
Typestate-Based Semantic Code Search over Partial Programs

Alon Mishne
Technion

amishne@cs.technion.ac.il

Sharon Shoham
Tel Aviv–Yaffo Academic College

sharon.shoham@gmail.com

Eran Yahav ∗

Technion
yahave@cs.technion.ac.il

Abstract
We present a novel code search approach for answering
queries focused on API-usage with code showing how the
API should be used.

To construct a search index, we develop new techniques
for statically mining and consolidating temporal API specifi-
cations from code snippets. In contrast to existing semantic-
based techniques, our approach handles partial programs in
the form of code snippets. Handling snippets allows us to
consume code from various sources such as parts of open
source projects, educational resources (e.g. tutorials), and
expert code sites. To handle code snippets, our approach
(i) extracts a possibly partial temporal specification from
each snippet using a relatively precise static analysis track-
ing a generalized notion of typestate, and (ii) consolidates
the partial temporal specifications, combining consistent
partial information to yield consolidated temporal specifi-
cations, each of which captures a full(er) usage scenario.

To answer a search query, we define a notion of relaxed
inclusion matching a query against temporal specifications
and their corresponding code snippets.

We have implemented our approach in a tool called PRIME

and applied it to search for API usage of several challeng-
ing APIs. PRIME was able to analyze and consolidate thou-
sands of snippets per tested API, and our results indicate that
the combination of a relatively precise analysis and consol-
idation allowed PRIME to answer challenging queries effec-
tively.

Categories and Subject Descriptors D.2.4 [Program Verifica-
tion]; D.2.1 [Requirements/Specifications]
General Terms Algorithms, Verification

Keywords Specification Mining, Static Analysis, Typestate,
Code Search Engine, Ranking Code Samples

∗ Deloro Fellow

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
OOPSLA’12, October 19–26, 2012, Tucson, Arizona, USA.
Copyright c© 2012 ACM 978-1-4503-1561-6/12/10. . . $10.00

1. Introduction
Programmers make extensive use of frameworks and li-
braries. To perform standard tasks such as parsing an XML
file or communicating with a database, programmers use
standard frameworks rather than writing code from scratch.
Unfortunately, a typical framework API can involve hun-
dreds of classes with dozens of methods each, and often
requires specific sequences of operations that have to be in-
voked on specific objects in order to perform a single task
(e.g., [6, 27, 39–41]). Even experienced programmers might
spend hours trying to understand how to use a seemingly
simple API [27].

To write code that uses a library correctly, one can rely on
code examples from other programs that use that library. The
availability of textual code search services (e.g., Koders [22],
GitHub search [15]) and expert sites (e.g., [34]) exposes the
programmer to a vast number of API usage examples in the
form of code snippets — arbitrary segments of code. Under-
standing how to use an API by manually browsing through
such snippets, however, is an extremely challenging task:
(i) A code snippet often covers only part of the desirable
use case, and extracting a full scenario may require putting
several different snippets together. (ii) A code snippet may
invoke methods where the method body is not available, and
thus its effect is unknown. (iii) Code snippets using the API
of interest may appear in different contexts, making it hard
for a programmer to tease out the relevant details. (iv) While
most code snippets using the API are doing so correctly,
some may be erroneous. As a result, manually browsing
through the massive number of snippets, searching for “the
right ones”, is time consuming and error-prone — making it
hard for a human to benefit from this vast amount of avail-
able information. Furthermore, the same reasons also present
a significant challenge for automatic analysis techniques.

Goal Our long term goal is to develop a search-engine that
can answer semantic code-search queries, dealing with how
an API is used, in a way that consolidates, distills, and ranks
matching code snippets.

To construct a search index for a particular API, we aim
to use all available snippets we can find using textual code
search engines, expert sites, and other sources. Therefore,
in contrast to many existing approaches (e.g., [32, 44]), we

do not assume that we have the full code of the projects in
which we are searching, and our goal is to be able to handle a
large number of code snippets obtained from various sources
without requiring the ability to build or run entire projects.
This goal presents two major challenges: (i) analysis of
snippets (partial programs) (ii) consolidation of the partial
information obtained from individual snippets.

The way to address these challenges depends on the level
of semantic information used as a basis for search. The se-
mantic information maintained for each code snippet should
be: rich enough to describe the usage scenarios demonstrated
by the code, feasible to construct efficiently, and amenable
to efficient comparison operations. In this paper, we focus
on (potentially partial) temporal specifications capturing se-
quences of API method invocations. Technically, we use a
slightly generalized notion of typestate properties (see Sec-
tion 4) that we believe to be a sweet spot in that regard. In
contrast to existing approaches that only track sequences of
method calls in terms of their resulting types (e.g., [27, 36]),
we track generalized typestate properties, providing a more
accurate description of API usage. Throughout the paper, we
use the term potentially partial temporal specification (PTS)
to refer to the semantic information extracted from a code
snippet.
Extracting temporal specifications from partial code One
of the main challenges we face is extracting temporal
specifications from partial code that is most likely non-
executable, and often cannot even be compiled using a
standard compiler. By nature of their incompleteness, snip-
pets are virtually impossible to run, presenting a significant
obstacle to dynamic specification mining techniques (e.g.,
[4, 7, 14, 43]), and motivating the use of static analysis tech-
niques. Even when turning to static analysis, new challenges
arise: While handling partial code snippets is no obstacle to
static approaches that are syntactic in nature (such as textual
search), it poses a significant challenge for approaches that
require semantic analysis of the code (e.g.,[32, 44]), as im-
portant parts of the code such as type and method definitions
may be missing.
Combining partial temporal specifications A code snippet
may be partial in two respects: (i) it may be covering only
part of an API usage scenario, (ii) because the snippet may
only contain part of the original program’s code, it may in-
voke client methods for which the method body is not avail-
able. As a result, obtaining a full temporal specification often
requires consolidation of information extracted from several
code snippets. Consolidating PTSs requires a representation
that can capture the missing information in one PTS and use
other PTSs to consistently complete it.

Our Approach We present a novel code search engine
capable of answering API-usage code search queries with
consolidated results showing how the API should be used.

Index Representation We capture temporal specifications
which exhibit relations between different API classes. We
extend the classical notion of single-object typestate proper-
ties [35] by adding a creation context that can span multiple
objects. This generalization naturally captures the common
case of initialization sequences building an ensemble of ob-
jects to accomplish a task [27].

To handle partial examples, we allow temporal specifi-
cations to contain edges with “unknown” labels. Such edges
represent an invocation of an unknown method, possibly hid-
ing an arbitrary sequence of API calls. The unknown edges
serve as markers that information at this part of the specifi-
cation is missing. Technically, a specification is represented
as a deterministic finite-state automaton (DFA). Every edge
in the DFA is labeled by an unknown event or by a signature
of a method in the API (not necessarily all from the same
API class). The DFA therefore defines the (partial) language
of interactions with that API.
Index Construction To obtain temporal specifications from
snippets we need to: (i) accurately track (unbounded) se-
quences of API calls in each snippet and use them to derive
(partial) specifications. (ii) because the sequences from each
snippet may be partial, consolidate them into larger specifi-
cations that capture the full behavior of the API.
Analyzing a Snippet We use a relatively precise static inter-
procedural analysis tracking aliasing information to analyze
a snippet and produce a PTS. We use unknown edges in the
PTS to represent missing information. For example, when
the body of an invoked client method is not present, we cap-
ture this fact using an unknown edge in the PTS. However,
when the body of an invoked client method is present in the
snippet, we perform inter-procedural analysis of the invoked
method.
Consolidating Partial Temporal Specifications To obtain
temporal specifications that capture the full use cases of the
API we need to consolidate and amalgamate the individual
partial specifications. Towards that end, we develop a tech-
nique of “unknown elimination” that iteratively attempts to
consolidate matching PTSs such that unknown edges in a
PTS are replaced with matching paths found in other PTSs.
Code Search Given a search query in the form of a par-
tial program using unknowns (similar to SKETCH [33]), our
search algorithm finds consolidated temporal specifications,
each of which covers the query, along with their matching
code snippets. This is done by mapping the given query into
the specification space and using a notion of relaxed inclu-
sion to match its PTS with PTSs in the index. By keeping
a mapping from each point in the specification space back
to its corresponding code snippet, we can report code snip-
pets to the programmer. The ranking of the results is done by
counting the number of similar snippets. This measure can
also give the programmer an indication of whether her use
of the API agrees with common usage patterns (and thus is
likely correct) or not (and is thus often incorrect).

Related Work The problems of code search and code
recommendation systems have seen increasing interest in
recent years, and many inspiring solutions have been de-
veloped targeting different aspects of these problems (e.g.,
[2, 17, 18, 31, 32, 36, 44]).

The closest works to ours are [44] and [32], which target
static mining of temporal API specifications. These works,
as most previous work on semantic code search and static
specification mining, rely on the ability to compile entire
projects for complete type information, which prevents them
from exploiting many examples available on the internet.
This is a critical difference, as the challenge of obtaining all
the code required for successfully building and analyzing a
large-scale project remains a significant barrier to semantic
indexing of large code bases. Assuming that the full code
is available dodges the problem of consolidation which is a
central challenge in our work.

Other works such as [36] and [27] can only answer
queries about how to obtain one type from another via a
sequence of method calls. The relatively shallow analysis
employed by these can handle partial programs, but it pro-
duces a large number of answers that lack the temporal in-
formation about how a component is to be used, making it
hard for the programmer to pick the right sequence.

An elaborate discussion of related work appears in Sec-
tion 8.

Main Contributions The contributions of this paper are:

• We present a novel semantic code search algorithm ca-
pable of answering API-usage code search queries in the
form of partial programs. Queries are answered with con-
solidated code showing how an API should be used.

• To obtain semantic information from code we develop
new techniques for statically mining and consolidating
temporal API specifications from code snippets. The
mined specifications are generalized typestate proper-
ties that contain a creation context potentially spanning
multiple objects, and may be partial, possibly containing
“unknown” edges.

• We consolidate partial temporal specifications by a novel
alignment technique that eliminates unknowns in a par-
tial specification using information from other (closely
related) specifications. To our knowledge, we are the first
to apply such consolidation techniques in the context of
code search or specification mining.

• We introduce a notion of relaxed inclusion and corre-
sponding techniques to match PTSs to a query and pro-
duce a consolidated collection of snippets that cover the
desired usage scenario.

• We have implemented our approach in a tool called
PRIME, and evaluated it on a number of challenging APIs.
We show that PRIME can be used to successfully answer
expressive search queries.

1 FTPClient connectTo(String server, String user,String pass) {
2 FTPClient ftp = new FTPClient();
3 ftp.connect(server);
4 if(ftp.getReplyCode() != 230) return null;
5 ftp.login(user, pass);
6 return ftp;
7 }

1 void disconnectFrom(FTPClient ftp) {
2 if (ftp.isConnected()) {
3 ftp.logout();
4 ftp.disconnect();
5 }
6 }

1 void storeFile(FTPClient ftp, String username,
2 String password, String remotePath, InputStream input) {
3 ftp.login(username, password);
4 ftp.storeFile(remotePath, input);
5 ftp.logout();
6 }

1 void upload(String server, String user,
2 String pass, String remotePath, InputStream input) {
3 FTPClient ftp = new FTPClient();
4 ftp.connect(server);
5 if(ftp.getReplyCode() == 230) {
6 MyFTPUtils.uploadFile(ftp, user, pass, remotePath, input);
7 ftp.disconnect();
8 }
9 }

Figure 1: Code snippets using FTPClient.

FTPClient ftp = new FTPClient();
ftp.connect(server);
ftp.?;
ftp.storeFile(rem, in);
ftp.?;
ftp.disconnect();

Figure 2: A partial-code query written by a user.

2. Overview
2.1 Motivating Example

Given a task such as uploading a file to an FTP server, and
a Java API such as the FTPClient class from the Apache
Commons Net library capable of doing that, the question is,
how do we use that API to perform the task? FTPClient

exposes around a hundred methods and actually requires a
specific method invocation sequence to successfully upload
a file, leaving us lost and forcing us to seek help. Manually
searching for code examples online requires time and effort,
and finding the precise example that matches our needs may
not be easy.

Instead, we run PRIME, which allows us to search for
relevant examples based on our partial knowledge of what
the code should look like. PRIME first uses textual search to
download thousands of code snippets using the FTPClient
API, among them partial snippets similar to those shown in
Fig. 1. The obtained snippets are used for construction of a
search index. Snippets are typically entire methods, or even
entire classes, though PRIME can also handle snippets that
contain “holes”. PRIME then receives a query in the form of
partial code, for instance as in Fig. 2 — this query is typical

of a user who generally understands how to communicate
with a server, but is not aware of the fine details of the API.

In this example, no code snippet demonstrates the full
use case of an FTPClient all the way from connect

to storeFile and eventually to disconnect. Therefore,
when observing the individual code snippets and comparing
them to the query, no match is found. This problem reflects
the challenge in dealing with partial programs as the basis
for search.

To address this challenge, PRIME applies consolidation
techniques during index construction for combining PTSs
extracted from individual snippets. Intuitively, each PTS can
be thought of as a piece of a puzzle, and consolidation can
be understood as putting these pieces together to obtain the
full picture. Technically, PRIME analyzes each snippet to
produce an automaton as shown in Fig. 3 and consolidates
the individual automata together to create two summaries of
usage, as shown in Fig. 4. Generally, the state numbering in
the figures does not affect the meaning of the specification
and is only used for presentation purposes. In these figures,
we use the state numbering to show correspondence between
the individual (partial) and the consolidated automata.

The query is now matched by one of the consolidated re-
sults. The relevant pieces of code, e.g. connectTo, storeFile
and disconnectFrom from Fig. 1, are then returned,
aligned together, giving us a simple yet effective visual guide
for writing the code.

In addition to consolidation of partial specifications,
PRIME assists the programmer in identifying common use
cases by ranking the results based on the number of snippets
that correspond to each specification. This is useful even
when the query can be matched by a PTS before consolida-
tion.

In the simple example of this section, each code snippet
corresponds to a simple sequence of method invocations.
However, in practice, many of the obtained automata have
a more complex structure, for example if some method can
be invoked repeatedly, or if two different methods can follow
the same method invocation.

2.2 Our Approach

PRIME downloads thousands of code snippets automatically
using a textual code search engine. These code snippets
(partial programs) are used to construct a search index for a
set of APIs of interest, as defined by the user. When a query
is given, PRIME evaluates it against the index.
Index Representation PRIME extracts from each snippet a
potentially partial temporal specification that captures se-
quences of API method invocations. We use a deterministic
finite-state automaton (DFA) to represent a temporal speci-
fication. We refer to such a DFA as a history. The histories
generated for our example are depicted in Fig. 3. There are
several points to observe here:

(a)
0 1

<init>()
2

connect
(String)

3

get
Reply
Code()

4

login
(String,
String)

10
?

(b)
0 8

?
11

isConnected()
6

logout()
7

disconnect()
10

?

(c)
0 3

?
4

login
(String,
String)

5

storeFile
(String,

InputStream)
6

logout()
10

?

(d)
0 1

<init>()
2

connect
(String)

3

get
Reply
Code()

9
?

7
disconnect()

10
?

Figure 3: Partial Specifications obtained from
(a) connectTo(), (b) disconnectFrom(),
(c) storeFile() and (d) upload().

void listFiles(String server, String username,
String password, String dir, int n) {

FTPClient ftp = new FTPClient();
ftp.connect(server);
ftp.login(username, password);
FTPListParseEngine engine = ftp.initiateListParsing(dir);
while (engine.hasNext()) {
FTPFile[] files = engine.getNext(n);
printFiles(files);

}
ftp.logout();
ftp.disconnect();

}

Figure 6: Listing all the files in a remote directory, n at a
time.

Partial method sequences In the absence of a clear entry
point for an example (e.g. if the snippet was an entire class),
we consider each method as a possible entry point. Thus, the
API methods invoked on each object do not necessarily con-
tain its creation phase. Similarly, a single snippet does not
necessarily capture the full sequence of events in an object’s
lifetime. For example, connectTo() by itself leaves an
FTPClient object in an intermediate state, without properly
logging out and disconnecting, while disconnectFrom()

does not show the prefix of a common usage. In such cases,
we use a special unknown event, denoted ?, to model an
unknown sequence of events (e.g. Fig. 3(b)). The unknown
event records the fact that the partial specification can agree
with other specifications that match it up to unknowns. Our
goal is for the missing sequence to be filled-in by other ex-
amples.
Unknown methods The method upload() invokes the
method MyFTPUtils.uploadFile() whose code is in-
accessible and its defining class MyFTPUtils is unknown.
Similarly to the treatment of partial method sequences, we
use an unknown event to denote the invocation of an un-
known method.

(i)
0 1

<init>() x3
2

connect(String) x3
3

getReplyCode() x3
4

login(String,string) x3
5

storeFile(String, InputStream) x3
6

logout() x3
7

disconnect() x3
10

?

(ii)
0 8

?
11

isConnected()
6

logout()
7

disconnect()
10

?

Figure 4: Consolidated specifications.

0 1
<init>()

2
connect(String)

4
 ?

5
storeFile(String, InputStream)

6
 ?

7
disconnect()

Figure 5: Partial specification extracted from a search query.

0 1

FTPClient:
<init>()

2

FTPClient:
connect(String)

3

FTPClient:
login(String, String)

4

FTPClient:
initiateListParsing(String)

5
hasNext()

6
getNext(int)

hasNext()

Figure 7: Creation-context-enabled result for the object of type FTPListParseEngine

Method sequences across multiple types Some API usage
scenarios span multiple objects of different types. While the
relation between objects can potentially be complex, one
common pattern is that of objects being created by API
methods invoked on different objects. For example, the code
in Fig. 6 demonstrates how to list all the remote files in an
FTP server directory, n entries at a time, using an object of
type FTPListParseEngine.

Our histories exhibit the creation-relation between ob-
jects, adding the history of the creating object as the pre-
fix of the history of the created object. This allows us to
see the entire flow of API method invocations over multi-
ple objects of related types required to create an API ob-
ject and perform a certain task. For example, Fig. 7 shows
a creation-context-enabled DFA recorded for the object
of type FTPListParseEngine when analyzing the code
of Fig. 6. The logout() and disconnect() methods that
are invoked on the creating object of type FTPClient will
only be part of the creating object’s DFA.

Note that techniques that mine single-object typestate
specifications (e.g., [32]) can only capture specifications
such as the small part highlighted in Fig. 7. Techniques that
only track type conversions (e.g., [27, 36]) cannot track state
changes such as the fact that FTPClient needs to be con-
nected and logged-in before creating an FTPListParseEngine,
or like the state changes in the specification of Fig. 4i.
Index Construction To tackle the challenges arising when
considering arbitrary code snippets, PRIME separates the
construction of the search index into two phases: the analy-
sis phase and the consolidation phase.
Analysis phase During the analysis phase, each code snippet
is analyzed separately to distill and gather relevant seman-
tic data. Some of the code snippets cannot be compiled,
let alone executed. PRIME therefore analyzes the down-

loaded code snippets using interprocedural static analysis
with points-to and aliasing information, and tracks the se-
quences of API method invocations observed in them for
each API object, in order to derive the PTSs. In particular,
PRIME has a special treatment for unknown types and meth-
ods to allow us to work around them and extract the know-
able information, while clearly marking the unknowns. We
emphasize that only non-API methods whose implementa-
tion is either missing or unresolved are treated as unknown.
In any other case, an interprocedural analysis takes place.

In order to capture creation-context, the analysis main-
tains a relation between objects at the point of creation,
copying the prefix of the creating object into the created ob-
ject.
Unbounded sequences and sets of allocated objects The
analysis has to address two sources of unboundedness: un-
bounded number of allocated objects (e.g., objects of type
FTPFile in Fig. 6), and an unbounded length of API method
invocation sequences (e.g., the while loop calling hasNext
and getNext on an FTPListParseEngine in Fig. 6). To
address the former, we use a heap abstraction based on ac-
cess paths, similar to the ones used in [12]. To address
the latter, we introduce a new abstraction representing se-
quences (with unknowns) in a bounded way using DFAs, as
described in Section 4.2. The abstraction is responsible for
transforming the tracked sequences into PTSs.
Consolidation phase The consolidation phase is responsible
for making sense of the partial specifications obtained from
individual code snippets, by completing their unknowns
when possible and amalgamating them together. As our ex-
periments indicate, this is a crucial ingredient in a successful
search-engine. To our knowledge, we are the first to apply
such consolidation techniques in the context of code search
or specification mining.

Unknown Elimination In many cases, unknowns in one his-
tory can be resolved based on other histories. For example,
the unknown event in Fig. 3a follows a login() event. It
can therefore be matched to the sequence storeFile(),
logout(), ? from Fig. 3c, which also follows a login()

event. This matching based on shared context implies that
the unknown event most likely represents the above se-
quence and can therefore be replaced by it. Our approach
generalizes the same principle to perform unknown elimina-
tion in DFAs, where an unknown-edge can be replaced by a
DFA.

The unknown-elimination process is iterated until no fur-
ther eliminations can take place (special care is needed to en-
sure termination). Elimination of some unknown-transitions
can enable elimination of others. For example, the first
unknown event in history Fig. 3d cannot be eliminated at
first, since no other history contains a matching context of
both a preceding getReplyCode() event and a following
disconnect() event. However, as a result of other elimina-
tions it is eventually eliminated. In this example, all histories
except for Fig. 3b are consolidated into Fig. 4i, which de-
scribes a correct usage of an FTPClient to store files. We
therefore managed to mine a correct spec for FTPClient
even though no single snippet contained the complete speci-
fication.
Summarization Histories that are isomorphic or included in
one another are merged together. In this process, method in-
vocations (edges) which appear at the same point in the his-
tory of more than one sample are assigned increased weights
(exemplified by edges labeled ×3 in Fig. 4i). With a high
enough number of samples, the edge weights allow us to
identify the more likely full sequences which are performed
on objects of type FTPClient.
Query Language We consider a straightforward query lan-
guage which is nearly identical to Java, except that we allow
a question mark character to follow the dot operator. A call
x.? is interpreted as an unknown sequence of API method
invocations on the object pointed by x (resembling the inter-
pretation of an unknown client method invocation to which
x was passed as a parameter). If this call is a part of an as-
signment y = x.?, then it is interpreted as an unknown ini-
tialization sequence of the object pointed by y, starting from
the object pointed by x (and possibly referring to other ob-
jects of other types as well). Alternative query languages are
possible as long as queries can be translated to partial speci-
fications in the form of DFAs with unknowns.
Query Evaluation To answer a query in the form of a partial
program, PRIME first uses similar static analysis techniques
to extract a PTS from the query’s partial code. For example,
for the query given in Fig. 2, the obtained partial specifica-
tion is depicted in Fig. 5. Matches to the query are found
based on a novel notion of relaxed inclusion, tailored to han-
dle partial specifications with unknown edges.

Relaxed Inclusion Relaxed inclusion resembles automata
inclusion, except that unknown-edges of the included au-
tomaton can be replaced by paths (or sub-automata) of the
including automaton. This captures the intuition that a match
to the query should include it, but should also complete it in
the sense of replacing its unknowns with more complete se-
quences of events.

In our example, Fig. 5 is included in Fig. 4i by the relaxed
notion — even though it is not included in it by standard
automata-inclusion — and is therefore returned as a match
to the query. Recall that while this example demonstrates the
idea on simple sequences, we in fact handle the more general
notion of an automaton.
Search Results Before we present the user with results, we
distill the obtained matches (in the form of consolidated his-
tories) from parts that are irrelevant to the query and break
them into linear sequences, for clarity. These sequences are
ranked based both on the number of specifications summa-
rized into the matching history, and on the likelihood of
the particular sequence within its history (reflected by the
weights of the corresponding history edges).

In order to present the user with code snippets, we keep a
mapping from specifications back to the snippets from which
they were created. In particular, each edge in a (consoli-
dated) specification is mapped to a set of relevant snippets.
For example, the storeFile() edge of Fig. 4i is mapped
to the storeFile snippet only, while the login() edge is
mapped to both connectTo and storeFile. The user can
browse through the relevant code snippets accordingly.

The code snippets returned for the query in Fig. 2 appear
in the thesis version of this work [28].

3. Background

We first define what we mean by the terms API and client
program.

Library API: A library API is a collection of class names
T1, . . . , Tn, where each class has an associated set of method
signatures corresponding to methods provided by the class.

Client: We use the term client program of an API to refer to
a program that uses a given API by allocating objects of API
classes and invoking methods of the API classes. We assume
that API methods only affect the internal state of the library
and do not change other components of the global state of
the client program.
Concrete Semantics We assume a standard imperative object-
oriented language, and define a program state and evaluation
of an expression in a program state in the standard manner.
Restricting attention to reference types (the only types in
Java that can receive method invocations), the semantic do-

mains are defined in a standard way as follows:

L\ ∈ 2objects\

v\ ∈ Val = objects\ ∪ {null}
ρ\ ∈ Env = VarId→ Val
π\ ∈ Heap = objects\ × FieldId→ Val

state\ = 〈L\, ρ\, π\〉 ∈ States = 2objects\

× Env× Heap

where objects\ is an unbounded set of dynamically allocated
objects, VarId is a set of local variable identifiers, and FieldId
is a set of field identifiers. To simplify notation, we omit
typing from the definition. In practice, objects are typed and
all components admit correct typing.

A program state keeps track of the set L\ of allocated
objects, an environment ρ\ mapping local variables to values,
and a mapping π\ from fields of allocated objects to values.
Partial Programs Our approach requires handling of par-
tial programs. To simplify presentation, we assume that the
code of each method we inspect is known in full, which
means that all modifications of local state are known. An
inspected method may invoke unknown methods, and refer
to unknown types and fields. Our implementation also han-
dles the more general (but less common) case of a method in
which part of the code is missing.

We assume a standard semantics of partial programs up-
dating a program state 〈L\, ρ\, π\〉, where an invocation of
an unknown method can allocate any number of fresh objects
and can modify its reachable objects arbitrarily (e.g. [8]).

4. From Snippets to Partial Specifications
The first step of the index construction phase of our approach
is analyzing each code snippet individually to extract a par-
tial temporal specification.

In this section we first define an instrumented concrete se-
mantics for partial programs that tracks “histories” for each
tracked object, representing the way the API has been used.
The notion of a history defines our choice of a formalism for
index representation. Then, we describe an analysis respon-
sible for deriving histories from individual snippets in terms
of an abstraction of the instrumented concrete semantics.

4.1 Instrumented Semantics Tracking Partial Specs

Events We refer to the invocation of an API method as an
event. An event has a receiver object and a method signature.
The receiver is the object whose method is invoked. Since
static API method calls have no receiver, we instead treat
those as an event for each of the method’s arguments, where
the receiver is the argument and the signature is that of
the static method. Other than this exception, we ignore the
arguments since they lie beyond the focus of this paper.
Representing Unknowns A partial program might invoke a
client (non-API) method where the method body is not avail-
able. Since an unknown client method may perform an arbi-
trary sequence of API operations on its arguments, an invo-
cation of such a method may hide an arbitrary sequence of

events. To model this behavior, we introduce special events,
called unknown events. An unknown event stands for any
possible sequence of events (including the empty sequence).

An unknown event has a receiver and a signature, denoted
T : ?, where T is the type of its receiver. For each tracked
object passed as an argument to an unknown method, we
generate an unknown event with that tracked object as a
receiver. When T is clear from the context, it is omitted.

We denote by U the set of all unknown events, and by
Σ? = Σ ∪ U the set of events extended by the unknown
events. This set defines the alphabet over which program
histories are defined.
Histories In our instrumented semantics, sequences of events
that have occurred on the tracked objects are recorded by
“concrete histories”. Technically, we define the notion of a
history as capturing a regular language of event sequences.

DEFINITION 4.1. Given a set of events Σ?, a history h is
a finite automaton (Σ?,Q, init, δ,F), where Q is a set of
states, init is the initial state, δ : Q × Σ? → 2Q is the
transition relation, and F 6= ∅ is a set of final states. We
define the traces represented by h, Tr(h), to be the language
L(h).

A concrete history h\ is a special case of a history that
encodes a single finite trace of events, that is, where Tr(h\)
consists of a single finite trace of events. In Section 4.2
we will use the general notion of a history to describe a
regular language of event sequences. We refer to a history
that possibly describes more than a single trace of events as
an abstract history.

In this section, we use the histories of Fig. 3 as examples
for concrete histories. Despite the fact that these histories
result from our analysis, in this special case they are just
sequences and can be thus used as example for concrete
histories.

A history describes a partial temporal specification. In
principle, a history may be associated with different levels
of a state, such as: (i) Fully relational history: a single
history may be associated with a global state and track the
global sequence of events over all API objects. Because
a global history maintains the order between all events, it
may create artificial ordering between events of independent
objects. (ii) Per-object history: a history may be associated
with a single object in the state. Such a per-object history
does not capture any ordering between events on different
objects, even when such relationship is important (cf. Fig. 7
in Section 2).

Our instrumented semantics offers a compromise, where
it maintains a creation context for an object as part of its his-
tory, allowing to observe the sequences of events observed
on other objects that lead to its creation.
Creation-Context Histories We maintain a creation relation
between objects. When an object is allocated by a method
of a tracked object, e.g. x = y.m(...), then we consider

the sequence of events of the receiver object o1 (pointed
by y) up until the assignment into o2 (pointed by x), called
the creation context of o2, as part of the events invoked on
o2. Note that o1 might also have a creation context, which
will therefore also be a part of o2’s creation context. This
approach allows us to record the concrete history of each
object separately, while maintaining the creation context. We
refer to such histories as per-object histories with creation
context. The creation context replaces the init event, which
typically exists upon allocation of objects.

EXAMPLE 4.2. Consider our FTPClient example. In Fig. 6,
an invocation of initiateListParsing on an FTPclient
object (pointed by ftp) returns an FTPListParseEngine

object (pointed by engine). Up until the creation time of
the FTPListParseEngine object, the following sequence
of events were invoked on the FTPclient object:

<FTPClient:<init>(),
FTPClient:connect(String),
FTPClient:login(String, String),
FTPClient:initiateListParsing(String)>

This sequence of events, which is the concrete history of
ftp, is therefore considered the creation context of the
FTPListParseEngine object, pointed by engine, and it
initializes its concrete history. Later, when engine invokes
hasNext(), its history is extended by the corresponding
event, resulting in:

<FTPClient:<init>(),
FTPClient:connect(String),
FTPClient:login(String, String),
FTPClient:initiateListParsing(String),
FTPListParseEngine:hasNext()>

Note that the prefix of this history consists of events that
refer to a different receiver than the suffix. In this example,
a single history combines two receiver types, but in more
complex examples, more complex creation contexts, involv-
ing more receivers, will arise.

Instrumented Semantic: State We denote the set of all con-
crete histories by H\. We augment every concrete state
〈L\, ρ\, π\〉 with an additional mapping his\ : L\ ⇀ H\

that maps an allocated object of a tracked type to its con-
crete history. A state of the instrumented concrete semantics
is a tuple 〈L\, ρ\, π\, his\〉.
Instrumented Semantics: Transformers Dealing with par-
tial programs adds nondeterminism to the semantics due
to the arbitrary effect of unknown client methods and API
methods on the heap. Thus, each statement generates a set
of possible successor states for a concrete state. We focus
on the his\ component of the states. The his\ component of
the concrete state tracks the histories for all tracked objects.
It is updated as a result of allocation and calls to methods
of a tracked type in a natural way. Here, we only show the
treatment of creation context and invocations of unknown
methods:

• Creation Context: If an object is created by a statement y
= x.m(...)where both x and y are of tracked types, the
concrete history of the object pointed by y is initialized to
the concrete history of the object pointed by x, reflecting
its creation context: his\

′
(ρ\
′
(y)) = his\(ρ\(x)).

The return value of x.m(...) can also be an existing
object, in which case no history update is needed (this
is taken into account by the nondeterministic semantics
updating 〈L\, ρ\, π\〉).

• Unknown Client Methods: For an invocation foo(y1,...,yn),
where foo is an unknown client method: Let Reach de-
note the set of arguments of foo, objects reachable from
them, and fresh objects allocated in foo, restricted to
tracked types. Note that the interpretation of Reach is
nondeterministic due to the nondeterministic semantics
updating 〈L\, ρ\, π\〉. The concrete history of each object
o ∈ Reach is extended by an unknown event T : ?, where
T is the type of o. If the concrete history of o already ends
with an unknown event, it remains unchanged.
Since the semantics considers each method as a potential

entry point, we assume implicitly unknown prefixes/suffixes
for the generated histories, unless an init event is observed.
init “grounds” a prefix because we know that no event can
precede it. Histories that start with any event other than init
are considered non-initialized, and an unknown-transition
is prepended to them. Similarly, an unknown-transition is
appended to all histories, reflecting the unknown suffix.

EXAMPLE 4.3. The histories depicted by Fig. 3b and Fig. 3c
are non-initialized. Indeed, these histories result from track-
ing FTPClient objects when considering the methods
disconnectFrom and storeFile (see Fig. 1) as entry
points, thus not exhibiting the allocation and initialization
of the corresponding objects.

Fig. 3d depicts the history extracted from the upload

code snippet for the FTPClient object pointed by ftp. This
history contains an ?-transition, resulting from the unknown
client method MyFTPUtils.uploadFile(ftp,...).

4.2 Abstractions for Partial Programs

The instrumented concrete semantics uses an unbounded de-
scription of the program state, resulting from a potentially
unbounded number of objects and potentially unbounded
histories. We now describe an abstract semantics that con-
servatively represents the instrumented semantics using a
bounded program state, and provides a basis for our analysis.
Specifically, the analysis propagates a sound approximation
of program state which is based on a heap abstraction and
a history abstraction. The heap abstraction is in fact quite
subtle, but applies standard concepts from modular analy-
ses (e.g., [8]). In this paper, we focus on the abstraction of
histories.
History Abstractions A concrete history simply encodes a
sequence of events. A conservative abstraction for it can

be defined in many ways, depending on the information we
wish to preserve.

In practice, automata that characterize API specifications
are often simple, and further admit simple characterizations
of their states (e.g. their incoming or outgoing sequences).
This motivates using quotient structures of automata to rea-
son about abstract histories.
Quotient Structure Given an equivalence relation R on the
states of a history automaton, the quotient structure of the au-
tomaton overapproximates the history by collapsing together
equivalent states: Let [q] denote the equivalence class of q.
Then QuoR(h) = (Σ?, {[q] | q ∈ Q}, [init], δ′, {[q] | q ∈
F}), where δ′([q], σ) = {[q′] | ∃q′′ ∈ [q] : q′ ∈ δ(q′′, σ)}.
k-Past Abstraction with Unknowns API usage sequences
often have the property that a certain sequence of events is
always followed by the same behaviors. This motivates an
equivalence relation in which states are considered equiva-
lent if they have a common incoming sequence of length k
(e.g., [32]).

In order to differentiate between unknown transitions in
different contexts, we increase the length of the sequence
to be considered for equivalence when the last event is un-
known.

DEFINITION 4.4. The k-past abstraction with unknowns is
a quotient-based abstraction w.r.t. the k-past relation with
unknowns R[k] defined as: (q1, q2) ∈ R[k] if one of the
following holds:
• q1, q2 have a common incoming sequence of length k

whose last event 6= ?, or
• q1, q2 have a common incoming sequence of length k+ 1

whose last event is ?, or
• q1, q2 have a common maximal incoming sequence of

length < k, where an incoming sequence of length l is
maximal if it cannot be extended to an incoming sequence
of length > l.

In particular, the initial states of all histories generated
by the k-past abstraction have no incoming transitions and
are therefore equivalent by R[k]. In addition, the produced
histories are deterministic.

When k = 1, all the incoming transitions of a state q are
labeled by the same event a, and all transitions labeled by
a point to q. States of the automaton with an incoming ?-
transition are characterized by their incoming sequences of
length 2. In particular, there can be multiple history states
with an incoming ?-transition, but each of these states has
exactly one incoming transition. Therefore, it is character-
ized by its (unique) predecessor. As a result, the number of
states of the history automaton is bounded by twice the num-
ber of events, which ensures a bounded description of histo-
ries.

In this paper, we consider histories obtained with the 1-
past abstraction with unknowns.

(a)

0 1
a

4?

2

b 3

c

c

(b)
0 1'

d
2

b

b

3'
g

(c)

0

1a

1'

d

2

b

4?

b

3
c

3'
g

c

b

Figure 8: Abstract histories (a) and (b) merged into (c).

Abstract Histories: Transformers In the concrete semantics,
a concrete history is updated by either initializing it to a
given history, or appending an event to it. The abstract se-
mantics is defined via the following transformers:
• Abstract extend transformer: appends the new event σ to

the final states, and constructs the quotient of the result,
with one exception: Final states that have an incoming
unknown transition, are not extended by (possibly other)
unknown events.

• Merge operator: constructs the union of the given au-
tomata and returns the quotient of the result.
The abstract history component for a fresh object is ini-

tialized to a history reflecting an init event, or to the ab-
stract history of the object that created it. When an observ-
able event occurs, the semantics updates the relevant histo-
ries using the extend transformer.

As long as the domain of abstract histories is bounded,
the abstract analysis is guaranteed to terminate. Yet, in prac-
tice, it can easily suffer from an exponential blowup due
to branching control flow. The merge operator will mitigate
this blowup, accelerating convergence. Specifically, at con-
trol flow join points, all abstract histories associated with the
same abstract object (representing different execution paths)
are merged. This introduces additional overapproximation
but reduces the number of tracked histories.

EXAMPLE 4.5. Histories (a) and (b) from Fig. 8 are merged
into history (c), where the two states labeled 2 are collapsed
into one. As a result, additional sequences that do not exist
in the union of histories (a) and (b) are introduced, such as
the sequence 〈a, b, g〉.

5. From Partial Specs to Search Index
The analysis of the previous section works on a large number
of code snippets and produces a large number of partial spec-

ifications (abstract histories). These are the building blocks
of the search index. Since the generated specifications are
partial and contain many unknowns, and their number might
be enormous, their consolidation is essential.

In this section, we discuss the consolidation phase of the
index construction and present techniques for consolidating
partial specifications. Consolidation has the following goals:
Completion of partial specifications Specifications obtained
from a single example may contain unknown transitions and
may describe a non-initialized and non-finalized behavior.
Our approach relies on having a large number of examples,
and on combining the partial specifications obtained from
different examples. Putting partial specifications together is
an alignment problem.
Amalgamation of partial specifications To answer code
queries, we would like to present a user with a manage-
able number of relevant code snippets based on our analysis.
For that purpose we need to collapse together similar results,
while maintaining the support of each result.
Noise reduction The analysis will inevitably infer some spu-
rious usage patterns, due to either analysis imprecision or
rare (and thus likely incorrect) examples. Such rare specifi-
cations should be treated as noise and discarded.

5.1 General Approach

In the consolidation phase, we redefine the notion of an event
(and accordingly of the alphabet Σ?) to refer to the signature
of the invoked method (or unknown event), while omitting
the identity of the receiver. At this phase the identity of
the receiver is irrelevant since we are only interested in the
invoked methods for each type.

As partial specifications are being consolidated, we main-
tain the total number of times a transition appears in a par-
tial specification. We refer to this number as the weight of
a transition, and it indicates how common a transition (or a
sequence of transitions) is.

Consolidation is performed by applying the following
techniques:

(a) unknown elimination, which makes partial specifications
more complete by aligning them with others to match
their unknowns with alternative known behaviors, and

(b) summarization, which merges together histories where
one is included in the other (by the standard automata-
theoretic notion of inclusion or some relaxation of it, such
as the one defined in Section 6.1), while increasing the
weights of the shared transitions.

These two techniques can be repeated in any order. Noise
reduction is intertwined with these steps, and is performed
by discarding transitions (or histories) whose weights are
below a given threshold. In the rest of this section we focus
on the unknown elimination procedure.

5.2 Elimination of Unknowns

We mine partial histories which contain ?-transitions, mod-
eling unknown sequences of events. In this section we de-
velop a technique for eliminating ?-transitions by replacing
them with suitable candidates. Roughly speaking, candidates
are found by aligning histories containing ?-transitions with
other histories that share the context of the ?-transition.

Given a ?-transition (qs, ?, qt), candidates to replace it are
sequences that appear in the same context, i.e. following the
same prefix and followed by the same suffix. To identify
such sequences, we define the set of past-equivalent states←−
[q] and the set of future-equivalent states

−→
[q] for a state q. The

set of candidates is then computed as the union of all paths
between a past equivalent state of qs and a future equivalent
state of qt, as described in Alg. 1.

Algorithm 1: Alternative Paths Computation

Input: Set of histories H , Transition t
Output: History h summarizing alternative paths

QS = FindPastEquivalentStates(Source(t), H)
QT = FindFutureEquivalentStates(Target(t), H)
h = EmptyHistory()
for qs : QS do

for qt : QT do
h = Union(h, GetRestrictedAutomaton(qs, qt, H)

return h

The procedure GetRestrictedAutomaton(qs, qt, H) looks
for a history hst in H that contains both qs and qt, if such a
history exists (otherwise, an empty automaton is returned).
It then restricts the history hst to a sub-automaton whose
initial state is qs and whose final state is qt. If the restricted
automaton contains an ?-transition from qs to qt, the transi-
tion is removed.

Given an automaton h representing the set of alternatives
for the ?-transition (as returned by Alg. 1), we eliminate
the transition by replacing it with that automaton h, and
constructing the quotient of the result.
Past- and Future-Equivalent States For a state q, the set of
past-equivalent states and the set of future-equivalent states
are:
←−
[q]={q′ |q and q′ have a joint initialized incoming sequence}−→
[q]={q′ |q and q′ have a joint terminating outgoing sequence}

Approximations Computing the sets of past- and future-
equivalent states is not feasible. We therefore overapproxi-
mate these sets by overapproximating the equivalence rela-
tions. This is done by parameterizing the relations by a limit
k on the length of incoming and outgoing sequences. The
resulting relations are the k-past relation of Section 4.2, and
its dual, called the k-future relation. Overapproximating the
past- and future-equivalent states results in an overapproxi-
mation of the set of candidates to replace the unknown.

(a)

i1

i2

1 2
b

3
c

c

4
d

e

f1a
i2 a f1

f2

f2

(b)
j1

1 2
b

3
g ej2 a k1 k2

(c)

p1

p2

1 2
? ep2 a q1

q2

q2

(d)

1 2
b

3c

5
g

c

4
d

(e)

p1

p2

1 2
b

3c

5
g

c

4
d

e

ep2
a q1

q2

q2

Figure 9: Partial histories (a-c), the automaton (d) represent-
ing the alternative paths for the ?-transition in (c), and the
history (e) obtained after elimination of the unknown transi-
tion in (c).

EXAMPLE 5.1. Consider the toy example depicted in Fig. 9.
Histories (a-c) depict the input histories. In particular,
history (c) contains an ?-transition, preceded by an a

event and followed by e. This defines the context of the
?-transition. The alternative paths computation finds two
past-equivalent states to the source of the transition and two
future-equivalent states to the target of the transition, re-
sulting in two alternative sub-automata. The result of the
alternative paths computation is therefore their union, as
presented by automaton (d). Replacing the unknown transi-
tion with this automaton results in history (e).

Iterative Unknown Elimination Alg. 1 eliminates a single
?-transition. It is iterated until no further ?-transitions can
be eliminated. Special care is given to the order in which ?-
transitions are eliminated in order to guarantee termination
(a naive approach could lead to non-termination, example is
available in [28]).

To guarantee termination, we handle all ?-transitions that
share a context simultaneously. This ensures termination
of the algorithm since it ensures that once all ?-transitions
with some context are eliminated, they can never reappear.
However, a single ?-transition can have several contexts
(e.g., it can be followed by two distinct events). As a pre-
liminary step in the iterative unknown-elimination algo-
rithm we therefore “split” each such transition to several
?-transitions, each with a unique context (i.e., a unique com-
bination of preceding and following events). We say that two

?-transitions, each with a unique context, are equivalent if
their context is the same.

We partition the set of split ?-transitions from all histories
into sets of equivalent transitions (based on the unique con-
text). In each iteration, one of these sets is considered and all
?-transitions within it are eliminated simultaneously.

Let UT be the currently eliminated set of (equivalent) ?-
transitions. We use Alg. 1 to compute the set of alternative
paths for an arbitrary transition, say (qs, ?, qt), inUT . Recall
that this computation disregards paths consisting of an ?-
transition only (such paths result from the equivalent ?-
transitions in UT). The obtained automaton h describing the
set of alternative paths is common to all ?-transitions in UT .
We therefore continue with the application of the unknown-
elimination algorithm for each of the transitions inUT based
on the same automaton h representing the alternative paths.

On top of its importance for correctness, handling equiva-
lent ?-transitions simultaneously is also more efficient, since
it prevents repeating the same computation for each of them
separately.

As a result of previous unknown-elimination steps, ?-
transitions that could previously not be eliminated, might
become amenable for elimination. Therefore, the elimina-
tion process continues until no further ?-transitions (or sets)
can be eliminated.

EXAMPLE 5.2. We summarize this section by demonstrating
the consolidation phase on our motivating example. Con-
sider the histories depicted in Fig. 3. We describe in detail
the iterative unknown-elimination is this example. The inter-
mediate histories are depicted in Fig. 10.

Throughout the example we denote the context of an
?-transition as a pair (pre, post) where pre precedes the
?-transition, and post follows it. In this example each ?-
transition has a unique context since all histories describe
simple sequences. Therefore the preliminary splitting step is
not needed.

We first eliminate the ?-transition from state 4 to state
10 in (a) whose context is (login,−). We find a match in
history (c), and history (a) is transformed to the history (a’)
depicted in Fig. 10. Now, we simultaneously eliminate the
two equivalent ?-transitions with context (logout,−), in
histories (a’) and (c) (each of these transitions is from state
6 to state 10 in the corresponding history). The transitions
are eliminated based on history (b). The resulting histories
(a”) and (c’) are depicted in Fig. 10. Next, the ?-transition
from state 0 to state 3 in (c’) with context (−, login) is
eliminated based on history (a”) resulting in the history
(c”). Last, the ?-transition from state 3 to state 9 in (d)
with context (getReplyCode, disconnect) is eliminated
based on histories (a”) and (c”), resulting in history (d’).
No further ?-transitions can be eliminated. In particular, the
?-transitions in history (b) are not eliminated.

Note that in this example, the ?-transition from state 3
to state 9 in history (d) cannot be eliminated at first, but is
eliminated after other elimination steps are performed.

When the iterative unknown-elimination algorithm termi-
nates, a summarization step is applied. Since histories (a”),
(c”) and (d’) are all isomorphic, they are merged into one.
The consolidated results are depicted in Fig. 4.

6. Querying the Index
The previous sections discussed index representation and
construction. In this section, we describe our approach for
answering code search queries.

Given a query in the form of a partial program, we first
use the analysis described in Section 4 to transform it into
an automaton. We then compare the query automaton to
the (consolidated) automata in the index in order to find
matches. We observe that a match for the query should “in-
clude” it in the sense of including all the temporal informa-
tion present in the query, and filling in its unknowns. Our
approach therefore looks for automata that include the query
automaton by some relaxed notion of inclusion as described
in Section 6.1. The obtained automata are simplified, ranked
and transformed back to code snippets.

6.1 Query Evaluation by Relaxed Inclusion

A similarity measure is a key ingredient in the development
of a search algorithm, as it determines the matches found for
the given query.

Our notion of similarity is motivated by automata inclu-
sion. Intuitively, a good match for the query should include
it. To handle ?-transitions, we relax the standard notion of
automata inclusion. The intuition is that an unknown event
in the query stands for some sequence of events, which might
also contain unknowns (since the index we are searching
in might still contain partial specifications, even after the
unknown-elimination step). Therefore, we say that the query
is included in some automaton from the search index if its ?-
transitions can be completed in some way such that standard
automata-inclusion will hold.

Before we turn to the formal definition, we demonstrate
the intuition on our motivating example. In this example,
the automaton representing the query, depicted in Fig. 5,
is included in the first automaton from Fig. 4 if the first
?-transition is “completed” by 〈 getReplyCode, login 〉
and the second ?-transition is “completed” by the sequence
〈logout 〉. Note that in this example all automata represent
simple sequences, but in practice more complex automata
arise.

This leads us to the following relaxed definition of inclu-
sion. Let Q? ⊆ Q denote the targets of unknown transitions
in a history. Recall that each such state q ∈ Q? has a unique
predecessor, which we denote pred(q). Then

DEFINITION 6.1 (Relaxed Inclusion). A history h1 = (Σ?,
Q1, init1, δ1, F1) is relaxly-included in a history h2 =

(a)

0 1
a

2
?

3b

4

c

(b)

0' 1'
a 2'd

4'

5'b

6'
7'c

f

8'
e

a
g

3'
?

f

g

Figure 11: Relaxed inclusion of history (a) in history (b).

(Σ?, Q2, init2, δ2, F2) if there is a mapping f : Q1 →
Q2 ∪ 2Q2 such that (1) f(q1) ∈ 2Q2 iff q1 ∈ Q?

1, in which
case we require that all states in f(q1) are reachable from
f(pred(q1)), (2) If q1 6∈ Q?

1, then whenever q′1 ∈ δ1(q1, a)
for a ∈ Σ, then f(q′1) ∈ δ2(f(q1), a) as well, and (3) If
q1 ∈ Q?

1, then whenever q′1 ∈ δ1(q1, a) for a ∈ Σ, then
there exists q̂ ∈ f(q1) such that f(q′1) ∈ δ2(q̂, a) as well.

Intuitively, a history is relaxly-included in another if it
can be “embedded” in it where unknown transitions are re-
placed by “more complete” sub-automata. This definition
resembles the problem of subgraph isomorphism, which is
NP-complete. Fortunately, due to the simple characterization
of the history states when using the k-past abstraction (with
unknowns), checking if a history is relaxly-included another
is easy in our setting: the characterization of the states in-
duces the (potential) mapping for all states except for the
mapping of Q?. The candidates for the mapping of states in
Q? are found by examining their successors. Thus it remains
to check if this mapping fulfills the requirements.

EXAMPLE 6.2. History (a) depicted in Fig. 11 is relaxly-
included in history (b). Intuitively speaking, history (b) in-
cludes history (a) when the ?-transition in (a) is “com-
pleted” by the rectangle in (b). Note that this rectangle still
contains an ?-transition, but it is “more complete” than the
?-transition of (a).

Technically, the mapping of states in this example is the
following: 0 7→ 0′, 1 7→ 1′, 2 7→ {4′, 6′}, 3 7→ 5′, 4 7→ 7′.

EXAMPLE 6.3. Histories (a), (c), (d) depicted in Fig. 3 are
all included by our notion of relaxed inclusion in the top con-
solidated history from Fig. 4. Note that standard automata-
inclusion does not hold here.

6.2 Search Results

In order to transform the consolidated histories that match
the query into code snippets and present them to the user in
a useful way, we use the following steps.

(a’)
0 1

<init>()
2

connect
(String)

3
getReplyCode()

4

login
(String,string)

5

storeFile
(String, InputStream)

6
logout()

10
?

(a”)
0 1

<init>()
2

connect
(String)

3
getReplyCode()

4

login
(String,string)

5

storeFile
(String, InputStream)

6
logout()

7
disconnect()

10
?

(c’)
0 3

?
4

login
(String, String)

5

storeFile
(String, InputStream)

6
logout()

7
disconnect()

10
?

(c”)
0 1

<init>()
2

connect
(String)

3
getReplyCode()

4

login
(String, String

5

storeFile
(String, InputStream)

6
logout()

7
disconnect()

10
?

(d’)
0 1

<init>()
2

connect
(String)

3
getReplyCode()

4

login
(String,string)

5

storeFile
(String, InputStream)

9
logout()

7
disconnect()

10
?

Figure 10: Intermediate unknown elimination results.

Extracting Sequences from Consolidated Automata The
histories matching the query represent a multitude of possi-
ble method call sequences, some of which are irrelevant to
the given query, and would not be useful as (a part of) a
search result. In addition, some of the obtained automata are
large and complex, and do not lend themselves well to being
returned as human-readable search results.

To address these two issues, we first extract from each
history h that matches the query (i.e., relaxly-includes it), a
sub-automaton hmin representing all minimal sub-automata
that still relaxly-include the query. hmin still matches the
query and it summarizes all the information relevant for the
query. It is computed as the intersection of h with the result
of applying the unknown-elimination algorithm on the query
automaton based on h. The history hmin is then decomposed
into simple paths, each of which encodes a single sequence
of events, by a repetition-free depth-first-traversal of hmin.
This means that although the consolidated automata may
contain loops, the final human-friendly results never do.

Ranking The history-paths extracted from the automata
that match the query are ranked according to:
• Their support: the support of a history-path is inherited

from the history that the path was extracted from. It
corresponds to the number of histories summarized into
the history during the consolidation phase of the index
construction (see Section 5).

• Their probability: this is the probability of following the
history-path (and observing the sequence of events label-
ing it) in its source history. It is computed by normalizing
all the weights on the source history transitions such that
the sum of all outgoing transitions for each state is 1. This
turns the history into a probabilistic automaton, where the

probability of each path corresponds to the multiplication
of all probabilities along its transitions.
Since it is possible that two or more similar paths will be

returned from different histories, the paths are summarized
(merged together by inclusion) to avoid redundant search re-
sults. In such cases, the supports are summarized as well,
and the probability is chosen to be the maximal probability
among the summarized paths. Paths are first sorted accord-
ing to their (accumulated) support. Paths with the same sup-
port are then ranked by their (maximal) probabilities.

From Automata to Code Starting at the index construc-
tion phase and up until the query evaluation phase, we main-
tain for each transition of a history the set of code snippets
responsible for introducing it. This set is initialized during
the analysis of individual snippets (where each transition is
associated with the snippets that produced it), and it is up-
dated during unknown-elimination and summarization. This
enables us to transform history-paths and their correspond-
ing sequences of events back to code snippets. The problem
of finding a smallest set of snippets that cover all of the rel-
evant transitions is NP-complete. Still, in many cases it is
possible to find such small sets.

7. Evaluation
7.1 Prototype Implementation

We have implemented our approach in an open-source tool
called PRIME. The tool and the data used for our experiments
are available from http://priming.sourceforge.net/.

For collecting snippets we have used automatic scripts
to search and download from GitHub, Stackoverflow and
(before it was closed) Google Code Search. Partial snippet
compilation, needed for simplifying Java to an intermedi-
ate language for analysis, is done using a specialized partial

compiler [9]. Code analysis relies on the Soot static analy-
sis framework [37], but adds custom-made points-to analysis
which can handle partial code snippets, as well as an inter-
procedural analysis mechanism which can also deal with re-
cursion and takes parameters and return values into consid-
eration.

PRIME can track objects across upcasts and downcasts,
and can handle method calls on sub- or super-types of the
tracked object’s type even when it is not aware of the rela-
tions between the types. This is done by collapsing parallel
edges together if they correspond to different implementa-
tions of the same method.

Our textual search queries return many thousands of ex-
amples, which PRIME then proceeds to analyze. When oper-
ating on pre-downloaded, locally-available snippets, PRIME

is capable of analyzing hundreds of thousands and even mil-
lions of snippets. We assume that downloading and con-
structing the index for a family of APIs is done before
queries are evaluated.
Analysis We have used the k-past abstraction with un-
knowns, setting k = 1.
Performance Index construction was run on a 2.66 GHz In-
tel Xeon X5660 CPU machine with 48 GB memory. Each
group of 1000 snippets took approximately 1 hour to com-
pile, 30 minutes to analyze and 5 minutes to consolidate.
Querying was done on a 1.7 GHz Intel Core i5 machine with
4 GB memory. It took 1 to 3 seconds to find matches to a
query, but extracting sequences and ranking them takes be-
tween 1 and 45 seconds, depending on the number and size
of the found matches. Optimizing the performance of query-
ing and extracting sequences could be done but was outside
the scope of our initial work.

7.2 Benchmarks and Methodology

For the purpose of evaluation we selected several high-
profile APIs in which method sequence order is important.
We used PRIME to construct an indexed data set from them
and to query them. For the sake of the evaluation of PRIME’s
results, we chose APIs for which tutorials exist, and can
provide familiarity with the desired outcome.

Benchmarks The APIs we have chosen to show are taken
from the popular libraries:

• Apache Ant A project building library.
• Apache Commons CLI A library for parsing command-

line options (and in particular GnuParser, its command
line parser).

• Apache Commons Net A network communications li-
brary (and particularly its FTPClient component).

• Eclipse The popular modular Java IDE (in particular its
UI, JDT and GEF plugins).

• JDBC A built-in Java library for interacting with databases.

• WebDriver A widely-used browser automation frame-
work.

These libraries are all widely-used, and our personal experi-
ence indicates that some of them are quite tricky to use.

Experiments We ran several experiments on our collected
data set:

• Distilling. To evaluate the ability of PRIME to distill a
large number of snippets into illustrative examples, we
ran PRIME and checked whether the few top results in-
clude the examples present in a tutorial of the API. We
show that a user can use PRIME to browse a small number
of distilled examples instead of sifting through thousands
of results returned from a textual search engine.

• Prediction. To evaluate the quality of our results, we
used PRIME to answer prediction queries. We gathered
example method invocation sequences for several of our
selected APIs, representing a common use of that API.
The examples were either produced from online tutorials
or manually crafted according to the API documentation.
They were transformed into prediction queries by replac-
ing their suffixes with unknown events.

• Consolidation. To evaluate the importance of consolida-
tion, we gathered several queries which represent parts of
common use-cases over high-profile APIs, and show that
these produce high-quality results after consolidation is
applied, but no results or poor results without consolida-
tion.

We now elaborate on these experiments and their results.

7.3 Results

7.3.1 Distilling

To show the advantage of distilling and ranking search re-
sults according to history support, we use a simple 1-method
query for each API and check whether the top results re-
turned by PRIME include the tutorial example, and if so, how
it was ranked. This experiment is similar to the evaluation
approach used in [44]. However, our queries used what we
considered to be the key method in each tutorial, not just the
first one. The value of PRIME is not only in finding the tuto-
rial result, but also in establishing the support of this result
in term of commonality.

The results are summarized in Table 1. The first column
shows the API used and how many of its snippets PRIME an-
alyzed. In this specific case, each snippet is an entire class
(the granularity of files obtained from GitHub). The second
column shows the query used (not including surrounding un-
knowns). The third column shows the number of results re-
turned from GitHub’s textual search, i.e., the number of pos-
sible matches the user has to browse (notice this is less than
the number of snippets given to PRIME, as not all snippets
actually contain the method in question directly, though they
may of course call it indirectly). The last two columns shows

API used for the query, Number of Tutorial’s Tutorial’s
num of downloaded Query description Query method textual rank support
snippets matches
WebDriver Selecting and clicking an element on a page WebElement.click() 2666 3 2k
9588 snippets
Apache Commons CLI Parsing a getting a value from the command line CommandLine.getValue(Option) 2640 1 873
8496 snippets
Apache Commons Net “connect -> login -> logout -> disconnect” sequence FTPClient.login(String, String) 416 1 446
852 snippets
JDBC Creating and running a prepared statement PreparedStatement.executeUpdate() 378 1 431
6279 snippets Committing and then rolling back the commit Connection.rollback() 177 4 28
Eclipse UI Checking whether something is selected by the user ISelection.isEmpty() 1110 2 411
17,861 snippets
Eclipse JDT Create a project and set its nature IProject.open(IProgressMonitor) 3924 1 1.1k
17,198 snippets
Eclipse GEF Creating and setting up a ScrollingGraphicalViewer GraphicalViewer.setEditPartFactory 219 1 14
5981 snippets (EditPartFactory)

Table 1: Experimental Results - Distilling. In this case, each “snippet” is a complete class.

the rank that the tutorial example was found in, and the sup-
port for that tutorial.

As can be seen from Table 1, PRIME always returned the
tutorial example as one of the top few results, and in many
cases as the first result. This means that a user can rely solely
on looking at the top few results returned from PRIME instead
of manually browsing through the hundreds or thousands of
results returned from regular textual search.

The WebElement.click() tutorial was only ranked
3rd because it is very common to click on some element
only when a certain condition holds. Therefore, the two
preceding matches contained calls to getter methods before
click(). Connection.rollback() was ranked 4th be-
cause although there are required preceding and succeeding
method calls that appeared in all top results, there are often
other various calls on that object in-between. The GEF tuto-
rial was matched as first but has poor support because there
are many different use-cases for the setEditPartFactory
method.

7.3.2 Prediction

Table 3 lists the sequences used to obtain prediction queries,
their description, and their prediction accuracy by PRIME.
Accuracy was measured by checking the prediction PRIME

gave for each method in the sequence when the suffix start-
ing with it was replaced by an unknown. We adapted PRIME

to use the same principles described in Section 6 in order
to return a ranked list of possible next methods, which we
compared to the actual method from the sequence. We use
the average, median, and max rank of the prediction over
the entire sequence to evaluate accuracy. Any rank less than
half the number of methods defined in the type is better than
blind guess, and any rank less than 1.5 means that most of
the time PRIME’s prediction was perfect.

Table 3 shows that PRIME was generally successful in
predicting the next method in a sequence given the previous
ones. In all cases the correct method was within the first

Result 1, supported by 8 histories:

new GnuParser()
CommandLine.

hasOption(String)
CommandLine.

getOptionValue(String)

GnuParser.
parse(Options,String[],

boolean)

Result 2, supported by 5 histories:

new GnuParser()
CommandLine.

getArgs()

GnuParser.
parse(Options,String[],

boolean)
CommandLine.

hasOption(String)

Result 3, supported by 3 histories:

new GnuParser()
CommandLine.

getOptionValues(String)
CommandLine.

hasOption(String)

GnuParser.
parse(Options,String[],

boolean)

Figure 12: Results of GnuParser search query of Table 2
on an index without consolidation. Note that the support is
significantly lower. (Difference between results 1 and 3 is in
the last call.)

dozen methods presented by PRIME, and in the majority
of times it was actually the 1st ranked, giving a perfect
prediction.

Prediction did not fare as well in JDBC as in the other
APIs, mainly because there are various popular ways to use
a Connection and ResultSet, leaving no clear advantage to
the way described in the tutorial.

7.3.3 Effect of Consolidation

Table 2 shows a number of search queries and the top-ranked
results obtained from PRIME when using a consolidated in-
dex. When evaluated over a non-consolidated index, only
one of these queries can be answered, and its result is shown
in Fig. 12. The queries were hand-crafted from official tu-
torials and documentations, so they always represent correct
sequences, but portions of them have been replaced by un-
known edges. This replacement is done to demonstrate how
a user only partially familiar with the API can still get ac-
curate results even with just partial information about her
goals. For each query we show the three highest-ranked se-
quences extracted from the results matching it.

Query Consolidated Results
A query which users a cached database man-
ager to obtain a connection, then creates and
runs a prepared statement and finally gets a
double value form a specific field.

InitialContext ic =
new InitialContext();

ic.?;
PreparedStatement ps = ic.?;
ResultSet rs = ps.executeQuery();
rs.?;
double d = rs.getDouble("column");

Result 1, supported by 36 histories:

new InitialContext()
ResultSet.

next()
PreparedStatement.

executeQuery()
PreparedStatement.
setString(int,String)

ResultSet.
getDouble(String)

Connection.
prepareStatement(String)

DataSource.
getConnection()

ResultSet.getLong(int)
ResultSet.getLong(String)

InitialContext.lookup(String)
Context.lookup(String)

Result 2, supported by 36 histories:

new InitialContext()
ResultSet.

next()
PreparedStatement.

executeQuery()
PreparedStatement.
setString(int,String)

ResultSet.
getDouble(String)

Connection.
prepareStatement(String)

DataSource.
getConnection()

ResultSet.getLong(int)
ResultSet.getLong(String)

InitialContext.lookup(String)
Context.lookup(String)

Result 3, supported by 36 histories:

new InitialContext()
Connection.

prepareStatement(String)
PreparedStatement.

executeQuery()
ResultSet.getLong(int)

ResultSet.getLong(String)
ResultSet.

next()
InitialContext.lookup(String)

Context.lookup(String)
DataSource.

getConnection()
ResultSet.

getInt(String)
ResultSet.

getDouble(String)

Looking for any sequence which uses a spe-
cific implementation of a WebDriver, that
creates a WebElement from the WebDriver
via a specific method, and that clears and
then submits a web form.

WebDriver d = new FirefoxDriver();
d.?;
By by = ?;
WebElement e = d.findElement(by);
e.?;
e.clear();
e.?
e.submit();

Result 1, supported by 739 histories:

new FirefoxDriver()
WebElement.

clear()
RemoteWebDriver.manage()

WebDriver.manage()
WebDriver.

findElement(By)

WebElement.
sendKeys(CharSequence[])

WebElement.
sendKeys(String)

WebElement.
submit()

Result 2, supported by 478 histories:

new FirefoxDriver()
WebElement.

submit()
WebElement.

clear()
WebDriver.
navigate()

WebDriver.findElement(UNKNOWN)
WebDriver.findElement(By)

WebElement.
sendKeys(String)

Result 3, supported by 478 histories:

new FirefoxDriver()
WebElement.

submit()

HtmlUnitDriver.findElement(By)
WebDriver.findElement(UNKNOWN)

WebDriver.findElement(By)
WebDriver.
get(String)

WebElement.
sendKeys(String)

WebElement.
clear()

Aiming to obtain a String from command-
line arguments that adhere to the GNU style.
The query only requires initialization of a
GnuParser instance, and that at a certain
point a String will be obtained from it.

GnuParser p = new GnuParser();
p.?;
String s = p.?;
s.?;

Result 1, supported by 312 histories:

new GnuParser() CommandLine.getArgs()CommandLineParser.parse(Options,String[])

Result 2, supported by 273 histories:

new GnuParser() CommandLine.getValue(Option)CommandLineParser.parse(Options,String[])

Result 3, supported by 20 histories:

new GnuParser()
CommandLine.

getOptionValue(String)
CommandLine.

hasOption(String)
CommandLineParser.

parse(Options,String[])

A query typical of a user who wants to re-
trieve a file via FTP and only knows she
needs to login first.

FTPClient c = ?;
c.login("username", "password");
c.?;
c.retrieveFile("file path", out);

Result 1, supported by 74 histories:

new FTPClient() disconnect()
retrieveFile(String,
FileOutputStream)login(String,String)

getReplyCode()
connect(UNKNOWN)

connect(String,int)
connect(UNKNOWN,int) getReplyCode()

Result 2, supported by 74 histories:

new FTPClient() disconnect()login(UNKNOWN,UNKNOWN)
retrieveFile(String,
FileOutputStream)enterLocalPassiveMode()

getReplyCode()
connect(UNKNOWN)

connect(String,int)
connect(UNKNOWN,int) getReplyCode()

Result 3, supported by 74 histories:

new FTPClient() disconnect()
retrieveFile(String,
FileOutputStream)

connect(UNKNOWN)
connect(String,int)

connect(UNKNOWN,int)
login(UNKNOWN,UNKNOWN)

login(String,String)

This query tries to find out how to get the
web page’s source using the simple HtmlU-
nit browser.

WebDriver d = new HtmlUnitDriver();
d.?;
d.getPageSource();

Result 1, supported by 4k histories:

new HtmlUnitDriver()
OperaDriver.getCurrentUrl()
WebDriver.getCurrentUrl()

WebDriver.get(String)
WebDriver.get(UNKNOWN) WebDriver.getPageSource()

Result 2, supported by 3k histories:

new HtmlUnitDriver()
WebDriver.get(String)

WebDriver.get(UNKNOWN)

HtmlUnitDriver.getPageSource()
CredentialsProvider.getPageSource()

WebDriver.getPageSource()

Result 3, supported by 603 histories:

new HtmlUnitDriver()
WebDriver.get(String)

WebDriver.get(UNKNOWN) WebDriver.getPageSource() WebDriver.getWindowHandle()

Table 2: Results of search queries over an index with consolidated partial specifications. For all of these queries but the 3rd no
results were found when the index construction does not use consolidation. For the 3rd query, results without consolidation are
shown in Fig. 12.

GnuParser p = new GnuParser();
p.?;
String s = p.?;
s.?;

Figure 13: Obtaining a String from a command-line parser

new GnuParser()
GnuParser.

parse(Options,String[],boolean)
StringBuilder.

toString()

Figure 14: A result for the query of Fig. 13 when the analysis
was done on a single global object. Results of PRIME for this
query are shown in Table 2.

For FTPClient, we omitted the prefix FTPClient from
all calls so we can fit the histories into the figure.

Of interest are the first row and the last row. In the first
row, PRIME demonstrates the ability to complete very long
sequences when required to do so by the query. The event
names are difficult to read in this example, but the im-
portant property is the length of the sequences. In the last
row, the results exhibit very high support values, since the
query describes an extremely common use-case of scraping
the source of a web page (extracting information from the
HTML) using the simplest available browser. Note that de-
spite of the popularity of this usage scenario, a match for the
query was not found on a non-consolidated index.

As shown in Fig. 12, in the (only) case where matches to
the query were found also in the non-consolidated index, the
support of each result is still much higher when searching in
a consolidated index.

7.4 Importance of Tracking Typestate

To demonstrate the importance of tracking typestate for indi-
vidual (abstract) objects in the context of search we show an
example of the results returned when the distinction between
abstract objects is removed and all objects are considered to
be the same single global object. We do that by running a
modified version of PRIME which does not distinguish be-
tween abstract objects. This has the effect of tracking global
event sequences. The query in Fig. 13, for instance, was an-
swered by the sequence in Fig. 14, which is not helpful, as it
contains the unrelated StringBuilder.toString() call
after the parse, which cannot be invoked on a GnuParser.
In contrast, the results of PRIME for this query are shown as
part of Table 2. We have observed similar loss of precision
for most other APIs we considered.

Attempting to address this limitation by filtering the ob-
jects by types is not feasible, since with partial samples types
are not known and the type hierarchy may not be available.

7.5 Comparison with Related Work

Prospector Since the analysis is aware of creation context,
PRIME can theoretically find many of the type conversions
found by Prospector ([27]), by composing a query con-

taining both in input type and output type. For instance,
[27] shows a conversion between IWorkbenchPage and
IDocumentProvider; given the query containing both
types, PRIME was able to find and analyze a relevant ex-
ample as seen in Fig. 15. With this approach, running on
the 20 examples provided in [27], PRIME found 8 of the 18
conversions identified by Prospector, as well as one conver-
sion not identified by Prospector (IWorkspace→ IFile).
Prospector could identify the remaining conversions primar-
ily because they rely on a connection between method ar-
guments and return value, which our concept of creation
context ignores, though it can be extended to include it.
MAPO We have experimented with the GEF framework
(e.g. Table 1), which was also used as the experimental eval-
uation of MAPO ([44]). PRIME’s ability to deal with partial
code snippets allowed PRIME to easily obtain a lot more snip-
pets to work with for the GEF API than was possible with
MAPO [44], enabling a higher support for each result. Note
that despite the partialness of the snippets being used, PRIME

still performs a more precise typestate analysis with aliasing
support.

8. Related Work
Our work mines temporal specifications as the basis for
code search. There has been a lot of work on specification
mining, recommendation systems, and various forms of se-
mantic code-search. In this section, we survey some of the
closely related work. We note that there are other lines of re-
lated research such as clone detection and code comparison
(e.g. [19]) that can provide alternative similarity measures
between snippets. For example, some works on clone detec-
tion considered syntactic information such as the tokens that
appear in each sample (e.g., [11, 20]), other works are based
on ASTs which maintain some structural information (e.g.,
[5, 19, 25, 38]), or on more semantic information based on
program dependence graphs (e.g., [13, 23, 24]). However,
this is not the focus of this work.

Code Search and Recommendation

Several approaches addressing the problem of semantic code
search and its variation were proposed in the literature.

MAPO [44] uses API usage patterns as the basis for
recommending code snippets to users. Their work differs
from our work in several crucial aspects: (i) MAPO does
not deal with missing parts of an implementation. As a
result it does not handle arbitrary code snippets, such as
many of the examples found online, nor their challenges.
Our approach handles arbitrary partial programs, and uses
consolidation techniques to derive from them a much more
complete view of the API than obtained from individual
methods. (ii) MAPO’s analysis tracks global sequences of
method invocations on various types, disregarding their as-
sociation with individual objects, resulting in noise reflecting
mixed usage patterns of multiple objects. Our work tracks
the receiver of an event even in the presence of aliasing,

Avg Median Max
API/Type Nature of sequence (source) Length Rank Rank Rank
Apache Commons Net / FTPClient Upload a file (official tutorial) 7 1.14 1 2
Apache Commons CLI / CommandLine Parse a command-line and get values from it (official usage guide) 4 1.50 1 2
Apache Ant / CommandLine.Argument Prepare the executable and argument of a command-line (online tutorial) 4 1.25 1 2
Apache Ant / Path Create a path element and append it to existing and boot paths (authors) 6 1.33 1 3
JDBC / ResultSet Run a query and iterate over the results (many online tutorials) 8 3.13 2 10
JDBC / Connection Commit and then rollback a transaction (official tutorial) 5 4.60 3 12
Eclipse JDT / ITypeBinding Get the key of an array element type (authors) 5 4.20 1 12
Eclipse JDT / IProjectDescription Get the description and nature IDs of a Java project (online tutorial) 4 2.00 1 4
Eclipse UI / PluginAction Create a new action (online tutorial) 5 1.00 1 1
Eclipse UI / IEditorInput Get the input for the current editor (online tutorial) 5 2.80 3 5

Table 3: Experimental Results - Prediction

0 1

IWorkbenchWindow.
getShell()

2

IWorkbenchWindow.
getActivePage()

3

IWorkbenchPage.
getActiveEditor()

4

ITextEditor.
getDocumentProvider()

5

IDocumentProvider.
getDocument(UNKNOWN)

Figure 15: IDocumentProvider example found by querying over both IWorkbenchPage and IDocumentProvider. The
conversion between the types appears between states 2 and 4.

through method calls, drastically reducing noise from sur-
rounding objects and method calls. (iii) MAPO mines sim-
ple sequences ignoring loops, whereas we mine generalized
typestate. (iv) While we use relaxed inclusion to find sim-
ilarities between typestates, MAPO clusters the mined se-
quences by various clustering techniques. The consideration
of such techniques for typestates is the subject of future
work.

Strathcona [17] matches the structure of the code under
development to the code in the examples. The query in this
case is implicit and consists of the prefix of the currently
written code. The search is performed over a sample repos-
itory (e.g., the existing project), thus no partial code frag-
ments are considered. The search is based on structural con-
text which comprises details of the method being written, its
containing class and previous methods invoked. Temporal
information such as the order of method invocations is not
considered.

Mandelin et al. [27] use static analysis to infer a sequence
of code (jungloid) that shows the programmer how to ob-
tain a desired target type from a given source type. This
code-sequence is only checked for type-safety and does not
address the finer notion of typestate. Thummalapenta and
Xie [36] introduce a tool called PARSEWeb to expand on
Mandelin’s approach by gathering samples online, partially-
compiling them and analyzing the results with a simple static
analyzer. We employ a similar technique in the first phases of
our solution, and we draw from their experience. However,
like with Mandelin’s work, their analysis is only concerned
with the object types appearing in code sequences. More-
over, their approach is AST-based and does not perform a
deeper semantic analysis tracking objects.

XSnippet [31] uses queries that refer to object instantia-
tions, possibly with some additional context from the user’s

code. Their analysis is based on a graph representation of the
code, which describes the types, methods and fields appear-
ing in the code, but does not track objects and sequences of
operations applied on them.

Alnusair et al. [2] use ontologies to represent semantic
information about object instantiation sequences. They use
an interprocedural points-to analysis to obtain a precise re-
turn type for API methods based on the framework code.
This allows them to rely on library-side semantic informa-
tion rather than relying just on information from snippets.
Considering richer ontological models of library code seems
like a promising direction that can complement the semantic
information we use in our approach.

Kim et al. [21] search code for the purpose of attaching
code examples to documentation. Their index construction is
based on intraprocedural AST-based analysis and considers
each snippet as a full use case. Their search is based on
method names. This approach is too crude to provide quality
results for the kind of queries we address in this paper.

Reiss [30] uses a combination of class or method signa-
tures and dynamic specifications such as test-cases and con-
tracts supplied by a user as a basis for semantic code search.
The candidate code snippets, initially obtained by textual
search, undergo several transformations aimed at generat-
ing candidates that match the signature provided by the user.
Matches among these candidates are then found by dynami-
cally checking the test-cases (and additional dynamic speci-
fications if exist). Our approach does not require the user to
supply test-cases or their kind as a part of the query. In addi-
tion, we do not consider the difficult problem of synthesizing
executable code, which makes the usage of test-cases inap-
plicable. In cases where the results are indeed executable, we
can benefit from a similar dynamic approach to find matches
to the query.

Specification Mining

Dynamic Specification Mining There has been a lot of past
work on dynamic specification mining for extracting various
forms of temporal specifications (e.g., [4, 7, 10, 26, 42, 43]).
Dynamic specification mining does not suffer from the diffi-
culties inherent to abstraction required in static analysis. Be-
cause our focus on this paper is on analysis of code snippets,
employing dynamic analysis would be extremely challeng-
ing. Still, when it is feasible to run a program with adequate
coverage, dynamic analysis represents an attractive option
for specification mining.
Component-side Static Analysis In component-side static
analysis, a tool analyzes a component’s implementation, and
infers a specification that ensures the component does not
fail in some predetermined way, such as by raising an ex-
ception. For example, Alur et al. [3] use Angluin’s algorithm
and a model-checking procedure to learn a permissive inter-
face of a given component. In contrast, client-side mining
produces a specification that represents the usage scenarios
in a given code-base. The two approaches are complemen-
tary, as demonstrated in [42]. Our index construction in this
paper performs client-side specification mining.
Client-side Static Analysis Many papers have applied static
analysis to client-side specification mining.

Weimer and Necula [41] use a simple, lightweight static
analysis to infer simple specifications from a given code-
base. Their insight is to use exceptional program paths as
negative examples for correct API usage. We believe that
our approach could also benefit from using exceptional paths
as negative examples. Weimer and Necula learn specifica-
tions that consist of pairs of events 〈a, b〉, where a and b are
method calls, and do not consider larger automata. They rely
on type-based alias analysis, and so their techniques should
be much less precise than ours. On the other hand, their pa-
per demonstrates that even simple techniques can be surpris-
ingly effective in finding bugs.

Monperrus et al. [29] attempt to identify missing method
calls when using an API by mining a codebase and sharing
our assumption that incorrect usage will be infrequent. They
only compare objects that have identical type and same con-
taining method signature, which only works for inheritance-
based APIs. Their approach deals with identical histories or
identical histories minus k method calls, and unlike PRIME it
cannot handle incomplete programs, non-linear method call
sequences, and general code queries.

Wasylkowski, Zeller, and Lindig [40] use an intrapro-
cedural static analysis to automatically mine object usage
patterns and identify usage anomalies. Their approach is
based on identifying usage patterns, in the form of pairs
of events, reflecting the order in which events should be
used. In contrast, our work mines temporal specifications
that over-approximate the usage scenarios in a code-base.

The work of [16] is similar in spirit, but more lightweight.
Here too, specifications are only pairs of events, and are used
to detect anomalies.

Acharya et al. [1] also mine pairs of events in an attempt
to mine partial order between events. Their analysis is for C,
which is a fundamental difference since it is not an object-
oriented language.

Wasylkowski and Zeller [39] mine specifications (opera-
tional preconditions) of method parameters in order to detect
problems in code. They use intraprocedural analysis, without
any pointer analysis. The mined specifications are CTL for-
mulas that fit into several pre-defined templates of formulas.
Therefore, the user has to know what kind of specifications
she is looking for. In addition, no consolidation of partial
specifications is applied.

Shoham et al. [32] use a whole-program analysis to stat-
ically analyze clients using a library. Their approach is lim-
ited to single-object typestate. More importantly, their ap-
proach is not applicable in the setting of partial programs
since they rely on the ability to analyze the complete pro-
gram for complete alias analysis and for type information.
The transition to partial programs and partial specifications
is a significant departure from this work. Other than the ad-
ditional challenges during the analysis, dealing with partial
specifications raises new challenges while processing the re-
sults. In [32] the focus was on reducing noise, whereas a
significant part of our focus is on consolidating the partial
specifications into complete ones. In particular, partial speci-
fications include unknown events (?-transitions). To that end,
we suggest unknown elimination and relaxed-inclusion tech-
niques which are different in implementation as well as gen-
eral goal.

9. Conclusion
We present a semantic code search approach capable of
searching over arbitrary code snippets, including partial
snippets, such as the ones obtained from expert code sites.
Our search is based on novel static analysis techniques for
specification mining which (a) extract partial temporal spec-
ifications in the form of typestate with creation context from
(partial) code snippets, and (b) consolidate partial specifi-
cations in a way that completes their unknowns whenever
possible. In order to answer code search queries, we propose
a new notion of relaxed inclusion tailored for partial specifi-
cations with unknowns. We show that our approach is useful
for answering code search queries dealing with how an API
is used.

Acknowledgements
We would like to thank Barthelemy Dagenais, whose work
on a partial compiler ([9]) enabled us to approach otherwise-
problematic partial code snippets, and who was generously
willing to extend his tool for our needs. We would like to
thank Hongseok Yang for many insightful discussions.

This research was partially supported by The Israeli Sci-
ence Foundation (grant no. 965/10), and the German-Israeli
Foundation for Scientific Research and Development (grant
no. 2248-2045.6).

References
[1] ACHARYA, M., XIE, T., PEI, J., AND XU, J. Mining API

patterns as partial orders from source code: from usage sce-
narios to specifications. In ESEC-FSE ’07, pp. 25–34.

[2] ALNUSAIR, A., ZHAO, T., AND BODDEN, E. Effective API
navigation and reuse. In IRI (aug. 2010), pp. 7 –12.

[3] ALUR, R., CERNY, P., MADHUSUDAN, P., AND NAM, W.
Synthesis of interface specifications for Java classes. In POPL
(2005).

[4] AMMONS, G., BODIK, R., AND LARUS, J. R. Mining
specifications. In POPL’02, pp. 4–16.

[5] BAXTER, I. D., YAHIN, A., MOURA, L., SANT’ANNA, M.,
AND BIER, L. Clone detection using abstract syntax trees. In
ICSM ’98.

[6] BECKMAN, N., KIM, D., AND ALDRICH, J. An empirical
study of object protocols in the wild. In ECOOP’11.

[7] COOK, J. E., AND WOLF, A. L. Discovering models of
software processes from event-based data. ACM Trans. Softw.
Eng. Methodol. 7, 3 (1998), 215–249.

[8] COUSOT, P., AND COUSOT, R. Modular static program
analysis, invited paper. April 6—14 2002.

[9] DAGENAIS, B., AND HENDREN, L. J. Enabling static analy-
sis for partial Java programs. In OOPSLA’08, pp. 313–328.

[10] DALLMEIER, V., LINDIG, C., WASYLKOWSKI, A., AND
ZELLER, A. Mining object behavior with ADABU. In WODA
’06.

[11] DUCASSE, S., RIEGER, M., AND DEMEYER, S. A language
independent approach for detecting duplicated code. In ICSM
’99.

[12] FINK, S., YAHAV, E., DOR, N., RAMALINGAM, G., AND
GEAY, E. Effective typestate verification in the presence of
aliasing. In ISSTA’06, pp. 133–144.

[13] GABEL, M., JIANG, L., AND SU, Z. Scalable detection of
semantic clones. In ICSE ’08, pp. 321–330.

[14] GABEL, M., AND SU, Z. Javert: fully automatic mining of
general temporal properties from dynamic traces. In FSE’08.

[15] github code search. https://github.com/search.
[16] GRUSKA, N., WASYLKOWSKI, A., AND ZELLER, A. Learn-

ing from 6,000 projects: Lightweight cross-project anomaly
detection. In ISSTA ’10.

[17] HOLMES, R., AND MURPHY, G. C. Using structural context
to recommend source code examples. In ICSE ’05.

[18] HOLMES, R., WALKER, R. J., AND MURPHY, G. C. Strath-
cona example recommendation tool. In FSE’05, pp. 237–240.

[19] JIANG, L., MISHERGHI, G., SU, Z., AND GLONDU, S.
Deckard: Scalable and accurate tree-based detection of code
clones. IEEE Computer Society, pp. 96–105.

[20] KAMIYA, T., KUSUMOTO, S., AND INOUE, K. CCFinder:
a multilinguistic token-based code clone detection system for
large scale source code. IEEE Trans. Softw. Eng. 28, 7 (2002).

[21] KIM, J., LEE, S., WON HWANG, S., AND KIM, S. Towards
an intelligent code search engine. In AAAI’10.

[22] Koders. http://www.koders.com/.

[23] KOMONDOOR, R., AND HORWITZ, S. Using slicing to iden-
tify duplication in source code. In SAS ’01, pp. 40–56.

[24] KRINKE, J. Identifying similar code with program depen-
dence graphs. In WCRE (2001), pp. 301–309.

[25] LIVIERI, S., HIGO, Y., MATUSHITA, M., AND INOUE, K.
Very-large scale code clone analysis and visualization of open
source programs using distributed CCFinder: D-CCFinder. In
ICSE’07.

[26] LO, D., AND KHOO, S.-C. SMArTIC: towards building an
accurate, robust and scalable specification miner. In FSE’06.

[27] MANDELIN, D., XU, L., BODIK, R., AND KIMELMAN, D.
Jungloid mining: helping to navigate the API jungle. In PLDI
’05, pp. 48–61.

[28] MISHNE, A. Typestate-based semantic code search over
partial programs. Master’s thesis, Technion-Israel Institute of
Technology, Haifa, Israel, 2012.

[29] MONPERRUS, M., BRUCH, M., AND MEZINI, M. Detect-
ing missing method calls in object-oriented software. In
ECOOP’10 (2010), vol. 6183 of LNCS, pp. 2–25.

[30] REISS, S. P. Semantics-based code search. In ICSE’09.
[31] SAHAVECHAPHAN, N., AND CLAYPOOL, K. XSnippet: min-

ing for sample code. In OOPSLA ’06.
[32] SHOHAM, S., YAHAV, E., FINK, S., AND PISTOIA, M. Static

specification mining using automata-based abstractions. In
ISSTA ’07.

[33] SOLAR-LEZAMA, A., RABBAH, R., BODÍK, R., AND
EBCIOĞLU, K. Programming by sketching for bit-streaming
programs. In PLDI ’05.

[34] stackoverflow. http://stackoverflow.com/.
[35] STROM, R. E., AND YEMINI, S. Typestate: A programming

language concept for enhancing software reliability. IEEE
Trans. Software Eng. 12, 1 (1986), 157–171.

[36] THUMMALAPENTA, S., AND XIE, T. PARSEWeb: a pro-
grammer assistant for reusing open source code on the web.
In ASE’07, pp. 204–213.

[37] VALLÉE-RAI, R., CO, P., GAGNON, E., HENDREN, L.,
LAM, P., AND SUNDARESAN, V. Soot - a Java bytecode op-
timization framework. In CASCON ’99, IBM Press, pp. 13–.

[38] WAHLER, V., SEIPEL, D., WOLFF, J., AND FISCHER, G.
Clone detection in source code by frequent itemset techniques.
In Source Code Analysis and Manipulation (2004).

[39] WASYLKOWSKI, A., AND ZELLER, A. Mining temporal
specifications from object usage. In Autom. Softw. Eng.
(2011), vol. 18.

[40] WASYLKOWSKI, A., ZELLER, A., AND LINDIG, C. Detect-
ing object usage anomalies. In FSE’07, pp. 35–44.

[41] WEIMER, W., AND NECULA, G. Mining temporal specifica-
tions for error detection. In TACAS (2005).

[42] WHALEY, J., MARTIN, M. C., AND LAM, M. S. Auto-
matic extraction of object-oriented component interfaces. In
ISSTA’02.

[43] YANG, J., EVANS, D., BHARDWAJ, D., BHAT, T., AND DAS,
M. Perracotta: mining temporal API rules from imperfect
traces. In ICSE ’06, pp. 282–291.

[44] ZHONG, H., XIE, T., ZHANG, L., PEI, J., AND MEI, H.
MAPO: Mining and recommending API usage patterns. In
ECOOP’09.

