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Abstract. Meta-interpretive learning (MIL) is a form of inductive logic pro-
gramming that learns logic programs from background knowledge and exam-
ples. We claim that adding types to MIL can improve learning performance. We
show that type checking can reduce the MIL hypothesis space by a cubic factor.
We introduce two typed MIL systems: MetagolT and HEXMILT , implemented
in Prolog and Answer Set Programming (ASP), respectively. Both systems sup-
port polymorphic types and can infer the types of invented predicates. Our
experimental results show that types can substantially reduce learning times.

1 Introduction

Meta-interpretive learning (MIL) [22,23,8] is a form of inductive logic programming
(ILP) [20]. MIL learns logic programs from examples and background knowledge (BK)
by instantiating metarules, second-order Horn clauses with existentially quantified
predicate variables. Metarules are a form of declarative bias [28] that define the
structure of learnable programs. For instance, to learn the grandparent/2 relation
given the parent/2 relation, the chain metarule would be suitable:

P(A, B)←Q(A, C), R(C , B)

In this metarule1 the letters P, Q, and R denote existentially quantified second-order
variables (variables that can be bound to predicate symbols) and the letters A, B and
C denote universally quantified first-order variables (variables that can be bound
to constant symbols). Given the chain metarule, the background parent/2 relation,
and examples of the grandparent/2 relation, a MIL learner will try to find the correct
predicate substitutions, such as:

{P/grandparent, Q/parent, R/parent}

When applied to the chain metarule, these substitutions result in the theory:

grandparent(A, B)← parent(A, C), parent(C , B)

? Supported by Engineering and Physical Sciences Research Council [grant number
EP/N509711/1]

1 The fully quantified rule is ∃P∃Q∃R∀A∀B∀C P(A, B)←Q(A, C), R(C , B)
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The MIL hypothesis space grows quickly given more background relations [6,11].
For instance, suppose that when learning the grandparent/2 relation we have an
additional k background relations, such as head/2, tail/2, length/2, etc. Then for the
chain metarule, there are k + 2 substitutions for each predicate variable and thus
(k+ 2)3 total substitutions. Existing MIL systems, such as Metagol [9] and HEXMIL
[16], would potentially consider all these possible substitutions.

We claim that considering the types of predicates can significantly improve learn-
ing performance by reducing the number of predicate substitutions. For instance,
suppose that when learning the grandparent/2 relation we add types to the relations,
such as (person, person) to parent/2, (list(T ), int) to length/2, etc. Then given an ex-
ample of the grandparent/2 relation with the type (person, person), only the parent/2
relation (and grandparent/2 itself) matches the example’s type, and so the number
of substitutions is reduced from (k+ 2)3 to 23.

Our main contributions are:

– We extend the MIL framework to support polymorphic types (Section 3.3).
– We show that type checking can reduce the MIL hypothesis space by a cubic

factor (Section 3.4).
– We introduce MetagolT and HEXMILT which extend Metagol and HEXMIL re-

spectively. Both support polymorphic types and both can infer types for invented
predicates (Section 4).

– We conduct experiments which show that types can substantially reduce learning
times when there are irrelevant background relations (Section 5).

2 Related work

Program induction Program synthesis is the automatic generation of a computer
program from a specification. Deductive approaches [19] deduce a program from a
full specification that precisely states the requirements and behaviour of the desired
program. By contrast, program induction approaches induce (learn) a program from
an incomplete specification, typically input/output examples. Many program induc-
tion approaches learn specific classes of programs, such as string transformations
[33]. By contrast, MIL is general-purpose, and is, for instance, capable of grammar
induction [22], learning robot strategies [7], and learning efficient algorithms [10].

Types in program induction Functional program induction approaches often use types.
For instance, bidirectional type checking is the foundation of the MYTH systems [26],
where MYTH2 [14] supports polymorphic types. SYNQUID [27] forgoes input/output
examples and only uses refinement types as its specification. The authors argue
that refinement specifications are terser than examples. However, because of the
need to supply correct and informative refinement types, SYNQUID is more similar
to deductive synthesis approaches. In contrast to these inductive approaches, we
focus on learning logic programs, including support for predicate invention, i.e. the
introduction of new predicate symbols [36].
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Inductive logic programming ILP is a form of program induction which learns logic pro-
grams. ILP systems are typically untyped. The use of types in ILP is mostly restricted
to mode declarations [21], which are used by many systems [35,21,31,17,29]. Mode
declarations define what literals can appear in a program. In the mode language,
modeh are declarations for head literals and modeb are declarations for body literals,
where + and − are followed by the type of each argument and represent input
and output arguments respectively, e.g. :-modeh(1,mult(+int,+int,-int)). Mode
declarations are metalogical statements. By contrast, we introduce typed atoms (Def-
inition 4) which are logical statements. As far as we are aware, our work is the first
to declaratively represent types. In addition, in contrast to the existing approaches
in ILP, our approach supports polymorphic types and we can also infer the types
of invented predicates. Finally, to our best knowledge, we are the first to provide
theoretical results that show that types can improve learning performance (Theorem
1).

MIL is a form of ILP that supports predicate invention and learning recursive
programs. MIL is typically based on a Prolog meta-interpreter [9] but has also been
encoded as SMT [1] and ASP problems [16]. We extend MIL to support learning
with types. We demonstrate the approach in both Prolog and ASP settings. Farquhar
et al. [13] considered adding types to MIL. However, their work is mainly concerned
with applying MIL to learn strategies for interactive theorem proving and their work
on types is minimal with only two simple types considered.

Types in logic programming The main Prolog [38,5] and ASP [15] implementations
do not explicitly support types. There are, however, typed Prolog-like languages, such
as the functional-logic language Mercury [34] and the higher-order logic language
λProlog [25]. Most work on adding types to logic programming [24,30] is motivated
by reducing runtime errors by restricting the range of variables. By contrast, we are
motivated by reducing learning times by restricting the range of variables.

3 Framework

3.1 Preliminaries

We assume familiarity with logic programming. We do, however, restate key termi-
nology. We denote the predicate, constant, and function signatures as P , C , and
F respectively. A variable is first-order if it can be bound to a constant symbol, a
function symbol, or another first-order variable. A variable is second-order if it can
be bound to a predicate symbol or another second-order variable. We denote the
sets of first-order and second-order variables as V1 and V2 respectively. A term is a
variable, a constant symbol, or a function symbol of arity n immediately followed by
a bracketed n-tuple of terms. A term is ground if it contains no variables. An atom
is a formula p(t1, . . . , tn), where p is a predicate symbol of arity n and each t i is a
term. An atom is ground if all of its terms are ground. We denote as p/n a predicate
or function symbol p with arity n. A second-order term is a second-order variable
or a predicate symbol. An atom is second-order if it has at least one second-order
term. A literal is an atom A (a positive literal) or its negation ¬A (a negative literal).
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A clause is a disjunction of literals. The variables in a clause are implicitly universally
quantified. A Horn clause is a clause with at most one positive literal. A definite
clause is a Horn clause with exactly one positive literal. A clause is second-order if it
contains a second-order atom. A logic program is a set of Horn clauses. The constant
symbols are distinct from the functional symbols, as the latter all have non-zero arity.
We call a logic program without proper functional symbols a datalog program.

3.2 Meta-interpretive learning

MIL was originally based on a Prolog meta-interpreter. The key difference between
a MIL learner and a standard Prolog meta-interpreter is that whereas a standard
Prolog meta-interpreter attempts to prove a goal by repeatedly fetching first-order
clauses whose heads unify with a given goal, a MIL learner additionally attempts to
prove a goal by fetching second-order metarules, supplied as BK, whose heads unify
with the goal. The resulting predicate substitutions are saved and can be reused later
in the proof. Following the proof of a set of goals, a logic program is induced by
projecting the predicate substitutions onto their corresponding metarules.

We formally define the MIL setting, which we then extend with types. We first
define metarules [6]:

Definition 1. (Metarule) A metarule is a second-order formula of the form:

∃π∀µ A0← A1, . . . , Am

where π ⊆ V1 ∪V2, µ ⊆ V1 ∪V2, π and µ are disjoint, and each Ai is an atom of the
form p(t1, . . . , tn) such that p/n ∈ P ∪π∪µ and each t i ∈ C ∪P ∪π∪µ.

When describing metarules, we typically omit the quantifiers and use the more terse
notation shown in Fig. 1.

Name Metarule
indent P(A, B)←Q(A, B)
dident P(A, B)←Q(A, B), R(A, B)
precon P(A, B)←Q(A), R(A, B)
curry P(A, B)←Q(A, B, R)
chain P(A, B)←Q(A, C), R(C , B)
tailrec P(A, B)←Q(A, C), P(C , B)

Fig. 1: Example metarules. The letters P, Q, and R denote existentially quantified
second-order variables. The letters A, B, and C denote universally quantified first-
order variables.

We define the standard MIL input:

Definition 2 (MIL input). The MIL input is a triple (B, E+, E−) where:
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– B = BC∪M where BC is a logic program representing BK and M is a set of metarules
– E+ and E− are disjoint sets of ground atoms representing positive and negative

examples respectively

We now define the hypotheses that MIL will consider. Given a set of metarules M ,
a logic program H is a hypothesis if each clause of H can be obtained by grounding the
existentially quantified variables of a metarule in M . This hypothesis space definition
enforces a strong inductive bias in MIL.

We define the standard MIL problem:

Definition 3 (MIL problem). Given a MIL input (BC ∪M , E+, E−), the MIL problem
is to find a logic program hypothesis H such that H ∪ BC |= E+ and H ∪ BC 6|= E−. We
call H a solution to the MIL problem.

3.3 Typed meta-interpretive learning

We extend MIL to support types. We assume a finite set Tb ⊆ C of base types (e.g.
int, bool), a finite set Tc ⊆F of polymorphic type constructors (e.g. list/1, array/1),
and a set of type variables Vt . We inductively define a set T of types:

– if τ ∈ Tb ∪ Vt then τ ∈ T
– if c/n ∈ Tc and τ1, . . . ,τn ∈ T then c(τ1, . . . ,τn) ∈ T
– if τ1, . . . ,τn ∈ T then (τ1, . . . ,τn) ∈ T

The last case concerns types for predicates. For instance (l ist(S), l ist(T ), (S, T )) is
the type for the map/3 predicate. We introduce typed atoms:

Definition 4 (Typed atom). A typed atom is a formula p(τ1, . . . ,τm, t1, . . . , tm), where
p is a predicate symbol of arity n, m+m = n, τ1, . . . ,τm ∈ T , and each t i is a first-order
or second-order term.

We can extend this notion to logic programs:

Definition 5 (Typed logic program). A typed logic program is a logic program with
typed atoms in place of atoms.

To aid readability, in the rest of this paper we label each atom with its type. For instance
we denote succ(int, int, A, B) as succ(A, B):(int, int), and head(list(T), T, [H|_], H) as
head([H|_], H):(list(T), T). Note that the definition of typed logic programs also
applies to metarules. For instance, the typed chain metarule is:

P(A, B):(Ta, T b)←Q(A, C):(Ta, Tc), R(C , B):(Tc, T b)

We define the typed MIL input:

Definition 6 (Typed MIL input). A typed MIL input is a triple (B, E+, E−) where:

– B = BC ∪M where BC is a typed logic program and M is a set of typed metarules
– E+ and E− are disjoint sets of typed ground atoms representing positive and negative

examples respectively

The typed MIL problem easily follows:

Definition 7 (Typed MIL problem). Given a typed MIL input (BC ∪M , E+, E−), the
typed MIL problem is to find a typed logic program hypothesis H such that H ∪BC |= E+

and H ∪ BC 6|= E−.
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3.4 Hypothesis space reduction

We now show that types can improve learning performance by reducing the size of
the MIL hypothesis space which in turn reduces sample complexity and expected
error. Note that in this section any reference to MIL typically also refers to typed MIL.
In MIL, the size of the hypothesis space is a function of the number of metarules m,
the number of predicate symbols p, and the maximum program size n. We typically
restrict metarules by their body size and literal arity. For instance, the chain metarule
is restricted to two body literals of arity two. We say that a metarule is in the fragment
M i

j if it has at most j literals in the body and each literal has arity at most i. By
restricting the form of metarules, we can calculate the size of a MIL hypothesis space:

Proposition 1 (MIL hypothesis space [11]). Given a MIL input with p predicate
symbols and m metarules inM i

j , the number of programs expressible with at most n
clauses is O((mp j+1)n).

Proposition 1 shows the MIL hypothesis space grows exponentially both in the size of
the target program and the number of body literals in a clause. For simplicity, let us
only consider metarules inM 2

2 , such as the chain metarule. Then the corresponding
MIL hypothesis space’s size is O((mp3)n).

We now consider the advantages of adding types, which we show can improve
learning performance when they allow us to ignore irrelevant BK predicates. Infor-
mally, given a typed MIL input, a predicate symbol is type relevant when it can be
used in a hypothesis that is type consistent with the BK and the examples. We define
the relevant ratio to characterise the reduction of the hypothesis space:

Definition 8 (Relevant ratio). Given a typed MIL input with p predicate symbols
where only p′ are type relevant, the relevant ratio is r = p′/p.

The relevant ratio will always be between 0 and 1 with lower values indicating a
greater reduction in the hypothesis space. We characterise this reduction:

Theorem 1 (Hypothesis space reduction). Given a typed MIL input with p predicate
symbols, m metarules inM 2

2 , a maximum program size n, and a relevant ratio r, typing
reduces the size of the MIL hypothesis space by a factor of r3n.

Proof. Replacing p with rp in Proposition 1 and rearranging terms leads to O(r3n(mp3)n).

Theorem 1 shows that types can considerably reduce the size of hypothesis spaces2.
The Blumer bound [2] says that given two hypothesis spaces of different sizes,
searching the smaller space will result in less error and lower learning times compared
to the larger space, assuming the target hypothesis is in both spaces. This result
implies that types should improve learning performance, so long as they do not
exclude the target hypothesis from the hypothesis space. In this next section we
introduce MetagolT and HEXMILT which implement this idea.

2 It is not hard too see that Theorem 1 generalizes to a reduction factor of r( j+1)n for any
hypothesis spaceM i

j .
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4 MetagolT and HEXMILT

We present two typed MIL systems: MetagolT and HEXMILT , which extend Metagol
and HEXMIL respectively.

4.1 MetagolT

MetagolT is based on an adapted Prolog meta-interpreter. Fig. 2 shows the MetagolT
algorithm described as Prolog code. Given a set of atoms representing positive
examples, MetagolT tries to prove each atom in turn. MetagolT first tries to prove an
atom using BK by delegating the proof to Prolog (line 9). Failing this, MetagolT tries
to unify the atom with the head of a metarule (line 16) and to bind the existentially
quantified variables in a metarule to symbols in the signature. MetagolT saves the
resulting predicate substitution and tries to prove the body of the metarule. The
predicate substitutions can be reused to prove atoms later on (line 11). After proving
all atoms, MetagolT induces a logic program by projecting the predicate substitutions
onto their corresponding metarules. MetagolT checks the consistency of the induced
program with the negative examples. If the program is inconsistent, then MetagolT
backtracks to explore different branches of the SLD-tree. Metagol uses iterative
deepening to ensure that the first consistent hypothesis returned has the minimal
number of clauses. At each depth d, MetagolT searches for a consistent hypothesis
with at most d clauses. At each depth d, MetagolT introduces d-1 new predicate
symbols, formed by taking the name of the task and adding underscores and numbers.

1 learn(Pos ,Neg ,Prog):-
2 prove(Pos ,[],Prog),
3 not(prove(Neg ,Prog ,Prog )).
4 prove([],Prog ,Prog).
5 prove([Atom|Atoms],Prog1 ,Prog2):-
6 prove_aux(Atom ,Prog1 ,Prog3),
7 prove(Atoms ,Prog3 ,Prog2).
8 prove_aux(Atom:DT:GT),Prog ,Prog):-
9 call(Atom:DT:GT).

10 prove_aux(Atom:DT:GT,Prog1 ,Prog2):-
11 member(sub(Name ,GT,Subs),Prog1),
12 unifiable(DT,GT),
13 metarule(Name ,Subs ,(Atom:DT:GT:-Body)),
14 prove(Body ,Prog1 ,Prog2).
15 prove_aux(Atom:DT:GT,Prog1 ,Prog2):-
16 metarule(Name ,Subs ,(Atom:DT:GT:-Body)),
17 prove(Body ,[sub(Name ,GT,Subs)|Prog1],Prog2).

Fig. 2: The MetagolT algorithm.
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MetagolT extends Metagol to support types. We annotate each atom with its type
using the syntax described in Section 3.3. For instance, the following Prolog code
denotes an atom with (list(char), int) as its type:

f([a,b,c],5):(list(char),int)

In Fig. 2, each atom and its type is denoted by the variables Atom:DT . The variable DT
represents the derivation type of an atom. The derivation type is the type of the values
of that atom. When trying to prove an atom, MetagolT ignores predicates whose
derivation types do not match, which allows it to prune the hypothesis space (relative
to untyped Metagol). This type check is done through unification. For instance, when
trying to prove an atom using BK (line 9), unification ensures that MetagolT will
only call a predicate in the BK if its derivation type matches the derivation type of
the atom it is trying to prove. For invented predicate symbols, the derivation type is
inferred from the type of the values used to induce that symbol. For instance, suppose
we have induced the following theory to explain the above f/2 atom:

f (A, B):(list(char), int)← f1(A, C):(list(char), int), succ(C , B):(int, int)
f1(A, B):(list(char), int)← length(A, C):(list(char), int), succ(C , B):(int, int)

In this theory the derivation type of the invented predicate symbol f1/2 is (list(char), int).
Because f1/2 is sufficiently general to be applied to lists of any type, we want to
assign it a general type that will allow it to be polymorphically reused. For instance,
we want the theory to also entail the atom f ([1, 2, 3, 4], 6):(list(int), int). To support
polymorphic reuse, we annotate each atom with a second type that denotes the gen-
eral type of its predicate symbol. The general type is the least general generalisation
of the derivation types for an atom. For instance, given the atoms:

f ([a, b, c], 5) : (list(char), int)
f ([1, 2,3, 4], 6) : (list(int), int)

We say that (list(T), int) is the general type of f /2. When trying to prove an atom
using an already invented predicate, line 13 in Fig. 2 checks that the derivation type
of atom is an instance of the general type of the invented predicate.

4.2 HEXMILT

HEXMILT extends the forward-chained state-based encoding of HEXMIL [16]. Forward-
chained refers to a restricted class of metarules. For brevity we refer the reader to [16]
for a full description of HEXMIL. Our main contribution is to extend HEXMIL with
types. We do so by augmenting every atom in the ASP encoding with an additional
argument that represents the type of that atom. For instance, the untyped successor
relation

binary_bg(succ,A,B):-B=A+1,state(A).

becomes:
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binary_bg(succ,(int,int),A,B):-B=A+1,state(A,int).

We likewise augment all the deduction rules with types.
Our second contribution is to extend the HEXMIL encoding to support learning

second-order programs. However, as this extension is not crucial to the claims of this
paper we leave a description to future work.

We have included the typed encodings as Appendix A.

5 Experiments

We now experimentally3 examine the effect of adding types to MIL. We test the null
hypothesis:

Null hypothesis 1 Adding types to MIL cannot reduce learning times

To test this null hypothesis we compare the learning times of the typed versus the
untyped systems, i.e. MetagolT versus Metagol, and HEXMILT versus HEXMIL.

5.1 Experiment 1: ratio influence

Theorem 1 shows that types can reduce the MIL hypothesis by a cubic factor de-
pending on the relevant ratio (Definition 8), where a lower ratio indicates a greater
reduction in the hypothesis space. In this experiment we vary the relevant ratio and
measure the effect on learning times. In this experiment there is no solution to the
MIL problem. The purpose of the experiment is to measure the time it takes to search
the entire hypothesis space.

Materials We use a single positive example p(1, 0) : (int, int). We use 20 BK predicates,
each a uniquely named copy of the succ/2 relation, e.g. succ1/2, succ2/2, . . . , succ20/2.
The type of each predicate is either (int, int) or (⊥,⊥), where ⊥ is a dummy type.
We use the chain metarule.

Methods For each relevant ratio rp in {0, 0.05, 0.1, . . . , 1.0} we set the proportion of
types (int, int) versus (⊥,⊥) to rp. We consider program hypotheses with at most 3
clauses. We measure mean learning times and standard errors over 10 repetitions.
For the HEXMIL experiments, we bound integers to the range 0 to 5000 to ensure
the grounding is finite and tractable.

Results Fig. 3 shows that varying the relevant ratio (rp) does not affect the learning
times of the untyped systems. By contrast, varying rp affects the learning times of the
typed systems. Specifically, types reduce learning times for both typed systems when
rp ≤ 0.95. When rp is 0 the typed systems almost instantly determine that there is
no solution. When rp is 0.5, types reduce learning time by approximately 500% with
MetagolT and and 300% with HEXMILT . When rp is 1 the typed systems take slightly

3 Experimental data available at https://github.com/rolfmorel/jelia19-typedmil

https://github.com/rolfmorel/jelia19-typedmil
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longer than their untyped versions because of the small overhead in handling types.
The flatter curve of HEXMILT compared to MetagolT is because of implementation
differences. The main cost of MetagolT is trying different predicate substitutions.
By contrast, the main cost of HEXMILT is grounding the succi/2 predicates. Overall
these results suggest that we can reject the null hypothesis.
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Fig. 3: Relevant ratio experiment results.

5.2 Experiment 2: droplasts

In this experiment we learn a droplasts program that takes lists of lists and drops the
last element of each sublist. Fig. 4 shows examples of this problem. We investigate
how varying the amount of BK affects learning time.

droplasts([jelia,2019],[jeli,201]).
droplasts([artificial,intelligence],[artificia,intelligenc]).
droplasts([rende,cyprus,madeira,toulouse],[rend,cypru,madeir,toulous]).

Fig. 4: Example droplasts/2 atoms.

Materials We provide each system with two positive droplasts(x , y) examples where
x is the input list and y is the output list. To generate an example, for the input
list we select a random integer k between 2 and 5 that represents the number of
sublists. We then randomly generate k sublists, where each sublist contains between
three and five lowercase characters. The output list is the input list excluding the last
element of each sublist. We use small list lengths because of grounding issues with
the ASP systems. The Prolog systems can handle much larger values, as previously
demonstrated [8]. Fig. 5 shows the BK available in the experiments. We always use
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the map/3, tail/2, and reverse/2 predicates, and sample others to include. We use
the chain and curry metarules.

tail(A,B):(list(T),list(T)). succ(A,B):(int,int).
map(A,B,F):(list(T),list(S),(S,T)). last(A,B):(list(T),T).
reverse(A,B):(list(T),list(T)). min_list(A,B):(list(int),int).
sumlist(A,B):(list(int),int). pred(A,B):(int,int).
head(A,B):(list(T),T). max_list(A,B):(list(int),int).

Fig. 5: BK predicates used in the droplasts experiment. We omit definitions for brevity.

Methods For each k in {0,1,. . . ,25}, we uniformly sample with replacement k predi-
cates from those shown in Fig. 5 and generate 2 positive training examples. For each
learning system, we learn a droplasts/2 program using the training examples and
BK augmented with the k sampled predicates. We measure mean learning times and
standard errors over 10 repetitions.

Results Fig. 6 shows that types reduce learning times in almost all cases. The high
variance in the ASP results is mainly because of predicates that operate over integers
(e.g. length/2), which greatly increase grounding complexity. In all cases both the
typed and untyped approaches learn programs with 100% accuracy (plot omitted
for brevity). Fig. 7 shows an example program learned by MetagolT . The Metagol
systems show a clear distinction in the learning times that they require. For the
HEXMIL systems intractability prohibits us from running the experiment with the
full 25 predicates, though the greater variance and higher mean learning times for
the untyped system are already apparent in Fig. 6. These results suggest that we can
reject the null hypothesis.
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Fig. 6: Droplasts experiment results.
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droplasts(A,B):( list(list(T)),list(list(T))):-
map(A,C,droplasts_1 ):( list(list(T)),list(list(T)),(list(T),list(T))).

droplasts_1(A,B):( list(T),list(T)):-
reverse(A,C):( list(T),list(T)),
droplasts_2(C,B):( list(T),list(T)).

droplasts_2(A,B):( list(T),list(T)):-
tail(A,C):( list(T),list(T)),
reverse(C,B):( list(T),list(T)).

Fig. 7: An example droplasts/2 program learned by MetagolT . The predicate symbols
droplasts_1/2 and droplasts_2/2 are invented by MetagolT .

5.3 Experiment 3: more problems

To further demonstrate that types can improve learning performance, we evaluate
the untyped and typed systems on four additional problems:

– filtercapslower/2 takes a list of characters, discards the lowercase characters, and
makes the remaining letters lowercase

– filterevendbl/2 takes a list of integers, discards the odd numbers, and doubles
the even numbers

– nestedincr/2 takes lists of lists of integers and increments each integer by two
– finddups/2 takes a list of characters and returns the duplicate character

Materials As with the previous experiment, we randomly generate examples of
varying lengths. We omit full details for brevity. We use the BK from Experiment
2 (Fig. 5) augmented with 14 predicates (Fig. 8), i.e. a total of 24 background
predicates. We use the chain, curry, dident, and tailrec metarules.

filter(A,B,F):(list(T),list(T),(T)). element(A,B):(list(T),T).
flatten(A,B):(list(list(T)),list(T)). double(A,B):(int,int).
list_to_set(A,B):(list(T),list(T)). toupper(A,B):(char,char).
msort(A,B):(list(T),list(T)). length(A,B):(list(T),int).
tolower(A,B):(char,char). even(A):(int).
odd(A):(int). set(A):(list(T)).
uppercase(A):(char). lowercase(A):(char).

Fig. 8: Additional BK predicates used in Experiment 3. We omit definitions for brevity.

Methods For each problem, we supply each system with all 24 BK predicates and
5 positive and 5 negative examples of each problem. We measure mean learning
times and standard errors over 10 repetitions. We set a maximum learning time of
10 minutes.
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Results Fig. 9 shows that types can significantly reduce learning times. The accuracy
of the Prolog systems is identical in all cases, and is only less than 100% for the
finddups/2 program (4 out of 10 trails learned an erroneous hypothesis). The ASP
timeouts are because the grounding is too large when using nested lists, integers,
or recursive metarules. Again, the clear distinction in performance of the typed and
untyped systems is evidence for rejecting the null hypothesis.

Problem Metagol MetagolT HEXMIL HEXMILT

droplasts/2 0.93± 0.40 0.07 ± 0.03 timeout timeout
filtercapslower/2 0.41± 0.21 0.09 ± 0.11 54± 27 10± 6
filterevendbl/2 0.34± 0.11 0.06 ± 0.04 timeout timeout
nestedincr/2 0.67± 0.31 0.05 ± 0.02 timeout timeout
finddups/2 4.50± 5.92 2.09 ± 3.13 timeout timeout

Fig. 9: Experiment 3 results that show mean learning times and standard error.

6 Conclusions

We have extended MIL to support types. We have shown that types can reduce the MIL
hypothesis space by a cubic factor (Theorem 1). We have introduced two typed MIL
systems: MetagolT , which extends Metagol, and HEXMILT which extends HEXMIL.
Both systems support polymorphic types and the inference of types for invented
predicates. We have experimentally demonstrated that types can significantly reduce
learning times for both systems.

Limitations and future work Although we have focused on extending MIL with types,
our results and techniques should be applicable to other areas of ILP and program
induction. Because we declaratively represent types, our techniques should be directly
transferable to other forms of ILP that use metarules [4,1,32,37,12,32]. Future work
should study the advantages of using types in these other approaches.

The MIL problem is decidable in the datalog setting [23]. However, because
typed MIL support polymorphic types, which are represented as function symbols,
the decidability of the typed MIL problem is unclear. Future work should address
this issue.

We have focused on polymorphic types. A natural extension, which has not been
explored in ILP, is to support more complex types, such as refinement types [18].

MIL supports predicate invention so it is sensible to ask whether it can also
support type invention. For instance, rather than treating strings as list of characters,
it would be advantageous to ascribe more precise types, such as postcode or email.
This idea is closely related to the idea of learning declarative bias [3].
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A Forward-Chained HEXMILT Encoding

binary_bg(succ ,(int ,int),X,Y) :-
Y = X + 1,state(X,int).

binary_bg(tail ,(list(T),list(T)),(HD,TL),TL) :-
state((HD,TL),list(T)).

binary_bg(length ,(list(T),int),X,Y) :-
&pyLength[X](Y),state(X,list(T)).

binary_bg(reverse ,(list(T),list(T)),X,Y) :-
&pyReverse[X](Y),state(X,list(T)).

ho_bg(map ,(list(S),list(T),(S,T)),(),(),F) :-
pred(F,(S,T)),ty(S),ty(T).

ho_bg(map ,(list(S),list(T),(S,T)),(H1,TL1),(H2,TL2),F) :-
state((H1,TL1),list(S)),
state(TL1 ,list(S)),
ty(S),ty(T),
pred(F,(S,T))
deduced(F,(S,T),H1,H2),
ho_bg(map ,(list(S),list(T),(S,T)),TL1 ,TL2 ,F).

pred(P,T) :- binary_bg(P,T,_,_).
pred(P,T) :- ho_bg(P,T,_,_,_).
pred(P,T) :- skolem(P),meta(_,T,P,_,_).
pred(P,T) :- pos_ex(P,T,_,_).

{meta(tohigherorder ,(S,T),P1,P2,P3)} :-
order(P1,P2),
pred(P2 ,(S,T,R)),
pred(P3,R),
deduced ((P2,P3),(S,T),_,_),
ty(S),ty(T).

deduced(P1,T,X,Y) :-
meta(tohigherorder ,T,P1,P2,P3),
deduced ((P2,P3),T,X,Y).

{meta(chain ,(S,T),P1,P2,P3)} :-
order(P1,P2),order(P1,P3),
pred(P2 ,(S,R)),pred(P3 ,(R,T)),
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deduced(P2 ,(S,R),X,Z),
deduced(P3 ,(R,T),Z,Y),ty(S),ty(T).

deduced(P1 ,(S,T),X,Y) :-
meta(chain ,(S,T),P1,P2,P3),
deduced(P2 ,(S,R),X,Z),
deduced(P3 ,(R,T),Z,Y).

deduced(P,T,X,Y) :- binary_bg(P,T,X,Y).
deduced ((P2,P3),(S,T),X,Y) :- ho_bg(P2 ,(S,T,_),X,Y,P3).

state(X,T) :- pos_ex(_,(T,_),X,_).
state(X,T) :- neg_ex(_,(T,_),X,_).
state(TL,list(T)) :- state((_,TL),list(T)).
state(HD,T) :- state((HD,_),list(T)).
state(Y,T) :- deduced(P,(_,T),_,Y).
state(X,T) :- deduced(P,(T,_),X,_).

order(X,Y) :- skolem(X), binary_bg(Y,_,_,_).
order(X,Y) :- skolem(X), ho_bg(Y,_,_,_,_).
order(X,Y) :- pos_ex(X,_,_,_), binary_bg(Y,_,_,_).
order(X,Y) :- pos_ex(X,_,_,_), ho_bg(Y,_,_,_,_).
order(X,Y) :- pos_ex(X,_,_,_), skolem(Y).
order(X,Y) :- skolem(X), skolem(Y), X < Y.

:- pos_ex(P,T,X,Y), not deduced(P,T,X,Y).
:- neg_ex(P,T,X,Y), deduced(P,T,X,Y).

:- #count{ M,P1,P2,P3 : meta(M,T,P1,P2,P3) } != N, size(N).
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