library of generic function combinators, including

combinators for generic traversal. The generic function representation that

relies on a universal term representation is defined in this module. The

safety of the generic function combinators is guaranteed by not exporting

the data constructor MkTP.

-----------------------------------------------------------------------------}

module StrategyPrimitives (

TP, TU, -- Note: MkTP is not exported, MkTU could be exported

polyTP,

polyTU,

unTP,unTU,

applyTP, applyTU,

applyOnKidsTU, -- Note: applyOnKidsTP is not exported

adhocTP, adhocTU, applicable,

seqTP, letTP,

seqTU, letTU,

choiceTP, choiceTU,

allTP, oneTP, uniTP, anyTP, someTP,

allTU, oneTU, uniTU, anyTU, someTU,

-- And additionally from module TermRep:

Term

) where

import TermRep

import Monad

import Monoid

--- Strategy representation --------------------------------------------------

newtype TP m = MkTP (TermRep -> m TermRep)

newtype TU m a = MkTU (TermRep -> m a)

unTP (MkTP f) = f

unTU (MkTU f) = f

polyTP :: Monad m => (forall t. t -> m t) -> TP m

polyTP f = MkTP f
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polyTU :: Monad m => (forall t. t -> m a) -> TU m a

polyTU f = MkTU f

--- Strategy application -----------------------------------------------------

applyTP :: (Monad m, Term t) => TP m -> t -> m t

applyTP s t = do { t' <- unTP s (explode t); return (implode t') }

applyTU :: (Monad m, Term t) => TU m a -> t -> m a

applyTU s t = unTU s (explode t)

applyOnKids :: Monad m => ([TermRep] -> m [TermRep]) -> TP m

applyOnKids s = MkTP (\ (TermRep sort con ks)

-> s ks >>= \ks' ->

return (TermRep sort con ks'))

applyOnKidsTU :: ([TermRep] -> m a) -> TU m a

applyOnKidsTU s = MkTU (\ (TermRep sort con ks) -> s ks)

--- Strategy updating --------------------------------------------------------

adhocTP :: (Monad m, Term t) => TP m -> (t -> m t) -> TP m

adhocTP s f = MkTP (\u -> if applicable f u

then do t <- f (implode u)

return (explode t)

else (unTP s u) )

adhocTU :: (Monad m, Term t) => TU m a -> (t -> m a) -> TU m a

adhocTU s f = MkTU (\u -> if applicable f u

then (f (implode u))

else (unTU s u) )

applicable :: Term a => (a -> b) -> TermRep -> Bool

applicable f u = (typeRep u) == (getTypeRep (undefined `withArgType` f))

where withArgType :: a -> (a -> x) -> a

withArgType a f = a

-- Applicability of a monomorphic function to a universal term representation

-- is defined by comparing the type representation of the argument type of the

-- function with the type representation of the term representation at hand.

--- Deterministic combinators ------------------------------------------------

-- Type-preserving

seqTP :: Monad m => TP m -> TP m -> TP m

seqTP f g = MkTP ((unTP f) `mseq` (unTP g))
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letTP :: Monad m => TU m a -> (a -> TP m) -> TP m

letTP f g = MkTP ((unTU f) `mlet` (\y -> unTP (g y)))

-- Type-unifying

seqTU :: Monad m => TP m -> TU m x -> TU m x

seqTU f g = MkTU ((unTP f) `mseq` (unTU g))

letTU :: Monad m => TU m a -> (a -> TU m x) -> TU m x

letTU f g = MkTU ((unTU f) `mlet` (\y -> unTU (g y)))

--- Combinators for partiality and non-determinism ---------------------------

-- Type-preserving

choiceTP :: MonadPlus m => TP m -> TP m -> TP m

choiceTP f g = MkTP ((unTP f) `mchoice` (unTP g))

-- Type-unifying

choiceTU :: MonadPlus m => TU m x -> TU m x -> TU m x

choiceTU f g = MkTU ((unTU f) `mchoice` (unTU g))

--- Traversal combinators ----------------------------------------------------

-- Type-preserving

-- Succeed for all children

allTP :: Monad m => TP m -> TP m

allTP s = applyOnKids (mapM (unTP s))

-- Succeed for one child; don't care about the other children

oneTP :: MonadPlus m => TP m -> TP m

oneTP s = applyOnKids (oneM (unTP s))

-- Succeed for exactly one child; fail for all other children

uniTP :: MonadPlus m => TP m -> TP m

uniTP s = applyOnKids (uniM (unTP s))

-- Succeed for as many children as possible

anyTP :: MonadPlus m => TP m -> TP m

anyTP s = applyOnKids (anyM (unTP s))

-- Succeed for as many children as possible but at least for one

someTP :: MonadPlus m => TP m -> TP m

someTP s = applyOnKids (someM (unTP s))

-- Helpers
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oneM f [] = mzero

oneM f (x:xs) = do { x' <- (f x); return (x':xs) }

`mplus`

do { xs' <- oneM f xs; return (x:xs') }

uniM f [] = mzero

uniM f (x:xs) = do { x' <- (f x); () <- noneV f xs; return (x':xs) }

`mplus`

do { () <- noneV f [x]; xs' <- uniM f xs; return (x:xs') }

noneV f [] = return ()

noneV f (x:xs) = ((f x >>= \_ -> return True) `mplus` (return False))

>>= \b -> if b then mzero

else noneV f xs

anyM f [] = return []

anyM f (x:xs) = do x' <- ((f x) `mplus` (return x))

xs' <- anyM f xs

return (x':xs')

someM f [] = mzero

someM f (x:xs) = do { x' <- f x; xs' <- anyM f xs; return (x':xs') }

`mplus`

do { xs' <- someM f xs; return (x:xs') }

-- Type-unifying

allTU :: (Monad m, Monoid a) => TU m a -> TU m a

allTU s = applyOnKidsTU (foldM cons mempty)

where cons i c = do c' <- (unTU s c)

return (i `mappend` c')

oneTU :: MonadPlus m => TU m a -> TU m a

oneTU s = applyOnKidsTU (foldr cons mzero)

where cons c i = (unTU s c) `mplus` i

uniTU :: MonadPlus m => TU m a -> TU m a

uniTU s = applyOnKidsTU (uniTUfold (unTU s))

anyTU :: (MonadPlus m, Monoid a) => TU m a -> TU m a

anyTU s = applyOnKidsTU (foldM (anyTUcons (unTU s)) mempty)

someTU :: (Monoid a, MonadPlus m) => TU m a -> TU m a

someTU s = applyOnKidsTU (someTUfold (unTU s))

-- Helpers

uniTUfold f [] = mzero

uniTUfold f (x:xs)

= do { a <- (f x); () <- noneV f xs; return a }
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`mplus`

do { () <- noneV f [x]; a <- uniTUfold f xs; return a }

anyTUcons f i c = do { c' <- f c; return (i `mappend` c') }

`mplus`

return i

someTUfold f [] = mzero

someTUfold f (x:xs)

= do c <- f x

i <- (foldM (anyTUcons f) mempty) xs

return (i `mappend` c)

`mplus`

someTUfold f xs

--- Parametric polymorphic prototypes ----------------------------------------

f `mseq` g = \x -> f x >>= g -- monadic functional composition

f `mlet` g = \x -> f x >>= \y -> g y x -- a kind of monadic let

f `mchoice` g = \x -> (f x) `mplus` (g x) -- a monadic choice for functions

--- Illustration of type safety ----------------------------------------------

-- The safety of this model of strategies relies on hiding of MkTP. The

-- following term demonstrates unsafe use of the MkTP constructor. We catch a

-- universal representation which arose from a string and we throw it in for

-- the result of a type-preserving function. Clearly, if we attempt to apply

-- the inner type-preserving strategy to a Boolean constant, then we end up

-- with an implosion error.

brokenTerm = applyTU

(MkTU (\u -> applyTP (MkTP (const (Just u))) True))

"BREAK"

-- If the polyTP constructor function is used instead, the resulting term

-- is not typable:

--

-- untypableTerm = applyTU

-- (MkTU (\u -> applyTP (polyTP (const (return u))) True))

-- "BREAK"

--

-- Thus, by not exporting MkTP, safety is guaranteed.

------------------------------------------------------------------------------
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3. Module StrategyLib

{-----------------------------------------------------------------------------

A LIBRARY OF GENERIC TRAVERSAL COMBINATORS

StrategyLib version 1.0, August 10th, 2001

Ralf Laemmel Joost Visser

CWI & VU, Amsterdam CWI, Amsterdam

This module is part of a library of generic function combinators, including

combinators for generic traversal. Most users should import only this module

into their application modules.

-----------------------------------------------------------------------------}

module StrategyLib (

module StrategyPrimitives,

module StrategyLib

) where

import StrategyPrimitives

import Monad

import Monoid

--- Traversal control --------------------------------------------------------

-- Type-preserving combinators

-- Identity strategy

identity :: Monad m => TP m

identity = polyTP return

-- Failure strategy

failTP :: MonadPlus m => TP m

failTP = polyTP (const mzero)

-- Lift a function to a strategy type with failure as default

monoTP :: (Term a, MonadPlus m) => (a -> m a) -> TP m

monoTP f = adhocTP failTP f

-- Always succeed by a catch-all

tryTP :: MonadPlus m => TP m -> TP m

tryTP s = s `choiceTP` identity

-- Exhaustive repeated application

repeatTP :: MonadPlus m => TP m -> TP m

repeatTP s = tryTP (seqTP s (repeatTP s))
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-- Place a guard on a strategy

ifthenTP :: Monad m => TP m -> TP m -> TP m

ifthenTP f g = (f `seqTU` void) `letTP` (const g)

-- Perform a test without changing terms

testTP :: Monad m => TP m -> TP m

testTP f = f `ifthenTP` identity

-- Negation by failure

notTP :: MonadPlus m => TP m -> TP m

notTP s = ((s `ifthenTU` (build True)) `choiceTU` (build False))

`letTP` \b ->

if b then failTP else identity

-- Type-unifying combinators

build :: Monad m => a -> TU m a

build a = polyTU (const (return a))

void :: Monad m => TU m ()

void = build ()

failTU :: MonadPlus m => TU m x

failTU = polyTU (const mzero)

monoTU :: (Term a, MonadPlus m) => (a -> m b) -> TU m b

monoTU f = adhocTU failTU f

tryTU :: (MonadPlus m, Monoid a) => TU m a -> TU m a

tryTU s = s `choiceTU` (build mempty)

ifthenTU :: Monad m => TP m -> TU m b -> TU m b

ifthenTU f g = (f `seqTU` void) `letTU` (const g)

testTU :: Monad m => TU m a -> TP m

testTU f = f `letTP` (const identity)

notTU :: MonadPlus m => TU m a -> TP m

notTU s = choiceTU (s `letTU` const (build True)) (build False)

`letTP` \b ->

if b then failTP else identity

comb :: Monad m => (a -> b -> c) -> TU m a -> TU m b -> TU m c

comb o s s' = s `letTU` \a ->

s' `letTU` \b ->

build (o a b)

appendTU :: (Monoid a, MonadPlus m) => TU m a -> TU m a -> TU m a

appendTU f g = comb mappend (tryTU f) (tryTU g)

afterTU :: Monad m => (a -> b) -> TU m a -> TU m b
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afterTU f s = s `letTU` \a -> build (f a)

--- Traversal schemes --------------------------------------------------------

-- Type-preserving combinators

{-

For performance and uniformity reasons, anyTP and someTP are

primitives, but they could have been defined as follows:

anyTP :: MonadPlus m => TP m -> TP m

anyTP s = allTP (tryTP s)

someTP :: MonadPlus m => TP m -> TP m

someTP s = (testTP (notTP (allTP (notTP s)))) `seqTP` (anyTP s)

-}

td :: Monad m => TP m -> TP m

td s = s `seqTP` (allTP (td s))

bu :: Monad m => TP m -> TP m

bu s = (allTP (bu s)) `seqTP` s

stoptd :: MonadPlus m => TP m -> TP m

stoptd s = s `choiceTP` (allTP (stoptd s))

oncetd :: MonadPlus m => TP m -> TP m

oncetd s = s `choiceTP` (oneTP (oncetd s))

oncebu :: MonadPlus m => TP m -> TP m

oncebu s = (oneTP (oncebu s)) `choiceTP` s

-- Type-unifying combinators

crush :: (MonadPlus m, Monoid a) => TU m a -> TU m a

crush s = comb mappend (tryTU s) (allTU (crush s))

collect :: MonadPlus m => TU m [a] -> TU m [a]

collect s = crush s

select :: MonadPlus m => TU m a -> TU m a

select s = s `choiceTU` (oneTU (select s))

selectenv :: MonadPlus m => e -> (e -> TU m e) -> (e -> TU m a) -> TU m a

selectenv e s' s = s' e `letTU` \e' ->

(s e) `choiceTU` (oneTU (selectenv e' s' s))
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--- Fixpoint traversal -------------------------------------------------------

reduce s = repeatTP(someTP (reduce s) `choiceTP` s)

outermost s = repeatTP(oncetd s)

innermost' s = repeatTP(oncebu s)

innermost s = allTP(innermost s)

`seqTP`

(tryTP (s `seqTP` (innermost s)))

------------------------------------------------------------------------------
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Appendix II

Example instantiations of the term interface

In this appendix, we illustrate the term interface underlying the two models of functional strategies
as discussed in Section 4. As we pointed out earlier, a strategic programmer is not obliged to deliver
this term interface him- or herself. In the Strafunski bundle, an updated version of the DrIFT tool is
available which can be used to generate the instances for the Term class from the data types (for the
model in Section 4.1).
Below, we use a minimal system of data types rather than a Java grammar to illustrate the schemes.

The system is minimal in the sense that it is the smallest sytem that involves (i) mutual recursion, (ii)
constructors with zero, one, and multiple children, and (iii) a basic data type (Integer in this case).

1. A sample system of data types

--- A simple system of mutually recursive datatypes --------------------------

module Datatypes where

data SortA = SortA1 SortB | SortA2 deriving Show

data SortB = SortB Integer SortA deriving Show

------------------------------------------------------------------------------
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2. Term interface for universal representation

--- Term interface for TwoSorts example based on universal representation ----

module TermInterface where

import TermRep

import Datatypes

--- Term interface for SortA -------------------------------------------------

instance Term SortA where

explode a@(SortA1 b) = TermRep (getTypeRep a) "SortA1" [explode b]

explode a@SortA2 = TermRep (getTypeRep a) "SortA2" []

implode (TermRep t "SortA1" [b])

| t == getTypeRep (undefined::SortA) = SortA1 (implode b)

implode (TermRep t "SortA2" [])

| t == getTypeRep (undefined::SortA) = SortA2

getTypeRep _ = TypeRep "SortA" []

-- We use the applications of getTypeRep in the definition of implode to

-- reuse the definition of getTypeRep rather than to repeat the type

-- representation in the guards of the equations. We omit cases for implosion

-- errors. Such errors cannot occur with strategies. They can occur if a

-- programmer uses the universal representation type for other purposes than

-- strategic programming.

--- Term interface for SortA -------------------------------------------------

instance Term SortB where

explode b@(SortB i a) = TermRep (getTypeRep b) "SortB" [explode i,explode a]

implode (TermRep t "SortB" [i,a])

| t == getTypeRep (undefined::SortB) = SortB (implode i) (implode a)

getTypeRep _ = TypeRep "SortB" []

------------------------------------------------------------------------------



30 Appendix II. Example instantiations of the term interface

3. Rank-2 term interface: class Update

{- The type case for type-safe update ----------------------------------------

Updating works as follows. For brevity, let us consider adhocTP' in the

Term class only (it works quite the same for TU). The overloaded function

adhocTP' takes a polymorphic function p and a monomorphic function

m :: s -> m s for a specific term type s. In the Term instance for s

the function adhocTP' is defined in terms of a member sTP from the Update

class where sTP is specific to s. In fact, the trick is that the specific

member sTP records the type s. The result type of adhocTP' p m is again

polymorphic. When adhocTP' p m is ultimately applied to a term of some type

t, then the instance for t determines the interpretation of sTP p m. If t

and the original s are the same, then m wins, otherwise we resort to p.

In summary, the instances for the Update class encode n*n cases in a type

case to decide if an update for s has to be applied to a given term where

n is the number of data types in the system at hand.

-----------------------------------------------------------------------------}

module Update where

import Datatypes

-- Class declaration with closed world assumption ----------------------------

class Update t where

integerTP :: Monad m => (t -> m t) -> (Integer -> m Integer) -> (t -> m t)

boolTP :: Monad m => (t -> m t) -> (Bool -> m Bool) -> (t -> m t)

sortaTP :: Monad m => (t -> m t) -> (SortA -> m SortA) -> (t -> m t)

sortbTP :: Monad m => (t -> m t) -> (SortB -> m SortB) -> (t -> m t)

integerTU :: Monad m => (t -> m a) -> (Integer -> m a) -> (t -> m a)

boolTU :: Monad m => (t -> m a) -> (Bool -> m a) -> (t -> m a)

sortaTU :: Monad m => (t -> m a) -> (SortA -> m a) -> (t -> m a)

sortbTU :: Monad m => (t -> m a) -> (SortB -> m a) -> (t -> m a)

-- Instances for type case ---------------------------------------------------

instance Update Integer where

integerTP _ f = f

boolTP f _ = f

sortaTP f _ = f

sortbTP f _ = f

integerTU _ f = f

boolTU f _ = f

sortaTU f _ = f

sortbTU f _ = f
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instance Update Bool where

integerTP f _ = f

boolTP _ f = f

sortaTP f _ = f

sortbTP f _ = f

integerTU f _ = f

boolTU _ f = f

sortaTU f _ = f

sortbTU f _ = f

instance Update SortA where

integerTP f _ = f

boolTP f _ = f

sortaTP _ f = f

sortbTP f _ = f

integerTU f _ = f

boolTU f _ = f

sortaTU _ f = f

sortbTU f _ = f

instance Update SortB where

integerTP f _ = f

boolTP f _ = f

sortaTP f _ = f

sortbTP _ f = f

integerTU f _ = f

boolTU f _ = f

sortaTU f _ = f

sortbTU _ f = f

-----------------------------------------------------------------------------
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4. Rank-2 term interface: class Term

--- Term interface for TwoSorts example based on rank-2 types ---------------

module TermInterface where

import Datatypes

import Update

import Monad

import Monoid

import StrategyPrimitives

--- The instances for Integer, Bool, SortA, SortB ---------------------------

instance Term Integer where

adhocTP' = integerTP

adhocTU' = integerTU

allTP' _ = return

oneTP' _ = const mzero

allTU' _ = const (return mempty)

oneTU' _ = const mzero

instance Term Bool where

adhocTP' = boolTP

adhocTU' = boolTU

allTP' _ = return

oneTP' _ = const mzero

allTU' _ = const (return mempty)

oneTU' _ = const mzero

instance Term SortA where

adhocTP' = sortaTP

adhocTU' = sortaTU

allTP' f (SortA1 b) = applyTP f b >>= \b' -> return (SortA1 b')

allTP' f SortA2 = return SortA2

oneTP' f (SortA1 b) = applyTP f b >>= \b' -> return (SortA1 b')

oneTP' f SortA2 = mzero

allTU' f (SortA1 b) = applyTU f b

allTU' f SortA2 = return mempty

oneTU' f (SortA1 b) = applyTU f b

oneTU' f SortA2 = mzero
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instance Term SortB where

adhocTP' = sortbTP

adhocTU' = sortbTU

allTP' f (SortB i a) = applyTP f i >>= \i' ->

applyTP f a >>= \a' ->

return (SortB i' a')

oneTP' f (SortB i a) = (applyTP f i >>= \i' -> return (SortB i' a)) `mplus`

(applyTP f a >>= \a' -> return (SortB i a'))

allTU' f (SortB i a) = applyTU f i >>= \i' ->

applyTU f a >>= \a' ->

return (i' `mappend` a')

oneTU' f (SortB i a) = (applyTU f i) `mplus`

(applyTU f a)

------------------------------------------------------------------------------
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