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Abstract

Region-based memory management is an alternative to standard tracing garbage collection that

makes potentially dangerous operations such as memory deallocation explicit but verifiably safe. In

this article, we present a new compiler intermediate language, called the Capability Calculus, that

supports region-based memory management and enjoys a provably safe type system. Unlike previous

region-based type systems, region lifetimes need not be lexically scoped and yet the language may

be checked for safety without complex analyses. Therefore, our type system may be deployed in

settings such as extensible operating systems where both the performance and safety of untrusted

code is important.

The central novelty of the language is the use of static capabilities to specify the permissibility

of various operations, such as memory access and deallocation. In order to ensure capabilities

are relinquished properly, the type system tracks aliasing information using a form of bounded

quantification. Moreover, unlike previous work on region-based type systems, the proof of soundness

of our type system is relatively simple, employing only standard syntactic techniques.

In order to show our language may be used in practice, we show how to translate a variant of

Tofte and Talpin’s high-level type-and-effects system for region-based memory management into

our language. When combined with known region inference algorithms, this translation provides a

way to compile source-level languages to the Capability Calculus.

1 Motivation and Background

A current trend in systems software is to allow untrusted extensions to be installed in protected services,
relying upon language technology to protect the integrity of the service instead of hardware-based
protection mechanisms [24, 51, 4, 35, 33, 22, 19]. For example, the SPIN project [4] relies upon the
Modula-3 type system to protect an operating system kernel from erroneous extensions. Similarly, web
browsers rely upon the Java Virtual Machine byte-code verifier [24] to protect users from malicious
applets. In both situations, the goal is to eliminate expensive communications or boundary crossings
by allowing extensions to directly access the resources they require.

∗This research was performed while the first author was at Cornell University. This material is based on work supported
in part by the AFOSR grant F49620-97-1-0013, ARPA/RADC grant F30602-96-1-0317 and NSF grant No. EIA 97-03470.
Any opinions, findings, and conclusions or recommendations expressed in this publication are those of the authors and
do not reflect the views of these agencies.
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Recently, Necula and Lee [36, 35] have proposed Proof-Carrying Code (PCC) and Morrisett et
al. [34, 33] have suggested Typed Assembly Language (TAL) as language technologies that provide the
security advantages of high-level languages, but without the overheads of interpretation or just-in-time
compilation. In both systems, low-level machine code can be heavily optimized, by hand or by compiler,
and yet be automatically verified through proof- or type-checking.

However, in all of these systems (SPIN, JVM, TAL, and Touchstone [37], a compiler that generates
PCC), there is one aspect over which programmers and optimizing compilers have little or no control:
memory management. In particular, their soundness depends on memory being reclaimed by a trusted
garbage collector. Hence, applets or kernel extensions may not perform their own optimized memory
management. Furthermore, as garbage collectors tend to be large, complicated pieces of unverified
software, the degree of trust in language-based protection mechanisms is diminished.

The goal of this work is to provide a high degree of control over memory management for program-
mers and compilers, but as in the PCC and TAL frameworks, make verification of the safety of programs
a straightforward task.

1.1 Regions

Tofte and Talpin [47, 48] suggest a type and effects system for verifying the soundness of region-based
memory management. In later work, Tofte and others show how to infer region types and lifetimes
and how to implement their theory [46, 5, 6]. There are several advantages to region-based memory
management; from our point of view, the two most important are:

1. Region-based memory management can be implemented using relatively simple constant-time
routines.

2. All memory operations explicit in the program text, but safety is guaranteed.

The first advantage has several implications. If regions are used in a secure system then the simplicity
of the implementation leads to a smaller trusted computed base. Moreover, it may be possible to
formally verify that the region operations are implemented correctly. In contrast, a standard tracing
garbage collector is a large and extremely complicated piece of code; a formal analysis of a garbage
collector would be a much more onerous task than an analysis of a region-based system. Second, because
region operations are constant-time and do not trace the structure of the heap, programs do not suffer
from the pauses that are associated with conventional garbage collectors. Consequently, region-based
memory management systems may be a practical alternative to real-time garbage collectors [3, 53].

The second advantage gives programmers greater control over memory use. By using a region-
profiler [5], programmers can quickly identify the memory regions that are causing performance problems
in their applications. Next, because allocation and deallocation operations are explicit in the program
text, programmers can use the profiling data to accurately relate the run-time behaviour of programs
to their static representation. In other words, given information about the ways regions are used at
run time, it is often straight-forward to examine program code, identify memory-intensive routines,
and reason about the lifetimes of the data structures allocated there. Once the trouble spots have
been identified, programmers can concentrate their optimization efforts on a small portion of the code.
Most importantly, throughout the programming process, a type checker guarantees that all memory
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operations are safe so programmers do not have to worry about programs crashing due to memory
faults.

In order to ensure that regions are used safely, the Tofte-Talpin language includes a lexically-scoped
expression (letregion r in e end) that delimits the lifetime of a region r. A region is allocated when
control enters the scope of the letregion construct and is deallocated when control leaves the scope.
Programs may allocate values into live regions using the notation v at r. These values may be used
until the region is deallocated. For example,

...

Region lifetime















letregion r in % Allocate region r

let x = v at r in % Allocate value v in region r

f (x)

end % Deallocate region r (and v)
...

Tofte and Talpin ensure that deallocated values are not accessed unsafely using a type and effects
system. Informally, whenever an expression uses a value in region r, the type system expresses this
fact using the effect access(r). However, effects occuring within the scope of the letregion construct
are masked. More specifically, if the expression e has effects access(r) ∪ ψ (for some set of effects
ψ) then the overall effect of the expression letregion r in e end is simply ψ. Hence, if there is no
overall effect for an entire program then every region access must have occured within the scope of the
corresponding letregion construct. In other words, values in region r are used only during the lifetime
of r and not before or after. If this condition holds, we can conclude the program is safe.

The Tofte-Talpin language makes efficient use of memory provided that the lifetimes of values
coincide with the lexical structure of the program. However, if lifetimes deviate from program structure
then this style of region-based memory management may force programs to use considerably more
memory than necessary. Consider the following program fragments.

% Scope 1: The Call Site

let x = v at r in
...
let y = f (x) in
...
y is dead

% Scope 2: The Function

fun f (x) =
...
x is dead
...
let y = v′ at r′ in
...
return y

The value v is an argument to the function f and must be allocated in the scope of the function call.
However, when f is executed, v dies quickly. The value v′ exhibits the inverse behaviour. It is allocated
inside f but is returned as the function result. Both v and v′ have lifetimes that span two lexical scopes,
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but neither is live for very long in either scope. Consequently, vanilla region inference does not perform
well in this setting. The best it can do is wrap the function call in a pair of letregion commands.

% Scope 1: The Call Site

letregion r in

let x = v at r in
...
letregion r′ in

let y = f (x) in
...
y is dead

end (r′)

end (r)
...

% Scope 2: The Function

fun f (x) =
...
x is dead
...
let y = v′ at r′ in
...
return y

Here, the regions r and r′ are live much longer than they need to be due to the inflexibility of the
letregion construct. Both regions must be allocated and outside the function call. Notice also that
even though v is dead when the function call returns, the outer region r cannot be deallocated until
after the inner region r′ has been deallocated. Lexical scoping enforces a stack-like, last-allocated/first-
deallocated memory management discipline.

In this example, a much better solution to this memory management problem is to separate region
allocation (newregion) from deallocation (freeregion). The following program takes this approach.
In principle, since the lifetimes of regions r and r′ do not overlap, the memory for these regions could
be reused.

% Scope 1: The Call Site

let newregion r in

let x = v at r in
...
let y = f (x) in
...
y is dead

let freeregion r′ in
...

% Scope 2: The Function

fun f (x) =
...
x is dead

let freeregion r in
...
let newregion r′ in

let y = v′ at r′ in
...
return y

Unfortunately, we cannot write this program in the Tofte-Talpin language because it is based on the
idea of lexical scoping. Another consequence of this language design is that any program transformation
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that alters program structure can affect memory management. One of the most devastating transfor-
mations for the Tofte-Talpin type system is the continuation-passing style (CPS) transformation; each
successive computation is placed in the scope of all previous computations, with the result that no
regions can be deallocated until the entire computation has been completed. In the following example,
the CPS transformation prevents the region r from being deallocated until after code has been executed
when it could be deallocated as soon as f has completed its computation.

letregion r in

f (v)

end;

code

⇒
letregion r in

f (v, λ.code)
end

The observation that the Tofte-Talpin type system will make poor use of memory in such cases has
been made before. Both Birkedal et al. [6] and Aiken et al. [1] have proposed optimizations that allow
regions to be freed early. However, although their optimizations are safe, there is no simple proof- or
type-checker that an untrusting client can use to check the output code. Therefore, in order to construct
a verifyably safe, efficient region-based language, we must re-examine the fundamental question: “When
can a program access a value v?”

1.2 Contributions

Our solution to the problem of provably safe yet efficient region-based memory management takes its
inspiration from operating systems such as Hydra [55]. Hydra solves the access control problem by
associating an unforgeable key or capability with every object and requiring that the user present this
capability to gain access to the object. Furthermore, when the need arises, Hydra revokes capabilities,
thereby preventing future access to the protected objects.

We define a new strongly-typed compiler intermediate language for region-based memory manage-
ment that uses a compile-time notion of capability to ensure that region operations are performed safely.
Unlike Tofte and Talpin’s language, lexical scoping plays no part in the verification process. Instead,
the type system threads static information in the form of capabilities along the control-flow path of
a program. In order to use a value in region r at a particular control-flow point, the program must
present the capability for that region. As in traditional capability systems, our type system keeps track
of capability copies carefully so that it can determine when a capability has truly been revoked. Unlike
traditional capability systems, our calculus supports only voluntary revocation. However, the capabil-
ities in our calculus are a purely static concept and thus their implementation requires no run-time
overhead. This mechanism provides an efficient way to check the safety of explicit, arbitrarily ordered
region allocation and deallocation instructions.

We have a purely syntactic argument, based on Subject Reduction and Progress lemmas in the style
of Felleisen and Wright [54], that the type system of the Capability Calculus is sound. In contrast,
Tofte and Talpin formulate the soundness of their system using a more complicated greatest fixed point
argument [48], and the soundness of Aiken et al.’s optimizations [1] depend upon this argument. Part of
the reason for the extra complexity is that Tofte and Talpin simultaneously show that region inference
translates lambda calculus terms into operationally equivalent region calculus terms, a stronger property
than we prove. However, when system security is the main concern, soundness is the critical property.
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The simplicity of our argument demonstrates the benefits of separating type soundness from type
inference or optimization correctness.

We also have a formal translation of a variant of the Tofte-Talpin language into our calculus. Given
a type-safe Tofte-Talpin program, the translation always produces a type-safe Capability Calculus
program. Therefore, when the translation is combined with a region inference algorithm [46], it provides
a way to compile source language programs into type-safe low-level code that can be used in secure
extensible systems or mobile code.

The remaining sections of this article describe the Capability Calculus in greater detail. Section 2
presents the syntax and semantics of the language formally and motivates the design decisions that we
made. At the end of this section, we present the type soundness theorem and discuss the most interesting
parts of our proof. The complete proof may be found in Appendix A. Section 3 demonstrates that the
Capability Calculus is at least as expressive as the Tofte-Talpin language. We define the semantics of
a variant of the latter language and give a translation into the Capability Calculus. The translation
preserves the type safety property and Appendix B proves this fact. We further demonstrate the
expressiveness of the Capability Calculus by sketching a couple of optimizations that are not possible
in the more restrictive language. Section 4 describes how to compile the relatively high-level Capability
Calculus into a capability-based Typed Assembly Language. Most elements of this translation are
orthogonal to the capability mechanism and therefore this section is mostly informal, although the
capability-based Typed Assembly Language has been fully defined. We claim without proof that this
target language is type-safe. We believe we could prove a type safety result, but the proof would be
long and tedious and we doubt it would reveal any new insights. Finally, we believe that our notion
of static capability is generally useful concept. Section 5 informally explores several other applications
of capabilities. This section also explains further connections with related work. Finally, Section 6
concludes.

2 The Capability Calculus

The central technical contribution of this article is the Capability Calculus, a statically-typed interme-
diate language that supports the explicit allocation, freeing and accessing of memory regions.

As mentioned in the introduction, the type system for the language propagates static information
(capabilities) along the control-flow path of a program. Therefore, the most elegant and natural form for
the language is continuation-passing style (CPS) [40]. That is, functions in the Capability Calculus do
not return values; instead, functions finish by calling a continuation function that is typically provided
as an argument. The fact that there is only one means of transferring control in CPS—rather than
the two means (call and return) in direct style—simplifies the tracking of capabilities. A direct style
formulation is possible, but the complications involved obscure the central issues. In the remainder of
this paper, we assume familiarity with CPS.

The syntax of the Capability Calculus appears in Figure 1. In the following sections, we explain
and motivate the main constructs and typing rules of the language one by one.
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kinds κ ::= Type | Rgn | Cap
constructor vars α, ρ, ǫ
constructors c ::= α | τ | r | C

types τ ::= α | int | r handle | ∀[∆].(C, τ1, . . . , τn)→ 0 at r | 〈τ1, . . . , τn〉 at r
regions r ::= ρ | ν
capabilities C ::= ǫ | ∅ | {rϕ} | C1 ⊕ C2 | C

multiplicities ϕ ::= 1 | +

constructor contexts ∆ ::= · | ∆, α:κ | ∆, ǫ ≤ C
value contexts Γ ::= · | Γ, x:τ
region types Υ ::= {ℓ1 : τ1, . . . , ℓn : τn}
memory types Ψ ::= {ν1 : Υ1, . . . , νn : Υn}

word values v ::= x | i | ν.ℓ | handle(ν) | v[c]
heap values h ::= fix f [∆](C, x1:τ1, . . . , xn:τn).e | 〈v1, . . . , vn〉
arithmetic ops p ::= + | − | ×
declarations d ::= x = v | x = v1 p v2 | x = h at v | x = πiv | newrgnρ, x | freergn v
terms e ::= letd in e | if0 v then e2 else e3 | v(v1 , . . . , vn) | halt v

memory regions R ::= {ℓ1 7→ h1, . . . , ℓn 7→ hn}
memories M ::= {ν1 7→ R1, . . . , νn 7→ Rn}
machine states P ::= (M, e)

Figure 1: Capability Syntax
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2.1 Preliminaries

We specify the operational behavior of the Capability Calculus using an allocation semantics [30, 31, 33],
which makes the allocation of data in memory explicit. The semantics, which is specified in Figure 2,
is given by a deterministic rewriting system P 7−→ P ′ mapping machine states to new machine states.
A machine state consists of a pair (M, e) of a memory and a term being executed. A memory is a finite
mapping of region names (ν) to regions where a region is a block of memory that holds a collection of
heap-allocated objects. Regions are created at run time by the declaration newrgnρ, x, which allocates
a new region in the heap, binds ρ to the name of that region, and binds x to the handle (handle(ν))
for that region.

Region names and handles are distinguished in order to maintain a phase distinction between
compile-time and run-time expressions. Region names are significant at compile time: The type-checker
identifies which region an object inhabits via a region name (see below). However, region names, like
other type constructors, have no run-time significance and may be erased from executable code. In con-
trast, region handles hold the run-time data necessary to manipulate regions. In addition to accounting
for a phase distinction, the separation of region names and handles also allows us to refine the contexts
in which region handles are needed. Handles are needed when allocating objects within a region and
when freeing a region, but are not needed when reading data from a region.

Regions are freed by the declaration freergnv, where v is the handle for the region to be freed.
Objects h large enough to require heap allocation (i.e., functions and tuples), called heap values, are
allocated by the declaration x = hatv, where v is the handle for the region in which h is to be allocated.
Data is read from a region in two ways: functions are read by a function call, and tuples are read by
the declaration x = πi(v), which binds x to the data residing in the ith field of the object at address
v. Each of these operations may be performed only when the region in question has not already been
freed. Enforcing this restriction is the purpose of the capability mechanism discussed in Section 2.2.

A region maps locations (ℓ) to heap values. Thus, an address is given by a pair ν.ℓ of a region
name and a location. In the course of execution, word-sized values (v) will be substituted for value
variables and type constructors for constructor variables, but heap values (h) are always allocated in
memory and referred to indirectly by an address. Thus, when executing the declaration x = h at r
(where r is handle(ν), the handle for region ν), h is allocated in region ν (say at ℓ) and the address ν.ℓ
is substituted for x in the following code.

A term in the Capability Calculus consists of a series of declarations ending in either a branch or a
function call (or a halt). The class of declarations includes those constructs discussed above, plus two
standard constructs, x = v for binding variables to values and x = v1 p v2 (where p ranges over +, −
and ×) for arithmetic.

Types The types of the Capability Calculus include type constructor variables and integers, a type
of region handles, as well as tuple and function types. If r is a region, then r handle is the type of r’s
region handle. The tuple type 〈τ1, . . . , τn〉 at r contains the usual n field tuples, but also specifies that
such tuples are allocated in region r, where r is either a region name ν or, more frequently, a region
variable ρ.

The function type ∀[ ].(C, τ1, . . . , τn)→ 0 at r contains functions taking n arguments (with types τ1
through τn) that may be called when capability C is satisfied (see the next section). The 0 return type
is intended to suggest the fact that CPS functions invoke their continuations rather than returning as
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(M, e) 7−→ P
If e = then P =

letx = v in e′ (M, e′[v/x])
letx = i p j in e′ (M, e′[(i p j)/x])

letx = h at (handle(ν)) in e′ (M{ν.ℓ 7→ h}, e′[ν.ℓ/x])
and ν ∈ Dom(M) where ℓ 6∈ Dom(M(ν))

letx = πi(ν.ℓ) in e
′ (M, e′[vi/x])

and ν ∈ Dom(M) and ℓ ∈ Dom(M(ν)) where M(ν.ℓ) = 〈v0, . . . , vn−1〉 (0 ≤ i < n)
letnewrgnρ, x in e′ (M{ν 7→ {}}, e′[ν, handle(ν)/ρ, x])

where ν 6∈M and ν 6∈ e′

letfreergn (handle(ν)) in e′ (M\ν, e′)
and ν ∈ Dom(M)

if00 then e2 else e3 (M, e2)
if0 i then e2 else e3 (M, e3)
and i 6= 0
v(v1, . . . , vn) (M, e[c1, . . . , cm, ν.ℓ, v1, . . . , vn/α1, . . . , αm, f, x1, . . . , xn])

where v = ν.ℓ[c1, . . . , cm]
and M(ν.ℓ) = fix f [∆](C, x1:τ1, . . . , xn:τn).e
and Dom(∆) = α1, . . . , αm

Figure 2: Capability Operational Semantics
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a direct-style function does. The suffix “at r”, like the corresponding suffix for tuple types, indicates
the region in which the function is allocated.

Functions may be made polymorphic over types, regions or capabilities by adding a constructor
context ∆ to the function type. For convenience, types, regions and capabilities are combined into a
single syntactic class of “constructors” and are distinguished by kinds. Thus, a type is a constructor
with kind Type, a region is a constructor with kind Rgn, and a capability is a constructor with kind
Cap. We use the metavariable c to range over constructors, but use the metavariables τ , r and C when
those constructors are types, regions and capabilities, respectively. We also use the metavariables ρ
and ǫ for constructor variables of kind Rgn and Cap, and use the metavariable α for type variables and
generic constructor variables. When ∆ is empty, we abbreviate the function type ∀[∆].(C, ~τ)→ 0 at r
by (C, ~τ)→ 0 at r.

For example, a polymorphic identity function that is allocated in region r, but whose continuation
function may be in any region, may be given type

∀[α:Type, ρ:Rgn].(C, α, (C,α)→ 0 at ρ)→ 0 at r

for some appropriate C. Let f be such a function, let v be its argument with type τ , and let g be its
continuation with type (C, τ)→ 0 at r. Then f is called by f [τ ][r](v, g).

Figure 3 specifies all well-formed constructors and constructor contexts. The two main judgments
∆ ⊢ ∆′ and ∆ ⊢ c : κ assume that the constructor context ∆ is well-formed. The first judgement
states that ∆′ is a well-formed constructor context and the second judgement states c is a well-formed
constructor with kind κ.

The typing rules also use region types (Υ), which assign a type to every location allocated in a region,
and memory types (Ψ), which assign a region type to every region allocated in memory. However, it
is not necessary to understand these constructs in the preliminary development, and therefore we will
defer discussing them until we describe the static semantics of the abstract machine in formal detail
(see Section 2.4).

2.2 Capabilities

The central problem is how to ensure statically that no region is used after it is freed. The typing rules
enforce this with a system of capabilities that specify what operations are permitted. The main typing
judgement is

Ψ; ∆; Γ;C ⊢ e

which states that (when memory has type Ψ, free constructor variables have kinds given by ∆ and free
value variables have types given by Γ) it is legal to execute the term e, provided that the capability C is
held. A related typing judgement is

Ψ; ∆; Γ;C ⊢ d⇒ ∆′; Γ′;C ′

which states that if the capability C is held, it is legal to execute the declaration d, which results in
new constructor context ∆′, new value context Γ′ and new capability C ′.

Capabilities indicate the set of regions that are presently valid to access, that is, those regions that
have not been freed. Capabilities are formed by joining together a collection of singleton capabilities {r}
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∆ ⊢ ∆′

∆ ⊢ ·
(ctxt-empty)

∆ ⊢ ∆′

∆ ⊢ ∆′, α:κ
(α 6∈ Dom(∆∆′)) (ctxt-var)

∆ ⊢ ∆′ ∆∆′ ⊢ C : Cap

∆ ⊢ ∆′, ǫ ≤ C
(ǫ 6∈ Dom(∆∆′)) (ctxt-sub)

∆ ⊢ c : κ

∆ ⊢ α : κ
(∆(α) = κ) (type-var)

∆ ⊢ ǫ : Cap
((ǫ ≤ C) ∈ ∆) (type-sub)

∆ ⊢ int : Type
(type-int)

∆ ⊢ r : Rgn

∆ ⊢ r handle : Type
(type-handle)

∆ ⊢ τi : Type (for 1 ≤ i ≤ n) ∆ ⊢ r : Rgn

∆ ⊢ 〈τ1, . . . , τn〉 at r : Type
(type-tuple)

∆ ⊢ ∆′ ∆∆′ ⊢ τi : Type (for 1 ≤ i ≤ n)
∆∆′ ⊢ C : Cap ∆ ⊢ r : Rgn

∆ ⊢ ∀[∆′].(C, τ1, . . . , τn)→ 0 at r : Type
(type-arrow)

∆ ⊢ ν : Rgn
(type-name)

∆ ⊢ ∅ : Cap
(type-∅)

∆ ⊢ r : Rgn

∆ ⊢ {rϕ} : Cap
(type-single)

∆ ⊢ C1 : Cap ∆ ⊢ C2 : Cap

∆ ⊢ C1 ⊕C2 : Cap
(type-plus)

∆ ⊢ C : Cap

∆ ⊢ C : Cap
(type-bar)

Figure 3: Capability Static Semantics: Type and Context Formation
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that provide access to only one region, and capability variables ǫ that provide access to an unspecified
set of regions. Capability joins, written C1 ⊕C2, are associative and commutative, but are not always
idempotent; in Section 2.3 we will see examples where C ⊕ C is not equivalent to C. The empty
capability, which provides access to no regions, is denoted by ∅. We will often abbreviate the capability
{r1} ⊕ · · · ⊕ {rn} by {r1, . . . , rn}.

In order to read a field from a tuple in region r, it is necessary to hold the capability to access r, as
in the rule:

∆ ⊢ C = C ′ ⊕ {r} : Cap
Ψ; ∆; Γ ⊢ v : 〈τ1, . . . , τn〉 at r

Ψ; ∆; Γ;C ⊢ x = πi(v)⇒ ∆; Γ{x:τi};C
(x 6∈ Dom(Γ))

The first subgoal indicates that the capability held (C) is equivalent to some capability that includes
{r}.

A similar rule is used to allocate an object in a region. Since the type of a heap value reflects the
region in which it is allocated, the heap value typing judgement (the second subgoal below) must be
provided with that region.

∆ ⊢ C = C ′ ⊕ {r} : Cap
Ψ; ∆; Γ ⊢ h at r : τ

Ψ; ∆; Γ ⊢ v : r handle

Ψ; ∆; Γ;C ⊢ x = h at v ⇒ ∆; Γ{x:τ};C
(x 6∈ Dom(Γ))

Functions Functions are defined by the form fix f [∆](C, x1:τ1, . . . , xn:τn).e, where f stands for the
function itself and may appear free in the body, ∆ specifies the function’s constructor arguments, and C
is the function’s capability precondition. When ∆ is empty and f does not appear free in the function
body we abbreviate the fix form by λ(C, x1:τ1, . . . , xn:τn).e.

In order to call a function residing in region r, it is again necessary to hold the capability to access
r, and also to hold a capability equivalent to the function’s capability precondition:

∆ ⊢ C = C ′′ ⊕ {r} : Cap ∆ ⊢ C = C ′ : Cap
Ψ; ∆; Γ ⊢ v : (C ′, τ1, . . . , τn)→ 0 at r

Ψ; ∆; Γ ⊢ vi : τi

Ψ; ∆; Γ;C ⊢ v(v1, . . . , vn)

The body of a function may then assume the function’s capability precondition is satisfied, as indicated
by the capability C in the premise of the rule:1

Ψ; ∆; Γ{x1:τ1, . . . , xn:τn};C ⊢ e

Ψ; ∆; Γ ⊢ λ(C, x1:τ1, . . . , xn:τn).e at r : τf
(xi 6∈ Dom(Γ))

As might be expected, the annotation “at r” indicates that the closure value resides in region r. The
resultant function type τf is (C, τ1, . . . , τn)→ 0 at r.

Often, we will extend the required capability for a function with a quantified capability variable
(similar to a row variable). This variable may be instantiated with whatever capabilities are leftover

1This rule specializes the full rule for fix to the case where the function is neither polymorphic nor recursive.
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after satisfying the required capability. Consequently, the function may be used in a variety of contexts.
For example, functions with type

∀[ǫ:Cap].({r} ⊕ ǫ, . . .)→ 0 at r

may be called with any capability that extends {r}.

Allocation and Deallocation The most delicate issue is the typing of region allocation and deallo-
cation. Intuitively, the typing rules for the newrgn and freergn declarations should add and remove
capabilities for the appropriate region. Naive typing rules could be:

Ψ; ∆; Γ;C ⊢ newrgnρ, x⇒ ∆{ρ:Rgn}; Γ{x:ρ handle};C ⊕ {ρ}
(wrong)

Ψ; ∆; Γ ⊢ v : r handle C ′ = C \ {r}

Ψ; ∆; Γ;C ⊢ freergnv ⇒ ∆; Γ;C ′
(wrong)

We will be able to use something much like the first rule for allocation, but the naive rule for freeing
regions is fundamentally flawed. For example, consider the following function:

fix f [ρ1:Rgn, ρ2:Rgn]({ρ1, ρ2}, x:ρ1 handle, y:〈int〉 at ρ2).
let freergnx in

let z = π0y in · · ·

This function is well-formed according to the naive typing rule: The function begins with the capability
{ρ1, ρ2} and ρ1 is removed by the freergn declaration, leaving {ρ2}. The tuple y is allocated in ρ2, so
the projection is legal. However, this code is operationally incorrect if ρ1 and ρ2 are instantiated by the
same region r. In that case, the first declaration frees r and the second attempts to read from r.

This problem is a familiar one. To free a region safely it is necessary to delete all copies of the
capability. However, instantiating region variables can create aliases, making it impossible to tell by
inspection whether any copies exist.

2.3 Alias Control

We desire a system for alias control that can easily be enforced by the type system, without expensive and
complex program analyses. One possibility is a linear type system [16, 49, 50]. In a linear type system,
aliasing would be trivially controlled; any use of a region name would consume that name, ensuring
that it could not be used elsewhere. Thus, in a linear type system, the naive rules for allocating and
deallocating regions would be sound. Unfortunately, a linear type system is too restrictive to permit
many useful programs. For example, suppose f has type

∀[ρ1:Rgn, ρ2:Rgn].({ρ1, ρ2}, 〈int〉 at ρ1, 〈int〉 at ρ2, . . .)→ 0 at r′

and v1 and v2 are integer tuples allocated in the same region r. Then f could not be called with
v1 and v2 as arguments, because that would require instantiating ρ1 and ρ2 with the same region.
More generally, one could not type any function that takes two arguments that might or might not be
allocated in the same region.

Approaches based on syntactic control of interference [41, 42] are more permissive than a linear
type system, but are still too restrictive for our purposes; it is still impossible to instantiate multiple
arguments with the same region.
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Uniqueness Our approach, instead of trying to prevent aliasing, is to use the type system to track
aliasing. More precisely, we track non-aliasing, that is, uniqueness. We do this by tagging regions with
one of two multiplicities when forming a capability. The first form, {r+}, is the capability to access
region r as it has been understood heretofore. The second form, {r1}, also permits accessing region r,
but adds the additional information that r is unique; that is, r represents a different region from any
other region appearing in a capability formed using {r1}. For example, the capability {r+1 , r

1
2} not only

indicates that it is permissible to access r1 and r2, but also indicates that r1 and r2 represent distinct
regions.

Since {r1} guarantees that r does not appear anywhere else in a capability formed using it, it is the
capability, not just to access r, but also to free r. Thus we may type region deallocation with the rule:

∆; Γ ⊢ v : r handle ∆ ⊢ C = C ′ ⊕ {r1} : Cap

Ψ; ∆; Γ;C ⊢ freergnv ⇒ ∆; Γ;C ′

Allocation of a region accordingly adds the new capability as unique:

Ψ; ∆; Γ;C ⊢ newrgnρ, x⇒ ∆{ρ:Rgn}; Γ{x:ρ handle};C ⊕ {ρ1}
(ρ 6∈ Dom(∆), x 6∈ Dom(Γ))

Note that joining capabilities is only idempotent when the capabilities in question contain no unique
multiplicities. For instance, the capabilities {r+} and {r+, r+} are equivalent, but the capabilities {r1}
and {r1, r1} are not; the latter capability ({r1, r1}) asserts that r is distinct from itself and consequently
that latter capability can never be satisfied.

When C is equivalent to C ⊕ C, we say that C is duplicatable. Note that capability variables are
unduplicatable, since they can stand for any capability, including unduplicatable ones. Occasionally
this prevents the typing of desired programs, so we provide a stripping operator C that replaces all

1 multiplicities in C with + multiplicities. For example, {r11, r
+
2 } = {r+1 , r

+
2 }. For any capability C,

the capability C is duplicatable. When programs need an unknown but duplicatable capability, they
may use a stripped variable ǫ. As you will see in section 3, the stripping operator is essential in the
translation of Tofte and Talpin’s region-based language into the Capability Calculus.

The complete rules for equivalence of capabilities and other constructors appear in Figure 4. Notice
that the single rule eq-flag equates the duplicatable capability {r+} with the barred capability {r1}.
Consequently, the form {r+} is redundant given the presence of the bar operator. However, the +
notation is a pleasing foil for the 1 notation and the two flags give us a convenient way to distinguish
between regions that appear once and regions that potentially appear many times in a single capability.

Subcapabilities The capabilities {r1} and {r+} are not the same, but the former should provide all
the privileges of the latter. We therefore say that the former is a subcapability of the latter and write
{r1} ≤ {r+}. In the complete system, the various rules from Section 2.2 are modified to account for
subcapabilities. For example, the function call rule becomes:

Ψ; ∆; Γ ⊢ v : (C ′, τ1, . . . , τn)→ 0 at r
∆ ⊢ C ≤ C ′′ ⊕ {r+} ∆ ⊢ C ≤ C ′

Ψ; ∆; Γ ⊢ vi : τi

Ψ; ∆; Γ;C ⊢ v(v1, . . . , vn)

14



∆ ⊢ ∆1 = ∆2

∆ ⊢ · = ·
(ctxt-eq-empty)

∆ ⊢ ∆1 = ∆2

∆ ⊢ ∆1, α:κ = ∆2, α:κ
(α 6∈ ∆∆1) (ctxt-eq-kind)

∆ ⊢ ∆1 = ∆2 ∆∆1 ⊢ C1 = C2 : Cap

∆ ⊢ ∆1, ǫ ≤ C1 = ∆2, ǫ ≤ C2
(ǫ 6∈ ∆∆1) (ctxt-eq-bound)

∆ ⊢ c1 = c2 : κ

∆ ⊢ c : κ
∆ ⊢ c = c : κ

(eq-reflex)
∆ ⊢ c2 = c1 : κ

∆ ⊢ c1 = c2 : κ
(eq-symm)

∆ ⊢ c1 = c2 : κ ∆ ⊢ c2 = c3 : κ

∆ ⊢ c1 = c3 : κ
(eq-trans)

∆ ⊢ C1 = C ′
1 : Cap ∆ ⊢ C2 = C ′

2 : Cap

∆ ⊢ C1 ⊕C2 = C ′
1 ⊕ C

′
2 : Cap

(eq-congruence-plus)
∆ ⊢ C = C ′ : Cap

∆ ⊢ C = C ′ : Cap
(eq-congruence-bar)

∆ ⊢ C : Cap

∆ ⊢ ∅ ⊕C = C : Cap
(eq-∅)

∆ ⊢ C1 : Cap ∆ ⊢ C2 : Cap

∆ ⊢ C1 ⊕ C2 = C2 ⊕C1 : Cap
(eq-comm)

∆ ⊢ Ci : Cap (for 1 ≤ i ≤ 3)

∆ ⊢ (C1 ⊕C2) ⊕C3 = C1 ⊕ (C2 ⊕C3) : Cap
(eq-assoc)

∆ ⊢ C : Cap

∆ ⊢ C = C ⊕C : Cap
(eq-dup)

∆ ⊢ ∅ = ∅ : Cap
(eq-bar-∅)

∆ ⊢ r : Rgn

∆ ⊢ {r1} = {r+} : Cap
(eq-flag)

∆ ⊢ C : Cap

∆ ⊢ C = C : Cap
(eq-bar-idem)

∆ ⊢ C1 : Cap ∆ ⊢ C2 : Cap

∆ ⊢ C1 ⊕ C2 = C1 ⊕C2 : Cap
(eq-distrib)

Figure 4: Capability Static Semantics: Equality
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∆ ⊢ C1 ≤ C2

∆ ⊢ C1 = C2 : Cap

∆ ⊢ C1 ≤ C2
(sub-eq)

∆ ⊢ C1 ≤ C2 ∆ ⊢ C2 ≤ C3

∆ ⊢ C1 ≤ C3
(sub-trans)

∆ ⊢ C1 ≤ C ′
1 ∆ ⊢ C2 ≤ C ′

2

∆ ⊢ C1 ⊕C2 ≤ C ′
1 ⊕C

′
2

(sub-congruence-plus)
∆ ⊢ C ≤ C ′

∆ ⊢ C ≤ C ′
(sub-congruence-bar)

∆ ⊢ ǫ ≤ C
((ǫ ≤ C) ∈ ∆) (sub-var)

∆ ⊢ C : Cap

∆ ⊢ C ≤ C
(sub-bar)

Figure 5: Capability Static Semantics: Equality and Subcapability Relations

Suppose f has type ∀[ρ1:Rgn, ρ2:Rgn].({ρ
+
1 , ρ

+
2 }, . . .)→ 0 at r. If we hold capability {r+}, we may call

f by instantiating ρ1 and ρ2 with r, since {r+} = {r+, r+}. Using the subcapability relation, we may
also call f when we hold {r1}, again by instantiating ρ1 and ρ2 with r, since {r1} ≤ {r+} = {r+, r+}.

Figure 5 contains the subcapability rules. When reading these rules, remember that ∆ ⊢ {r1} =
{r+} : Cap. We use this fact to derive the judgement ∆ ⊢ {r1} ≤ {r+} : Cap that we discussed
informally above:

∆ ⊢ {r1} ≤ {r1} : Cap
(sub-bar)

∆ ⊢ {r1} = {r+} : Cap
(eq-flag)

∆ ⊢ {r1} ≤ {r+} : Cap
(sub-eq)

∆ ⊢ {r1} ≤ {r+} : Cap
(sub-trans)

The subcapability relation accounts only for the forgetting of uniqueness information. Intuitively
there could be a second source of subcapabilities, those generated by forgetting an entire capability. For
example, {r+1 , r

+
2 } seems to provide all the privileges of {r+1 }, so it is reasonable to suppose {r+1 , r

+
2 }

to be subcapability of {r+1 }. Indeed, one can construct a sound Capability Calculus incorporating this
axiom, but we omit it because doing so allows us to specify memory management obligations and to
prove a stronger property about space usage. Notice also, that by omitting this axiom, we do not give
up any flexibility; one may always write a function that can be called with extra capabilities by using
a capability variable, as discussed in Section 2.2.

By omitting the axiom C1 ⊕C2 ≤ C1, our type system may formally specify who has responsibility
for freeing a region. Failure to follow informal conventions is a common source of bugs in languages
(such as C) that use manual memory management. Our type system rules out such bugs. For example,
consider the type:

∀[ρ:Rgn, ǫ:Cap].(ǫ⊕ {r+, ρ1}, ρ handle, (ǫ⊕ {r+})→ 0 at r)→ 0 at r

In our system ǫ ⊕ {r+, ρ1} 6≤ ǫ ⊕ {r+}. Consequently, before any function with this type can return
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(i .e., call the continuation of type (ǫ ⊕ {r+})→ 0 at r), it must take action to satisfy the capability
ǫ⊕ {r+}, that is, it must free ρ.

In general, our type system prevents “region leaks”: Programs must deallocate all memory regions
before they terminate (Theorem 2.5). Therefore, the operating system does not have to clean up after a
program halts. The typing rule for halt states that no capabilities may be held, and since capabilities
may not be forgotten, this means that all regions must have been freed.

Ψ; ∆; Γ ⊢ v : int ∆ ⊢ C = ∅ : Cap

Ψ; ∆; Γ;C ⊢ halt v

Bounded Quantification The system presented to this point is sound, but it is not yet sufficient
for compiling real source languages. We need to be able to recover uniqueness after a region name is
duplicated. To see why, suppose we hold the capability {r1} and f has type:

∀[ρ1:Rgn, ρ2:Rgn].({ρ
+
1 , ρ

+
2 }, . . . , ({ρ

+
1 , ρ

+
2 }, . . .)→ 0 at ρ1)→ 0 at r

We would like to be able to instantiate ρ1 and ρ2 with r (which we may do, since {r1} ≤ {r+, r+}), and
then free r when f calls the continuation in its final argument. Unfortunately, the continuation only
possesses the capability {r+, r+} = {r+}, not the capability {r1} necessary to free r. It does not help
to strengthen the capability of the continuation to (for example) {ρ1

1}, because then f may not call it.
We may recover uniqueness information by quantifying a capability variable. Suppose we again hold

capability {r1} and g has type:

∀[ρ1:Rgn, ρ2:Rgn, ǫ:Cap].(ǫ, . . ., (ǫ, . . .)→ 0 at ρ1)→ 0 at r

We may instantiate ǫ with {r1} and then the continuation will possess that same capability, allowing it
to free r. Unfortunately, the body of function g no longer has the capability to access ρ1 and ρ2, since
its type draws no connection between them and ǫ.

We solve this problem by using bounded quantification to relate ρ1, ρ2 and ǫ. Suppose h has type:

∀[ρ1:Rgn, ρ2:Rgn, ǫ ≤ {ρ
+
1 , ρ

+
2 }].(ǫ, . . . , (ǫ, . . .)→ 0 at ρ1)→ 0 at r

If we hold capability {r1}, we may call h by instantiating ρ1 and ρ2 with r and instantiating ǫ with {r1}.
This instantiation is permissible because {r1} ≤ {r+, r+}. As with g, the continuation will possess the
capability {r1}, allowing it to free r, but the body of h (like that of f) will have the capability to access
ρ1 and ρ2, since ǫ ≤ {ρ+

1 , ρ
+
2 }.

Bounded quantification solves the problem by revealing some information about a capability ǫ, while
still requiring the function to be parametric over ǫ. Hence, when the function calls its continuation we
regain the stronger capability (to free r), although that capability was temporarily hidden in order
to duplicate r. More generally, bounded quantification allows us to hide some privileges when call-
ing a function, and regain those privileges in its continuation. Thus, we support statically checkable
attenuation and amplification of capabilities.

Static Semantics So Far The combination of parametric polymorphism, bounded parametric poly-
morphism, and notions of uniqueness and aliasing provide a flexible language for expressing the lifetimes

17



of regions. Figures 7 and 6 formally summarize the rules for type checking instructions and values that
depend upon these concepts. We have already explained the majority of these rules in previous sections
and the rules that we have not yet specified are the obvious ones (integers are given type int, etc.).
Notice, however, that the form of the judgement for heap values h is slightly different from the judge-
ments for instructions and small values v. The judgment Ψ; ∆; Γ ⊢ h at r : τ states that when memory
has type Ψ, free constructor variables have kinds given by ∆ and free value variables have types given
by Γ, the heap value h resides in region r and has type τ .

2.4 The Static Semantics of the Abstract Machine

We have described the type constructor language of the Capability Calculus and the typing rules for the
main term-level constructs. In fact, the previous section contains all of the information programmers or
compilers require to write type-safe programs in the Capability Calculus. However, in order to prove a
type soundness result in the style of Wright and Felleisen [54], we must be able to type check programs
at every step during their evaluation. In this section, we give the static semantics of the run-time
values that are not normally manipulated by programmers, but are nevertheless necessary to prove our
soundness result.

At first, the formal definition of the semantics may appear quite complex because we use a number
of different judgment forms. However, most of these forms follow naturally from the development of
previous sections and other work on type systems for allocation semantics [30, 31, 33]. The extra
complexity in the definition of the language will pay off when we come to prove type soundness: All of
the main invariants are expressed directly in the typing rules and therefore most of the proof follows
from straightforward inductions over these rules.

Figure 8 specifies the rules for typing memory, most of which are straightforward. The judgments
⊢ Ψ and ⊢ Υ specify when memory types and region types are well-formed. This is the case whenever
their subcomponents are well-formed. The judgment ⊢ M : Ψ states that memory M is described by
Ψ and the judgement Ψ ⊢ R at ν : Υ states that region R with name ν is described by Υ. Informally,
these judgements ensure that for addresses ν.ℓ, Ψ(ν.ℓ) is type τ if and only if the memory M described
by Ψ contains a value v at address ν.ℓ that has type τ .

The next judgment, Ψ ⊢ C sat is called the satisfiability judgment and it formalizes the connection
between the static capability and the run-time state of memory. Clearly, the current capability must
not contain any regions that are not in memory; this could lead to a runtime error. However, it is
equally important that memory not contain regions for which we have no capability; these regions can
never be freed. Consequently, satisfiability ensures that at any time during execution of the abstract
machine, our capability contains exactly the regions in memory. Furthermore, by virtue of the fact that
· ⊢ {r1} 6= {r1, r1} : Cap, no unique regions may appear more than once in C. Each of these properties
are essential to ensure that regions are used safely.

Figure 9 contains rules for small values that only appear at run time (addresses and region handles).
The rules for typing an address ν.ℓ are quite unusual, but crucial to the type soundness proof. The first
rule, v-addr, is used during the lifetime of the region ν : If the region ν is in memory then ν will also
be in the domain of the memory type Ψ. Therefore, rule v-addr applies and ν.ℓ will have type Ψ(ν.ℓ).
Now consider some point in the computation after the region ν has been deallocated. The region ν is no
longer in the memory, but the addresses ν.ℓ may still appear embedded in tuples or closures allocated
in other regions, and, therefore, it must be given a type. If a region ν does not appear in memory type
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Ψ; ∆; Γ ⊢ h at r : τ

∆ ⊢ τf
Ψ; ∆∆′; Γ{f :τf , x1:τ1, . . . , xn:τn};C ⊢ e

Ψ; ∆; Γ ⊢ fix f [∆′](C, x1:τ1, . . . , xn:τn).e at r : τf

(

τf = ∀[∆′].(C, τ1, . . . , τn)→ 0 at r
f, x1, . . . , xn 6∈ Dom(Γ)

)

(h-fix)

Ψ; ∆; Γ ⊢ vi : τi (for 1 ≤ i ≤ n) ∆ ⊢ r : Rgn

Ψ; ∆; Γ ⊢ 〈v1, . . . , vn〉 at r : 〈τ1, . . . , τn〉 at r
(h-tuple)

Ψ; ∆; Γ ⊢ h at r : τ ′ ∆ ⊢ τ ′ = τ : Type

Ψ; ∆; Γ ⊢ h at r : τ
(h-eq)

Ψ; ∆; Γ ⊢ v : τ

Ψ; ∆; Γ ⊢ x : τ
(Γ(x) = τ ) (v-var)

Ψ; ∆; Γ ⊢ i : int
(v-int)

Ψ; ∆; Γ ⊢ v : ∀[α:κ,∆′].(C, τ1, . . . , τn)→ 0 at r ∆ ⊢ c : κ

Ψ; ∆; Γ ⊢ v[c] : (∀[∆′].(C, τ1, . . . , τn)→ 0)[c/α] at r
(v-type)

Ψ; ∆; Γ ⊢ v : ∀[ǫ ≤ C ′′,∆′].(C ′, τ1, . . . , τn)→ 0 at r ∆ ⊢ C ≤ C ′′

Ψ; ∆; Γ ⊢ v[C] : (∀[∆′].(C ′, τ1, . . . , τn)→ 0)[C/ǫ] at r
(v-sub)

Ψ; ∆; Γ ⊢ v : τ ′ ∆ ⊢ τ ′ = τ : Type

Ψ; ∆; Γ ⊢ v : τ
(v-eq)

Figure 6: Capability Static Semantics: Heap and Word Values
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Ψ; ∆; Γ;C ⊢ d⇒ ∆′; Γ′;C ′

Ψ; ∆; Γ ⊢ v : τ

Ψ; ∆; Γ;C ⊢ x = v ⇒ ∆; Γ{x:τ};C
(x 6∈ Dom(Γ)) (val)

Ψ; ∆; Γ ⊢ v1 : int Ψ; ∆; Γ ⊢ v2 : int

Ψ; ∆; Γ;C ⊢ x = v1 p v2 ⇒ ∆; Γ{x:int};C
(x 6∈ Dom(Γ)) (prim)

Ψ; ∆; Γ ⊢ v : r handle Ψ; ∆; Γ ⊢ h at r : τ ∆ ⊢ C ≤ C ′ ⊕ {r+}

Ψ; ∆; Γ;C ⊢ x = h at v ⇒ ∆; Γ{x:τ};C
(x 6∈ Dom(Γ)) (hval)

Ψ; ∆; Γ ⊢ v : 〈τ0, . . . , τn−1〉 at r ∆ ⊢ C ≤ C ′ ⊕ {r+}

Ψ; ∆; Γ;C ⊢ x = πiv ⇒ ∆; Γ{x:τi};C
(x 6∈ Dom(Γ) ∧ 0 ≤ i < n) (proj)

Ψ; ∆; Γ;C ⊢ newrgnρ, x⇒ ∆{ρ:Rgn}; Γ{x:ρ handle};C ⊕ {ρ1}

(

ρ 6∈ Dom(∆)
x 6∈ Dom(Γ)

)

(newrgn)

Ψ; ∆; Γ ⊢ v : r handle ∆ ⊢ C = C ′ ⊕ {r1} : Cap

Ψ; ∆; Γ;C ⊢ freergn v ⇒ ∆; Γ;C ′ (freergn)

Ψ; ∆; Γ;C ⊢ e

Ψ; ∆; Γ;C ⊢ d⇒ ∆′; Γ′;C ′ Ψ; ∆′; Γ′;C ′ ⊢ e

Ψ; ∆; Γ;C ⊢ letd in e
(letdec)

Ψ; ∆; Γ ⊢ v : int
Ψ; ∆; Γ;C ⊢ e2 Ψ; ∆; Γ;C ⊢ e3

Ψ; ∆; Γ;C ⊢ if0 v then e2 else e3
(if)

Ψ; ∆; Γ ⊢ v : ∀[ ].(C ′, τ1, . . . , τn)→ 0 at r
Ψ; ∆; Γ ⊢ vi : τi (for 1 ≤ i ≤ n)

∆ ⊢ C ≤ C ′′ ⊕ {r+} ∆ ⊢ C ≤ C ′

Ψ; ∆; Γ;C ⊢ v(v1, . . . , vn)
(app)

Ψ; ∆; Γ ⊢ v : int ∆ ⊢ C = ∅ : Cap

Ψ; ∆; Γ;C ⊢ halt v
(halt)

Figure 7: Capability Static Semantics: Declarations and Expressions
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⊢ Υ ⊢ Ψ

· ⊢ τi (for 1 ≤ i ≤ n)

⊢ {ℓ1:τ1, . . . , ℓn:τn}
(region-type)

⊢ Υi (for i ≤ i ≤ n)

⊢ {ν1:Υ1, . . . , νn:Υn}
(memory-type)

Ψ ⊢ R at ν : Υ ⊢M : Ψ

Ψ; ·; · ⊢ hi at ν : τi (for 1 ≤ i ≤ n)

Ψ ⊢ {ℓ1 7→ h1, . . . , ℓn 7→ hn} at ν : {ℓ1 : τ1, . . . , ℓn : τn}
(region)

⊢ Ψ Ψ ⊢ Ri at νi : Υi (for 1 ≤ i ≤ n)

⊢ {ν1 7→ R1, . . . , νn 7→ Rn} : Ψ
(Ψ = {ν1 : Υ1, . . . , νn : Υn}) (memory)

Ψ ⊢ C sat

· ⊢ C = {νϕ1

1 , . . . , νϕnn } : Cap

{ν1 : Υ1, . . . , νn : Υn} ⊢ C sat
(νi 6= νj for 1 ≤ i, j ≤ n and i 6= j) (sat)

Figure 8: Capability Static Semantics: Memory

Ψ, the type system has the flexibility to give ν.ℓ any function type (by rule v-addr-arrow) or tuple type
(by rule v-addr-tuple).

At first glance, these rules would appear to lead to unsoundness: The address ν.ℓ is a dangling
pointer and it may be given a valid type. Fortunately, though, capabilities prevent anything from going
wrong. The satisfiability judgment ensures that programs only ever possess capabilities for regions
that appear in memory, and, as we explained earlier, programs can only access the regions they have
capabilities for. Consequently, a dangling pointer may be given a valid tuple or function type, but
capabilities prevent it from being accessed.

We now have all components necessary to define a well-formed machine state. The state (M, e) is
well-formed if the memory M can be described by a well-formed heap type Ψ, there exists a capability
C such that C satisfies the heap type Ψ, and finally, the expression e is well-formed with respect to Ψ
and C:

⊢M : Ψ Ψ ⊢ C sat Ψ; ·; ·;C ⊢ e

⊢ (M, e)
(program)
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Ψ; ∆; Γ ⊢ v : τ

Ψ; ∆; Γ ⊢ ν.ℓ : τ
(Ψ(ν.ℓ) = τ ) (v-addr)

∆ ⊢ 〈τ1, . . . , τn〉 at ν : Type

Ψ; ∆; Γ ⊢ ν.ℓ : 〈τ1, . . . , τn〉 at ν
(ν 6∈ Dom(Ψ)) (v-addr-tuple)

∆ ⊢ ∀[∆′].(C, τ1, . . . , τn)→ 0 at ν : Type

Ψ; ∆; Γ ⊢ ν.ℓ : ∀[∆′].(C, τ1, . . . , τn)→ 0 at ν
(ν 6∈ Dom(Ψ)) (v-addr-arrow)

Ψ; ∆; Γ ⊢ handle(ν) : ν handle
(v-handle)

Figure 9: Capability Static Semantics: Run-time Values

2.5 Formal Properties of the Calculus

The most important property of the Capability Calculus is Type Soundness. Type Soundness states
that a program will never enter a stuck state during execution. A state (M, e) is stuck if there does
not exist (M ′, e′) such that (M, e) 7−→ (M ′, e′) and e is not halt i. For example, a state that tries to
project a value from a tuple that does not appear in memory is stuck.

Theorem 1 (Type Soundness)
If ⊢ (M, e) and (M, e) 7−→∗ (M ′, e′) then (M ′, e′) is not stuck.

In the previous sections of this article, we have explained how to type memory, how to relate the
memory typing to static capabilities and finally, given a collection of capabilities, how the rules for
typing expressions prevent unsafe accesses to the store. These invariants are the main elements in the
formal proof of soundness. However, there are many details to fill in. The proof is in the style of Wright
and Felleisen [54] and uses the standard Type Preservation and Progress lemmas. Progress states that
well-typed states are not stuck, and Preservation states that evaluation steps preserve well-typedness.

Lemma 2 (Type Preservation)
If ⊢ (M, e) and (M, e) 7−→ (M ′, e′) then ⊢ (M ′, e′)

Lemma 3 (Progress) If ⊢ (M, e) then either:

1. There exists (M ′, e′) such that (M, e) 7−→ (M ′, e′), or

2. e = halt i
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kinds κ ::= Type | Rgn | Eff
constructor variables α, β, ρ, ǫ
constructor contexts ∆ ::= · | ∆, α:κ1

type schemes σ ::= τ | ∀[∆].τ1
ψ
→ τ2 at r

constructors c, τ, r, ψ ::= α | int | r handle | 〈τ1, . . . , τn〉 at r | τ1
ψ
→ τ2 at r |

∅ | {r} | ψ1 ∪ ψ2

term variables x, f
term contexts Γ ::= · | Γ, x:σ
terms e ::= x | i | e1 p e2 | if0 e1 then e2 else e3 | 〈e1, . . . , en〉 at en+1 |

πie | letrecf [∆](x) : σ at e1 = e2 in e3 | f [c1, . . . , cn] |
e1e2 | letregionρ, xρ in e

Figure 10: Region Syntax

Because of the length and tedium of the proofs of these lemmas, we have removed them, along with
the proof of soundness itself, to Appendix A.

The second important property of the language is that well-typed terminating programs return all
of their memory resources to the system before they halt. We call this property Complete Collection.

Theorem 4 (Complete Collection) If ⊢ (M, e) then either (M, e) diverges or (M, e) 7−→∗ ({ }, halt
i).

By Subject Reduction and Progress, terminating programs end in well-formed machine states
(M, halt i). The typing rule for the halt expression requires that the capability C be empty. Using
this fact, we can infer that the memory M contains no regions. Appendix A also contains a formal
proof of this theorem.

3 From Regions to Capabilities

The primary goal of this work is the development of a type-safe language that gives compilers control
over the allocation and deallocation of data. In order to use this technology effectively, we need compiler
support for generating the intermediate language code from source language programs. In this section,
we define a high-level explicitly-typed variant of Tofte and Talpin’s region-based language and show that
it can be translated into the Capability Calculus. By composing this translation with region inference,
we may obtain a type-preserving compiler front-end.

3.1 A Region-Based Calculus

Preliminaries The source language for our compiler is the region-based calculus shown in Figure 10.
This language is an explicitly-typed variant of the calculus first presented by Tofte and Talpin [47].
Like the Capability Calculus, it contains integers, tuples and functions. However, unlike the Capability
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Calculus, allocation and deallocation of regions is combined in a single construct: letregionρ, xρ in e.
This construct allocates a new region ρ and places the handle for that region in the term variable
xρ. Next, it executes the expression e. Finally, the region ρ is deallocated. As discussed in the
introduction, this lexically-scoped construct is not as flexible as the separate newrgn and freergn

constructs provided by the Capability Calculus. The main goal of this section is to show how to
compile letregion expressions into these lower-level primitives.

As in the original Tofte-Talpin calculus, the region language has prenex predicative polymorphism.
The term letrecf [∆](x) : σ at e1 = e2 in e3 allocates a closure f of polytype σ. The closure is
polymorphic over its type context ∆, which may contain ordinary type variables as well as region
variables and effect variables (explained below). The closure is allocated in the region r if the expression
e1 evaluates to a region handle for r. The expression e2 describes the body of the function.

Unlike previous work on region-based type systems, we treat all type constructors, including region
constructors, as compile-time-only objects. Therefore, the term f [c1, . . . , cn], which denotes type appli-
cation, has no runtime effect. During type checking, the type scheme for the polymorphic function f is
instantiated with the types c1, . . . , cn to obtain the resultant type for the expression, but the dynamic
semantics of the program (not shown here) do not depend upon these types. Hence, the types may be
erased before the program is run without affecting the computation. As in the Capability Calculus, the
data structures that are required to allocate and deallocate regions are treated as ordinarly values of
type handle(r).

Types and Effects The main interest of the type constructor portion of the region language is the
presence of effects. Effects, like capabilities, are used to control a program’s access to regions and, in
particular, to prevent access to regions that have been deallocated. Intuitively, the effect of a term is
the set of regions that the term accesses. Formally, an effect is either the empty effect (∅), an effect
variable (ǫ), a singleton set ({r}), or the union of two effects (ψ1 ∪ ψ2). The ∪ operator is associative,
commutative, and idempotent and ∅ is the unit for the union operator. We write ∆ ⊢R ψ1 = ψ2 : Eff
for equality on effects and we use the abbreviation ∆ ⊢R ψ1 ⊆ ψ2 when ∆ ⊢R ψ1 ∪ ψ3 = ψ2 : Eff for
some effect ψ3.

All functions have latent effects that are incurred when the function is called and its body is executed.

The effect that appears on arrow types (∀[∆].τ
ψ
→ τ ′)2 specifies the set of regions that a function of

that type may access when it is invoked. The formal rules for type and effect formation and equality
may be found in Figure 11.

Static Semantics The static semantics (Figure 12) for terms use a judgement of the form ∆; Γ ⊢R
e : τ, ψ to track the effects produced by each expression. This judgement states that under the type
context ∆ and the value context Γ, a term e has type τ and produces effect ψ. For example, the rule
for projection states that if e is an expression producing effect ψ then πie produces the effect ψ ∪ {r}.
The projection operation reads from the region r and the subexpression e may read from or write to
any of the regions in ψ. Hence the resulting effect must be the union of the two.

2Tofte and Talpin require each arrow type be annotated with an “arrow effect”, which is constrained to have the form
ǫ∪ψ. The type variable ǫ is used to name the effect and plays a role in their inference system. Because we are interested
in type checking rather than type inference, we do not need to name the effects on arrows.
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∆ ⊢ ∆′

∆ ⊢ ·
∆ ⊢ ∆′

∆ ⊢ ∆′, {α:κ}
(α 6∈ Dom(∆))

∆ ⊢ σ

∆ ⊢ τ : Type

∆ ⊢ τ

⊢ ∆∆′ ∆∆′ ⊢ τi : Type (for 1 ≤ i ≤ n + 1)
∆∆′ ⊢ ψ : Eff ∆ ⊢ r : Rgn

∆ ⊢ ∀[∆′].(τ1, . . . , τn)
ψ
→ τn+1 at r

∆ ⊢ c : κ

∆ ⊢ α : κ
(∆(α) = κ)

∆ ⊢ int : Type

∆ ⊢ r : Rgn

∆ ⊢ r handle : Type

∆ ⊢ τi : Type (for 1 ≤ i ≤ n) ∆ ⊢ r : Rgn

∆ ⊢ 〈τ1, . . . , τn〉 at r : Type

∆ ⊢ r : Rgn ∆ ⊢ ψ : Eff
∆ ⊢ τi : Type (for 1 ≤ i ≤ n+ 1)

∆ ⊢ (τ1, . . . , τn)
ψ
→ τn+1 at r : Type

∆ ⊢ ∅ : Eff

∆ ⊢ r : Rgn

∆ ⊢ {r} : Eff

∆ ⊢ ψ1 : Eff ∆ ⊢ ψ2 : Eff

∆ ⊢ ψ1 ∪ ψ2 : Eff

∆ ⊢ σ1 = σ2 ∆ ⊢ c1 = c2 : κ (congruence rules omitted)

∆ ⊢ c : κ
∆ ⊢ c = c : κ

∆ ⊢ c2 = c1 : κ

∆ ⊢ c1 = c2 : κ

∆ ⊢ c1 = c2 : κ ∆ ⊢ c2 = c3 : κ

∆ ⊢ c1 = c3 : κ

∆ ⊢ ψ : Eff

∆ ⊢ ∅ ∪ ψ = ψ : Eff

∆ ⊢ ψ1 : Eff ∆ ⊢ ψ2 : Eff

∆ ⊢ ψ1 ∪ ψ2 = ψ2 ∪ ψ1 : Eff

∆ ⊢ ψi : Eff (for 1 ≤ i ≤ 3)

∆ ⊢ (ψ1 ∪ ψ2) ∪ ψ3 = ψ1 ∪ (ψ2 ∪ ψ3) : Eff

∆ ⊢ ψ1 : Eff ∆ ⊢ ψ2 : Eff

∆ ⊢ ψ1 ∪ ψ2 = ψ1 ∪ (ψ2 ∪ ψ2) : Eff

∆ ⊢ ψ1 ∪ ψ3 = ψ2 : Eff

∆ ⊢ ψ1 ⊆ ψ2

Figure 11: Region Type Formation, Equality, and Subset

25



∆; Γ ⊢R x : τ, ∅
(Γ(x) = τ )

∆; Γ ⊢R i : int, ∅

∆; Γ ⊢R e1 : int, ψ1 ∆; Γ ⊢R e2 : int, ψ2

∆; Γ ⊢R e1 p e2 : int, ψ1 ∪ ψ2

∆; Γ ⊢R ei : τi, ψi (for 1 ≤ i ≤ n) ∆; Γ ⊢R en+1 : r handle, ψn+1

∆; Γ ⊢R 〈e1, . . . , en〉 at en+1 : τ, ψ1 ∪ . . . ∪ ψn+1 ∪ {r}

∆; Γ ⊢R e : 〈τ0, . . . , τn−1〉 at r, ψ

∆; Γ ⊢R πie : τi, ψ ∪ {r}
(0 ≤ i < n)

∆; Γ ⊢R e1 : int, ψ1 ∆; Γ ⊢R e2 : τ, ψ2 ∆; Γ ⊢R e3 : τ, ψ3

∆; Γ ⊢R if0 e1 then e2 else e3 : τ, ψ1 ∪ ψ2 ∪ ψ3

∆ ⊢R σ ∆∆′; Γ{f :σ, x:τ1} ⊢R e2 : τ2, ψ
∆; Γ ⊢R e1 : r handle, ψ1 ∆; Γ{f :σ} ⊢R e3 : τ3, ψ3

∆; Γ ⊢R letrecf [∆′](x) : σ at e1 = e2 in e3 : τ3, ψ1 ∪ ψ3 ∪ {r}

(

x, f 6∈ Dom(Γ)

σ = ∀[∆′].τ1
ψ
→ τ2 at r

)

∆ ⊢R ci : κi (for 1 ≤ i ≤ n)

∆; Γ ⊢R f [c1, . . . , cn] :

(τ1
ψ
→ τ2)[c1, . . . , cn/α1, . . . , αn] at r, ∅

(Γ(f) = ∀[α1:κ1, . . . , αn:κn].τ1
ψ
→ τ2 at r)

∆; Γ ⊢R e1 : τ1
ψ
→ τ2 at r, ψ1 ∆; Γ ⊢R e2 : τ1, ψ2

∆; Γ ⊢R e1e2 : τ2, ψ1 ∪ ψ2 ∪ ψ ∪ {r}

∆{ρ:Rgn}; Γ{xρ:ρ handle} ⊢R e : τ, ψ

∆; Γ ⊢R letregionρ, xρ in e : τ, ψ\{ρ}

(

ρ 6∈ ftv(τ ) ∪Dom(∆)
xρ 6∈ Dom(Γ)

)

∆; Γ ⊢R e : τ, ψ ∆ ⊢R τ = τ ′ : Type ∆ ⊢R ψ ⊆ ψ′

∆; Γ ⊢R e : τ ′, ψ′

Figure 12: Region Term Static Semantics
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The rules involving functions are more complex. First, consider a function call e1e2. Assume that

e1 generates the effect ψ1 and evaluates to a closure of type ∀[ ].(τ )
ψ
→ τ ′ at r, and that e2 produces

the effect ψ2 and has type τ . After both expressions have been evaluated, the code for the function is
projected from a closure that resides in region r. Now, because the function itself produces the effect ψ,
the overall effect of the call is the union of {r} with ψ, ψ1, and ψ2. In contrast to the value application
rule, the rule for type application produces no effect; remember, types are erased before an expression
is executed. Finally, examine the rule for the letrec term. There are three components to the effect
produced by this expression: ψ1, the effect of evaluating handle expression; {r}, the effect of writing
the closure data structure in region r; and ψ3, the effect of the subsequent expression e3. As well as
checking that types match up properly, we must be sure that the effect produced by the body of the
function is a subset of the declared effect. The type system would be unsound if functions could hide
their effects.

The last rule checks the letregion construct. Here, we use the notation ψ\{ρ} to denote the effect
ψ with all occurences of {ρ} replaced by ∅. This rule discharges the effect {r} from the effect produced
by the subexpression e. Intuitively, because the letregion construct discharges effects whereas all
other constructs pass on effect information from their subexpressions to their enclosing expressions, any
access to a region outside of the scope of a letregion will be detected and the type checker will reject
the expression as a whole.

Figure 13 shows an example program, a function count that counts down to zero. In order to have
interesting allocation behavior the integers involved in the count are boxed, and hence are allocated in
a region. The count function is stored in region ρ1 and takes two arguments, a handle for region ρ and
a boxed integer x allocated in region ρ. If x is nonzero, count decrements it, storing the result again
in ρ, and recurses. The function has two effects: a read on ρ1, resulting from the recursive call, and a
read/write effect on ρ, resulting from line 1’s read and line 2’s store. Therefore, we give the function
count the effect {ρ1, ρ2}. Overall, the code in Figure 13 allocates two regions (ρ1 and ρ2), stores the
closure for count in ρ1 , stores a boxed integer in ρ2, calls count, and then deallocates ρ1 and ρ2.

3.2 The Translation

In order to make a formal connection to region-based calculi and to corroborate our claims that we can
use the region inference techniques developped by Tofte and others as a front-end for a capability-based
compiler, we have defined a type-directed and type-preserving translation from the region calculus of
the previous section to the Capability Calculus. Appendix B contains a proof that any well-formed
source term is translated into a well-formed target term.

Kind and Type Translation The translation is a continuation-passing style transformation in which
we simultaneously transform effects into capabilities. The kind and type transformation is presented in
Figure 14. The kind translation is trivial; effects become capabilities and the other kinds are unchanged.
The translation of most types is equally simple. The translation of base types is the identity and, in
general, to translate other types we recursively translate their components and recombine using the
corresponding capability constructor. Thus, tuples are mapped to tuples and handles are mapped to
handles, etc.
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letregion ρ1, xρ1 in

letregion ρ2, xρ2 in

letrec count [ρ] (xρ : ρ handle, x : 〈int〉 at ρ) at xρ1 : σcount =

let n = π0(x) in % (1)

if0 n
then ()

else count [ρ] (xρ, 〈n− 1〉 at xρ) % (2)

end

in

count [ρ2] (xρ2 , 〈10〉 at xρ2)
end % letrec

% end region ρ2 scope and deallocate

% end region ρ1 scope and deallocate

where σcount = ∀[ρ]. (ρ handle, 〈int〉 at ρ)
{ρ1,ρ}
−→ unit

Figure 13: Count in the Region Calculus

K[[Type]] = Type

K[[Rgn]] = Rgn

K[[Eff]] = Cap

K[[α1:κ1, . . . , αn:κn]] = α1:K[[κ1]], . . . , αn:K[[κn]]

T [[α]] = α
T [[int]] = int

T [[〈τ1, . . . , τn〉 at r]] = 〈T [[τ1]], . . . , T [[τn]]〉 at T [[r]]

T [[τ1
ψ
→ τ2 at r]] = ∀[ρ′:Rgn, ǫ:Cap, ǫ′ ≤ ǫ⊕ T [[ψ]]⊕ {ρ′1}].(ǫ′,

T [[τ1]], ∀[ ].(ǫ′, T [[τ2]])→ 0 at ρ′)→ 0 at T [[r]]
T [[r handle]] = T [[r]] handle

T [[∅]] = ∅

T [[{r}]] = {T [[r]]
1}

T [[ψ1 ∪ ψ2]] = T [[ψ1]]⊕ T [[ψ2]]

S[[τ ]] = T [[τ ]]

S[[∀[∆].τ1
ψ
→ τ2 at r]] = ∀[K[[∆]]].T [[τ1

ψ
→ τ2 at r]]

S[[{x1:σ1, . . . , xn:σn}]] = {x1:S[[σ1]], . . . , xn:S[[σn]]}

Figure 14: Region to Capability Kind and Type Translation
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The translation of function types is more involved. Recall that in the usual CPS-translation, an
arrow type (τ1)→ τ2 is transformed so that it accepts a translated τ1 and a τ2 continuation:

(T [[τ1]], T [[τ2]]→ 0)→ 0

The translation of region arrow types has the same structure, but there are several complications
that arise as we transform effects into capabilities. The first complication involves finding a region for
the continuation closure. We solve this problem by allocating a new region ρ′ to hold the continuation;
the translated function abstracts this region. The second complication is that an effect for a function
may only mention a subset of the regions that are live at the call site. Nevertheless, the resulting
Capability Calculus function must thread the capability describing all the live regions from the context
where the function is called through the body of the function to the continuation. We accomplish
this task by abstracting an additional capability variable ǫ that makes each function context sensitive.
Using this mechanism, we can thread any capability in the calling context through the function to its
continuation.

The third complication is that the type translation must ensure that equal types in the region
calculus are translated to equal types in the Capability Calculus. For the most part, this obligation is
satisfied trivially because the equality relation for most region types and their corresponding Capability
Calculus analogues is simple syntactic equality up to α-conversion of bound variables. However, the
equality relation for effects is set equality whereas the equality relation for arbitrary capabilities is not set
equality (⊕ is not necessarily idempotent). Fortunately, equality of duplicatable capabilities is exactly
set equality. Therefore, the type translation carefully translates all arrow effects into duplicatable
capabilities.

These three insights naturally lead us to translate a region function type τ1
ψ
→ τ2 at r into the

Capability Calculus function type

∀[ρ′:Rgn, ǫ:Cap, ǫ′ ≤ ǫ⊕ T [[ψ]]⊕ {ρ′1}].(ǫ′, T [[τ1]], τ2 cont at ρ′)→ 0 at T [[r]]

The capability for the translated function is ǫ′ where ǫ′ is a subtype of ǫ⊕ T [[ψ]]⊕ {ρ′1}. This capability
gives the translated function access to all the regions it requires: The regions in T [[ψ]] are the regions
accessed by the source language function; ρ′ is the region containing the continuation; and ǫ contains
the regions from the calling context that are threaded through the call to the continuation. Notice
also that the capability that appears in this type is duplicatable, so we can prove that equal types are
translated to equal types. Finally, as explained in Section 2.3, if we give our τ2-continuation the correct
type, namely

∀[ ].(ǫ′, T [[τ2]])→ 0 at ρ′

then bounded quantification allows the continuation to recover the uniqueness information necessary to
deallocate the regions used in the function.

Given these definitions, it is straightforward to prove that the essential properties of types (well-
formedness, equality, and substitution) are preserved through the translation. Each of the following
lemmas can be proven by a simple induction on the well-formedness or equality derivation.

Lemma 5 (Well-Formedness Preservation)
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1. If ∆ ⊢R ∆′ then K[[∆]] ⊢ K[[∆′]]

2. If ∆ ⊢R c : κ then K[[∆]] ⊢ T [[c]] : K[[κ]]

Lemma 6 (Equality Preservation)

1. If ∆ ⊢R ψ = ψ′ : Eff then K[[∆]] ⊢ T [[ψ]] = T [[ψ′]] : Cap

2. If ∆ ⊢R c = c′ : κ and κ is not Eff then K[[∆]] ⊢ T [[c]] = T [[c′]] : Cap

Lemma 7 (Substitution Preservation) If ∆, α:κ ⊢R τ : Type and ∆ ⊢R c : κ then K[[∆]] ⊢
T [[τ [c/α]]] = T [[τ ]][T [[c]]/α].

Term Translation The heart of the term translation is a continuation-passing style [12, 39] transfor-
mation. There are many variations of this transformation [10, 43, 17, 9], some of which produce more
efficient code than others, and some of which lead to simpler correctness proofs. We have chosen a
simple translation that is straightforward to prove type preserving so that we may focus on the details
relevant to region-based memory management.

We begin with an informal description of the basic mechanics of the CPS term translation, ignoring
all of the details relevant to regions or capabilities. There are three main arguments to the translation:

• a type-checking context Φ,

• a source-language term e,

• and a target-language continuation k.

If the source term e is well-formed under the context Φ with type τ , and k is a T [[τ ]]-continuation then
the translation CΦ(e)k should produce a well-formed target term.

Operationally, the target term computes e, producing a value v as a result, and then calls the
continuation k with v as its argument. Therefore, if the source term e is already a value v, such as
an integer or a variable, then the translation is simply the function call k(v). On the other hand,
assuming a left-to-right evaluation order, if the source term e actually represents a computation, say
the computation 〈e1, e2〉, the CPS translation arranges to compute e1 producing value v1, compute e2
producing value v2, allocate the pair 〈v1, v2〉 and finally pass the resulting pointer to the continuation
k. We might write such a translation as follows.

CΦ(〈eτ11 , e
τ2
2 〉)k = CΦ(e1)(λx1.

CΦ,x1:T [[τ1 ]](e2)(λx2.
letx = 〈x1, x2〉 in k(x)))

The translation of each subcomponent of e requires a continuation and that continuation contains
code for all subsequent subcomponents. Finally, the primitive operation op is applied to the resulting
values and the result is passed to k. The compilation of arithmetic operations and the projections have
this form.

There are a couple of further details to notice about the translation. First, we have taken the liberty
of annotating expressions with their types where necessary (e.g., eτ11 ). Second, when the translation
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introduces new variables, such as x1, we add those variables, with their translated types, to the context
Φ. The latter decision has no influence on the behaviour of the translation, but it facilitates the
statement and proof of the type correctness theorem.

The translation of function application e1 e2 begins in the same way as other operations: Translate
e1, passing the resulting value to a continuation that contains the translation of e2. The continuation
for e2 contains the function application itself. Because user-defined CPS functions (unlike the primitive
operations) do not return, the continuation k is passed directly to the translated function.

CΦ(eτ1→τ2
1 e2)k = CΦ(e1)(λx1.

CΦ,x1:T [[τ1→τ2]](e2)(λx2.
x1(x2, k)))

Finally, expressions that declare functions must be translated so the result expects an extra contin-
uation argument (xcont) and calls that continuation to return.

CΦ(let f : τ1→ τ2 = λx.e in e′) = let f : τf = λ(x, xcont).CΦ,x:T [[τ1]],xcont:τcont (e)xcont in
CΦ,f :T [[τ1→τ2 ]](e

′)k

Here, the type of the function’s continuation, τcont, is (T [[τ2]])→ 0. The type τf of the function itself is
(T [[τ1]], τcont)→ 0.

This simple CPS translation provides the basic structure for the translation from the region language
into the Capability Calculus. However, as many previous researchers have observed, this translation
introduces unnecessary or administrative redexes. For example, under the scheme we have presented so
far, the translation of a simple pair 〈2, 3〉 with respect to a continuation k is

(λx1.(λx2.letx3 = 〈x1, x2〉 in k(x3)) (3)) (2)

instead of the much simpler term letx3 = 〈2, 3〉 ink (x3). While we are not concerned with the time
required to execute the extra function applications, we are concerned about the space required by
additional function closures. If we based our region translation directly on this naive translation, we
would be forced to allocate additional regions for each of the λ-expressions above. Previous work has
avoided these problems by defining the translation in terms of a two-level type system and passing
the translation meta-level continuations instead of target-level continuations. However, because we are
only interested in the space properties of our translation, we will use a simpler solution. Rather than
allocating continuation closures, we will use a let expression to bind the result of a computation and
pass it to a continuation. This solution avoids additional allocation and does not lead to the complexities
of a two-level type system. Hence, the translation of the pair 〈2, 3〉 with respect to continuation k will
be

letx1 = 2 in
letx2 = 3 in
letx3 = 〈x1, x2〉 in
A(k, x3)

The notationA(k, x3) denotes the “application” of the continuation k to the value x3. The continuation
k is not represented as a target-language λ-expression, but, intuitively, this “application” is simply k(x3).
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The continuation k is actually a pair 〈xk; ek〉. The variable xk is the continuation’s parameter and ek

is its body. Given this representation, it is natural to define A(〈xk; ek〉, v) to be letxk = v in ek.
Using this notation, we can define a CPS translation for pairs in general as follows.

CΦ(〈eτ11 , e2〉)k = CΦ(e1)〈x1;
CΦ,x1:T [[τ1]](e2)〈x2;
let x = 〈x1, x2〉 inA(k, x)〉〉

From Region Expressions to Capability Calculus With the basic CPS transformation in hand,
we are ready to investigate the formal details translation of the region language expressions into Capa-
bility Calculus expressions. As discussed above, the translation, C, has the following form.

CΦ(e)k

The context Φ is actually ∆; Γ; Θ. The first two components are a region type context and a region value
context. The third component, Θ, is a translation environment. This environment contains a Capability
Calculus type context ∆Θ, a Capability Calculus value context ΓΘ, and a pair of capabilities CΘ and
BΘ. The context ∆Θ describes the kinds of the new type variables introduced by the translation and, if
they are capability type variables, then possibly their bounds. The value context ΓΘ describes the types
of the new value variables introduced by the translation. Intuitively the capability CΘ represents the
current capability at a given point in the translation andBΘ is a bound onCΘ. If Θ is 〈∆Θ; ΓΘ;CΘ;BΘ〉,
then we use the notation Θ, x:τ to denote the translation environment 〈∆Θ; ΓΘ, x:τ ;CΘ;BΘ〉.

The formal translation is presented in Figures 15 and 16. In the translation, we make the assumption
that all variables are unique and that when we introduce a variable in a term or in a continuation, it
is “fresh” (i .e. it is does not conflict with any of the other variables in the source term, type-checking
context, or continuation).

The invariant guiding the transformation has three main parts:

1. The region language term e is well-formed under the type and value contexts ∆ and Γ. Formally,
∆; Γ ⊢R e.

2. The continuation k = 〈xk; ek〉 is well-formed in the current context. Formally,
{ };K[[∆]],∆Θ;S[[Γ]],ΓΘ, xk:T [[τ ]];CΘ ⊢ ek.

3. Finally, the current capability CΘ is a subcapability of BΘ, and moreover, BΘ contains a superset
of the regions mentioned in the effect of e. Formally,

• K[[∆]],∆Θ ⊢ CΘ ≤ BΘ and

• K[[∆]],∆Θ ⊢ BΘ = BΘ ⊕ T [[ψ]]

As in the case for the simplified CPS translation, the translation of source-language values is the
simplest. For example, to translate a variable x or the integer i, we simply apply the continuation k
to x or i respectively. The type application expression f [c1, . . . , cn] is also a value because we take the
interpretation that types are erased at run time. Therefore, we apply the continuation k directly to
f [T [[c1]], . . . , T [[cn]]].
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A(〈Γ; x; e〉, v) = (let x = v in e)

C∆;Γ;Θ(x)k = A(k, x)

C∆;Γ;Θ(i)k = A(k, i)

C∆;Γ;Θ(f [c1, . . . , cn])k = A(k, f [T [[c1]], . . . , T [[cn]]])

C∆;Γ;Θ(e1 p e2)k =
C∆;Γ;Θ(e1)〈x1;
C∆;Γ;Θ,x1 :int(e2)〈x2;
letx = x1 p x2 in

A(k, x)〉〉

C∆;Γ;Θ(〈eτ11 , . . . , e
τn
n 〉 at e

τn+1

n+1 )k =
C∆;Γ;Θ(e1)〈x1;
...
C∆;Γ;Θ,x1 :T [[τ1]],...,xn−1 :T [[τn−1 ]](en)〈xn;
C∆;Γ;Θ,x1 :T [[τ1]],...,xn:T [[τn]](en+1)〈xn+1;
letx = 〈x1, . . . , xn〉 at xn+1 inA(k, x)
〉〉 · · ·〉

C∆;Γ;Θ(πie)k = C∆;Γ;Θ(e)〈x1 ; letx = πix1 inA(k, x)〉

C∆;Γ;Θ(if0 e1 then e2 else e3)k =
C∆;Γ;Θ(e1)〈x1;
if0x1 thenC∆;Γ;Θ,x1 :int(e2)k elseC∆;Γ;Θ,x1 :int(e3)k〉

C∆;Γ;Θ(letregionρ, xρ in e)k =
letnewrgnρ, xρ in
C∆{ρ:Rgn};Γ{xρ:ρ handle};Θ′ (e)〈x′; freergnxρ inA(k, x′)〉

where
Θ′ = 〈∆Θ; ΓΘ;CΘ⊕ {ρ1};BΘ ⊕ {ρ1}〉

Figure 15: Region to Capability Term Translation
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C∆;Γ;Θ(letrecf [∆′](x) : (∀[∆′].τ1
ψf
→ τ2 at r) at e1 = e2 in e3)k =

C∆;Γ;Θ(e1)〈x1;

let f = (fix f [K[[∆′]], ρ:Rgn, ǫ:Cap, ǫ′ ≤ BΘ′

](ǫ′, x:T [[τ1]], xcont:τcont).
C∆∆′;Γ{f:σ,x:τ1};Θ′ (e2)〈x2; xcont(x2)〉) at x1

in

C
∆;Γ{f :∀[∆′ ].τ1

ψf
→τ2atr};Θ,x1 :T [[r handle]]

(e3)k〉

where
τcont = ∀[ ].(ǫ′, T [[τ2]])→ 0 at ρ

∆Θ′

= ∆Θ, ρ:Rgn, ǫ:Cap, ǫ′ ≤ BΘ′

ΓΘ′

= ΓΘ, x1:r handle, xcont:τcont
CΘ′

= ǫ′

BΘ′

= ǫ⊕ T [[ψf ]]⊕ {ρ1}

Θ′ = 〈∆Θ′

; ΓΘ′

;CΘ′

;BΘ′

〉

C∆;Γ;Θ(e
τf
1 e2)k =

C∆;Γ;Θ(e1)〈x1;
C∆;Γ;Θ,x1 :T [[τf ]](e2)〈x2;
letnewrgnρ, xρ in
let fcont = (fix fcont[ ](C

Θ ⊕ {ρ1}, x:T [[τ2]]).letfreergnxρ inA(k, x)) at xρ
in x1[ρ, B

Θ, CΘ ⊕ {ρ1}](x2, fcont)〉〉

where

τf = τ1
ψf
→ τ2 at r

Figure 16: Region to Capability Term Translation (Functions)
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The translation of tuples also follows our informal description closely. We translate each of the com-
putations e1, . . . , en+1 that make up the tuple in sequence and bind the resulting values to x1, . . . , xn+1.
Once we have translated all expressions, we allocate the tuple 〈x1, . . . , xn〉 using the region handle xn+1.

In order for the tuple allocation operation to be safe, we must ensure the region (say, ρ) that
corresponds to the region handle xn+1 is still live. In other words, we must be able to prove that the
current capability CΘ contains a capability for ρ. The invariants above provide us with the means
to deduce this fact using the following informal reasoning. Invariant 1 states that the expression
〈e1, . . . , en〉 at en+1 is well-formed and has effect ψ. Inspection of the region language typing rule for
tuples reveals that ψ contains an effect on ρ. Now, the second part of invariant 3 states that the
capability BΘ contains capabilities on all regions that appear in the effect ψ, including, of course, ρ.
Finally, using the first part of invariant 3, we know that the current capability CΘ is subcapability of
BΘ, and, therefore, that it too contains ρ. Consequently, the tuple allocation operation is safe. Using
similar reasoning, it is straightforward to verify informally that the translation of arithmetic operations,
projections and if statements will not fail to type check because they lack sufficient capabilities.

The translation of the term letregionρ, xρ in e is not much more difficult: letregionρ, xρ in e
is translated into a newrgnρ, xρ declaration followed by the translation of the inner expression e and
finally a freergn declaration to deallocate ρ. Once again, some simple reasoning allows us to check that
the stated invariants hold throughout the transformation. In particular, the translation of the inner
expression e reflects the fact that a new region ρ has just been allocated; the translation environment
for that step contains capabilities CΘ⊕{ρ1} and BΘ⊕{ρ1}. Since we know that CΘ is a subcapability

of BΘ, we may conclude that CΘ ⊕ {ρ1} is a subcapability of BΘ ⊕ {ρ1} and therefore that invariant
3, part 1 is satisfied. Next, inspection of the typing rule for letregion reveals that if ψ′ is the effect of
e then ψ′ \ {ρ} is the effect of the entire letregion expression. Since, BΘ contains ψ′ \ {ρ}, we know
that BΘ ⊕{ρ1} contains capabilities for all regions in ψ′, including, of course, ρ. Hence, we also satisfy
invariant 3, part 2 during the translation of e. Finally, recall that the region type system ensures that
the region ρ can only be used inside of e. Therefore, in the continuation for the translation of e, we
safely free the region and proceed with k. Invariant 2 specified that k only expected the capability CΘ

and this is exactly the capability of the context after freeing the region ρ.
The most complex part of the translation involves functions. Fortunately, the type translation,

which we have already explained, specifies the main invariants; the translation of functions terms
follows directly from this specification. More specifically, we extend the function’s type context ∆′ with
ρ, a region for the continuation’s closure, ǫ, a capability for hiding extra regions in the calling context,
and ǫ′, the current capability, which is bounded by ǫ ⊕ T [[ψf ]]⊕ {ρ1}. We also add a value argument
to the translated function, the continuation xcont. It is simple to verify that the translated function
has the translated function type. The body of the function is translated under these assumptions. The
continuation for this part of the translation does nothing but invoke the function’s new argument xcont.

Finally, we examine the translation of a function application. First, the translation allocates a new
region ρ for the continuation closure. Next, the translation actually allocates the continuation in ρ.
This continuation is defined to expect the capability CΘ⊕{ρ1}. This is the maximum capability at this
point in the computation and it permits the continuation to deallocate the region containing its own
closure. After allocating the continuation, the translation continues with the translation of the actual
function application. The translated function value, x1, will have the type

∀[ρ′:Rgn, ǫ:Cap, ǫ′ ≤ ǫ⊕ T [[ψf ]]⊕ {ρ′1}].(· · ·)→ 0 at r
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Therefore, before calling the function, the code must instantiate the variables ρ′, ǫ, and ǫ′ properly. The
code naturally instantiates ρ′ with the region ρ that was just allocated. At this point in the program,
the capability CΘ⊕{ρ1} represents the current capability and BΘ⊕{ρ1} is its upper bound. Therefore,
the code instantiates ǫ with BΘ and ǫ′ with CΘ ⊕ {ρ1}, which is legal provided we can prove that

CΘ ⊕ {ρ1} ≤ BΘ ⊕ ψf ⊕ {ρ1}

Given invariant 3, which states that CΘ ≤ BΘ and that BΘ = BΘ ⊕ ψf , it is easy to verify this fact.
Now, we need only verify that the term arguments, x2 and the continuation fcont, have the types
expected by the translated function and this too can be easily checked.

Properties of the Translation We have proven that our translation preserves types.

Theorem 8 (CPS Type Preservation)
If ·; · ⊢ e : int, ∅ then { }; ·; ·; ∅ ⊢ C·;·;Θ(e)〈·; x; halt x〉 where x is fresh and Θ is the empty enviroment:
〈·; ·; ∅; ∅〉.

The proof proceeds by induction on the height typing derivation of the source language term with
invariants 1, 2, and 3 forming the induction hypothesis. Appendix B contains a formal proof of the
representative cases.

We would also like our translation to preserve the space used by the program. Recently, Mi-
namide [26] has proven that a standard CPS translation preserves the maximum amount of reachable
space within a constant factor. He defines a space-profiling semantics for the simply-typed lambda
calculus that refines the work of Blelloch and Greiner [7]. If we were to augment our semantics with
this sort of space-profiling information, we may be able to prove a similar result for our translation. An
informal inspection of the translation indicates that the resultant term allocates no more data struc-
tures than the source term with the exception of the continuation closure that we require to return
from a function call, and intuitively, this closure corresponds to the stack space that is required to save
local variables across a function call. However, a formal investigation of the space properties of our
translation is beyond the scope of this paper.

An Example The program below is the translation of the count function from the previous section.
We have made several simplifications to the output of the formal translation to improve the readability of
the program. In particular, we have optimized away many of the administrative redexes and performed
a tail-call optimization on the recursive call to the count function. Rather than writing capabilities
{ρ1

1, ρ
1}, we use the equivalent form {ρ+

1 , ρ
+}.

The program begins by allocating regions ρ1 and ρ2 using the newrgn declaration, and puts the
closure for count into ρ1. The count function requires a capability ǫ′ at least as good as the capability
{ρ+

1 , ρ
+, ρ+

cont
} needed to access itself, its argument, and its continuation; and it passes on that same

capability ǫ′ to its continuation k. As we type check the body of the count function, we verify that we
possess the capabilities necessary to make all data accesses legal. Comments in the code indicate where
these checks occur. When calling count, we pass it the continuation cont. This continuation requires
the capability {ρ1

1, ρ
1
2, ρ

1
3} in order to free the three regions. Hence, at the application site, count’s

capability, ǫ′, is instantiated with the stronger capability needed by the continuation.
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let newrgn ρ1, xρ1 in

let newrgn ρ2, xρ2 in

% capability held is {ρ1
1, ρ

1
2}

let count =

(fix count

[ρ:Rgn, ρcont :Rgn, ǫ:Cap, ǫ
′ ≤ ǫ⊕ {ρ+

1 , ρ
+, ρ+

cont
}]

(ǫ′, xρ:ρ handle, x:〈int〉 at ρ, k:(ǫ′)→ 0 at ρcont ) .
% capability held is ǫ′ ≤ ǫ⊕ {ρ+

1 , ρ
+, ρ+

cont
}

let n = π0(x) in % ρ ok

if0 n
then k() % ρcont ok

else

let n′ = n− 1 in

let x′ = 〈n′〉 at xρ in % ρ ok

count [ρ, ρcont , ǫ⊕ {ρ
+
1 , ρ

+, ρ+
cont
}, ǫ′] (xρ, x

′, k) % ρ1 ok

) at xρ1 in

let newrgn ρ3, xρ3 in

% capability held is {ρ1
1, ρ

1
2, ρ

1
3}

let ten = 〈10〉 at xρ2 in

let cont =

(λ ({ρ1
1, ρ

1
2, ρ

1
3}) .

% capability held is {ρ1
1, ρ

1
2, ρ

1
3}

let freergn xρ3 in % ρ3 unique

let freergn xρ2 in % ρ2 unique

let freergn xρ1 in % ρ1 unique

halt 0

) at xρ3
in

count [ρ2, ρ3, {ρ1
1, ρ

1
2, ρ

1
3}, {ρ

1
1, ρ

1
2, ρ

1
3}] (xρ2 , ten, cont)

Another Example In this context, the count function uses all of the regions that are currently
allocated and the capability variable ǫ is redundant. When the code instantiates ǫ at the call site for
count, it does so with exactly the regions ρ1, ρ, and ρcont which already appear in the bound on ǫ′.
However, in general, ǫ will hide some “left-over” capability. For example, if we had allocated a fourth
region, ρ4, we would need to instantiate ǫ with the capability {ρ1

4}⊕{ρ
1
1, ρ

1
2, ρ

1
3} and make corresponding

changes to the continuation. Now, ǫ would hide the capability on the fourth region from count but
preserve it across the call so it could be deallocated in the continuation:

%%% count with ǫ hiding a left-over capability

let newrgn ρ1, xρ1 in

let newrgn ρ2, xρ2 in

let newrgn ρ3, xρ3 in

let newrgn ρ4, xρ4 in

let count = ... as before ...
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% capability held is {ρ1
1, ρ

1
2, ρ

1
3, ρ

1
4}

let ten = 〈10〉 at xρ2 in

let cont =

(λ ({ρ1
1, ρ

1
2, ρ

1
3, ρ

1
4}) ...) at xρ2

in

count [ρ2, ρ3, {ρ1
4} ⊕ {ρ

1
1, ρ

1
2, ρ

1
3}, {ρ

1
4} ⊕ {ρ

1
1, ρ

1
2, ρ

1
3}] (xρ2 , ten, cont)

The power of bounded quantification comes into play when a function is called with several regions,
some of which may or may not be the same. For example, the original code could be rewritten to have
ten and cont share a region, without changing the function count in any way:

%%% count with ten and cont sharing ρ2

let newrgn ρ1, xρ1 in

let newrgn ρ2, xρ2 in

let count = ... as before ...

% capability held is {ρ1
1, ρ

1
2}

let ten = 〈10〉 at xρ2 in

let cont =

(λ ({ρ1
1, ρ

1
2}) ...) at xρ2

in

count [ρ2, ρ2, {ρ1
1, ρ

1
2}, {ρ

1
1, ρ

1
2}] (xρ2 , ten, cont)

In this example, ρcont is instantiated with ρ2 and ǫ′ is instantiated with {ρ1
1, ρ

1
2} (which is again the

capability required by cont). However, count proceeds exactly as before because ǫ′ is still as good as
{ρ+

1 , ρ
+, ρ+

cont
} since:

{ρ1
1, ρ

1
2} ≤ {ρ+

1 , ρ
+
2 }

= {ρ+
1 , ρ

+
2 } ⊕ {ρ

+
1 , ρ

+
2 , ρ

+
2 }

= {ρ1
1, ρ

1
2} ⊕ {ρ

+
1 , ρ

+
2 , ρ

+
2 }

= (ǫ⊕ {ρ+
1 , ρ

+
2 , ρ

+
2 })[{ρ

1
1, ρ

1
2}/ǫ]

An Optimization In the examples above, even though count is tail-recursive, we allocate a new
cell each time around the loop and we do not deallocate any of the cells until the count is complete.
However, since ρ never contains any live values other than the current argument, it is safe to reduce the
program’s space usage by deallocating the argument’s region each time around the loop, as shown in
Figure 17. Note that this optimization is not possible when region lifetimes must be lexically scoped.

In order to deallocate its argument, the revised count requires a unique capability for its argument’s
region ρ. Note that if the program were again rewritten so that ten and cont shared a region (which
would lead to a run-time error, since ten is deallocated early), the program would no longer typecheck,
since {ρ1

1, ρ
1
2} 6≤ {ρ

+
1 , ρ

+
2 , ρ

1
2}. However, the program rewritten so that count and cont share a region

does not fail at run time, and does typecheck, since {ρ1
1, ρ

1
2} ≤ {ρ

+
1 , ρ

+
1 , ρ

1
2}.
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let newrgn ρ1, xρ1 in

let newrgn ρ2, xρ2 in

% capability held is {ρ1
1, ρ

1
2, ρ

1
3}

let count =

(fix count

[ρ:Rgn, ρcont :Rgn, ǫ ≤ {ρ
+
1 , ρ

+
cont
}]

(ǫ⊕ {ρ1}, xρ:ρ handle, x:〈int〉 at ρ,
k:∀(ǫ)→ 0 at ρcont ) .

% capability held is ǫ⊕ {ρ1}
let n = π0(x) in % ρ ok

let freergn xρ in % ρ unique

% capability held is ǫ
if0 n
then k() % ρcont ok

else

let n′ = n− 1 in

let newrgn ρ′, xρ′ in

% capability held is ǫ⊕ {ρ′1}
let x′ = 〈n′〉 at xρ′ in % ρ′ ok

count [ρ′, ρcont , ǫ] (xρ′ , x
′, k) % ρ1 ok

) at xρ1 in

let ten = 〈10〉 at xρ2 in

let newrgn ρ3, xρ3 in

let cont =

(λ ({ρ1
1, ρ

1
3}) .

% capability held is {ρ1
1, ρ

1
3}

let freergn xρ1 in % ρ1 unique

let freergn xρ3 in % ρ3 unique

halt 0

) at xρ3
in

count [ρ2, ρ3, {ρ1
1, ρ

1
3}] (xρ2 , ten, cont)

Figure 17: Count with Efficient Memory Usage
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4 From Capability Calculus to Typed Assembly Language

In this section, we informally describe how to construct the backend of a compiler that translates the
Capability Calculus into a capability-based typed assembly language.

The continuation-passing style transformation of the previous section makes the order of evaluation
of expressions explicit and names all of the intermediate computations. It also reduces all unconditional
control-flow transfers to one uniform mechanism: the function call or “functional goto.” Hence, this
first transformation performs a significant portion of the compilation of a high-level language. However,
we are still a long way from a strongly-typed assembly code.

Morrisett et al. [33] describe how to eliminate high-level language features such as closures and other
data structures by compiling them into a strongly-typed RISC-like assembly language. Fortunately,
the addition of capability constructs to our CPS-language does not interfere with the type-directed
compilation as they describe it. In fact, the capability constructors are the same at the machine
language level as they appear in the Capability Calculus that we have already described. Therefore,
in this section, we briefly retrace the compilation strategy that has already been laid out for us by
Morrisett et al. [33] and point out how it interacts with our capability framework.

4.1 Closure Conversion

Assembly languages do not contain the nested functions that are common in some high-level languages.
Closure conversion is the process of transforming each function so that it only depends upon its explicitly
declared parameters and does not depend upon values defined in an outer, non-global scope. Once all
nested functions have been closed in this way, they may be lifted to the top level. This process usually
results in pairing closed function code with an environment to create the closure data structure.

There are many typed closure conversion algorithms of various complexities [27, 33, 32]. Minamide et
al. [27] show that closure converting a polymorphic type-passing language requires a very sophisticated
target language that includes translucent sums and abstract kinds as well as existential types. Morrisett
et al. [33], on the other hand, are able to define a much simpler closure translation because they give up
the advantages of a type-passing semantics and assume a type-erasure semantics instead. More recently,
Crary et al. [8] have discovered how to preserve the advantages of a type-passing language through
closure conversion and yet retain the simplicity of the algorithm proposed by Morrisett et al.. Crary’s
approach achieves the expressiveness of type-passing with the simplicity of a type-erasure semantics by
passing values that represent types at runtime instead of types themselves. Crary distinguishes between
type constructors (erased at runtime) and type representations (values manipulated at runtime) just as
we distinguish between region constructors (erased at runtime) and region handles (values manipulated
at runtime). This decision allows us to use a much simpler closure conversion algorithm than would be
possible in the type-passing region calculus of Tofte and Talpin.

There are many additional considerations in the choice of closure conversion algorithms involving
how to represent environments and how to closure convert mutually recursive functions. For the pur-
poses of this paper, we will assume the simple closure transformation described by Morrisett et al..
This algorithm only requires the addition of existential types (∃α.τ) to the type language. The dis-
advantage of this algorithm is that it recreates the closure each time around the loop of a recursive
function.3 Morrisett and Harper [32] discuss translations that require either recursive types or a cyclic

3An observant reader will recognize that this extra allocationmust show up as an extra effect in the high-level languages.
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pack operation and do not incur the overhead of repeated closure creation. Any practical language
implementation would choose one of these more efficient translations, but because the details of closure
conversion are orthogonal to our central concerns, we assume the simplest alternative here and refer
the interested reader to the literature for a deeper investigation of the tradeoffs.

4.2 Code Generation

Once closure conversion has been completed, all program memory requirements are explicit. Compiler
writers have the opportunity to optimize memory usage further by eliminating closure creation for
known functions, optimizing environment representations, and removing the resulting dead regions.

At this point, we begin code generation. Morrisett et al. [33] describe code generation in two phases.
The first phase breaks the atomic data structure allocation and initialization of high-level languages
into a series of lower level instructions that initialize the fields of the data structure one by one. In
order to prevent access to uninitialized fields, they add a flag to each field that indicates whether or
not it can be read. For example, the expression letx = 〈2, 3〉 at xrin · · · becomes

letx0 = malloc [int, int] at xr in % x0 : 〈int0, int0〉 at r
letx1 = x0[0]← 2 in % x1 : 〈int1, int0〉 at r
letx = x1[1]← 3 in % x : 〈int1, int1〉 at r
· · ·

A 1-flag indicates the field has been initialized is therefore readable. A 0-flag indicates the field has
not been initialized. In this case, the initialization steps appear one after another. However, in general,
they may separated and if a field is unused, it need not ever be initialized. This flexibility allows an
optimizer to schedule instructions as it chooses, without interference from the type system.

The major task of the second phase of code generation is to compile closed code and branching
constructs such as our if0 statements into assembly language control-flow operations. At this point,
all control transfers become jumps to typed assembly language code blocks. Each of these code blocks
has a typing precondition and, for the most part, contains standard assembly language instructions
with a few additional typing annotations. Because we have already eliminated high-level abstract data
structures such as closures and tuples and named all our intermediate computations, there is almost a
one-to-one correspondence between the intermediate language declarations and the assembly language
instructions.

The next section describes these typed code blocks precisely and gives a complete description of
a capability-based typed assembly language. Because code generation has little impact on the novel
features of the Capability Calculus, we refer the reader to the work of Morrisett et al. [33], which gives
a formal description of the details of code generation for a closed, continuation-passing style lambda
calculus.

Indeed, to accomodate this translation, when checking a recursive region calculus function of type τ1
ψ
→ τ2 at r, we must

require that ψ contain an effect in region r. Similarly, the capability of a recursive capability calculus function must
contain the region that function is allocated in.
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4.3 Capability-Based Typed Assembly Language

The Capability-Based Typed Assembly Language is based on the generic Typed Assembly Language of
Morrisett et al. [33]. Because of the great similarity, we only discuss the capability features in detail.
The syntax for the language is given in Figure 18.

4.3.1 Types

As discussed above, there is little change to the type language. The kind structure is identical and only
tuples and function types have changed. Tuple types have initialization flags on each field as discussed
in the previous section. Continuation-passing style function types have been translated into code block
types with the following form:

∀[∆].C⇒Γ

As before, these types abstract a type context ∆ and specify the capability C that the code requires.
However, the typed assembly language does not have alpha-varying variables and uses a fixed set of
non-varying registers instead. Therefore, the precondition for the code block is a finite map Γ from
registers to types rather than a simple list of types. Furthermore, these types classify code not closures
(a pair of code and data) and we assume all code is allocated in its own special region before execution
of the program begins. Therefore, we omit the trailing region annotation that appears in the Capability
Calculus closure types. Tuples are the only remaining heap-allocated data. The only addition to the
type language is the existential type ∃α.τ , which we need to encode the results of closure conversion.

The separation between code and data is also reflected in the memory types, which are now split
into a pair of a code region (Υcd) and the familiar mapping of region names to data regions (Υ).

Figure 19 contains the well-formedness rules for the new types. The rules for the well-formedness
of capabilities and other types are identitical to the rules we gave for the Capability Calculus as are
the rules governing the well-formedness of contexts and the type equality and subcapability relations.
We refer the reader to previous sections for these rules. For technical reasons, the TAL type system
requires a simple subtyping relation on tuple types and register file types. These subtyping relations
do not interact with capability subtyping. See Morrisett et al. [34] for a discussion of these items or a
more complete description of the TAL type structure in general.

4.3.2 Values

In TAL, values are split into three categories: word values, small values, and heap values. Heap values
(h), code and tuples, are analogous to their Capability Calculus counterparts except as discussed above.
Both small values (v) and word values (w), are “small.” We distinguish between the two because the
former contains registers whereas the latter does not. The register file (ℜ) is a mapping from registers
(r) to word values. We do not map registers to other registers.

Word values contain the integers (i), data addresses (ν.ℓ), and region handles (handle(ν)) that we
saw in the Capability Calculus. Code addresses (cd.ℓ) refer to code in the code region. The word value
?τ is an uninitialized value of type τ . Thus, 〈?int, ?int〉 is an uninitialized pair of integers. The values
w[c] and pack[τ ′, w] as τ are both coercions that change the type of the word value w but have no
runtime effect (for technical reasons, there are analogous small value forms v[c] and pack[τ ′, v] as τ ).
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kinds κ ::= Type | Rgn | Cap
constructors c ::= α | τ | r | C

types τ ::= α | int | r handle | ∀[∆]. C⇒Γ | 〈τ ξ1 , . . . , τ
ξ
n〉 at r | ∃α.τ

regions r ::= ρ | ν
capabilities C ::= ǫ | ∅ | {rϕ} | C1 ⊕C2 | C

multiplicities ϕ ::= 1 | +
init flags ξ ::= 0 | 1
memory types Ψ ::= {cd : Υcd, ν1 : Υ1, . . . , νn : Υn}
region types Υ ::= {ℓ1 : τ1, . . . , ℓn : τn}
register file types Γ ::= {r1 : τ1, . . . , rn : τn}
contexts ∆ ::= · | ∆, α:κ | ∆, ǫ ≤ C

registers r ∈ {r1, r2, . . .}
word values w ::= ν.ℓ | cd.ℓ | i | ?τ | w[c] | pack[τ ′, w] as τ | handle(ν)
small values v ::= r | w | v[c] | pack[τ ′, v] as τ
heap values h ::= 〈w1, . . . , wn〉 | code[∆]C⇒Γ.I

inst. sequences I ::= ι;S | jmp v | halt
instructions ι ::= add rd, rs, v | bnz r, v | freergnv | ld rd, rs[i] | malloc rd, v[~τ ] |

mov rd, v | mul rd, rs, v | newrgnρ, rd | st rd[i], rs |
sub rd, rs, v | unpack [α, rd], v

memory M ::= {cd 7→ Rcd, ν1 7→ R1, . . . , νn 7→ Rn}
heaps R ::= {ℓ1 7→ h1, . . . , ℓn 7→ hn}
register files ℜ ::= {r1 7→ w1, . . . , rn 7→ wn}
programs P ::= (M,ℜ, I)

Figure 18: Capability-Based TAL Syntax
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The first is the type instantiation that we saw in the Capability Calculus. If τ is ∃α.τ ′′ then the second
value form introduces an existential type by hiding τ ′ behind the abstract type variable α.

In general, the form and meaning of the static semantic judgements for values are similar to their
counter-parts in the Capability Calculus. One addition is the judgement Ψ; ∆; Γ;C ⊢ w : τ ξ fwval,
which states that given a well-formed typing context the word value w can be given the flagged type
τ ξ. Figure 20 contains the rules for value well-formedness.

4.3.3 TAL Abstract Machine

In general, the TAL instruction set closely ressemble the instructions of a standard RISC instruction set
and their semantics should be intuitive. For example, add rd, rs, v, adds the contents of register rs and
the value v, and places the result in register rd. The instructions mul and sub, multiply and subtract in
a similar fashion. The ld rd, rs[i] instruction loads the ith word from the data block indicated by the
pointer in register rs into the register rd. The st rd[i], rs instruction writes the contents of rs into the
ith word of memory pointed to by rd. The mov rd, v instruction, copies the source operand (v) to the
destination register (rd). This simplified language also contains two control-flow instructions: jmp v,
an unconditional jump to the address contained in v and bnz r, v, a jump to v if the contents of the
register r are non-zero and a fall-thru to the next instruction otherwise.

The other instructions cannot be found in a typical RISC instruction set. The commands malloc,
newrgn , and freergn are calls to the runtime system. newrgn and freergn allocate and deallocate
regions in a similar manner to their high-level counter-parts. malloc rd, v[~τ ] allocates space equivalent to
the sum of the sizes of the types ~τ in the region indicated by the region handle v. The resulting address
is placed in register rd. None of these instructions can be coded in our typed assembly language. Hence,
their implementations, along with the implementation of the type checker forms our trusted computing
base. Fortunately, these region primitives are much simpler to implement than a standard tracing
garbage collector. Hence, we have acheived one of our goals, a reduction in the trusted computing base
over previous low-level safe language efforts such as the orginal TAL and Proof-Carrying Code [35].

The last two instructions, halt and unpack are also somewhat special. The unpack instruction is
the elimination form for existential types. An existential v of type ∃α.τ is opened and a value of type
τ is written to the register rd. The type variable α is introduced into the type context. At runtime,
types are erased so this instruction reduces to either a move, or if v is the same register as rd (the
normal case), this instruction becomes a no-op. Intuitively, the halt instruction returns control to the
operating system, which expects an integer in register r1.

An abstract machine state (P ) contains three components: memory, a register file, and a list of
instructions. As noted above, memory (M), contains both a code region and a set of data regions.
Memory is described by the memory type Ψ. The register file (ℜ), described by the register file type
Γ, is a mapping from registers (r) to word values. The typing rules for the abstract machine and its
instruction set is presented in Figures 21 and 22. The operational semantics of the machine can be
found in Figure 23. Again, given the previous development, the semantics is quite straightforward. In
this semantics, we use one additional piece of notation: [c1, . . . , cn/∆] denotes the substitution of the
constructors ~c for the variables in the domain of ∆.

We claim that the static semantics for the TAL abstract machine is sound with respect to the
operational semantics:
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∆ ⊢ c : κ (new rules)

∆ ⊢ ∆′ ∆,∆′ ⊢ C : Cap ∆,∆′ ⊢ Γ

∆ ⊢ ∀[∆′].C⇒Γ : Type

∆ ⊢ τi : Type (for 1 ≤ i ≤ n) ∆ ⊢ r : Rgn

∆ ⊢ 〈τ ξ11 , . . . , τ ξnn 〉 at r : Type

∆, α:Type ⊢ τ : Type

∆ ⊢ ∃α.τ : Type

⊢ Ψ ⊢ Υ ∆ ⊢ Γ

⊢ Υcd ⊢ Υi (for 1 ≤ i ≤ n)

⊢ {cd : Υcd, ν1 : Υ1, . . . ,Υn : τn}

· ⊢ τi : Type

⊢ {ℓ1 : τ1, . . . , ℓn : τn}

∆ ⊢ τi : Type (for 1 ≤ i ≤ n)

∆ ⊢ {r1 : τ1, . . . , rn : τn}

∆ ⊢ c1 ≤ c2 : κ (new rules) ∆ ⊢ Γ1 ≤ Γ2

∆ ⊢ c1 = c2 : κ

∆ ⊢ c1 ≤ c2 : κ

∆ ⊢ c1 ≤ c2 : κ ∆ ⊢ c2 ≤ c3 : κ

∆ ⊢ c1 ≤ c3 : κ

∆ ⊢ τi : Type (for 1 ≤ i ≤ n) ∆ ⊢ r : Rgn

∆ ⊢ 〈τ ξ11 , . . . , τ
ξj−1

j−1 , τ
1
j , τ

ξj+1

j+1 , . . . , τ
ξn
n 〉 at r ≤ 〈τ

ξ1
1 , . . . , τ

ξj−1

j−1 , τ
0
j , τ

ξj+1

j+1 , . . . , τ
ξn
n 〉 at r : Type

∆ ⊢ τi = τ ′i : Type (for 1 ≤ i ≤ n) ∆ ⊢ τi : Type (for n+ 1 ≤ i ≤ m)

∆ ⊢ {r1 : τ1, . . . , rm : τm} ≤ {r1 : τ ′1, . . . , rn : τ ′n}
(m ≥ n)

Figure 19: Capability-Based TAL: Abbreviated Type Well-Formedness
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Ψ ⊢ h at ν : τ Ψ ⊢ h : τ hcode Ψ; ∆ ⊢ w : τ Ψ; ∆ ⊢ w : τ ξ

Ψ; · ⊢ wi : τ ξii (for 1 ≤ i ≤ n)

Ψ; ν ⊢ 〈w1, . . . , wn〉 : 〈τ ξ11 , . . . , τ ξnn 〉 at ν

· ⊢ ∆ ∆ ⊢ C : Cap ∆ ⊢ Γ Ψ; ∆; Γ;C ⊢ I

Ψ ⊢ code[∆]C⇒Γ.I : ∀[∆]. C⇒Γ hcode

∆ ⊢ τ = 〈τ ξ11 , . . . , τ ξnn 〉 at ν

Ψ; ∆ ⊢ ν.ℓ : τ
(ν 6∈ Dom(Ψ))

∆ ⊢ τ1 ≤ τ2
Ψ; ∆ ⊢ ν.ℓ : τ2

(Ψ(ν.ℓ) = τ1)

Ψ; ∆ ⊢ cd.ℓ : τ1
(Ψ(cd.ℓ) = τ1) Ψ; ∆ ⊢ i : int Ψ; ∆ ⊢ handle(ν) : ν handle

Ψ; ∆ ⊢ w : ∀[α:κ,∆]. C⇒Γ ∆ ⊢ c : κ

Ψ; ∆ ⊢ w[c] : (∀[∆]. C⇒Γ)[c/α]

Ψ; ∆ ⊢ w : ∀[ǫ≤C1,∆]. C2⇒Γ ∆ ⊢ C ≤ C1 : Cap

Ψ; ∆ ⊢ w[C] : (∀[∆]. C2⇒Γ)[C/ǫ]

∆ ⊢ c : Type Ψ; ∆ ⊢ w : τ [c/α]

Ψ; ∆ ⊢ pack[τ ′, w] as ∃α.τ : ∃α.τ

Ψ; ∆ ⊢ w : τ

Ψ; ∆ ⊢ w : τ ξ
∆ ⊢ τ : Type

Ψ; ∆ ⊢ ?τ : τ0

Ψ; ∆; Γ ⊢ v : τ

Ψ; ∆; Γ ⊢ r : τ
(Γ(r) = τ )

Ψ; ∆ ⊢ w : τ

Ψ; ∆; Γ ⊢ w : τ

Ψ; ∆; Γ ⊢ v : ∀[α:κ,∆]. C⇒Γ ∆ ⊢ c : κ

Ψ; ∆; Γ ⊢ v[c] : (∀[∆]. C⇒Γ)[c/α]

Ψ; ∆; Γ ⊢ v : ∀[ǫ≤C1,∆]. C2⇒Γ ∆ ⊢ C ≤ C1 : Cap

Ψ; ∆; Γ ⊢ v[C] : (∀[∆]. C2⇒Γ)[C/ǫ]

∆ ⊢ c : Type Ψ; ∆; Γ ⊢ v : τ [c/α]

Ψ; ∆; Γ ⊢ pack[τ ′, v] as ∃α.τ : ∃α.τ

Figure 20: Capability-Based TAL: Value Formation
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Ψ; ∆; Γ;C ⊢ I

Ψ; ∆; Γ;C ⊢ ι⇒ ∆′; Γ′;C ′ Ψ; ∆′; Γ′;C ′ ⊢ I

Ψ; ∆; Γ;C ⊢ ι; I

Ψ; ∆; Γ ⊢ r1 : τ

Ψ; ∆; Γ;C ⊢ halt [τ ]

Ψ; ∆; Γ ⊢ v : ∀[ ]. C ′⇒Γ′ ∆ ⊢ C ≤ C ′ : Cap ∆ ⊢ Γ ≤ Γ′

Ψ; ∆; Γ;C ⊢ jmp v

Ψ; ∆; Γ;C ⊢ ι⇒ ∆′; Γ′;C ′ (interesting rules)

Ψ; ∆; Γ ⊢ v : r handle ∆ ⊢ C ≤ C ′ ⊕ {r} : Cap

Ψ; ∆; Γ;C ⊢ freergnv ⇒ ∆; Γ;C ′

Ψ; ∆; Γ ⊢ rs : 〈τ ξ00 , . . . , τ
ξn−1

n−1 〉 at r ∆ ⊢ C ≤ C ′ ⊕ {r} : Cap

Ψ; ∆; Γ;C ⊢ ld rd, rs[i]⇒ ∆; Γ{rd : τi};C
(ξi = 1, 0 ≤ i < n)

∆ ⊢ τi : Type (for 1 ≤ i ≤ n) Ψ; ∆; Γ ⊢ v : r handle ∆ ⊢ C ≤ C ′ ⊕ {r} : Cap

Ψ; ∆; Γ;C ⊢ malloc rd, v[τ1, . . . , τn]⇒ ∆; Γ{rd : 〈τ0
1 , . . . , τ

0
n〉 at r};C

Ψ; ∆; Γ;C ⊢ newrgnρ, rd ⇒ (∆, ρ); Γ{rd : ρ handle}; (C ⊕ {ρ})
(ρ 6∈ ∆)

Ψ; ∆; Γ ⊢ rd : 〈τ ξ00 , . . . , τ
ξn−1

n−1 〉 at r Ψ; ∆; Γ;C ⊢ rs : τi ∆ ⊢ C ≤ C ′ ⊕ {r} : Cap

Ψ; ∆; Γ;C ⊢ st rd[i], rs⇒ ∆; Γ{rd:〈τ
ξ0
0 , . . . , τ

ξi−1

i−1 , τ
1
i , τ

ξi+1

i+1 , . . . , τ
ξn−1

n−1 〉 at p};C
(0 ≤ i < n)

Figure 21: Capability-Based TAL: Instructions
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⊢M : Ψ Ψ ⊢ R at ν : Υ Ψ ⊢ R : Υ Ψ ⊢ ℜ : Γ Ψ ⊢ C sat ⊢ P

⊢ Ψ Ψ ⊢ Rcd : Υcd code
Ψ ⊢ Ri at νi : Υi val (for 1 ≤ i ≤ n)

⊢ {cd : Υcd, ν1 7→ R1, . . . , νn 7→ Rn} : Ψ
(Ψ = {cd : Υcd, ν1 : Υ1, . . . , νn : Υn})

Ψ ⊢ hi : τi hcode (for 1 ≤ i ≤ n)

Ψ ⊢ {ℓ1 7→ h1, . . . , ℓn 7→ hn} : {ℓ1 : τ1, . . . , ℓn : τn} code

Ψ; ν ⊢ hi : τi (for 1 ≤ i ≤ n)

Ψ ⊢ {ℓ1 7→ h1, . . . , ℓn 7→ hn} : {ℓ1 : τ1, . . . , ℓn : τn} at ν val

Ψ; · ⊢ wi : τi (for 1 ≤ i ≤ n)

Ψ ⊢ {r1 7→ w1, . . . , rn 7→ wm} : {r1 : τ1, . . . , rn : τn}
(m ≥ n)

· ⊢ C = {νϕ1

1 , . . . , νϕnn } : Cap

{ν1 : Υ1, . . . , νn : Υn} ⊢ C sat
(νi 6= νj for 1 ≤ i, j ≤ n and i 6= j)

⊢M : Ψ Ψ ⊢ ℜ : Γ Ψ ⊢ C sat Ψ; ·; Γ;C ⊢ I

⊢ (M,ℜ, I)

Figure 22: Capability-Based TAL: Abstract Machine
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(M,R, I) 7−→ P where

if I = then P =

add rd, rs, v; I
′ (M,R{rd 7→ R(rs) + R̂(v)}, I′)

and similarly for mul and sub

bnz r, v; I′ (M,R, I′)
when R(r) = 0

bnz r, v; I′ (M,R, I′′[~c/∆])

when R(r) = i and i 6= 0 where R̂(v) = cd.ℓ[~c]
and M(cd.ℓ) = code[∆]C⇒Γ.I′′

freergn v (M ′, R, I′′)

where R̂(v) = handle(ν)
and ν ∈ Dom(M)
and M ′ = M\ν

jmp v (M,R, I′[~τ/∆])

where R̂(v) = cd.ℓ[~τ ]
and M(cd.ℓ) = code[∆]Γ.I′

ld rd, rs[i]; I
′ (M,R{rd 7→ wi}, I′)

where R(rs) = ν.ℓ
and M(ν.ℓ) = 〈w0, . . . , wn−1〉 with 0 ≤ i < n

malloc rd, v[τ1, . . . , τn]; I
′ (M{ν.ℓ 7→ 〈?τ1, . . . , ?τn〉}, R{rd 7→ ν.ℓ}, I′)

where R̂(v) = handle(ν)
and ν ∈ Dom(M)
and ℓ 6∈ M(ν)

mov rd, v; I
′ (M,R{rd 7→ R̂(v)}, I′)

newrgnρ, rd; I
′ (M{ν 7→ {}}, R{rd 7→ handle(ν)}, I′[ν/ρ])

where ν is new

st rd[i], rs; I
′ (M{ν.ℓ 7→ 〈w0, . . . , wi−1, R(rs), wi+1, . . . , wn−1〉}, R, I

′)
where R(rd) = ν.ℓ
and M(ν.ℓ) = 〈w0, . . . , wn−1〉 with 0 ≤ i < n

unpack [α, rd], v; I
′ (M,R{rd 7→ w}, I′[τ/α])

where R̂(v) = pack[τ, w] as τ ′

Where R̂(v) =















R(r) when v = r
w when v = w

R̂(v′)[τ ] when v = v′[τ ]

pack[τ, R̂(v′)] as τ ′ when v = pack[τ, v′] as τ ′

Figure 23: Operational Semantics of TAL
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Claim 9 (Capability-Based TAL Type Safety) If ⊢ P , then there is no stuck state P ′ such that
P 7−→∗ P ′.

We believe the proof would be long and tedious but straightforward. Like the proof of type safety
for the Capability Calculus, this proof is driven by the syntax of the language and does not involve a
complicated greatest fixed-point construction.

5 Discussion

We believe the general framework of our capability system is quite robust. There are several ways to
extend the language and a number of directions for future research.

5.1 Language Extensions

In this article, we have concentrated on using the Capability Calculus to implement safe region-based
memory management, but with a few changes, we believe our capability apparatus may be used in a
variety of other settings as well. One potential application involves reducing the overhead of commu-
nication across the user-kernel address space boundary in traditional operating systems. Typically, in
such systems, when data in user space is presented to the kernel, the kernel must copy that data to
ensure its integrity is preserved. However, if a user process hands off a unique capability for a region
to the kernel, the kernel does not have to copy that region’s data; without the capability, the user can
no longer read or modify the contents of that region.

By handing off a user’s capability to the kernel, we ensure that the kernel has exclusive access to the
data governed by the capability. We can generalize this idea and use capabilities to ensure mutually-
exclusive access to shared mutable data in a multi-threaded environment, by viewing locks as analogous
to regions. If we associate each piece of sensitive data with a lock, we can statically check that every
client of the data obtains the corresponding lock and its associated capability before attempting access.
When the code releases the lock, the type system would revoke the capability on the data, just as it
revokes a capability after a region is freed. Flanagan and Abadi [13] have investigated this idea in the
context of a high-level lexically-scoped language. Just as we compiled Tofte and Talpin’s high-level
region language into the Capability Calculus, we conjecture we could compile Flanagan and Abadi’s
locking language into a variant of the Capability Calculus with locking primitives instead of allocation
primitives.

A third application of capabilities is to control and reason about aliasing on a per-object basis rather
than a per-region basis. Smith, Walker, and Morrisett [45] have investigated the idea of associating a
different capability with each individual object and including the type of the object within the capability
itself. When code possesses the unique capability for an object, it may deallocate the object, or, if it
chooses, it may explicitly reuse the space for that object to store a value of a different type. This new
design may be viewed as an extension to conventional linear type systems [16, 50] as it admits aliasing
and yet allows safe deallocation of objects. Recently, these techniques have been used to extend the
Typed Assembly Language implementation [29] with operations for explicit, but verifiably safe memory
management.

In general, whenever a system wishes to restrict access to some data statically, and/or to ensure a
certain sequence of operations are performed, it may consider using capabilities. In fact, Walker [52]
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has shown that the combination of capabilities and a simple logic are sufficiently powerful to encode
any property that can be enforced using a security automaton. Since security automata can specify any
safety property [2, 44], the extended Capability Calculus can too.

5.2 Related Work

There are many formalisms for reasoning about computational effects in programming languages in-
cluding type-and-effects systems [15, 25, 21, 47], monads [28, 38, 23, 11], linear types [16, 50, 49], and
now capabilities. Many researchers are actively investigating the relationships between these different
areas, but the overall picture is not yet fully understood. We are eager to continue this line of research
and explore the formal links between our system and the others.

Our translation of Tofte and Talpin’s region calculus into the Capability Calculus reveals that the
relationship between effects and capabilities is quite close. A necessary prerequisite for the use of
either system is type inference, performed by a programmer or compiler, and much of the research
into effects systems has concentrated on this difficult task. However, because of the focus on inference,
effect systems are usually formulated as a bottom-up synthesis of effects. Our work may viewed as
producing verifiable evidence of the correctness of an inference. Hence, while effect systems typically
work bottom-up, specifying the effects that might occur, we take a top-down approach, specifying by
capabilities the effects that are permitted to occur. Moreover, unlike Tofte and Talpin’s effect system,
our capabilities are sensitive to control-flow. Rather than constructing the overall effect of an expression
by taking the union of the effects of the subexpressions, and thereby losing information about the order
of evaluation, we verify that programs are safe by checking one instruction after another and using the
capability produced by previous instructions to verify that the instructions that follow are safe.

A connection can also be drawn between capabilities and monadic type systems. Work relating
effects to monads has viewed effectful functions as pure functions that return state transformers. This
might be called an ex post view: the effect takes place after the function’s execution. In contrast, we
take an ex ante view in which the capability to perform the relevant effect must be satisfied before
the function’s execution. Nevertheless, there is considerable similarity between the views; just as the
monad laws ensure that the store is single-threaded through a computation, our typing rules thread a
capability (which summarizes aspects of the store) along the execution path of a program.

Perhaps the closest relationship occurs between linear type systems and capabilities. An inspection
of the axioms of capability equality reveals that they are very similar to the structural rules of linear
type systems (See Wadler [50] for an introduction to linear logic). In particular, linear assumptions, like
unique capabilities, do not allow contraction and weakening rules whereas non-linear assumptions, like
duplicatable capabilities, do allow contraction and weakening rules.4 One essential difference between
the two formalisms is that the capability to access an object (say, {ρ1}) is separated from the type
of the object itself (say, 〈int〉 at ρ). This level of indirection makes it possible to allow aliasing and
yet verify that deallocation is still safe, operations that are not permissible in conventional linear type
systems.

There has also been a significant amount of prior research on the more specific topic of the theory
and implementation of region-based memory management. On the implementation side, Birkedal et

4Many formulations of linear logic admit a weakening rule that allows an assumption to be completely forgotten. As
explained earlier, we do not allow complete forgetting of capabilities because it leads to space leaks. Instead, we admit a
more restrictive weakening rule that allows all but the last capability to be forgotten.
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al. [6] describe several optimizations to the basic region-allocation scheme that are used in the ML Kit
with Regions to improve space-efficiency. One of their observations is that functions can be used in
two different contexts: one context in which no live object remains in a region after a function call
and a second context in which there may be live objects remaining in a region after a call. In order to
avoid code duplication and yet ensure efficient space usage, the call site passes information to the called
function at run time. Using this information, the function may make dynamic decisions about region
deallocation. The type system we present here is not powerful enough to encode these storage-mode
polymorphic functions. However, we believe these dynamic tests may be viewed as form of intensional
type analysis [18, 8], and, therefore, if we augment the Capability Calculus with a variant of Harper and
Morrisett’s typecase mechanism, we may be able to verify the results of storage-mode optimizations as
well.

Aiken et al. [1] have also studied how to optimize the original Tofte-Talpin region framework. As in
the Capability Calculus, they separate region allocation from region deallocation. However, they have
not presented a technique for verifying that the results of their optimizations are safe. We conjecture,
based on the soundness proof for Aiken et al.’s analyses, that the analysis could be used to produce
typing annotations and that verification could take place using the Capability Calculus.

Gay and Aiken [14] have developed extensions to C that gives programmers complete control over
region allocation and deallocation. They use reference counting to prevent programmers from acciden-
tally accessing deallocated regions. Hawblitzel and von Eicken [20] have also used the notion of a region
in their language Passport to support sharing and revocation between multiple protection domains.
Both of these groups use run-time checking to ensure safety and it would be interesting to investigate
hybrid systems that combine features of our static type system with more dynamic systems.

On the theory side, we believe that one of our most important contributions is the syntactic proof of
the soundness of region deallocation. As mentioned earlier, our formulation of the Capability Calculus
allows us to use the standard proof techniques popularized by Wright and Felleisen [54]. Although long,
the proof requires very little creativity. In contrast, Tofte and Talpin [48] use a greatest fixed-point
construction and a co-inductive argument to prove the correctness of their region-inference scheme.
Despite these high-level differences between the proof techniques, there are illuminating similarities in
some of the details of the proof. Most notably, Tofte and Talpin’s proof involves a notion of consistency
that relates source and target values in the region inference translation. Consistency is defined with
respect to the effect (ψ) of the rest of the computation. Informally, one of the consistency conditions
states that a source value is consistent with a target value in region ρ, with respect to effect ψ, if ρ does
not appear in ψ. Hence, if ρ is not in the effect, or capability, of the rest of the computation, then we can
deallocate that region because the rest of the computation cannot distinguish a dangling pointer into ρ
from a value in the source language. Therefore, within the Tofte-Talpin proof, the effect of the rest of
the computation plays a role very similar to the capability required by a continuation. So perhaps the
key reason that our language admits a syntactic proof of soundness is that it makes continuations and
their capabilities explicit in the language whereas Tofte and Talpin introduce this idea as a meta-level
construction in their proof.
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6 Conclusions

We have presented a new strongly typed language that admits operations for explicit allocation and
deallocation of data structures. Furthermore, this language is expressive enough to serve as a target
for region inference and admits a relatively straightforward proof of soundness. We believe that the
notion of capabilities that support statically checkable attenuation, amplification, and revocation is an
effective new tool for language designers.
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A Soundness of The Capability Calculus

Notation The capability {r+} is a derived form that we used for expository purposes in the article.
It is equivalent to {r1}. For the sake of simplicity, the proof operates on a new language that does not
include capabilities of the form {r+}. The syntax of capabilities is:

C ::= ǫ | ∅ | {r} | C1 ⊕C2 | C

The form {r} is the new syntax for unique capabilities. The only way to form a duplicatable capability
is to use the bar operator as in {r}, hence multiplicity annotations are unnecessary. The rule eq-flag is a
derived rule. If the abbreviation {r+} is replaced by its definition, it is clear the rule is simply a special
case of reflexivity, and therefore, we do not need it in our system. Where convenient, we continue to
use {r+} as an abbreviation for {r}.

We also use the following notational conventions:
- Alpha-equivalent expressions are considered identical.
- Memories, memory regions, memory types, and region types that differ only in the order of their

fields are considered identical.
- The expression E[E′/X] denotes the capture-avoiding substitution of E′ for X in E.
- Updates of finite maps M are denoted by M{X 7→E} or M{X:E}.
- Juxtaposition of two maps M and MN as in MN denotes an update of the first with the elements

of the second.
- The notation M\X excludes X from the domain of map M .
- We abbreviate M(ν)(ℓ) by M(ν.ℓ).
- We abbreviate M{ν 7→M(ν){ℓ 7→ E}} by M{ν.ℓ 7→ E}.
- We abbreviate (· · · ((∅ ⊕ {rϕ1

1 }) ⊕ {r
ϕ2

2 }) · · ·)⊕ {r
ϕn
n } by {rϕ1

1 , . . . , rϕnn }.
- We abbreviate (· · · ((∅ ⊕ C1)⊕ C2) · · ·)⊕ Cn by C1 ⊕ · · · ⊕ Cn.
- We use the notation C ∈ C ′ to denote the fact that C appears in the syntax of C ′.

Overview The proof is broken down into a series of lemmas, most of which are proven by induction
on the typing derivations or by induction on the syntax of the language. The proof culminates in a
proof Type Soundness and Complete Collection. The supporting lemmas are grouped as follows:

- Lemmas 10 to 12 describe when extensions to type contexts or exchanges of elements within a
type context are permissible.

- Lemmas 13 to 15 state that constructors involved in equality and subtyping judgements are well-
formed and that all free variables of well-formed constructors are bound by the type context.

- Definitions and lemmas 16 to 23 describe which capabilities are equal to one another and which
capabilities are subtypes of one another. They provide a higher level of abstraction than the rules
for equality and subtyping and are used frequently in the rest of the proof.

- Lemmas 24 and 25 are substitution lemmas for types and values respectively.
- Lemma 26 states that well-formed small values, heap values, and declarations have well-formed

types.
- Lemmas 27 to 29 are Canonical Forms lemmas. Given a type, these lemmas describe the shape

of memory or of values.
- Lemmas 30 to 32 describe the conditions under which you can add labels or regions to the memory

type and preserve typing.
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- Lemma 34 states that satisfiability is preserved across equality and subtyping (under the empty
context).

- Lemma 35 states that satisfiability is preserved when a region and the corresponding unique
capability are removed both from memory and the current capability simulataneously.

- Lemmas 36 and 37 are the Preservation and Progress lemmas respectively. They are used directly
in the proof of Type Soundness.

Lemma 10 If ∆ ⊢ ∆′ then Dom(∆) ∩Dom(∆′) = ∅.

Proof:

By induction on the derivation.

2

Lemma 11 (Type Context Exchange) If Dom(∆1) ∩Dom(∆2) = ∅ then

1. If ∆0∆1∆2∆3 ⊢ ∆ then ∆0∆2∆1∆3 ⊢ ∆

2. If ∆0∆1∆2∆3 ⊢ c : κ then ∆0∆2∆1∆3 ⊢ c : κ

Proof:

By induction on the derivations. In the rule type-var:

∆0∆1∆2∆3 ⊢ α : κ
(∆0∆1∆2∆3(α) = κ)

we know ∆0∆1∆2∆3(α) = ∆0∆2∆1∆3(α) because the domains of ∆1 and ∆2 are disjoint. Conse-
quently, ∆0∆2∆1∆3 ⊢ α : κ.

2

Lemma 12 (Type Context Extension) If ∆ ⊢ ∆′ then

1. If ∆ ⊢ ∆′′ and Dom(∆′′) ∩Dom(∆′) = ∅ then ∆∆′ ⊢ ∆′′

2. If ∆ ⊢ c : κ then ∆∆′ ⊢ c : κ

3. If ∆ ⊢ c1 = c2 : κ then ∆∆′ ⊢ c1 = c2 : κ

4. If ∆ ⊢ c1 ≤ c2 : κ then ∆∆′ ⊢ c1 ≤ c2 : κ

Proof:

By induction on the derivation. Almost all cases follow directly from the inductive hypothesis. Rules
ctxt-sub and type-arrow require Type Context Exchange where ∆3 is ·. In part 2, the rules type-var
and type-sub, and in part 3, the congruence rules for type variables α, and in part 4, the rule sub-var
follow because, by reflemma:disjoint-domains, Dom(∆) ∩Dom(∆′) = ∅ and thus ∆(α) = ∆∆′(α).
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2

Lemma 13 If ∆ ⊢ c : κ then ftv(c) ⊆ Dom(∆).

Proof: By induction on the derivation.

Lemma 14 (Equality Regularity) If ∆ ⊢ C = C ′ : κ then ∆ ⊢ C : κ and ∆ ⊢ C ′ : κ.

Proof: By induction on the derivation.

Lemma 15 (Subtyping Regularity) If · ⊢ ∆ and ∆ ⊢ C ≤ C ′ : κ then ∆ ⊢ C : κ and ∆ ⊢ C ′ : κ.

Proof:

By induction on the derivation. In the rule sub-var, we show by induction on the derivation · ⊢ ∆, that
if ∆(ǫ) =≤ C then ∆ ⊢ ∆(ǫ) : Cap.

2

Definition 16 (Atomic Element) An atomic element, a, is a type variable ǫ of kind Cap, a singleton
capability {r}, or a barred capability ǫ or {r}. The meta-variable a ranges over atomic elements.

Definition 17 E (C) is the set of elements ǫ or {r} that appear in C (where {|x1, . . . , xn|} is notation
for the set of elements x1, . . . , xn):

E (∅) = ∅
E ({r}) = {|{r}|}

E (ǫ) = {|ǫ|}
E (C1 ⊕C2) = E (C1) ∪ E (C2)

E (C) = E (C)

Lemma 18 (Equality) If ∆ ⊢ C : Cap then

1. ∆ ⊢ C = a1 ⊕ · · · ⊕ an : Cap for some atomic capabilities a1, . . . , an

2. ∆ ⊢ a1 ⊕ · · · ⊕ ai−1 ⊕ ai ⊕ ai+1 ⊕ · · · ⊕ an = a′1 ⊕ · · · ⊕ ai−1 ⊕ ai+1 ⊕ · · · ⊕ an ⊕ ai : Cap

3. ∆ ⊢ a1 ⊕ · · · ⊕ an = a′1 ⊕ · · · ⊕ a
′
n : Cap where a′1, . . . , a

′
n is any permutation of a1, . . . , an.

4. ∆ ⊢ a1 ⊕ · · · ⊕ an = a′1 ⊕ · · · ⊕ a
′
m : Cap where a′1, . . . , a

′
m is a subsequence of a1, . . . , an with all

duplicate barred elements removed.

5. If ∆ ⊢ C = C ′ : Cap then the sets E (C) and E (C ′) are equal.

6. If E(C) = E (C ′) and ∆ ⊢ C ′ : Cap then ∆ ⊢ C = C ′ : Cap.

7. If ∆ ⊢ C ⊕ {r} = C ′ ⊕ {r} : Cap then ∆ ⊢ C = C ′ : Cap.

Proof:
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Part 1 follows by induction on the derivation ∆ ⊢ C : Cap. Case type-∅ is immediate. Case type-single,
follows from application of the equality rules eq-symm and eq-∅. Case type-plus is more intricate. The
inductive hypothesis gives us:

∆ ⊢ C1 = a1 ⊕ · · · ⊕ an : Cap
∆ ⊢ C2 = a′1 ⊕ · · · ⊕ a

′
m : Cap

By induction on m and using the rules eq-∅, eq-assoc, and eq-trans

∆ ⊢ a′1 ⊕ · · · ⊕ a
′
m = a′1 ⊕ (a′2 ⊕ · · · ⊕ (a′m−1 ⊕ a

′
m) · · ·) : Cap

By equality congruence and eq-trans,

∆ ⊢ C1 ⊕C2 = (a1 ⊕ · · · ⊕ an)⊕ a
′
1 ⊕ (a′2 ⊕ · · · ⊕ (a′m−1 ⊕ a

′
m) · · ·) : Cap

By induction on m again and using eq-assoc, eq-symm, and eq-trans,

∆ ⊢ C1 ⊕C2 = a1 ⊕ · · · ⊕ an ⊕ a
′
1 ⊕ · · · ⊕ a

′
m : Cap

For the case C, we have ∆ ⊢ C = a1⊕· · ·⊕an : Cap by IH. By congruence, ∆ ⊢ C = a1 ⊕ · · · ⊕ an : Cap.
By induction on n, ∆ ⊢ C = a1 ⊕ · · · ⊕ an : Cap. For each ai, either ai is an atomic element or ai
is already barred and we use the eq-bar-idem rule to show that ∆ ⊢ ai = ai : Cap. In either case, by
induction on n again and use of the congruence rules, we are done.

Part 2 follows by induction onm−i using eq-assoc, eq-comm as well as the transitivity and symmetry of
equality. Part 3 is a corollary of part 2. Part 4 follows by induction on the number of barred duplicates
and uses part 3, transitivity, symmetry, and eq-dup rules. Part 5 follows by induction on the equality
judgement.

Part 6 may be proven as follows:
∆ ⊢ C = a1 ⊕ · · · ⊕ an : Cap where E (C) = E (a1 ⊕ · · · ⊕ an) by parts 1 and 5.
∆ ⊢ C ′ = a′1 ⊕ · · · ⊕ a

′
m : Cap where E (C ′) = E (a′1 ⊕ · · · ⊕ a

′
m) by parts 1 and 5.

By parts 3 and 4 and congruence of equality: ∆ ⊢ C = a1 ⊕ · · · ⊕ an = aj1 ⊕ ajn : Cap

∆ ⊢ C ′ = a′1 ⊕ · · · ⊕ a
′
m = a′j1 ⊕ a

′
jm

: Cap
where the aji and a′ji contain no duplicates and are ordered according to some canonical ordering. If
E (C) = E (C ′) then the aji and the a′ji are the same and are in the same order. Hence, the constructors
are syntactically equal and thus definitionally equal.

Part 7 follows by induction on the typing derivation.

2

Definition 19 (Unique/Duplicatable Capabilities) A capability C is unique in C ′ if there does
not exist C ′′ such that C ′′ ∈ C ′ and C ∈ C ′′. A capability C is duplicatable in C ′ if C ′′ ∈ C ′ and
C ∈ C ′′.

Lemma 20 If ∆ ⊢ C ′ : Cap and C is duplicatable in C ′ then ∆ ⊢ C ′ = C ′′ ⊕ C : Cap.

Proof: By induction on the typing derivation.
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Lemma 21 If ∆ ⊢ C ′ : Cap and C is unique in C ′ then ∆ ⊢ C ′ = C ′′ ⊕C : Cap.

Proof: By induction on the typing derivation.

Lemma 22 (Capability Equality Cardinality Preservation(CECP)) If ∆ ⊢ C1 = C2 : Cap and
∆ ⊢ a : Cap and a = ǫ or {r} then

1. a is unique (duplicatable) in C1 iff a is unique (duplicatable) in C2.

2. The number of unique occurences of a is the same in C1 and C2.

Proof: By induction on the derivation.

Lemma 23 (Capability Subtyping Cardinality Preservation(CSCP)) If · ⊢ C1 ≤ C2 : Cap

then

1. For all region names ν, {ν} ∈ C1 iff {ν} ∈ C2.

2. For all region names ν, if {ν} is not unique in C1 then {ν} is not unique in C2.

Proof:

By induction on the derivation and Capability Equality Cardinality Preservation. Note that by Sub-
typing Regularity and Lemma 13, no type variables ǫ appear in C1 and consequently, the rule sub-var
never appears in the derivation.

2

Lemma 24 (Type Substitution)
If ∆′ is b1, . . . , bn where for 1 ≤ i ≤ n:

A1. if bi is αi:κi then · ⊢ ci : κi

A2. if bi is ǫi ≤ Ci then · ⊢ ci ≤ Ci : Cap

Then when ∆0 is ∆[~τ/∆′] Γ0 is Γ[~τ/∆′] C0 is C[~τ/∆′] r0 is r[~τ/∆′] τ0 is τ [~τ/∆′]:

1. If ∆′,∆ ⊢ ∆′′ then ∆0 ⊢ ∆′′[~τ/∆′]

2. If ∆′,∆ ⊢ c : κ then ∆0 ⊢ c[~τ/∆′] : κ

3. If ∆′,∆ ⊢ c1 = c2 : κ then ∆0 ⊢ c1[~τ/∆′] = c2[~τ/∆
′] : κ

4. If ∆′,∆ ⊢ c1 ≤ c2 : κ then ∆0 ⊢ c1[~τ/∆′] ≤ c2[~τ/∆′] : κ

5. If ∆′,∆ ⊢ ∆1 = ∆2 then ∆0 ⊢ ∆1[~τ/∆
′] = ∆2[~τ/∆

′]

6. If Ψ; ∆′,∆; Γ; r ⊢ h : τ then Ψ; ∆0; Γ0; r0 ⊢ h[~τ/∆′] : τ0

7. If Ψ; ∆′,∆; Γ ⊢ v : τ then Ψ; ∆0; Γ0 ⊢ v[~τ/∆′] : τ0
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8. If Ψ; ∆′,∆; Γ;C ⊢ d⇒ ∆′,∆′′; Γ′′;C ′′ then
Ψ; ∆0; Γ0;C0 ⊢ d[~τ/∆′]⇒ (∆′′; Γ′′;C ′′)[~τ/∆′].

9. If Ψ; ∆′,∆; Γ;C ⊢ e then Ψ; ∆0; Γ0;C0 ⊢ e[~τ/∆′]

Proof:

By induction on the derivations. Almost all cases follow directly from the IH. In part 2, we must prove
our lemma for the rules:

∆′,∆ ⊢ α : κ
(∆′,∆(α) = κ)

∆′,∆ ⊢ ǫ : Cap
((ǫ ≤ C) ∈ ∆′,∆)

In the first case, we have our result by A1 and Type Context Extension. In the second case, assume ǫ
is ǫi. By A2, we have · ⊢ ci ≤ Ci : Cap. Because · ⊢ ·, Subtyping Regularity tells us that · ⊢ ci : Cap.
By Type Context Extension ∆0 ⊢ ci : Cap. In part 4, for the rule:

∆′,∆ ⊢ ǫ ≤ C : Cap
((ǫ ≤ C) ∈ ∆′,∆)

our result follows by A2 and Type Context Extension. In part 9, the case for let , we can apply
the induction hypothesis because inspection of the rules for declarations show that Ψ; ∆; Γ;C ⊢ d ⇒
∆,∆′′; Γ′′;C ′ instead of the more general Ψ; ∆; Γ;C ⊢ d⇒ ∆′′; Γ′′;C ′.

2

Lemma 25 (Value Substitution) If Γ is {x1:τ1, . . . , xn:τn}, · ⊢ Γ and for 1 ≤ i ≤ n, Ψ; ·; · ⊢ vi : τi
then

1. If Ψ; ∆; Γ,Γ′ ⊢ h at r : τ then Ψ; ∆; Γ′ ⊢ h[v1, . . . , vn/x1, . . . , xn] at r : τ

2. If Ψ; ∆; Γ,Γ′ ⊢ v : τ then Ψ; ∆; Γ′ ⊢ v[v1, . . . , vn/x1, . . . , xn] : τ

3. If Ψ; ∆; Γ,Γ′;C ⊢ d⇒ ∆′; Γ,Γ′′;C ′ then Ψ; ∆; Γ′;C ⊢ d[v1, . . . , vn/x1, . . . , xn]⇒ ∆′; Γ′′;C ′

4. If Ψ; ∆; Γ,Γ′;C ⊢ e then Ψ; ∆; Γ′;C ⊢ e[v1, . . . , vn/x1, . . . , xn]

Proof:

By induction on the typing derivations. In part 4, the case for let , we can use the induction hypothesis
because inspection of the typing rules for declarations reveals that Ψ; ∆; Γ;C ⊢ d⇒ ∆′; Γ,Γ′;C ′ instead
of the more general Ψ; ∆; Γ;C ⊢ d⇒ ∆′; Γ′;C ′.

2

Lemma 26 (Term Judgement Regularity)
If

A1 ⊢ Ψ
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A2 · ⊢ C : Cap

A3 · ⊢ r : Rgn

then

1. If Ψ; ·; · ⊢ v : τ then · ⊢ τ : Type

2. If Ψ; ·; · ⊢ h at r : τ then · ⊢ τ : Type

3. If Ψ; ·; ·;C ⊢ d⇒ ∆′; Γ′;C ′ then · ⊢ ∆′ and ∆′ ⊢ Γ′ and ∆′ ⊢ C ′ : Cap

Proof:

By induction on the typing derivations. Almost all cases follow directly from the induction hypothesis
and Equality Regularity or Subtyping Regularity. In part 1, consider the case for type application:

Ψ; ·; · ⊢ v : ∀[α:κ,∆].(C′, τ1, . . . , τn)→ 0 at r · ⊢ c : κ

Ψ; ·; · ⊢ v[c] : (∀[∆].(C ′, τ1, . . . , τn)→ 0)[c/α] at r

By the induction hypothesis, and then inspection of the typing rules for arrow types, we can deduce a
judgement of the following form:

α:κ ⊢ ∆
· ⊢ α:κ,∆ α:κ,∆ ⊢ C ′ : Cap α:κ,∆ ⊢ τi : Type (for 1 ≤ i ≤ n)

· ⊢ ∀[α:κ,∆].(C ′, τ1, . . . , τn)→ 0 at r : Type

By Type Substitution, we may deduce that · ⊢ (∀[∆′].(C ′, τ1, . . . , τn)→ 0)[c/α] at r. The second type
application rule follows similarly.

2

Lemma 27 (Canonical Memory Forms) If ⊢ {ν1 7→ R1, . . . , νn 7→ Rn} : {ν1:Υ1 . . . , νn:Υn} then
For all 1 ≤ i ≤ n and for all ℓ ∈ Dom(Υi), either

1. Υi(ℓ) is 〈τ1, . . . , τm〉 at νi and Ri(ℓ) = 〈v1, . . . , vm〉 and for 1 ≤ j ≤ m, Ψ; ·; · ⊢ vj : τj or

2. Υi(ℓ) is ∀[∆].(C, τ1, . . . , τn)→ 0 at νi and Ri(ℓ) = fix f [∆](C, x1:τ1, . . . , xn:τn).e and
Ψ; ∆; {f :∀[∆].(C, τ1, . . . , τn)→ 0 at νi, x1:τ1, . . . , xn:τn};C ⊢ e

Proof: By inspection of the typing judgements for memory, regions, and heap values.

Lemma 28 (Canonical Memory Forms II)

1. If ⊢M : Ψ and ν 6∈M then ν 6∈ Ψ

2. If Ψ ⊢ R at ν ′ : Υ and ν 6∈ R and ν ′ is not ν then ν 6∈ Υ

3. If Ψ; ·; · ⊢ h at ν ′ : τ and ν ′ is not ν and ν 6∈ h then ν 6∈ τ
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4. If Ψ; ·; · ⊢ v : τ and ν 6∈ v then ν 6∈ τ

Proof: By induction on the typing derivations.

Lemma 29 (Canonical Forms) If ⊢M : Ψ and Ψ; ·; · ⊢ v : τ then

1. If τ is int then v = i.

2. If τ is ν handle then v = handle(ν).

3. If τ is ∀[∆].(C, τ1, . . . , τn)→ 0 at ν then

(a) v = ν.ℓ[c1, . . . , cm]

(b) M(ν.ℓ) = fix f [∆′,∆′′](C ′, x1:τ
′
1, . . . , xn:τ

′
n).e

(c) ∆′ is b1, . . . , bm and for 0 ≤ i ≤ m, either bi is αi:κi and · ⊢ ci:κi, or bi is ǫi ≤ Ci and
· ⊢ ci ≤ Ci : Cap.

(d) · ⊢ ∆ = ∆′′[c1, . . . , cm/∆
′], and ∆ ⊢ C = C ′[c1, . . . , cm/∆

′], and
for 1 ≤ i ≤ n, ∆ ⊢ τi = τ ′i [c1, . . . , cm/∆

′] : Type

(e) Ψ; ∆′,∆′′; {f :∀[∆′,∆′′].(C ′, τ ′1, . . . , τ
′
n)→ 0 at ν, x1:τ

′
1, . . . , xn:τ

′
n};C

′ ⊢ e

or instead of (b),(c),(d), and (e): ν 6∈ Ψ.

4. If τ is 〈τ1, . . . , τn〉 at ν then

(a) v = ν.ℓ

(b) M(ν.ℓ) = 〈v1, . . . , vn〉

(c) Ψ; · ⊢ vi : τiwval

or instead of (b),(c): ν 6∈ Ψ.

Proof:

Part 1, 2 follow by inspection of the typing rules for word values.
Part 3 follows by induction on the derivation, Ψ; ·; · ⊢ v : τ . By Canonical Memory Forms and
inspection of the typing rules for word values, either ν.ℓ or one of the type application rules are last:

case ν.ℓ where ν 6∈ Ψ:

(a) Trivial.

case ν.ℓ where ν ∈ Ψ:

(a) Trivial.

(b) By Canonical Memory Forms where ∆′ is ·, ∆′′ is ∆, C ′ is C, and for 1 ≤ i ≤ n, τ ′i is τi.

(c) Trivial.

(d) Trivial.

(e) By inspection of judgement.
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case v[C]

Ψ; ·; · ⊢ v : ∀[ǫ ≤ Ca,∆].(Cb, τ1, . . . , τn)→ 0 at r · ⊢ C ≤ Ca : Cap

Ψ; ·; · ⊢ v[C] : (∀[∆].(Cb, τ1, . . . , τn)→ 0)[C/ǫ] at r

By Term Judgement Regularity and Lemma 13, r is ν . The inductive hypothesis is as follows:

(a) v = ν.ℓ[c1, . . . , cn]

(b) M(ν.ℓ) = fix f [∆′, ǫ ≤ C ′
a,∆

′′](C ′
b, x1:τ

′
1, . . . , xn:τ

′
n).e

(c) ∆′ is b1, . . . , bm and for 0 ≤ i ≤ m, either bi is αi:κi and · ⊢ ci:κi, or bi is ǫi ≤ Ci and
· ⊢ ci ≤ Ci : Cap.

(d) · ⊢ ǫ ≤ Ca,∆ = (ǫ ≤ C ′
a,∆

′′)[c1, . . . , cm/∆
′]

and ǫ ≤ Ca,∆ ⊢ Cb = C ′
b[c1, . . . , cm/∆

′]
and for 1 ≤ i ≤ n, ǫ ≤ Ca,∆ ⊢ τi = τ ′i [c1, . . . , cm] : Type

(e) Ψ; ∆′, ǫ ≤ Ca,∆′′; Γ;C ′
b ⊢ e

where Γ = {f :∀[∆′, ǫ ≤ Ca,∆′′].(C ′
b, τ

′
1, . . . , τ

′
n)→ 0 at ν, x1:τ

′
1, . . . , xn:τ

′
n}

or instead of (b),(c),(d), and (e), ν 6∈ Ψ. Thus,

(a) v[C] = ν.ℓ[c1, . . . , cn, C] from IH.
If ν 6∈ Ψ then the result follows trivially. Thus assume ν ∈ Ψ.

(b) By IH.

(c) By IH and the typing judgement which states · ⊢ C ≤ Ca : Cap.

(d) By IH and Type Substitution.

(e) By IH.

case v[c] Similar.

Part 4 follows by inspection of the typing rules for word values. Notice only the ν.ℓ rule when ν ∈ Ψ,
or the rule for tuples when ν 6∈ Ψ can apply. Assuming the former (the latter is trivial), then (a) is
immediate and (b), (c) follow by Canonical Memory Forms.

2

Lemma 30 (Memory Type GC) If ⊢ Ψ and Ψ′ is Ψ\ν then

1. If Ψ; ∆; Γ ⊢ h at r : τ then Ψ′; ∆; Γ ⊢ h at r : τ

2. If Ψ; ∆; Γ ⊢ v : τ then Ψ′; ∆; Γ ⊢ v : τ

3. If Ψ; ∆; Γ;C ⊢ d⇒ ∆′; Γ′;C ′ then Ψ′; ∆; Γ;C ⊢ d⇒ ∆′; Γ′;C ′

4. If Ψ; ∆; Γ;C ⊢ e then Ψ′; ∆; Γ;C ⊢ e

5. If Ψ ⊢ R at ν : Υ then Ψ′ ⊢ R at ν : Υ

Proof:
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By induction on the typing derivation. All cases follow directly from IH except the rule:

Ψ; ∆; Γ ⊢ ν ′.ℓ : τ
(Ψ(ν ′.ℓ) = τ )

When ν is not ν ′, this case is trivial so assume ν is ν ′. By Canonical Memory Forms, τ is either
∀[∆′].(ǫ, τ1, . . . , τn)→ 0 at ν or 〈τ1, . . . , τn〉 at ν . Because ⊢ Ψ, we have · ⊢ τ : Type. By Type Context
Extension, ∆ ⊢ τ : Type. Thus, in either of the above cases, Ψ; ∆; Γ ⊢ ν ′.ℓ : τ via one of the two rules
for ν 6∈ Dom(Ψ).

2

Lemma 31 (Memory Type Extension) If ν does not appear in Ψ, ∆, Γ, r, h, v, d, e, or R, and
Ψ′ is Ψ{ν :{ }} then

1. If Ψ; ∆; Γ ⊢ h at r : τ then Ψ′; ∆; Γ ⊢ h at r : τ

2. If Ψ; ∆; Γ ⊢ v : τ then Ψ′; ∆; Γ ⊢ v : τ

3. If Ψ; ∆; Γ;C ⊢ d⇒ ∆′; Γ′;C ′ then Ψ′; ∆; Γ;C ⊢ d⇒ ∆′; Γ′;C ′

4. If Ψ; ∆; Γ;C ⊢ e then Ψ′; ∆; Γ;C ⊢ e

5. If Ψ ⊢ R at ν ′ : Υ then Ψ′ ⊢ R at ν ′ : Υ

Proof:

By induction on the typing derivation. In part 2, for the rule:

∆ ⊢ 〈τ1, . . . , τn〉 at ν
′ : Type

Ψ; ∆; Γ ⊢ ν ′.ℓ : 〈τ1, . . . , τn〉 at ν ′
(ν ′ 6∈ Ψ)

ν ′ is not ν by assumption and thus the result holds and similarly for the analogous rule for arrow types.

2

Lemma 32 (Region Type Extension) If ν ∈ Dom(Ψ), ℓ 6∈ Dom(Ψ(ν)), and Ψ′ is Ψ{ν.ℓ:τ} then

1. If Ψ; ∆; Γ ⊢ h at r : τ then Ψ′; ∆; Γ ⊢ h at r : τ

2. If Ψ; ∆; Γ ⊢ v : τ then Ψ′; ∆; Γ ⊢ v : τ

3. If Ψ; ∆; Γ;C ⊢ d⇒ ∆′; Γ′;C ′ then Ψ′; ∆; Γ;C ⊢ d⇒ ∆′; Γ′;C ′

4. If Ψ; ∆; Γ;C ⊢ e then Ψ′; ∆; Γ;C ⊢ e

5. If Ψ ⊢ R at ν ′ : Υ then Ψ′ ⊢ R at ν ′ : Υ

6. If Ψ ⊢ C sat then Ψ′ ⊢ C sat
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Proof:

By induction on the typing derivation.

2

Lemma 33 If ∆ ⊢ C1⊕C2 : Cap and ∆ ⊢ C1⊕C2 = a1⊕· · ·⊕an : Cap then ∆ ⊢ C1 = a′1⊕· · ·⊕a
′
m : Cap

and a′1, . . . , a
′
m is a subset of a1, . . . , an.

Proof:

By Lemma 18 (1), ∆ ⊢ C1 = a′1 ⊕ · · · ⊕ a
′
m : Cap. By Lemma 18 (5), E (a′1 ⊕ · · · ⊕ a

′
m) = E (C1) ⊆

E (C1 ⊕ C2) = E (a1 ⊕ · · · ⊕ an). By CECP, ai is unique (duplicatable) in a′1 ⊕ · · · ⊕ a
′
m if ai is unique

(duplicatable) in a1 ⊕ · · · ⊕ an.

2

Lemma 34 (Capability Satisfiability Preservation)

1. If Ψ ⊢ C sat and · ⊢ C = C ′ : Cap then Ψ ⊢ C ′ sat.

2. If Ψ ⊢ C sat and · ⊢ C ≤ C ′ : Cap then Ψ ⊢ C ′ sat.

Proof:

1. By symmetry and transitivity of equality and inspection of the sat derivation.

2. By induction on the subtyping derivation.

case equality: From Part 1.

case transitivity: By IH.

case · ⊢ ǫ ≤ C: Does not apply because the context (·) is empty and therefore, by Lemma 13, the
two capabilities must not contain any free variables.

case · ⊢ C ≤ C:
1. Assume {ν1:Υ1, . . . , νn:Υn} ⊢ C sat
2. Hence · ⊢ C = {νϕ1

1 , . . . , νϕnn } : Cap
3. and νi 6= νj for 1 ≤ i, j ≤ n and i 6= j from 1

4. From 2, using rule eq-congruence-bar, · ⊢ C = {νϕ1

1 , . . . , νϕnn } : Cap
5. From 4, by constructor equality rules, · ⊢ C = {ν+

1 , . . . , ν
+
n } : Cap

6. Hence, from 5,3 we have {ν1:Υ1, . . . , νn:Υn} ⊢ C sat

case

· ⊢ C1 ≤ C ′
1 (1) · ⊢ C2 ≤ C ′

2 (2)

· ⊢ C1 ⊕C2 ≤ C ′
1 ⊕C

′
2

3. Assume {ν1:Υ1, . . . , νn:Υn} ⊢ C1 ⊕ C2 sat
4. From 3, · ⊢ C1 ⊕ C2 = {νϕ1

1 , . . . , νϕnn } : Cap
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5. and νi 6= νj for 1 ≤ i, j ≤ n and i 6= j from 1
6. By 4 and Equality Regularity, C1,C2,C

′
1,C

′
2 are all well-formed under the empty context ·.

7. By 6 and Lemma 18(1), · ⊢ C1 = {ν
ϕ1,1

1,1 , . . . , ν
ϕ1,n1

1,n1
} : Cap

8. From 7 and CECP, for 1 ≤ i ≤ n1, ν
ϕ1,i

1,i ∈ C1

9. Hence, we have ν
ϕ1,i

1,i ∈ C1 ⊕ C2

10. and by 4 and CECP again, we can conclude ν
ϕ1,i

1,i ∈ {ν
ϕ1

1 , . . . , νϕnn }
11. For 1 ≤ i ≤ n1 and i 6= j, if ν1,i = ν1,j and ϕ1,i = ϕ1,j = + then by Lemma 18(4),
we can eliminate the duplicates and assume without loss of generality that {ν

ϕ1,1

1,1 , . . . , ν
ϕ1,n1

1,n1
}

does not contain duplicates of this form.
12. For some 1 ≤ i ≤ n1 and i 6= j, assume (anticipating a contradiction) that ν1,i = ν1,j and
one of ϕ1,i or ϕ1,j is 1 then by CECP, {ν

ϕ1,i

1,i } and {ν
ϕ1,j

1,j } both appear in C1

13. From 12, we have {ν
ϕ1,i

1,i } and {ν
ϕ1,j

1,j } both appear in C1 ⊕C2

14. and from 13, and CECP, {ν
ϕ1,i

1,i } and {ν
ϕ1,j

1,j } both appear in {νϕ1

1 , . . . , νϕnn }
15. However, 14 and 12 (ν1,i = ν1,j) contradict 5, indicating our assumption 12 was false
16. By 15 and 11, we may assume without loss of generality that for 1 ≤ i ≤ n1 and i 6= j,
ν1,i 6= ν1,j

17. By 7, 11, and 16, we can conclude Ψ1 ⊢ C1 sat where Ψ1 is Ψ with domain restricted to
{ν1,1 . . . , ν1,n1

}
18. Analogous reasoning and definitions for Ψ2 yields Ψ2 ⊢ C2 sat
19. From 17 and 1, using the inductive hypothesis, we have Ψ1 ⊢ C ′

1 sat
20. From 18 and 2, using the inductive hypothesis, we have Ψ2 ⊢ C ′

2 sat

21. From 19 (20) and inspection of the sat judgement, we know · ⊢ C ′
1 = {ν

ϕ1′,1

1′,1 , . . . , ν
ϕ1′,n′

1

1′,n′

1

} :

Cap for some ν
ϕ1′,1

1′,1 , . . . , ν
ϕ1′,n′

1

1′,n′

1

(and we know · ⊢ C ′
2 = {ν

ϕ2′,1

2′,1 , . . . , ν
ϕ2′,n′

1

2′,n′

1

} : Cap for some

{ν
ϕ2′,1

2′,1 , . . . , ν
ϕ2′,n′

1

2′,n′

1

})

22. Now, by CSCP, 19 (20), and 1, we have that for 1 ≤ i ≤ n′
1, {ν

ϕ1′,i

1′,i } ∈ C1 (and that for

1 ≤ i ≤ n′
2, {ν

ϕ2′,i

2′,i } ∈ C2)
23. Consequently, from 22 using CECP, ν1′,1, . . . , ν1′,n′

1
∈ {ν1, . . . νn}

and similarly ν2′,1, . . . , ν2′,n′

2
∈ {ν1, . . . νn}.

24. Conversely, also by CECP, ν1, . . . , νn ∈ {ν1′,1, . . . , ν1′,n′

1
, ν2′,1, . . . , ν2′,n′

2
}

25. To summarize, 23 and 24 state that region names {ν
ϕ1′,1

1′,1 , . . . , ν
ϕ1′,n′

1

1′,n′

1

, ν
ϕ2′,1

2′,1 , . . . , ν
ϕ2′,n′

1

2′,n′

1

}

are an exact cover of {ν1, . . . , νn}
26. Now, reasoning analogously to steps 12 through 16, we can deduce that

{ν
ϕ1′,1

1′,1 , . . . , ν
ϕ1′,n′

1

1′,n′

1

, ν
ϕ2′,1

2′,1 , . . . , ν
ϕ2′,n′

1

2′,n′

1

} contains no duplicate region names aside from those

which both have multiplicity flag +.

27. By 21 and rule eq-congruence-plus, we have · ⊢ C ′
1 ⊕ C ′

2 = {ν
ϕ1′,1

1′,1 , . . . , ν
ϕ1′,n′

1

1′,n′

1

} ⊕

{ν
ϕ2′,1

2′,1 , . . . , ν
ϕ2′,n′

1

2′,n′

1

} : Cap

28. By Lemma 18(4) we may eliminate duplicate region names with flag + on the right-hand
side of equation 27.
29. By Lemma 18(3), we can reorder the elements of the right-hand side of 28 which by 25
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and 26 are exactly {ν1, . . . , νn} giving us · ⊢ C ′
1 ⊕ C

′
2 = {ν

ϕ′

1

1 , . . . , ν
ϕ′

n
n } : Cap

32. Consequently, we have {ν1, . . . , νn} ⊢ C ′
1 ⊕ C

′
2 sat

2

Lemma 35 If Ψ ⊢ C ⊕ {ν} sat then Ψ\ν ⊢ C sat.

Proof:

1. Assume Ψ ⊢ C ⊕ {ν} sat
2. and Ψ = {ν1:Υ1, . . . , νn:Υn}
3. From 1, we know · ⊢ C ⊕ {ν} = {νϕ1

1 , . . . , νϕnn } : Cap
4. and νi 6= νj, for 1 ≤ i, j ≤ n and i 6= j
5. From 3, 4, and CECP, ν appears once in {νϕ1

1 , . . . , νϕnn } and once in C ⊕ {ν}.
6. From 5, and Equality (3),
· ⊢ {νϕ1

1 , . . . , ν
ϕi−1

i−1 , ν1, ν
ϕi+1

i+1 , . . . , νϕnn } = {νϕ1

1 , . . . , ν
ϕi−1

i−1 , ν
ϕi+1

i+1 , . . . , νϕnn } ⊕ {ν} : Cap
7. From 3, 6, transitivity of equality, and Equality (7),
· ⊢ C = {νϕ1

1 , . . . , ν
ϕi−1

i−1 , ν
ϕi+1

i+1 , . . . , νϕnn } : Cap
8. Hence, from 2,4,7 we have Ψ\ν ⊢ C sat

2

Lemma 36 (Preservation) If ⊢ (M, e) and (M, e) 7−→ (M ′, e′) then ⊢ (M ′, e′)

Proof:

The proof proceeds by cases on the structure of e. In each case, we show the form of the typing
judgement that can be inferred by inspection of the typing rules and refer to it throughout the case
as “the typing judgement”. Then we give the transition specified by the operational semantics. Using
these two facts, we derive the result ⊢ (M ′, e′).

• let v

⊢M : Ψ Ψ ⊢ C sat

Ψ; ·; · ⊢ v : τ

Ψ; ·; ·;C ⊢ x = v ⇒ ·; {x:τ};C Ψ; ·; {x:τ};C ⊢ e

Ψ; ·; ·;C ⊢ letx = v in e

⊢ (M, let x = v in e)

and (M, letx = v in e) 7−→ (M, e[v/x]). By the typing judgement and Value Substitution, ⊢
(M, e[v/x]).

• let h

⊢M : Ψ Ψ ⊢ C sat

Ψ; ·; · ⊢ v : ν handle

Ψ; ·; · ⊢ h at ν : τ · ⊢ C ≤ C ′ ⊕ {ν}

Ψ; ·; ·;C ⊢ x = h at v ⇒ ·; {x:τ};C

...
Ψ; ·; {x:τ};C ⊢ e

Ψ; ·; ·;C ⊢ letx = h at v in e

⊢ (M, letx = h at v in e)
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where v = handle(ν)
and ν ∈ Dom(M) and ℓ 6∈ Dom(M(ν))
and M ′ = M{ν.ℓ 7→ h}
and (M, letx = h at v in e) 7−→ (M ′, e[ν.ℓ/x])
and let Ψ′ = Ψ{ν.ℓ:τ}

1. (a) τ is 〈τ1, . . . , τn〉 at ν or ∀[ ].(C ′′, τ1, . . . , τn)→ 0at ν by inspection of the heap value typing
rules and the typing judgement.

(b) ⊢M ′ : Ψ′ by the typing judgement and inspection of the memory typing rule.

2. Ψ′ ⊢ C sat by Region Type Extension.

3. (a) Ψ′; ·; · ⊢ ν.ℓ : τ by the typing rules for word values.

(b) Ψ′; ·; {};C ⊢ e[ν.ℓ/x] by (a) and Value Substitution.

By 1(b), 2, and 3(b), we have ⊢ (M ′, e[ν.ℓ/x]).

• πiv

⊢M : Ψ Ψ ⊢ C sat

Ψ; ·; · ⊢ v : 〈τ1, . . . , τn〉 at ν

· ⊢ C ≤ C ′ ⊕ {ν}

Ψ; ·; ·;C ⊢ x = πiv ⇒ ·; {x:τi};C Ψ; ·; {x:τi};C ⊢ e

Ψ; ·; ·;C ⊢ let x = πiv in e

⊢ (M, letx = πiv in e)

where v = ν.ℓ
and M(ν.ℓ) = 〈v0, . . . , vn〉
and (M, letx = πiv in e) 7−→ (M, e[vi/x])

1. ⊢M : Ψ by the typing judgement.

2. Ψ ⊢ C sat by the typing judgement.

3. (a) Ψ; ·; · ⊢ vi : τi by Canonical Forms and the typing judgement.

(b) Ψ; ·; ·C ⊢ e[vi/x] by Value Substitution, (a), and the typing judgement.

By 1,2,and 3(b), ⊢ (M, e[vi/x]).

• freergn

⊢M : Ψ Ψ ⊢ C sat

Ψ; ·; · ⊢ v : ν handle · ⊢ C ≤ C ′ ⊕ {ν}

Ψ; ·; ·;C ⊢ freergnv ⇒ ·; ·;C ′ Ψ; ·; ·;C ′ ⊢ e

Ψ; ·; ·;C ⊢ freergn v in e

⊢ (M, freergn v in e)

where v is handle(ν) and (M, freergn v in e) 7−→ (M\ν, e). Let Ψ′ be Ψ\ν .

1. ⊢M ′ : Ψ′ by Memory Type GC and the typing judgement.

2. (a) Ψ ⊢ C sat and · ⊢ C ≤ C ′ ⊕ {ν} by the typing judgement.

(b) Ψ ⊢ C ′ ⊕ {ν} sat by Capability Satisfiability Preservation and (a)

71



(c) Ψ′ ⊢ C ′ sat by Lemma 35 and (b)

3. Ψ′; ·; ·;C ′ ⊢ e by the typing judgement and Memory Type GC.

By 1, 2(e), and 3, ⊢ (M\ν, e).

• newrgn

⊢M : Ψ

· ⊢ C = C ′ : Cap

Ψ ⊢ C sat
(...)

(A) (B)

Ψ; ·; ·;C ⊢ newrgnρ, xρ in e

⊢ (M, newrgnρ, xρ in e)

Ψ; ·; ·;C ⊢ newrgnρ, xρ ⇒ ρ:Rgn; {xρ:ρ handle};C ⊕ {ρ}
(A)

...
Ψ; ρ:Rgn; {xρ:ρ handle};C ⊕ {ρ} ⊢ e

(B)

The operational rule is

(M, newrgnρ, xρ in e) 7−→ (M ′, e′[ν, handle(ν)/ρ, xρ])

where M ′ = M{ν 7→ { }} and ν 6∈M and ν 6∈ e.

In what follows, let Ψ′ = Ψ{ν :{ }}.

1. ⊢ Ψ′ by Memory Type Extension and the typing judgement.

2. Since ν 6∈ Ψ by assumption in the operational semantics, we can satisfy the side condition on
the sat judgement. We can also prove · ⊢ C ⊕ {ν} = C ′ ⊕ {ν} : Cap by the congruence rule
for equality. Consequently, Ψ′ ⊢ C ⊕ {ν} sat.

3. Ψ′; ·; ·;C⊕{ν} ⊢ e[ν, handle(ν)/ρ, xρ] from the typing judgement and application of Type and
Value Substitution and then Memory Type Extension Lemmas.

By 1, 2(e), and 3, ⊢ (M ′, e[ν, handle(ν)/ρ, xρ]).

• if0

⊢M : Ψ Ψ ⊢ C sat

Ψ; ·; · ⊢ i : int Ψ; ·; ·;C ⊢ e2 Ψ; ·; ·;C ⊢ e3
Ψ; ·; ·;C ⊢ if0 i then e2 else e3

⊢ (M, if0 i then e2 else e3)

(M, e) 7−→ (M, e2) if i = 0 and (M, e) 7−→ (M, e3) otherwise. By the typing judgement, ⊢ (M, e2),
or ⊢ (M, e3).

• v0(v1, . . . , vn)

⊢M : Ψ Ψ ⊢ C sat

Ψ; ·; · ⊢ vi : τi (for 0 ≤ i ≤ n)

· ⊢ C ≤ C ′′ ⊕ {ν} : Cap
· ⊢ τ0 = ∀[ ].(C ′, τ1, . . . , τn)→ 0 at ν

· ⊢ C ≤ C ′ : Cap

Ψ; ·; ·;C ⊢ v0(v1, . . . , vn)

⊢ (M, v0(v1, . . . , vn))
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(M, v0(v1, . . . , vn)) 7−→ (M,S(e))
where w = ν.ℓ[c1, . . . , cm]
and M(ν.ℓ) = fix f [b1, . . . , bm](C ′′, x1 : τ1, . . . , xn:τn).e
and for 1 ≤ i ≤m, bi = αi:κi or bi = αi ≤ Ci
and S = [c1, . . . , cm, ν.ℓ, v1, . . . , vn/α1, . . . , αm, f, x1, . . . , xn]

1. ⊢M : Ψ by the typing judgement.

2. Ψ ⊢ C ′ sat by Capability Satisfiability Preservation.

3. (a) Ψ ⊢ C ′′ ⊕ {ν} sat by Capability Satisfiability Preservation and the typing judgement

(b) ν ∈ Dom(Ψ) by CECP and (a).

(c) Ψ; ·; · ⊢ v0 : ∀[ ].(C ′′′, τ ′′′1 , . . . , τ
′′′
n )→ 0 and

· ⊢ ∀[ ].(C ′′′, τ ′′′1 , . . . , τ
′′′
n )→ 0 = ∀[ ].(C ′, τ1, . . . , τn)→ 0 by the typing judgement

(d) Ψ; b1, . . . , bm; {x1:τ1, . . . , xn:τn};C ′′ ⊢ e by Canonical Forms 3(e), (b), and (c).

(e) · ⊢ C ′ = C ′′[c1, . . . , cm/α1, . . . , αm] : Cap by the transitivity of equality, Canonical Forms
3(d), (b), and (c)

(f) Ψ; ·; ·;C ′ ⊢ S(e) by Type and Value Substitution, and (e).

By 1, 2, and 3(f), ⊢ (M,S(e))

2

Lemma 37 (Progress) If ⊢ (M, e) then either:

1. There exists (M ′, e′) such that (M, e) 7−→ (M ′, e′), or

2. e = halt v and Ψ; ·; · ⊢ v : int.

Proof:

The proof proceeds by cases on the structure of e and makes heavy use of the Canonical Forms lemma.

• let v Trivial.

• let h

⊢M : Ψ Ψ ⊢ C sat

Ψ; ·; · ⊢ v : r handle

Ψ; ·; · ⊢ h at r : τ

· ⊢ C ≤ C ′ ⊕ {r}

Ψ; ·; ·;C ⊢ x = h at v ⇒ ·; {x:τ};C · · ·

Ψ; ·; ·;C ⊢ letx = h at v in e

⊢ (M, let x = h at v in e)

Ψ; ·; · ⊢ v : r handle directly from the typing judgement. By Term Judgement Regularity and
Lemma 13, r is ν , and by Canonical Forms, v is handle(ν). By Capability Satisfiability Preser-
vation, Ψ ⊢ C ′ ⊕ {ν} sat and thus ν ∈ Dom(Ψ). By inspection of the memory typing rules,
ν ∈ Dom(M). Thus (M, e) 7−→ (M{ν.ℓ 7→ h}, e[ν.ℓ/x]).
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• πiv

⊢M : Ψ Ψ ⊢ C sat

Ψ; ·; · ⊢ v : 〈τ1, . . . , τn〉 at r · ⊢ C ≤ C ′ ⊕ {r}

Ψ; ·; ·;C ⊢ x = πiv ⇒ ·; {x:τi};C · · ·

Ψ; ·; ·;C ⊢ letx = πiv in e

⊢ (M, letx = πiv in e)

By Capability Satisfiability Preservation, Ψ ⊢ C ′ ⊕ {ν} sat. By CECP, ν ∈ Dom(Ψ) and by
Canonical Forms, M(ν.ℓ) = 〈v1, . . . , vn〉. By the typing judgement, 0 ≤ i ≤ n − 1. Thus
(M, let x = πiv in e) 7−→ (M, e[vi/x]).

• newrgn Trivial.

• freergn

⊢M : Ψ Ψ ⊢ C sat

Ψ; ·; · ⊢ v : r handle · ⊢ C ≤ C ′ ⊕ {r} : Cap

Ψ; ·; ·;C ⊢ freergnv ⇒ ·; ·;C ′ · · ·

Ψ; ·; ·;C ⊢ freergn v in e

⊢ (M, freergn v in e)

By Term Judgement Regularity and Lemma 13, r is ν , and by Canonical Forms, v is handle(ν).
By Capability Satisfiability Preservation, Ψ ⊢ C ⊕ {ν} sat. Thus, by CECP, ν ∈ Dom(Ψ), and
by inspection of the memory typing rules, ν ∈ Dom(M). Consequently, (M, freergnv in e) 7−→
(M\ν, e).

• if0

Ψ; ∆; Γ ⊢ v : int
Ψ; ∆; Γ;C ⊢ e2 Ψ; ∆; Γ;C ⊢ e3

Ψ; ∆; Γ;C ⊢ if0 v then e2 else e3

By Canonical Forms, v must be integer. Therefore, one of the two operational rules for if0 applies.

• v0(v1, . . . , vn)

⊢M : Ψ Ψ ⊢ C sat

Ψ; ·; · ⊢ vi : τi (for 0 ≤ i ≤ n)

· ⊢ C ≤ C ′′ ⊕ {r} : Cap
· ⊢ τ0 = ∀[ ].(C ′, τ1, . . . , τn)→ 0 at r

· ⊢ C ≤ C ′ : Cap

Ψ; ·; ·;C ⊢ v0(v1, . . . , vn)

⊢ (M, v0(v1, . . . , vn))

By Subtyping Regularity and Lemma 13, r is ν . By Capability Satisfiability Preservation, Ψ ⊢
C ′′ ⊕ {ν} sat, and by CECP, ν ∈ Dom(Ψ). Thus, by Canonical Forms, v = ν.ℓ[c1, . . . , cm],
M(ν.ℓ) = fix f [b1, . . . , bm](C, x1:τ1, . . . , xn:τn).e and for 1 ≤ i ≤ n, bi = αi:κi or bi = αi ≤ Ci. If
S is [c1, . . . , cm, ν.ℓ, v1, . . . , vn/α1, . . . , αm, f, x1, . . . , xn] then (M, v0(v1, . . . , vn)) 7−→ (M,S(e))
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• halt

⊢M : Ψ Ψ ⊢ C sat

Ψ; ·; · ⊢ v : int · ⊢ C = ∅ : Cap

Ψ; ·; ·;C ⊢ halt v

⊢ (M, halt v)

Part 2 holds by inspection of the typing judgement.

2

Definition 38 (Stuck State) An abstract machine state (M, e) is stuck if e is not halt v and there
does not exist (M ′, e′) such that (M, e) 7−→ (M ′, e′).

Theorem 39 (Type Soundness) If ⊢ (M, e) and (M, e) 7−→∗ (M ′, e′) then (M ′, e′) is not stuck.

Proof:

By induction on the number of steps taken in the operational semantics and Preservation, if ⊢ (M, e)
and (M, e) 7−→∗ (M ′, e′) then ⊢ (M ′, e′). By Progress, no well-typed state (M ′, e′) is stuck: either e′ is
halt v or (M ′, e′) 7−→ (M ′′, e′′).

2

Theorem 40 (Complete Collection) If ⊢ (M, e) then either (M, e) ⇑ or
(M, e) 7−→∗ (M ′, halt v) and M ′ = { }.

Proof:

Assume ⊢ (M, e) and (M, e) 7−→∗ (M ′, e′) and there is no (M ′′, e′′) such that (M ′, e′) 7−→ (M ′′, e′′). By
Preservation and Progress, e′ = halt v and

⊢M ′ : Ψ Ψ ⊢ C sat

Ψ; ·; · ⊢ v : int · ⊢ C = ∅ : Cap

Ψ; ·; ·;C ⊢ halt v

⊢ (M ′, halt v)

By CECP and the sat judgement, ν ∈ Dom(Ψ) if and only if ν ∈ ∅. Consequently, Ψ = { }. By
inspection of the judgement for memory types, M ′ = { }.

2

B Region Translation Type Preservation

In this section, we prove our translation of the region calculus into the Capability Calculus is type
preserving. In other words, given a well-formed source language term, the result of the translation is a
well-formed Capability Calculus term. Section 3 describes the syntax and static semantics of the term
constructs.
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Notation In this proof, we use several abbreviations and conventions. Equality and subtyping judge-
ments for capabilities are written in the form:

∆ ⊢ C1 = C2

≤ C3

= C4

= · · ·

Transitivity rules link each of the equations together. We use associativity and commutativity rules
without mentioning them and we will substitute a subcomponent of a capability for an equal capability
without mentioning the use of the congruence rules.

We use the notation ∆ ⊢R Γ to indicate that all the types in Γ are well-formed under type context
∆. Formally:

∆ ⊢R ·

∆ ⊢R Γ ∆ ⊢R τ : Type

∆ ⊢R Γ, x:τ
(x 6∈ Dom(Γ))

Overview The theorem borrows several lemmas from the proof of soundness including lemmas for
manipulating capabilities (Lemma 18) and asserting well-formedness (Lemma 14). We also require a
number of suplementary lemmas:

• Lemmas 41 and 42 describe additional well-formedness constraints on the types and effects that
appear in region calculus judgements.

• Lemmas 43, 44, and 45 state that well-formedness of constructors, constructor equality, and
substitution is preserved across the translation.

• Lemma 48 describes the way the subset relation is preserved during the translation of effects (sets)
to capabilities (not sets). This lemma makes use of Lemmas 46 and 47 in its proof.

• Lemma 49 is a miscellaneous lemma required in the proof of the letregion construct.

• Lemma 50 gives the conditions under which the static application of a continuation closure to its
arguments (i .e. A(k, v)) is well-formed.

Lemma 41

1. If ∆ ⊢R c1 = c2 : κ then ∆ ⊢R c1 : κ and ∆ ⊢R c2 : κ.

2. If ∆ ⊢R ψ1 ⊆ ψ2 then ∆ ⊢R ψ1 : Eff and ∆ ⊢R ψ2 : Eff

Proof: By induction on the derivations.

Lemma 42 If ∆ ⊢R Γ and ∆; Γ ⊢R e : τ, ψ then ∆ ⊢R τ : Type and ∆ ⊢R ψ : Eff

Proof: By induction on the derivation ∆; Γ ⊢R e : τ, ψ.

Lemma 43 (Well-Formedness Preservation)
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1. If ∆ ⊢R ∆′ then K[[∆]] ⊢ K[[∆′]]

2. If ∆ ⊢R c : κ then K[[∆]] ⊢ T [[c]] : K[[κ]]

Proof: By induction on the derivations.

Lemma 44 (Equality Preservation)

1. If ∆ ⊢R ψ = ψ′ : Eff then K[[∆]] ⊢ T [[ψ]] = T [[ψ′]] : Cap

2. If ∆ ⊢R c = c′ : κ and κ 6= Eff then K[[∆]] ⊢ T [[c]] = T [[c′]] : Cap

Proof: By induction on the equality derivations.

Lemma 45 (Substitution Preservation) If ∆, α:κ ⊢R τ : Type and ∆ ⊢R c : κ then
K[[∆]] ⊢ T [[τ [c/α]]] = T [[τ ]][T [[c]]/α].

Proof: By induction on the typing derivation.

Lemma 46 If ∆ ⊢ ψ = ψ′ : Eff then E (T [[ψ]]) = E (T [[ψ′]]).

Proof: By induction on the derivation.

Lemma 47 If ∆ ⊢ ψ ⊆ ψ′ then E (T [[ψ]]) ⊆ E (T [[ψ′]]).

Proof: By inspection of the sub-effecting rule, ∆ ⊢ ψ ∪ ψ′′ = ψ′ : Eff for some effect ψ′′.
By Lemma 46, E (T [[ψ ∪ ψ′′]]) = E (T [[ψ′]]).
By definition of E and the type translation, we have E (T [[ψ]]) ∪ E (T [[ψ′′]]) = E (T [[ψ′]]).
Hence, E (T [[ψ]]) ⊆ E (T [[ψ′]]).

Lemma 48 If ∆ ⊢ ψ ⊆ ψ′ and ∆ ⊢ C = C ⊕ T [[ψ′]] : Cap then ∆ ⊢ C = C ⊕ T [[ψ]] : Cap.

Proof:

1. By ∆ ⊢ C = C ⊕ T [[ψ′]] : Cap and Equality (5), E (C) = E (C ⊕ T [[ψ′]]).
2. Thus, by definition of E , E (T [[ψ′]]) ⊆ E (C).
3. By ∆ ⊢ ψ ⊆ ψ′ and Lemma 47, E (T [[ψ]]) ⊆ E (T [[ψ′]]).
4. By 2 and 3, E (T [[ψ]]) ⊆ E (C).
5. Hence, by definition of E , E (C) = E (C ⊕ T [[ψ]]).
6. By 5 and Equality (6), ∆ ⊢ C = C ⊕ T [[ψ]] : Cap.

2

Lemma 49 If ∆ ⊢R ψ then K[[∆]] ⊢ T [[ψ\{ρ}]]⊕ {ρ1} = T [[ψ]]⊕ {ρ1} : Cap

Proof:

The proof is by induction on the structure of ψ.
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• ψ = ∅. By definition, T [[∅\{ρ}]] = ∅. The result follow immediately from the reflexivity of equality.

• ψ = ǫ or ψ = {ρ′} and ρ 6= ρ′. Similar.

• ψ = {ρ}. The following reasoning provides the result:

K[[∆]] ⊢ T [[{ρ}\{ρ}]]⊕ {ρ1} = ∅ ⊕ {ρ1} (By definition)

= {ρ1} (By rule eq-∅)

= {ρ1} ⊕ {ρ1} (By rule eq-dup)

• ψ = ψ1 ∪ ψ2. By induction, we know that (1) K[[∆]] ⊢ T [[ψi\{ρ}]]⊕ {ρ1} = T [[ψi]]⊕ {ρ1} for
i = 1, 2. Now, the following reasoning provides the result:

K[[∆]] ⊢ T [[(ψ1 ∪ ψ2)\{ρ}]]⊕ {ρ1} = T [[ψ1\{ρ}]]⊕ T [[(ψ2\{ρ})]]⊕ {ρ1} (By def.)

= T [[ψ1\{ρ}]]⊕ T [[(ψ2\{ρ})]]⊕ {ρ1} ⊕ {ρ1} (By eq-dup)

= T [[ψ1\{ρ}]]⊕ {ρ1} ⊕ T [[(ψ2\{ρ})]]⊕ {ρ1} (By *)

= T [[ψ1]]⊕ {ρ1} ⊕ T [[ψ2]]⊕ {ρ1} (By 1)

= T [[ψ1]]⊕ T [[ψ2]]⊕ {ρ1} ⊕ {ρ1} (By *)

= T [[ψ1]]⊕ T [[ψ2]]⊕ {ρ1} (By eq-dup)

where * is rule eq-comm.

2

Lemma 50 Let k = 〈xk; ek〉. If Ψ; ∆; Γ, xk:τ ;C ⊢ ek and Ψ; ∆; Γ ⊢ v : τ then
Ψ; ∆; Γ;C ⊢ A(k, v).

Proof:

The term A(k, v) is defined to be letxk = v in ek. The following derivation proves the lemma:

Ψ; ∆; Γ ⊢ v : τ Ψ; ∆; Γ, xk:τ ;C ⊢ ek

Ψ; ∆; Γ;C ⊢ let xk = v in ek

2

Lemma 51 If { }; ∆; Γ, x:τ ;C ⊢ e and ∆ ⊢ τ = τ ′ : Type then { }; ∆; Γ, x:τ ′;C ⊢ e.

Proof:

The proof is by induction on the typing derivation for expressions.

2

Theorem 52 (CPS Type Preservation)
If ·; · ⊢ e : int, ∅ then { }; ·; ·; ∅ ⊢ C·;·;Θ(e)〈x; halt x〉 where x is fresh and Θ is the empty environment,
〈·; ·; ∅; ∅〉.
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Proof:

The proof is by induction on the typing derivation of the expression using the following inductive
hypothesis:

Given ∆, Γ, Θ, e, and k where Θ = 〈∆Θ; ΓΘ;CΘ;BΘ〉 and k = 〈xk; ek〉. If:

A. ∆; Γ ⊢R e : τ, ψ

B. { };K[[∆]],∆Θ;S[[Γ]],ΓΘ, xk:T [[τ ]];CΘ ⊢ ek

C. K[[∆]],∆Θ ⊢ CΘ ≤ BΘ

D. K[[∆]],∆Θ ⊢ BΘ = BΘ ⊕ T [[ψ]]

Then:

E. { };K[[∆]],∆Θ;S[[Γ]],ΓΘ;CΘ ⊢ C∆;Γ;Θ(e)k

In this proof, we will use several abbreviations and conventions in order to make the derivations so that
we can focus on the important elements in the proof. First, we will often use the meta-variable Φ to
range over type-checking contexts of the form Ψ; ∆; Γ or Ψ; ∆; Γ;C.

We also abbreviate derivations involving let. A derivation:

D1 · · · Dn
Ψ; ∆; Γ;C ⊢ d⇒ ∆′; Γ′;C ′ Ψ; ∆′; Γ′;C ′ ⊢ e

Ψ; ∆; Γ;C ⊢ let d in e

is abbreviated by:

D1 · · · Dn Ψ; ∆′; Γ′;C ′ ⊢ e

Ψ; ∆; Γ;C ⊢ let d in e

Many of the typing rules contain the side condition that a Capability Calculus variable ρ, ǫ, or x not
be contained in the context ∆ or Γ for that judgement. We have assumed that all the variables in the
translated term have been generated fresh so that this will be the case. For the sake of brevity, we
do not mention this side condition each time it occurs in the proof. Many of the rules also contain
well-formedness constraints on types or capabilities (ie: ∆ ⊢ τ or ∆ ⊢ C). These well-formedness
constraints always follow directly from the source typing judgement and Lemma 43. However, in order
to concentrate on the more important aspects of the proof, we do not mention these conditions each
time they appear in a derivation.

In the following, we prove the result for the more difficult cases: letrec, type application, value
application, letregion , and equality. The other cases follow a similar, but simpler pattern.

• The case for letrec. The translation is:
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C∆;Γ;Θ(letrecf [∆′](x) : σ at e1 = e2 in e3)k =
C∆;Γ;Θ(e1)〈x1;
let f = (fix f [K[[∆′]],∆′′](ǫ′, x:T [[τ1]], xcont:τcont).

C∆∆′ ;Γ{f:σ,x:τ1};Θ′ (e2)〈x2; xcont(x2)〉) at x1

in C∆;Γ{f:σ};Θ(e3)k〉

where

σ = ∀[∆′].τ1
ψf
→ τ2 at r

τcont = ∀[ ].(ǫ′, T [[τ2]])→ 0 at ρ

BΘ′

= ǫ⊕ T [[ψf ]]⊕ {ρ1}

∆′′ = ρ:Rgn, ǫ:Cap, ǫ′ ≤ BΘ′

∆Θ′

= ∆Θ,∆′′

ΓΘ′

= ΓΘ, x1:r handle, xcont:τcont
CΘ′

= ǫ′

Θ′ = 〈∆Θ′

; ΓΘ′

;CΘ′

;BΘ′

〉

The source typing derivation A:

(A1) ∆; Γ ⊢R e1 : r handle, ψ1

(A2) ∆∆′; Γ{f :σ, x:τ1} ⊢R e2 : τ2, ψf
(A3) ∆; Γ{f :σ} ⊢R e3 : τ3, ψ3

∆; Γ ⊢R letrecf [∆′](x) : σ at e1 = e2 in e3 : τ3, ψ1 ∪ ψ3 ∪ {r}
(x, f 6∈ Dom(Γ))

In order to make the derivations for this case more manageable, we will use the following abbre-
viations:

Φ1 = { };K[[∆]],∆Θ;S[[Γ]],ΓΘ, x1:r handle;CΘ

Φ2 = { };K[[∆,∆′]],∆Θ′

;S[[Γ, f :σ, x:τ1]],Γ
Θ′

, x1:T [[r handle]], x2:T [[τ1]];C
Θ′

Φ3 = { };K[[∆,∆′]],∆Θ′

;S[[Γ, f :σ, x:τ1]],Γ
Θ′

x1:T [[r handle]];CΘ′

Φ4 = { };K[[∆]],∆Θ;S[[Γ, f :σ]],ΓΘ;CΘ

Φ5 = { };K[[∆]],∆Θ;S[[Γ, f :σ]],ΓΘ, x1:T [[r handle]];CΘ

We begin by showing the continuation used in the translation of e2 is well-formed under the
appropriate context (call this fact B2):

(By v-var)

Φ2 ⊢ xcont : T [[τcont]]

(By v-var)

Φ2 ⊢ x2 : T [[τ1]]

(By eq-reflex)

K[[∆,∆′]],∆Θ′

⊢ ǫ′ ≤ ǫ′ Dǫ′

Φ2 ⊢ xcont(x2)

The derivation Dǫ′ is the following (recall that ∆Θ′

is ∆Θ, ρ:Rgn, ǫ:Cap, ǫ′ ≤ ǫ ⊕ T [[ψ]]⊕ {ρ1}):

K[[∆,∆′]],∆Θ′

⊢ ǫ′ ≤ ǫ⊕ T [[ψ]]⊕ {ρ1} (By sub-var)

= ǫ⊕ T [[ψ]]⊕ {ρ+} (By eq-distrib)
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We have now shown B2. By use of rule sub-var, we can conclude that (C2):

K[[∆,∆′]],∆Θ′

⊢ CΘ′

≤ BΘ′

We also have (D2):

K[[∆,∆′]],∆Θ′

⊢ BΘ′ = ǫ⊕ T [[ψf ]]⊕ {ρ1} (expand abbreviation)

= ǫ⊕ {ρ1} ⊕ T [[ψf ]] (By eq-comm)

= ǫ⊕ {ρ1} ⊕ T [[ψf ]]⊕ T [[ψf ]] (By eq-dup)

Using A2, B2, C2 and D2, we can apply the induction hypothesis and obtain E2:

Φ3 ⊢ C∆∆′;Γ{f :σ,x:τ1};Θ′ (e2)〈x2; xcont(x2)〉

Now, from A3, B, C, and D, we can apply the induction hypothesis and obtain E3:

Φ4 ⊢ C∆;Γ{f:σ};Θ,x1 :T [[r handle]](e3)k

Using E2 and E3, we can build the typing derivation for the code in the continuation for translating
e1 (call this fact B1):

(By v-var)

Φ1 ⊢ x1 : r handle

E2

Φ ⊢ fix f [· · ·](· · ·).C∆∆′ ;Γ{f:σ,x:τ1};Θ′ (e2)〈x2; xcont(x2)〉 at r Dr E3

Φ1 ⊢ let f = (· · ·) at x1 inC∆;Γ{f:σ};Θ,x1 :r handle(e3)k

where the derivation Dr is:

K[[∆]]∆Θ ⊢ CΘ ≤ BΘ (By assumption C)

= BΘ ⊕ {r1} (By assumption D, Lemma 48)

= BΘ ⊕ {r+} (By eq-distrib)

Finally, using A1, B1, C, and D, we can apply the induction hypothesis to the translation of e1,
giving us the final result:

{ };K[[∆]],∆Θ;S[[Γ]],ΓΘ;CΘ ⊢ C∆;Γ;Θ(letrecf [∆′](x) : σ at e1 = e2 in e3)k

• The case for type application. The translation is:

C∆;Γ;Θ(f [c1, . . . , cn])k = A(k, f [T [[c1]], . . . , T [[cn]]])

The source typing derivation A, where σ is ∀[α1:κ1, . . . , αn:κn].τ1
ψ
→ τ2 at r :

∆ ⊢R σ ∆ ⊢R ci : κi

∆; Γ ⊢R f [c1, . . . , cn] : (τ1
ψ
→ τ2)[c1, . . . , cn/α1, . . . , αn] at r, ∅

(Γ(f) = σ)
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First, we must show that the value f [T [[c1]], . . . , T [[cn]]] is well-formed under the context

Φ1 = { };K[[∆]],∆Θ;S[[Γ]],ΓΘ

where Θ = 〈∆Θ; ΓΘ;CΘ;BΘ〉

First, we can conclude that

(By A and rule v-var)

Φ1 ⊢ f : T [[∀[α1:κ1, . . . , αn:κn].τ1
ψ
→ τ2 at r]]

Now, by induction on the number of constructors ci applied to f , and use of the rule v-type, we
can conclude that

Φ1 ⊢ f [T [[c1]], . . . , T [[cn]]] : T [[τ1
ψ
→ τ2 at r]][T [[c1]], . . . , T [[cn]]/α1, . . . , αn]

By the Substitution Lemma, Lemma 45, we have

Φ1 ⊢ f [T [[c1]], . . . , T [[cn]]] : T [[(τ1
ψ
→ τ2 at r)[c1, . . . , cn/α1, . . . , αn]]]

Using this fact, assumption B, and Lemma 50, we obtain our final result:

Φ1;C
Θ ⊢ A(k, f [T [[c1]], . . . , T [[cn]]])

• The case for application. The translation is:

C∆;Γ;Θ(e
τf
1 e2)k =

C∆;Γ;Θ(e1)〈x1;
C∆;Γ;Θ,x1 :T [[τf ]](e2)〈x2;
let newrgnρ, xρ in
let fcont = (fix fcont[ ](C

Θ⊕ {ρ1}, x:T [[τ2]]).letfreergnxρ inA(k, x)) at xρ
in x1[ρ, B

Θ, CΘ ⊕ {ρ1}](x2, fcont)〉〉

where

τf = τ1
ψf
→ τ2 at r

The source typing derivation for the term is (A):

(A1) ∆; Γ ⊢R e1 : τ1
ψ3→ τ2 at r, ψ1 (A2) ∆; Γ ⊢R e2 : τ1, ψ2

∆; Γ ⊢R e1e2 : τ2, ψ1 ∪ ψ2 ∪ ψ3 ∪ {r}

We begin showing that the result of the translation is type-correct by showing that the body of
the innermost continuation (letnewrgnρ, xρ in · · ·) is well-formed under the appropriate context.
In order to make the derivation more manageable, we will use the following abbreviations:
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Φ1 = { };K[[∆]],∆Θ;S[[Γ]],ΓΘ, x1:T [[τf ]], x2:T [[τ2]];C
Θ

Φ2 = { };K[[∆]],∆Θ, ρ:Rgn;S[[Γ]],ΓΘ, x1:T [[τf ]], x2:T [[τ2]], xρ:ρ handle;CΘ ⊕ {ρ1}
Φ3 = { };K[[∆]],∆Θ, ρ:Rgn;S[[Γ]],ΓΘ, x1:T [[τf ]], x2:T [[τ2]], xρ:ρ handle, fcont:τcont
Φ4 = { };K[[∆]],∆Θ, ρ:Rgn;S[[Γ]],ΓΘ, x1:T [[τf ]], x2:T [[τ2]], xρ:ρ handle

Φ5 = { };K[[∆]],∆Θ, ρ:Rgn;S[[Γ]],ΓΘ, x1:T [[τf ]], x2:T [[τ2]], xρ:ρ handle, fcont:τcont, x:T [[τ2]]
e′1 = let fcont = hcont at xρ in e

′
2

e′2 = x1[ρ, B
Θ, CΘ ⊕ {ρ1}](x2, fcont)

hcont = fix fcont[ ](C
Θ⊕ {ρ1}, x:T [[τ2]]).letfreergnxρ inA(k, x))

τapp = (CΘ ⊕ {ρ1}, T [[τ1]], τcont)→ 0 at r
τcont = (CΘ ⊕ {ρ1}, T [[τ2]])→ 0 at ρ

The derivation is as follows:

Dapp

Φ3 ⊢ x1[ρ, B
Θ, CΘ ⊕ {ρ1}] : τapp

(by v-var)

Φ3 ⊢ x2 : T [[τ1]]

(by v-var)

Φ3 ⊢ fcont : τcont Dr DCΘ

Φ2, fcont:τcont ⊢ x1[ρ, B
Θ, CΘ ⊕ {ρ1}](x2, fcont) Dxρ Dh Dρ

Φ2 ⊢ let fcont = hcont at xρ in e
′
2

Φ1 ⊢ let newrgnρ, xρ in e′1

The derivation Dapp can be proven as follows. First, by rule v-var, we can deduce

Φ3 ⊢ x1 : T [[τf ]] = ∀[ρ′:Rgn, ǫ:Cap, ǫ′ ≤ ǫ⊕ T [[ψ3]]⊕ {ρ′1}].(ǫ
′, T [[τ1]], τcont)→ 0 at r

From this judgement, two applications of the rule v-type give us:

Φ3 ⊢ x1[ρ, B
Θ] : ∀[ǫ′ ≤ BΘ ⊕ T [[ψ3]]⊕ {ρ1}].(ǫ′, T [[τ1]], τcont)→ 0 at r

Finally, by rule v-sub, we can conclude:

Φ3 ⊢ x1[ρ, B
Θ, CΘ ⊕ {ρ1}] : ∀[].(CΘ ⊕ {ρ1}, T [[τ1]], τcont)→ 0 at r

because the required sub-capability relation holds:

K[[∆]],∆Θ, ρ:Rgn ⊢ CΘ ⊕ {ρ1} ≤ BΘ ⊕ {ρ1} (By assumption C)

= BΘ ⊕ T [[ψ3]]⊕ {ρ1} (By assumption D, Lemma 48)

≤ BΘ ⊕ T [[ψ3]]⊕ {ρ1} (By rule sub-bar)

Next, we consider the derivation Dr. Here we must show that

K[[∆]],∆Θ, ρ:Rgn ⊢ CΘ ⊕ {ρ1} ≤ C ′′ ⊕ {r+}

for some capability C ′′. The reasoning is straightforward:
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K[[∆]],∆Θ, ρ:Rgn ⊢ CΘ ⊕ {ρ1} = {ρ1} ⊕CΘ (By rule eq-comm)

≤ {ρ1} ⊕BΘ (By assumption C)

= {ρ1} ⊕BΘ ⊕ T [[{r}]] (By assumption D, Lemma 48)

= {ρ1} ⊕BΘ ⊕ {r1} (By def. of translation)

= {ρ1} ⊕BΘ ⊕ {r+} (By rule eq-distrib)

Next, we consider DCΘ . The judgement we must prove is K[[∆]],∆Θ ⊢ CΘ ⊕ {ρ1} ≤ CΘ ⊕ {ρ1}.
This follows by rules sub-eq and eq-reflex.

Next, we consider Dxρ . The judgement we must prove is: Φ4 ⊢ xρ : ρ handle. The judgement
follows by rule v-var.

Next, we must prove Dh:

(by v-var)

Φ5 ⊢ xρ : ρ handle

(by eq-reflex)

K[[∆]],∆Θ, ρ:Rgn ⊢ CΘ ⊕ {ρ1} = CΘ ⊕ {ρ1} : Cap DA(k,x)

Φ5;C
Θ ⊕ {ρ1} ⊢ let freergnxρ inA(k, x)

Φ4 ⊢ hcont at ρ : T [[τf ]]

The judgement we are trying to prove in the derivation DA(k,x) is Φ5;C
Θ ⊢ A(k, x). Using rule

v-var, we can conclude that Φ5 ⊢ x : T [[τ2]]. Assumption B tells us that Φ5;C
Θ ⊢ ek. Hence, by

Lemma 50, we have the result.

Finally, we show Dρ. We must proveK[[∆]],∆Θ, ρ:Rgn ⊢ CΘ⊕{ρ1} ≤ C ′′⊕{ρ+} for some capability
C ′′. This fact follows using rule sub-dup (C ′′ is CΘ).

We have now satisfied all of the requirements necessary to show that the body of the innermost
continuation is well-formed:

(B2) Φ1 ⊢ letregionρ, xρ in e
′
1

We have A2 from the source typing derivation. If we let C2 be C and D2 be D, then we fulfill all
of the requirements for the induction hypothesis and we may conclude E2:

{ };K[[∆]],∆Θ;S[[Γ]],ΓΘ, x1:T [[τf ]];C
Θ ⊢ C∆;Γ;Θ,x1 :T [[τf ]](e2)〈x2; letregionρ, xρ in e

′
1〉

Now, using this fact, A1 from the source typing derivation, C, and D, we can apply the induction
hypothesis and conclude E1:

{ };K[[∆]],∆Θ;S[[Γ]],ΓΘ;CΘ ⊢ C∆;Γ;Θ(e1)〈x1; C∆;Γ;Θ,x1:T [[τf ]](e2)〈· · ·〉〉

which is equivalent to the result E that we were trying to prove.
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• The case for letregion . The translation is:

C∆;Γ;Θ(letregionρ, xρ in e)k =
letnewrgnρ, xρ in
C∆{ρ:Rgn};Γ{xρ:ρ handle};Θ′ (e)〈x′; freergnxρ inA(k, x′)〉

where
Θ′ = 〈∆Θ; ΓΘ;CΘ ⊕ {ρ1};BΘ ⊕ {ρ1}〉

The source typing derivation A:

(A1) ∆{ρ:Rgn}; Γ{xρ:ρ handle} ⊢R e : τ, ψ

∆; Γ ⊢R letregionρ, xρ in e : τ, ψ\{ρ}

(

ρ 6∈ ftv (τ ) ∪Dom(∆)
xρ 6∈ Dom(Γ)

)

First, we show that the continuation for the translation of e is well-formed under an appropriate
context:

DA(k,x′) DCΘ

(by v-var)

K[[∆, ρ:Rgn]],∆Θ;S[[Γ, xρ:ρ handle]],ΓΘ,Γk, x′:T [[τ ]] ⊢ xρ : ρ handle

(B1) K[[∆, ρ:Rgn]],∆Θ;S[[Γ, xρ:ρ handle]],ΓΘ, x′:T [[τ ]];CΘ ⊕ {ρ1} ⊢ letfreergnxρ inA(k, x′)

The judgement we must prove in DA(k,x′) is:

(J) K[[∆, ρ:Rgn]],∆Θ;S[[Γ, xρ:ρ handle]],ΓΘ, x′:T [[τ ]];CΘ ⊢ A(k, x′)

By rule v-var, we can conclude:

K[[∆, ρ:Rgn]],∆Θ;S[[Γ, xρ:ρ handle]],ΓΘ, x′:T [[τ ]] ⊢ x′ : T [[τ ]]

Using this fact, assumption B and Lemma 50, we can conclude (J).

The judgement we must prove in DCΘ is:

K[[∆, ρ:Rgn]],∆Θ ⊢ CΘ ⊕ {ρ1} = CΘ ⊕ {ρ1}

which follows by the rule eq-reflex.

Now, we have fulfilled all the requirements necessary to show that the body of the innermost
continuation is well-formed (call this fact B1). We have A1 from the typing derivation. In order
to apply the induction hypothesis, we must show C1:

K[[∆, ρ:Rgn]],∆Θ ⊢ CΘ ⊕ {ρ1} ≤ BΘ ⊕ {ρ1} (By assumption C)

≤ BΘ ⊕ {ρ1} (By rule sub-bar)

= BΘ ⊕ {ρ1} (By rule eq-distrib)

and also D1:
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K[[∆, ρ:Rgn]],∆Θ ⊢ BΘ ⊕ {ρ1} = BΘ ⊕ T [[ψ\{ρ}]]⊕ {ρ1} (By assumption D)

= BΘ ⊕ T [[ψ]]⊕ {ρ1} (By Lemma 49)

= BΘ ⊕ {ρ1} ⊕ T [[ψ]] (By rule eq-comm)

Together A1, B1, C1 and D1 satisfy the preconditions for applying the induction hypothesis. The
result is E1:

K[[∆, ρ:Rgn]],∆Θ;S[[Γ, xρ:ρ handle]],ΓΘ;CΘ ⊕ {ρ1} ⊢ CK[[∆,ρ:Rgn]],∆Θ;S[[Γ,xρ:ρ handle]],Θ′ (e)〈· · ·〉

Now, we can show the result of the translation type-checks:

E1

K[[∆]],∆Θ;S[[Γ]],ΓΘ;CΘ ⊢ letnewrgnρ, xρ inCK[[∆,ρ:Rgn]],∆Θ;S[[Γ,xρ:ρ handle]],Θ′ (e)〈· · ·〉

• The equality rule. The source typing derivation A is

∆; Γ ⊢R e : τ, ψ ∆ ⊢R τ = τ ′ : Type ∆ ⊢R ψ ⊆ ψ′

(A1)∆; Γ ⊢R e : τ ′, ψ′

and the continuation k = 〈x; ek〉 is well-formed under the appropriate context (B):

{ };K[[∆]],∆Θ;S[[Γ]],ΓΘ, x:T [[τ ]];CΘ ⊢ ek

By Lemma 44 and the equality judgement ∆ ⊢ τ = τ ′ : Type we can deduce that

K[[∆]] ⊢ T [[τ ]] = T [[τ ′]] : Type

Therefore, by Lemma 51, we can deduce (B1).

{ };K[[∆]],∆Θ;S[[Γ]],ΓΘ, x:T [[τ ′]];CΘ ⊢ ek

Now, recall Assumption D states that

K[[∆]],∆ ⊢ BΘ = BΘ ⊕ T [[ψ′]] : Cap

Using this fact, and the source typing derivation (A), which states that ∆ ⊢ ψ ⊆ ψ′, and Lemma 48,
we can deduce that (D1)

K[[∆]],∆ ⊢ BΘ = BΘ ⊕ T [[ψ]] : Cap

Using A1, B1, C, and D1, we can apply the induction hypothesis and obtain

{ };K[[∆]],∆Θ;S[[Γ]],ΓΘ;CΘ ⊢ C∆;Γ;Θ(e)k

and we are done.
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We have completed the proof that the induction hypothesis is preserved by the translation. In order to
obtain the proof of the CPS translation theorem, we simply instantiate the induction hypothesis. We
are given part A: ·; · ⊢ e : int, ∅.

The continuation k is 〈x; halt x〉. Using the halt rule, we have part B,

{ }; ·; x:int ⊢ x : int · ⊢ ∅ = ∅ : Cap

{ }; ·; x:int; ∅ ⊢ halt x

Part C is trivial: · ⊢ ∅ ≤ ∅.

Part D is also straightforward,

· ⊢ ∅ ≤ ∅ (By rule sub-eq)

= ∅ ⊕ ∅ (By rule eq-dup)

= ∅ ⊕ T [[∅]] (By definition of T [[ · ]])

Therefore, we can conclude E, { }; ·; ·; ∅ ⊢ CΘ(e)k where Θ is the empty translation environment 〈·; ·; ∅; ∅〉
and k is the trivial continuation 〈x; halt x〉.

2
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