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Abstract
Background: Quantitative information on the types of inter-atomic interactions at the MHC-
peptide interface will provide insights to backbone/sidechain atom preference during binding.
Qualitative descriptions of such interactions in each complex have been documented by protein
crystallographers. However, no comprehensive report is available to account for the common
types of inter-atomic interactions in a set of MHC-peptide complexes characterized by variation in
MHC allele and peptide sequence. The available x-ray crystallography data for these complexes in
the Protein Databank (PDB) provides an opportunity to identify the prevalent types of such
interactions at the binding interface.

Results: We calculated the percentage distributions of four types of interactions at varying inter-
atomic distances. The mean percentage distribution for these interactions and their standard
deviation about the mean distribution is presented. The prevalence of SS and SB interactions at the
MHC-peptide interface is shown in this study. SB is clearly dominant at an inter-atomic distance of
3Å.

Conclusion: The prevalently dominant SB interactions at the interface suggest the importance of
peptide backbone conformation during MHC-peptide binding. Currently, available algorithms are
developed for protein sidechain prediction upon fixed backbone template. This study shows the
preference of backbone atoms in MHC-peptide binding and hence emphasizes the need for
accurate peptide backbone prediction in quantitative MHC-peptide binding calculations.

Background
The established associations between the highly polymor-
phic MHC loci and several human diseases have elucidat-

ed the possible genetic basis of their predisposition. [1,2]
From a classical approach of mapping an MHC allele with
a particular disease, the focus has shifted to determine the
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specific peptides presented to MHC molecules with clearly
defined sequences. Different MHC alleles recognize differ-
ent peptides and the binding probabilities of natural and
non-natural peptide ligands to MHC molecules are non-
static. [3] The current challenge is to screen the sequences
for candidate MHC ligands or tissue specific disease-in-
ducing peptides as relevant T-cell epitopes. Identification
of T-cell epitopes associated with a particular disease can
lead to the development of potential peptide vaccines. [4]
Such epitopes also find application in tetramer staining as
powerful immuno-markers for estimating antigen specific
T cells during pathogenesis. [5] Establishing MHC bind-
ing differences to mHags (minor histocompatibility anti-
gen peptides) will guide the interpretation of HA-1 related
GvHD (Graft vs Host Disease) data in the context of dif-
ferent MHC alleles. [6,7] However, additional parameters
describing the mechanism of peptide processing, peptide
transport, loading of peptide to MHC molecules and pres-
entation of MHC-peptide complexes for inspection by T
cells are crucial in epitope selection. [8,9]

The successful sampling of short peptides from a pool of
viral or bacterial protein sequences using MHC-peptide
binding prediction programs depends on the accuracy of
their algorithms. A number of computational methods
have been developed for the prediction of MHC-peptide
binding [10–26]. Using data from allele specific binding
experiments – sequence binding motif analysis [10];
weight matrices [11–13], ANN [14–16], HMM [17] and it-
erative stepwise discriminant meta-algorithm [18] have
been applied for predictions. These algorithms have been
used to predict peptide binding to very few MHC mole-
cules because binding data is not available for many alle-
les. Protein threading [19–22] and side-chain packing
[23–26] techniques have been applied in molecular me-
chanics based MHC-peptide binding predictions. The mo-
lecular mechanics based binding prediction approach can
be extrapolated to a wide range of MHC molecules de-
fined by sequence nomenclature. The prediction of pep-
tide binding to MHC molecules is described as a two-fold
problem, the first being protein folding [27] and the sec-
ond molecular interactions. [28–30] The problem of
packing sidechains using a near native backbone has been
solved. [27] Generating peptide backbones sufficiently
close to the native backbone to allow packing algorithms
is still a challenge. [31] Hence, methods for predicting
backbone conformation are not as developed as that for
sidechains.

Data for a number of A*0201, A*6801, B*0801, B*2705,
B*3501, B*5301, H-2KB, H-2DB, H-2DD, H-2LD, DR1,
DR2, DR3, DR4, I-AD MHC-peptide crystal complexes are
available in the PDB. A comprehensive report mapping
MHC sequences with X-ray crystal structures and relative
binding strength is available. [32] Recently, Cano and Fan

conceptualized peptide binding to MHC by algebraic and
geometric frameworks using structural data. [33] All MHC
alleles have more than 70% sequence identity with
known MHC structures. [25] This allows structure predic-
tion for the known 1,500 HLA sequences [34] using
known templates. [25] Currently, accurate prediction of
peptide structures in the MHC groove is not reliable due
to the limited availability of peptide backbone templates
and the shortcomings in the existing peptide backbone
prediction methods. Using independent procedures,
Schuler et al., [21,22] and Rognan et al. [23] have demon-
strated a method for peptide backbone selection and
showed a reasonable improvement in the MHC-peptide
binding prediction. [21–23] An accurate prediction of the
peptide structure in the groove can be achieved through
the appropriate selection of backbone templates for
threading or side chain packing. The critical nature of the
backbone conformation that affects MHC-peptide bind-
ing will be interesting to investigate. The nature of inter-
atomic interactions at the MHC-peptide interface has
been studied for individual complexes by protein crystal-
lographers. However, there is no comprehensive report
available describing the common types of interactions in
a set of MHC-peptide complexes characterized by MHC
allele variation and peptide sequence diversity. The objec-
tive of this study is to find which types of inter-atomic in-
teractions contribute more in defining the binding
between peptides and MHC molecules.

Results
The available data in the PDB are redundant and hence we
created a non-redundant set from those entries with the
best resolution for the related structural complexes having
identical sequence information. The non-redundant data-
set consists of twenty-eight class I MHC-Peptide complex-
es and ten class II MHC-peptide complexes. All the
complexes chosen for the study are characterized by vari-
ation in sequences constituting the MHC-peptide com-
plexes. The binding of MHC and peptide can be described
using inter-atomic interactions based on backbone and
sidechain atom preference at their interface.

We calculated the percentage prominence for each of the
four types of interactions (BB, SS, BS and SB) at the inter-
face of these complexes (Figures 1 and 2). The backbone
or sidechain atom preference at the interface induced by
MHC-peptide sequence variation is estimated by calculat-
ing the mean percentage for each type in the dataset (Fig-
ures 3 and 4). The preferences for the interaction types are
found to be similar between complexes but not identical
(Figures 1 and 2). Therefore, we calculated the standard
deviation about the mean percentage preference for each
of the interaction types in both the data sets (Figures 5 and
6).
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SS and SB interactions are prevalent compared to the oth-
er two types (Figures 3 and 4). This observation is true for
both class I and class II MHC-peptide complexes. SB inter-
actions are prevalent than SS interactions at 3Å cut-off dis-
tance in these molecules. From 3.5–6Å SS interactions
dominate over SB interactions in class I complexes. At in-
ter-atomic distances greater than 6Å, SS and SB interac-
tions are just as prevalent. However, SB interactions are
relatively dominant over SS in class II complexes.

SS and SB interactions are influenced by MHC sequence
polymorphism and peptide sequence diversity. The mean

percentage distribution is maximum at an inter-atomic
distance of 3Å for SS and SB interactions (Figures 3 and 4).
However, the distribution of standard deviation remains
at a maximum for inter-atomic distance ranges of 2–3Å in
both the classes of MHC-peptide complexes (Figures 5
and 6). The standard deviation for SB type interactions is
the highest in these complexes and this explains the se-
quence induced variation in peptide backbone/MHC
sidechain atom preference during MHC-peptide binding.
The sequence induced deviation for inter-atomic interac-
tions is also observed for SS in class I complexes. It is in-
teresting to note that the presence of BB and BS

Figure 1
Percentage distribution of the four interaction types at the interface of class I MHC-peptide complexes. Inter-atomic distances
are expressed in Å units.
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interactions in these complexes is limited compared to the
other two types and the standard deviation is also mini-
mal (Figures 3 and 4). Our results explain the consistent
prevalence of SS and SB interactions at the MHC-peptide
interface.

Discussion
The differential binding of peptides to diverse MHC mol-
ecules during cell-mediated immune response has been
fairly established using MHC-peptide structural data ob-
tained by X-ray crystallography. [32,35,38] The available
biochemical binding data obtained by kinetic studies
[36,37] complements the structural explanation for MHC-
peptide binding. [32,35,38] The structural similarity be-

tween known MHC alleles allows for side-chain predic-
tion procedures to be carried out for other MHC
molecules using available structural templates. [25,39]
However, model building of a user defined peptide se-
quence in the groove using sidechain packing techniques
requires reliable backbone templates. The prediction of al-
lele specific peptide structures depends on the selection of
peptide backbone from a template library. [21] The root
mean square deviation for peptide backbone atoms (N,
Cα, C and O) lies within 2.1Å among structure groups
based on allele specificity and peptide length. [21] Thus,
it is possible to select the most appropriate peptide back-
bone template for predicting the structure of a user de-
fined peptide sequence in the groove. In this approach,

Figure 2
Percentage distribution of the four interaction types at the interface of class I MHC-peptide complexes. Inter-atomic distances
are expressed in Å units.
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the peptide structure in the groove is constructed by
threading and its compatibility to bind is evaluated by sta-
tistical pair-wise potentials. [21,22] These pair-wise po-
tential tables emphasize either hydrophobic [40,41] or
hydrophilic interactions [42] at the interface. The efficient
prediction of peptide side-chain conformations in the
groove has been shown mainly due to van der Waals con-
tribution. [21] An independent study used a simple and
fast free energy function (Fresno) to predict the binding
free energies of peptides to class I MHC proteins. [23] This
was based on the explicit treatment of ligand desolvation
and unfavorable MHC protein-peptide contacts. A similar
binding/non-binding grouping scheme was based on
vdWC and SEHPR. [25] Despite sufficient knowledge on

the chemical nature of molecular interactions very little is
known about the common interaction types for MHC-
peptide complexes. Here, we present the distribution of
four types of inter-atomic interactions between MHC and
peptide. SS and SB interactions are commonly found at
the interface of these complexes. This implies that the
backbone atoms in the MHC molecules play a secondary
role in the binding of the peptide; it is the interaction be-
tween the sidechain atoms in the MHC molecules with
both side-chain and backbone atoms in the peptide what
determines the binding. Success in peptides designed to
bind in the MHC groove has been achieved by carefully
dissecting side chain interactions and placing appropriate
flexible residues at key positions in the peptide. Hence, SS

Figure 3
Mean percentage distribution of the four interaction types in class I MHC-peptide complexes. Inter-atomic distances are
expressed in Å units.
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interactions are crucial for proper anchoring of short pep-
tides within the groove. The SB interactions might facili-
tate an induced fit of the peptide during entry into the
groove. The backbone conformation adopted by the pep-
tide in the groove is important for maintaining the pre-
dominantly common SB interactions. Specific
interactions by peptide sidechain atoms inside the groove
may force its backbone to adopt a suitable conformation
for maximal interactions with the receptor atoms.

Conclusions
The current challenge in MHC-peptide binding prediction
is twofold: (1) accurate prediction of peptide backbone
conformation for subsequent sidechain packing (2) accu-

rate estimation of function by such predictions for quan-
titative MHC-peptide binding studies. Much of our earlier
understanding on protein-ligand interactions is based on
the steric factors, electrostatic contributions, hydropho-
bicity, hydrogen-bond donor or acceptor capability. Our
results show the prevalence of backbone or sidechain
atom preference at the MHC-peptide interface character-
ized by varying sequence composition. The prevalence of
SB interactions in these complexes suggests the impor-
tance of peptide backbone conformation during MHC-
peptide binding. The currently available protein structure
prediction algorithms are well developed for protein
sidechain packing upon fixed backbone templates. This
study shows the prevalence of backbone atoms in MHC-

Figure 4
Mean percentage distribution of the four interaction types in class II MHC-peptide complexes. Inter-atomic distances are
expressed in Å units.
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peptide binding and hence highlights the need for accu-
rate peptide backbone prediction in quantitative MHC-
peptide binding estimation using molecular mechanics
calculations. Development of an efficient energy function
for the accurate prediction of both backbone and side-
chain conformations followed by an effective MHC-pep-
tide interaction function will help to quantify the differ-
ences in peptide binding caused by MHC polymorphism
and peptide diversity. It should be noted that the conclu-
sions reached in this article are based on the available
crystal data. Additional data will be required to confirm
the proposed hypothesis. If the efficiency of MHC-peptide
binding prediction is carefully assessed for routine appli-
cation then identification of T-cell epitopes from se-

quence information will become easier. Apart from
peptide MHC specificity many other important parame-
ters that describe cellular mechanisms such as enzyme-
mediated antigen processing, peptide transport, loading
of peptides to MHC molecules and the phenomenon of
TCR repertoires have to be identified and incorporated
into the prediction framework.

Methods and materials
MHC-peptide X-ray crystal data

X-ray crystal data for MHC-peptide complexes are re-
trieved from Protein Databank (PDB) ( [www.rcsb.org/
pdb/] ). If more than one entry described an identical
combination of MHC and peptide sequence information

Figure 5
Standard deviation about the mean percentage distribution of the four interaction types in class I MHC-peptide complexes.
Inter-atomic distances are expressed in Å units.

www.rcsb.org/pdb/
www.rcsb.org/pdb/


BMC Structural Biology 2002, 2 http://www.biomedcentral.com/1472-6807/2/2

Page 8 of 12

(page number not for citation purposes)

we selected the entry with the best atomic resolution (Å).
We identified 28 non-redundant class I MHC-peptide
complexes (Table 1) and 10 non-redundant class II MHC-
peptide complexes (Table 2). The two sets of crystal com-
plexes are examined for the different types of inter-atomic
interactions at the interface.

Data analysis

Inter-atomic interactions at the MHC-peptide Interface

The interactions between MHC and peptide are studied by
measuring the distance between each atom in the MHC
and each atom in the peptide. An atom in a MHC residue
or a peptide residue is considered to be involved in MHC-
peptide binding if the distance between any atom of the

peptide and any atom of the MHC is less than or equal to
x (Å). The value of x is varied from 0.0 to 10.0 (Å) at incre-
ments of 0.1 (Å). The total number of inter-atomic inter-
actions at every value of x is grouped into four different
types based on backbone and sidechain atom preference
between MHC and peptide. Four types of inter-atomic in-
teractions namely, BB (backbone MHC – backbone pep-
tide), SS (sidechain MHC – sidechain peptide), BS
(backbone MHC – sidechain peptide) and SB (sidechain
MHC – backbone peptide) characterize the MHC-peptide
interface based on backbone and sidechain atom prefer-
ence.

Figure 6
Standard deviation about the mean percentage distribution of the four interaction types in class II MHC-peptide complexes.
Inter-atomic distances are expressed in Å units.

www.rcsb.org/pdb/
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Table 1: Class I MHC-peptide complexes in the protein databank

MHC source PDB code MHC alleles Redundant peptide set Non redundant peptide set Peptide length Peptide source Resolution (Å)

Human 1HHJ A*0201 ILKEPVHGV ILKEPVHGV 9 Synthetic 2.50
Human 1AKJ A*0201 Ilkepvhgv 9 HIV-1 RT 2.65
Human 1HHK A*0201 LLFGYPVYV LLFGYPVYV 9 Synthetic 2.50
Human 1AO7 A*0201 llfgypvyv 9 HTLV-1 Tax 2.60
Human 1BD2 A*0201 llfgypvyv 9 HTLV-1 Tax 2.50
Human 1B0G A*0201 ALWGFFPVL ALWGFFPVL 9 Human-peptide P1049 2.60
Human 1HHG A*0201 TLTSCNTSV TLTSCNTSV 9 HIV-1 gp 120 2.60
Human 1HHI A*0201 GILGFVFTL GILGFVFTL 9 Synthetic 2.50
Human 1B0R A*0201 gilgfvftcde 9 Influenza matrix 2.90
Human 2CLR A*0201 MLLSVPLLLG MLLSVPLLLG 10 Synthetic 2.00
Human 1HHH A*0201 FLPSDFFPSV FLPSDFFPSV 10 HBV nucleocapsid 3.00
Human 1TMC A*6801 EVAPPEYHRK EVAPPEYHRK 10 Synthetic 2.30
Human 1AGB B*0801 GGRKKYKL GGRKKYKL 8 HIV-1 gag 2.20
Human 1AGC B*0801 GGKKKYQL GGKKKYQL 8 HIV-1 gag 2.10
Human 1AGD B*0801 GGKKKYKL GGKKKYKL 8 HIV-1 gag 2.05
Human 1AGE B*0801 GGRKKYRL GGRKKYRL 8 HIV-1 gag 2.30
Human 1AGF B*0801 GGKKRYKL GGKKRYKL 8 HIV-1 gag 2.20
Human 1HSA B*2705 ARAAAAAAA ARAAAAAAA 9 - 2.10
Human 1A1N B*3501 VPLRPMTY VPLRPMTY 8 HIV-1 nef 2.00
Human 1A9E B*3501 LPPLDITPY LPPLDITPY 9 EBV-Ebna3c 2.50
Human 1A9B B*3501 lpplditpy 9 EBNA-3C 3.20
Human 1A1M B*5301 TPYDINQML TPYDINQML 9 HIV-2 gag 2.30
Human 1A1O B*5301 KPIVQYDNF KPIVQYDNF 9 HIV-1 nef 2.30
Murine 1OSZ H-2KB RGYLYQGL RGYLYQGL 8 Vsv-nucleoprotein 2.10
Murine 2VAB H-2KB RGYVYQGL RGYVYQGL 8 SV nucleoprotein 2.50
Murine 1KBG H-2KB RGYVYuGL 8 Synthetic 2.20
Murine 1VAC H-2KB SIINFEKL SIINFEKL 8 Ovalbumin 2.50
Murine 1VAD H-2KB SRDHSRTPM SRDHSRTPM 9 Yeast α-glucosidase 2.50
Murine 2VAA H-2KB FAPGNYPAL FAPGNYPAL 9 Vsv nucleoprotein 2.30
Murine 1BZ9 H-2DB FAPGVFPYM FAPGVFPYM 9 Peptide P1027 2.80
Murine 1CE6 H-2DB FAPGNYPAL FAPGNYPAL 9 SV nucleoprotein 2.90
Murine 1QLF H-2DB FAPSNYPAL FAPSNYPAL 9 SV-nucleoprotein 2.65
Murine 1BII H-2DD RGPGRAFVTI RGPGRAFVTI 10 HIV-1 P18–110 2.40
Murine 1LDP H-2LD APAAAAAAM APAAAAAAM 9 Natural peptide 3.10

References: 1HHG, 1HHH, 1HHI, 1HHJ and 1HHK [43]; 1AKJ [44]; 1AO7 [45]; 1BD2 [46]; B0G, 1BZ9 [47]; 1B0R [48]; 2CLR [49]; 1TMC [50]; 1AGB, 
1AGC, 1AGD, 1AGE and 1AGF [51]; 1HSA [52]; 1A1N [53]; 1A9E, 1A9B [54]; 1A1M, 1A1O [55], 1OSZ [56]; 2VAA, 2VAB [57]; 1KBG [58]; 1VAC, 
1VAD [59]; 1CE6, 1QLF [60]; 1BII [61]; 1LDP [62].

Table 2: Class II MHC-Peptide complexes in the protein databank

MHC source PDB code MHC allele Peptide sequence Peptide length Peptide source Resolution (Å)

Human 1FV1 DR2 NPVVHFFKNIVTPRTPPPSQ 20 Myelin basic protein 1.90
Human 1AQD DR1 VGSDWRFLRGYHQYA 15 Endogenous peptide 2.45
Human 1BX2 DR2 ENPVVHFFKNIVTPR 15 HMBP 2.60
Human 1A6A DR3 PVSKMRMATPLLMQA 15 CLIP fragment 2.75
Human 1DLH DR1 PKYVKQNTLKLAT 13 Influenza virus 2.80
Human 1SEB DR1 AAAAAAAAAAAAA 13 Endogenous peptide 2.70
Human 1FYT DR1 PKYVKQNTLKLAT 13 Influenza HA antigen 

peptide
2.60

Human 2SEB DR4 AYMRADAAAGGA 12 Collagen II 2.50
Murine 1IAO I-AD RGISQAVHAAHAEI 14 Egg ovalbumin 2.60
Murine 2IAD I-AD GHATQGVTAASSHE 14 Influenza hemagglutinin 2.40

References: 1FV1 [63]; 1AQD [64]; 1BX2 [65]; 1A6A [66]; 1DLH [67]; 1SEB [68]; 1FYT [69]; 2SEB [70]; 1IAO, 2IAD [71].
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Percentage distribution for the interaction types

Percentage distribution for the interaction types is defined
as the percentage of each interaction type over all interac-
tions for a given inter-atomic distance.

List of abbreviations
ANN = artificial neural network

BB = backbone MHC – backbone peptide

BS = backbone MHC – sidechain peptide

EBNA = Epstein Barr nuclear antigen

EBV = Epstein Barr virus

GvHD = graft vs host disease

HA = hemagglutinin

HBV = hepatitis B virus

HIV = human immunodeficiency virus

HMBP = human myelin basic protein

HMM = hidden Markov model

HTLV = human T lymphotropic virus

mHag = minor histocompatibility antigen

MHC = major histocompatibility complex

PDB = protein databank

vdWC = van der Waals Clash

RT = reverse transcriptase

SB = sidechain MHC – backbone peptide

SEHPR = solvent exposed hydrophobic peptide residues

SS = sidechain MHC – sidechain peptide

SV = Sendai virus

Vsv = vesicular stomatitis virus
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