ISSN 0105-8517

Types and Automata

Michael I. Schwartzbach
Erik M. Schmidt

DAIMI PB - 316
July 1990

COMPUTER SCIENCE DEPARTMENT] h—ﬂ [
AARHUS UNIVERSITY

Ny Munkegade, Building 540
DK-8000 Aarhus C, Denmark

—]
H]
Y
_—I

ISSN 0105-8517

PB - 316 Schwartzbach & Schmidt: Types and Automata

Types and Automata

Michael I. Schwartzbach! Erik M. Schmidt?

Computer Science Department
Aarhus University
Ny Munkegade
DK-8000 Arhus C, Denmark

Abstract

A hierarchical type system for imperative programming languages gives rise
to various computational problems, such as type equivalence, type ordering,
etc. We present a particular class of finite automata which are shown to be
isomorphic to type equations. All the relevant type concepts turn out to
have well-known automata analogues, such as language equality, language
inclusion, etc. This provides optimal or best known algorithms for the type
system, by a process of translating type equations to automata, solving
the analogous problem, and translating the result back to type equations.
Apart from suggesting an implementation, this connection lends a certain
naturality to our type system. We also introduce a very general form of
extended (recursive) type equations which are explained in terms of (mono-
tone) alternating automata. Since types are simply equationally defined
trees, these results may have wider applications.

1 Introduction

We concern ourselves with a particular type system in which types are
possibly infinite, labeled trees. In order to employ this system in a pro-
gramming language we need to demonstrate decidability of certain prop-
erties and computability of certain constructions. Furthermore, we want
to obtain reasonably efficient algorithms. Among others, we need to pro-
vide solutions for equality, ordering, least upper bounds, and greatest
lower bounds of types.

1E-mail address: mis@daimi.dk
2E-mail address: emschmidt@daimi.dk

The main contribution of this paper is that type equations can be trans-
lated into a special kind of finite automata, such that the computational
problems for types become well-known automata problems. For example,
type equivalence is language equality, type ordering is language inclusion,
and least upper bounds and greatest lower bounds correspond to the con-
structions of union and intersection languages.

This connection serves the dual purpose of providing the desired algo-
rithms and justifying that our type system is, in some sense, very natural.

Inspired by the prefixing notation of class hierarchies we introduce a very
general form of extended type equations by allowing least upper bounds
and greatest lower bounds to appear as type operators in (recursive)
type equations. This mechanism is demonstrably very useful in simpler
cases, but we resolve the completely general situation by exploiting fur-
ther the strong connections to automata theory. We present an algorithm
to transform extended equations into equivalent basic equations, or to
decide that no such transformation is possible. The central part of this
algorithm finds a deterministic version of an alternating finite automaton
with monotone connectives and ¢-transitions.

The extended type equations can be very succinct, as the transformation
of a collection of n extended equations may require 22°™ pasic equations.

2 The Types

In this section we give a brief presentation of the type system in question.
For the purposes of this paper it is sufficient to view types as just labeled

trees. The semantic aspects of the present type system are discussed in
detail in [8,9,10].

2.1 Type Equations

The types are specified through a set of basic type equations

Type 11 = E;
Type 1T, = E,
Type T, = E,

where the T}’s are type variables and the E;’s are type ezpressions of the
following form

E:= o simple types
| T; type variables
| *E lists

| (n1: Ey,...,n; : Ey) partial products, k > 0, n; # n,

Here the n;’s are component names. Note that type equations may involve
arbitrary recursion. The simple types could be e.g. Int or Bool.

The types themselves are (possibly infinite) labeled trees generated by
unfolding the type equations. Informally, the trees are obtained by a
(never-ending) process of replacing type variables with the right-hand
sides of their definitions. A simple type yields a singleton tree labeled
with the type name. The expression *FE yields a node labeled * with a
single subtree corresponding to E. The expression (n; : Ei,...,ny : Ey)

yields a node labeled (ny,...,n) with k subtrees corresponding to the
Ei’s.

Formally, these trees can be defined as limits of approximations in the
complete partial order of labeled trees ordered by C, where T} C T} if
Ty can be obtained from T by replacing some subtrees with the special
symbol Q. This technique is developed in [5]; details of our application
may be found in [8].

Notice that the singleton tree €2 is the bottom element. This tree is also
a type, as it can be defined by the equation
Type A=A

We introduce the constant Q to denote this type directly.

In the following it will prove convenient to work exclusively with normal-
ized type equations, which are all of the form

Type A = q;

Type A= xB

Type A= (nlzBl,...,nk :Bk)
Type A=Q

where the B’s are type variables. Thus, normalized type equations have
exactly one type constructor on the right-hand side. Clearly, all type

3

equations can be normalized by the introduction of extra type variables.

2.2 Equivalence and Ordering

A type will be presented as (T',£) where T is a type variable defined by
the (normalized) equations &.

We shall use the notation (T%,&1) ~ (T%,&;) to indicate that the two
denoted types are equal. Obviously, this is an important question.

Another vital concept is a partial order < on types, which is obtained
as a refinement of C. The idea is that products with fewer components
are smaller than products with more components. If <; is the smallest
refinement of C where

(ni: Ai) <o (mj: Bj) iff {n} C{m;} A ni=m; = 4; = B;
then the full ordering is
AjB 2ﬁ VA();A,IA()I<OOA0joB

In [8,10] this ordering is used as the basis for a type system which allows
1st order polymorphism, multiple inheritance, and general specialization
in a language with assignments. This turns out to provide optimal code
reuse.

We shall use the notation (T3,&) < (T%,&:) to indicate that the two
denoted types are related. This is also an important property to decide.

2.3 Inheritance and Specialization

Multiple inheritance and general specialization are canonical concepts in
this type system. They are realized as respectively least upper bounds
and greatest lower bounds in the partial order of types.

Greatest lower bounds, denoted I, always exist. Given (T}, &;), the prob-
lem is to find (T,&) = (T3, &) N (T, &;). For example

*(a: A,b: Int) M (b : Bool,c: C) = %(b: Q)

In contrast, least upper bounds, denoted LI, may or may not exist. Given

(T3, &), the problem is to find (T,&) = (T4, &) U (T3, &), or to say no
4

when no upper bound exists. For example
(@a: A,b:B)U(b:B,c:C)=(a:4,b:B,c:C)

but Int U *A does not exist.

2.4 Hierarchical Consistency

The type ordering works by allowing hierarchical procedure calls, where
the types of actual parameters are larger than those of the formal pa-
rameters. In [10] is presented an optimal consistency requirement, which
determines the legality of actual parameter types.

The formulation of this requirement involves the notion of type addresses.
A type address denotes a subtree of a type by indicating the path from
the root to the subtree. These are sequences of component names and
the special symbol []. The names indicate edges from a partial product,
and [] indicates the unique edge from a list. We let add(A) denote the
set of type addresses which lead to existing subtrees in the type A. If
v € add(A) then A |+ denotes the corresponding type.

Two types A and B are consistent iff
A=XB A V7,7 €add(4): (Aly=Aly = Bly=BlY)

The problem is, of course, given (77,&;) and (T%,&;) to decide if the
denoted types are consistent.

3 The Automata

In this section we introduce a slightly modified notion of finite automata,
which we shall call #ypical automata. A typical automaton is a partial,
deterministic, finite automaton in which all states are labeled, and all
states accept. The labels are the so-called coarse types, which are the
symbols in {Q, a4, *,7}. If A is a type then
Q ifA=0Q
o if A= (8 74
* 1if A is a list

if A is a partial product

coarse(A) =

5

The coarse types inherit the ordering of real types

; * T

N

i.e. 1 is smaller than the others. A typical automaton has exclusively
states of these four kinds

g oL
Q)

We associate two languages with a typical automaton, 4. The first, L(.A),
is the usual one

L(A) = {w| A accepts w}
whereas the second, TL(A), is slightly unusual

TL(A) = {wl | A accepts w in an Il-labeled state } U {wQ | A accepts w}

For example, if A is the automaton

then L(A) = {¢,a,a[],b} and TL(A) = {Q,7,aQ,a*,a[]Q,b0}.

We now provide the correspondence between (normalized) type equations

6

and typical automata.

Definition 3.1: Let T be a type defined by the equations £. Then
AUTO(T,) is the typical automata where

o the alphabet is the union of {Q,*, 7, a;,[]|} with the set of compo-
nent names of partial products mentioned in £.

o the states are exactly the variables in £.

¢ states are labeled with the coarse type of the right-hand side of the
corresponding type variable.

e the initial state is 7.
o all states accept.

e equations in £ give rise to transitions in the following manner

1) Type A = *B yields the transition (4,[]) — B.

2) Type A = (n;: B;) yields the transitions (4,n;) — B,.
3) Type A = q; yields no transitions.

4) Type A = Q yields no transitions.

Definition 3.2: Let A be a typical automata. Then TYPE(.A) is the pair
(T, €) where

o there is a variable for each state in A.
e the initial state corresponds to 7.

e equations are generated in the following manner

1) if A has a %-label and (4,[]) — B, then we get the equation
Type A = xB.

2) if A has a 7-label and the A-transitions are (4,n;) — B;, then
we get the equation Type A = (n; : B;).

3) if A has an o;-label, then we get the equation Type A = «;.

4) if A has an -label, then we get the equation Type 4 = ().

The following two lemmas and theorem show that questions concerning
the ordering of types can be replaced by questions concerning the lan-
guages associated with the corresponding typical automata.

Lemma 3.3:
A X B iff add(A) C add(B) A Vv € add(A) : coarse(A|v) < coarse(B |7v)

Proof:

Only if:

We first show that if A < B then add(A) C add(B). Let v € add(A). We
proceed by induction in the length of . If this length is zero, then the
result is immediate. If 7 = n;y' then both A and B are partial products
with an n;-component of type respectively A; and B;, where A; < B,.
Now, 7' € add(A;) and by induction v’ € add(B;), so v € add(B). Simi-
larly, if v = []7'.

We complete the result by induction in the length of v € add(A). If this
is zero, then A|y = A and B |y = B. We must then show coarse(A4) <
coarse(B), which follows from 4 < B. If v = []y' then A = %A’ and
B = xB' where A' X B'. By induction, coarse(4'|v') < coarse(B'|~')
which is the same as coarse(A|7y) < coarse(B |v). Similarly if v = nsy'.

If:

Look at any finite 4 C A. By transitivity we have that add(4,) C
add(B) and that coarse(Ao | y) < coarse(B |v). We now show by in-
duction in Ao that Ay <¢ B. If 4y = Q, then we are done. If 49 = o
then B = «;, since their coarse types must match. For the same reason,
if Ap = *A' then B = *B'; also, we see that add(4') C add(B') and
Vy € add(A') : coarse(A' | v) X coarse(B'|~). By induction, we have
that A’ <o B', so Ay <o B. Similarly, if Ay is a partial product. We
conclude that Ay <¢ B. Since this is true for all finite 4y C A, it follows
that A < B. O

Lemma 3.4: If A is a typical automaton then

TL(A) = U {7, vcoarse(TYPE(A) | v)}
v € add(TYPE(A))

Proof: Both inclusions follow from easy inductions in the length of v. O

Theorem 3.5: AUTO and TYPE are order-preserving inverses, i.e.

1) AuTo o TYPE(A) = A
2) TYPE o auTOo(T,¢&) =~ (T, E)
3) TYPE(A) X TYPE(B) #f TL(A) C TL(B)

Proof: 1) and 2) follows from inspection of definitions 3.1 and 3.2.
To prove 3) we employ lemma 3.4. Clearly, if TL(A) C TL(B), then
add(TYPE(A)) C add(TYPE(B)). Also, for any v € add(TYPE(A)), we
have coarse(TYPE(A) | v) € {Q, coarse(TYPE(B) | v)}. It follows that
coarse(TYPE(A) | v) < coarse(TYPE(B) | v). It is equally clear that these
properties are sufficient to ensure TL(A) C TL(B). Now, the result fol-
lows from lemma 3.3. O

In fact, with an appropriate representation both AUTO and TYPE can be
implemented as the identity function. Hence, the point of these defini-
tions is to emphasize the faithfulness of this conceptual recasting.

As an example, let £ be the following type equations

Type A= (z: B,y:C)

Type B =2

Type C = xD

Type D= (z: E,z: F)
Type E = %A

Type F = Int

Then AUTO(4,¢£) is the automaton

4 The Algorithms

We can now present the translation of computational problems for type
equations into automata analogues. We shall make several references to
standard algorithms for finite state automata, all of which are described
in e.g. [1]. Note that for every typical automaton A there is an ordinary
automaton A', with at most three times the size, such that TL(A) =
L(A").

4.1 Equivalence is Equality

This first result is quite well-known for type systems [2,3] and for infinite
trees in general [6]. However, type equations are usually related to graphs
rather than to automata.

Corollary 4.1: Type equivalence translates to language equality, i.e.

(T1,&1) = (T2, &) iff TL(AuTO(TY,&:)) = TL(AUTO(TY,E,))

Proof: Follows from theorem 3.5 and anti-symmetry of <. O

The best known algorithm for language equality runs in time O(na(n))
for two automata of size n.3

®Here a(n) is the inverse of Ackermann’s function [1].

10

4.2 Ordering is Inclusion

We note that this next result does not hold for type orderings that rely on
coercions of values [3,7]. In these situations the inclusions of component
names go in opposite directions for type sums and products, which disables
this automata technique. Hence, partial products seem to enable a more
natural type ordering.

Corollary 4.2: Type ordering translates to language inclusion, i.e.

(T1,&1) 2 (T3, &2) iff TL(auTO(TY,&1)) C TL(AUTO(TY,E,))

Proof: Follows directly from theorem 3.5. O

The best known algorithm for language inclusion runs in time O(n?) for
two automata of size n.

4.3 Specialization is Intersection

This result is interesting since it demonstrates in what sense specialization
can be thought of as an intersection. It is, of course, not the case that
specialization yields the intersection of values.

Corollary 4.3: Type specialization translates to language intersection,
i.e.

TL(AuTO((T1, &) M (T3, £2))) = TL(AuTO(T}, &) N TL(AuTO(T3, &))

Proof: Follows from theorem 3.5. O

The algorithm can be obtained as a special case of the general algorithm
in section 5. The running time can in this case be observed to be O(n?)
for two automata of size n. This is optimal in the case where we want to
construct the specialized type since it may have size Q(n?).

11

4.4 Inheritance is Union

In analogy with specialization, this result shows how inheritance can be
interpreted as a union. Again, inheritance does not yield the union of
values.

Corollary 4.4: Type inheritance translates to language union, i.e. when
it exists, then

TL(auTo((Th, &) U (T, &;))) = TL(AuTO(TY, &) U TL(AUTO(T%, &)

Proof: Follows from theorem 3.5. O

The algorithm can be obtained as a special case of the general algorithm
in section 5. The running time can in this case be observed to be O(n?)
for two automata of size n. This is optimal in the same sense as above.

4.5 Hierarchical Consistency is Restriction

This final result is less intuitive but all the more needed to secure an
implementation.

Definition 4.5: Let A be an automaton. If x € L(A), then A(z) is
identical to A except that the initial state is now the state that accepts x;
this is well-defined since A is deterministic. We now define an equivalence
relation ~ on L(.A), where

z~py iff TL(A(z)) = TL(A(y))
Definition 4.6: Let A and B be automata; A restricts B iff
TL(A) C TL(B) A Vz € L(A) : [z]a C [z]s

where [z]c is the equivalence class of z under ~¢.

Theorem 4.7: Hierarchical consistency translates to restriction, i.e. (71, &)
and (T3, £2) are consistent iff AUTO(T},&;) restricts AUTO(TS, &;).

12

Proof: Let A; equal AUTO(T;, ;). By definition we have

V(E,y € add(Tl,Sl) . (Tl,gl)lm = (Tlagl)ly = (T2’82)lw = (T2’82)ly
& Ve,y € L(A1) P ANY TN Y
& Vo € L(Ay): [z]a, C [x]4,

which, together with corollary 4.2, yields the desired result. O

We must now check restriction of two automata A and B of size n. We
assume without loss of generality that they are both minimal; otherwise,
we expend time O(nlogn) to achieve this. In minimal automata each
equivalence class is represented by a single state.

Together with the language inclusion, we must thus require that any two
words that reach the same state in A will also reach the same state in B.
Consider the relation

F ={(q4,98) |3z € L(A) : = is accepted in state g4 (gz) in A (B)}

The requirement that any two words that reach the same state in 4 must
also reach the same state in B, is equivalent to the requirement that F
is a function with domain the state set of 4. Since the (reflexive and
transitive closure of) the transition function of a finite automaton is a
homomorphism w.r.t. concatenation, we need only check functionality of
F for short representatives for the equivalence classes [z]4. This can be
done in linear time by a simple traversal of the graph of A. Furthermore,
it follows from corollary 4.2 and lemma 3.3 that language inclusion can
be checked simultaneously by verifying that the labels [4,l5 (the coarse
types) associated with a pair of states in F must satisfy 4 < 3.

5 Extended Type Equations

It is very convenient to allow U- and M-operators to appear on the right-
hand sides of type equations. For example, a simple prefixing can be
expressed as

Type New = (z : T') U Old

13

where x is the extra field of type I'. The idea behind such extended
equations is that the compiler computes the indicated types, if they exist.
In general, the computation of arbitrary LI’s and M’s of already defined
types is an acknowledged, useful tool for structuring programs, and with
these limitations the situation is very easily resolved. However, it is a
natural choice to allow the extended equations to be recursive, too. The
denoted types are then the smallest ones, if any, that satisfy the equations.

It turns out that we can always decide whether such extended equations
denote types and, if so, transform them into equivalent basic equations.

5.1 Alternating Automata

The alternating finite automata were introduced in [4]. A modification
of these are needed for our purposes. We extend the notion of a typical
automata to include two special kinds of nodes

JONO)

The language of a U-node is the union of those of its descendants; the
language of a M-node is the intersection of those of its descendants. The
basic states of an extended automaton are the ones that are neither L-
nor M-nodes.

It is clear that we now have a perfect relationship between normalized,
extended type equations and extended typical automata. The problem of
resolving extended type equations is reduced to removing LI- and M-nodes
from the corresponding automaton.

In [4] it is shown that an alternating automaton with n states can always
be transformed into an equivalent deterministic automaton with at most
22" states. We follow closely the ideas presented there; however, we give
a concrete algorithm. Furthermore, we solve a slightly different problem,
since we allow e-transitions but disallow non-monotone connectives; in [4]
the opposite choice has been made. The problem with allowing both at
the same time is illustrated by the following self-contradictory automaton

14

2O

for which it is awkward to define an acceptance criterion and, hence, a
language. In fact, it is not very intuitive what the language should be
even if the transition consumed an alphabet symbol.

5.2 The Algorithm

Our set-up has the nice property that it permits an algorithm that can
be viewed as a very direct generalization of the usual algorithm for non-
deterministic automata [1].

The states of the deterministic automaton will correspond to monotone
propositions with the basic states of the extended automaton as vari-
ables. Such propositions can be viewed as generalizations of finite sets;
in particular, a finite set {s1,ss,...,8,} corresponds to the proposition
s1Uso ... L s,.

In analogy with the non-deterministic case, we next define a function
reach that maps states in the old automaton to states in the new au-
tomaton. In the non-deterministic case, reach(S) is the set of states that
can be reached from S via e-transitions. The natural generalization of
this is to view each reach(S) as a variable in a collection of mutually
recursive equations, where we define

e reach(S) = S,if S is a basic node.

o reach(S) = reach(Sy)Ureach(Ss),if S is a L-node with descendants
Sl and Sg.

e reach(S) = reach(S1)Mreach(S2), if S is a M-node with descendants
S, and S,.

The monotone propositions can be partially ordered as follows
PCQ iff Vvo:o =P =0FEQ

15

In the degenerate case of sets, this ordering is just inclusion. We have a
complete partial order, since false is the bottom element and all chains are
finite. Hence, recursive equations, such as the above, have unique least
solutions obtained by iterating from the bottom element in the usual
manner. This defines the reach-function.

The initial state of the new automaton is obtained as reach(I), where I
is the initial state in the old automaton.

We now have a minor special case, which is the price we must pay for the
convenience of working with partial automata. If the new initial state
is false, then the new automaton is an 2-labeled singleton. This is the
correct choice since (2 is evidently the least solution to the corresponding
type equations. Henceforth, false will not appear as a state in the new
automaton. The choice of least solutions to the reach-equations allows us
to avoid true as a state, too.

Lemma 5.1: The proposition frue is never the least solution to any
recursive equation.

Proof: The solutions are obtained as a finite number of iterations of
monotone functions starting from false, which is not identical to true.
Monotone functions preserve this property. If o1 = P; and o [£ P, then
01 bﬁPlﬂPz and oy Moy béplLle. a

Thus, the propositions corresponding to states can all be represented as
M,U-expressions over basic states. This is used for structural induction
in later proofs.

The new initial state is placed in a list of unfinished new states. The
algorithm proceeds by selecting an unfinished state, determining its tran-
sitions, and (perhaps) adding more unfinished states to the list. All the
states that are constructed in this manner will be accept states in the
resulting partial automaton.

Each step is performed as follows: The selected unfinished state is S. For
each alphabet symbol a we determine trans(S,a) as follows

o trans(S,a) = reach(S'), if S is a basic state and (S,a) — §' is a
transition in the old automaton.

e trans(9,a) = false, if S is a basic state without a-transitions in the

16

old automaton.
o trans(S; U Sy, a) = trans(Sy,a) U trans(S;, a).
o trans(S1 M Sy, a) = trans(Sy,a) M trans(Sy, a).

Since we want a partial automaton, we add no transitions if trans(S,a) =
false; otherwise, we include the transition (S,a) — trans(S,a) and add
the state trans(S,a) to the list, if we have not seen it before. After this
process, the state S is finished and can be removed from the list. Note
that we identify equivalent propositions.

This process will eventually terminate since we can only generate finitely
many new states. There are 22" n-variable propositions and slightly fewer
(22°™) monotone ones. In [4] it is shown that for some alternating au-
tomata all of these states are necessary, too.

To get a typical automaton we must further determine labels of the new
states. This can be done by placing the proposition in disjunctive normal
form and computing label(S) as follows

o label(S) = the old label of S, if it is a basic state.
o label(S1 U S2) = label(S;) U label(S,).
o label(S1 M S2) = label(S1) M label(Ss).

Here we interpret LI as least upper bound and M as greatest lower bound
in the partial order of coarse types. Since we do not have a lattice of
coarse types such computations may sometimes fail. This is exactly why
a collection of extended type equations need not always denote types.

Lemma 5.2: If all new labels exist, then the new automaton is typical.
Proof: We proceed by induction in the structure of a proposition S.

e If Sis asingleton, then it has the same label and outgoing transition
arcs as in the old automaton.

o If § = 5;US5;, then we have two cases: 1) S; and S5 have the same
label. In this case, S gets that label, too, and by induction $S; and
Sy are both legal. The transitions from S is the union of those from
S1 and Sy, and for all choices of labels this will preserve legality of
the state. 2) S; and S; have different labels. In this case, at least

17

one of these labels is €2, so S inherits legal label and transitions
from the other.

o If S = 5, MS,, then we have two cases: 1) S; and S; have the
same label. In this case, S gets that label too, and by induction S
and S, are both legal. The transitions from S is the intersection of
those from S and S, and for all choices of labels this will preserve
legality of the state. 2) S; and S; have different labels. In this
case, S will have label 2 and no transitions, since the intersection
of transitions from S; and S; must be empty.

In all cases, we have shown that the new state is legal. O

Lemma 5.3: If all labels exist, then the new automaton has the same
TL-language as the original.

Proof: Let w be a word and [be a label. We show by induction that: wl
is in the language of state S in the old automaton ¢ff wl is in the language
of state reach(S) in the new automaton. The induction is performed in
lexicographically ordered pairs of the form (n,k), where n is the length
of w and k is the height of the proposition reach(S).

e The base case (0,k): In both automata w = ¢ is accepted since all
states accept. If [= (2, then the result is trivial since w2 is in the
language of any typical automaton that accepts w. If [# Q and all
new labels exist, then it follows from lemma 5.2 that all old labels
reachable from S are identical and will equal the label of reach(S).

e The case (n+1,0) becomes (n,k): If w = aw' and S is a basic node,
then the old automaton will have exactly one transition (S,a)— S’
where w'l is in the language of §’. Since reach(S) = §, the new
automaton has a similar unique transition (S,a) — reach(S'). By
induction hypothesis it follows that w'l is in the language of S’ in
the old automaton iff w'l is in the language of reach(S') in the new
automaton.

o The case (n,k + 1) becomes (n,k): We have that wl is in the lan-
guage of § = S§;US; iff it is in the language of S; or in the language
of S;. By induction hypothesis, this is true iff it is in the languages

of reach(S1) or reach(S;). But this is by definition the language of
reach(S; U S2). Similarly if S = .5; M S,.

18

We have covered sufficiently many cases for the induction to work. By
considering the initial state the result follows. O

Lemma 5.4: If some label does not exist, then no typical automaton
has the same language as the original.

Proof: Assume that state S is in disjunctive normal form and has no
label. Since conjunctions of labels always exist, we have that § = S; 1.5,
where I} = label(S;) # Q, l; = label(Ss) # Q, and l; # l;. Let w be any
word accepted by S. Then wl; and wl; are both in the language of the old
automaton. By definition, no language defined by a typical automaton
can have two words with this property. O

Theorem 5.5: The algorithm correctly resolves extended type equa-
tions.

Proof: If the new labels exist, then from lemma 5.2 we know that the
new automaton is typical, and from lemma 5.3 we know that it has the
same language as the old automaton. If some new labels do not exist,
then the new automaton will not work, but lemma 5.4 tells us that in
this case no typical automaton exists. O

Some special cases are quite noteworthy.

1) If the original has only LI-nodes (or M-nodes), then the construction
will have at most 2" states, since the propositions all look like p U
gU...Ur (orpMgn...M7).

2) If the original has only a single L-node (or M-node) combining two
independent subautomata, then the construction will only have n?
states, since the propositions will all look like p LI g (or p [g).

3) If the original has only M-nodes, then the new labels will always
exist.

As promised, case 2) covers the situations in sections 4.3 and 4.4.

19

6 Conclusion

We have demonstrated the very strong connections between our type
system and finite automata. This provided efficient algorithms, as well
as a deeper intuition about the types.

The generality of the extended type equations may lead to two slightly
incongruous views.

o The 22°™ _succinctness shows that thisis a very powerful mechanism
for specifying types.

o The 220(")-explosion shows that one has little chance of knowing
which types one has specified.

However, they have many uses apart from specifications by the program-
mer. For example, type inference of an implicitly typed version of the
underlying language can be transformed into satisfiability of system of
recursive Ll-equations that is automatically generated from the program
text [11].

References

[1] Aho, A.V. & Ullman, J.D. “The Theory of Parsing, Translation,
and Compiling. Volume 1: Parsing.”, Prentice-Hall 1972.

[2] Cardelli, L. “Typeful Programming” DEC Research Report 45,
1989.

[3] Cardelli, L. & Wegner, P. “On Understanding Types, Data
Abstraction, and Polymorphism” in Computing Surveys, Vol 17 No
4, ACM 1985.

[4] Chandra, A.K., Kozen, D.C. & Stockmeyer, L.J. “Alterna-
tion”, in JACM Vol 28 No 1, ACM 1981.

[5] Courcelle, B. “Infinite Trees in Normal Form and Recursive Equa-

tions Having a Unique Solution” in Mathematical Systems Theory
18, 181-180. Springer-Verlag 1979.

20

[6] Courcelle, B. “Fundamental Properties of Infinite Trees” in The-
oretical Computer Science Vol 25 No 1, North-Holland 1983.

[7] Reynolds, J.C. “Three approaches to type structure.” in Math-

ematical Foundations of Software Development, LNCS Vol 185,
Springer-Verlag, 1985.

[8] Schmidt, E.M. & Schwartzbach, M.I. “An Imperative Type
Hierarchy with Partial Products” in Proceedings of MFCS’89, LNCS
Vol 379, Springer-Verlag, 1989.

[9] Schwartzbach, M.I. “Infinite Values in Hierarchical Imperative
Types” in Proceedings of CAAP’90, LNCS, Springer-Verlag, 1990.

[10] Schwartzbach, M.I. “Static Correctness of Hierarchical Proce-
dures” in Proceedings of ICALP’90, LNCS, Springer-Verlag, 1990.

[11] Schwartzbach, M.I. “Type Inference with Inequalities”. In prepa-
ration. Aarhus University, 1990.

21

