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TYPICAL VALUES OF EXTREMAL-WEIGHT COMBINATORIAL

STRUCTURES WITH INDEPENDENT SYMMETRIC WEIGHTS

YUN CHENG, YIXUE LIU, TOMASZ TKOCZ, AND ALBERT XU

Abstract. Suppose that the edges of a complete graph are assigned weights in-
dependently at random and we ask for the weight of the minimal-weight spanning
tree, or perfect matching, or Hamiltonian cycle. For these and several other common
optimisation problems, we establish asymptotically tight bounds when the weights
are independent copies of a symmetric random variable (satisfying a mild condition
on tail probabilities), in particular when the weights are Gaussian.
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1. Introduction

Classical optimisation problems such as the minimum spanning tree, the assignment
problem or the shortest path have been extensively studied in the worst case as well
as in the average case. For the latter, we usually consider a complete graph on n
vertices with each edge having assigned independently at random a nonnegative weight
and ask for typical values (in terms of the expectation or high probability bounds) of
the weight of the minimum-weight combinatorial structure such as a spanning tree, a
perfect matching or a path between two fixed vertices. For example, in the case of the
exponential rate 1 weights, Frieze’s ζ(3)-result from [18] says that the expected weight
of the minimum spanning tree is asymptotic to ζ(3) as n → ∞, for the assignment
problem, resolving Parisi’s conjecture from [44], Aldous in [1] showed ζ(2) to be the
asymptotic value (see also [8, 40, 43, 45]), whereas the weight of the shortest path is

asymptotic to log n
n , as showed independently by David and Prieditis in [9] and Janson

in [31]. Moreover, many limit theorems have also been established (for instance, see
[3, 20, 30]), large deviation regimes studied (for instance, see [16, 41]) and various
refinements, extensions and constrained versions have been investigated (for instance,
see [2, 7, 12, 17, 21, 22, 23, 24, 25, 26, 27, 28, 32, 35, 36, 39]).

In this short note, we consider the case of weights drawn from symmetric distributions.
The assignment problem with Gaussian weights has been recently studied in [37, 42]
and with general weights in [38]. We identify a mild condition on tails, viz. Chernoff’s
bound being asymptotically optimal, notably satisfied in the Gaussian case. Under this
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condition, we are able to find asymptotically tight high probability estimates for the
aforementioned optimisation problems (and several others).

2. Results

To motivate our main definition and state our results, we first recall necessary notions
and facts. For a random variable X , let Λ: R → (−∞,+∞],

Λ(t) = logEetX , t ∈ R,

be its log-moment generating function with the Legendre transform (the rate function
of X),

Λ∗(t) = sup
s∈R

{st− Λ(s)}, t ∈ R.

Recall that by Markov’s inequality, for every t,

P (X > t) ≤ exp
(

− sup
s>0

{st− Λ(s)}
)

.

If Λ(t0) < ∞ for some t0 > 0, then EX ∈ [−∞,∞) and for t > EX , in fact we have
sups>0{st−Λ(s)} = Λ∗(t) (for instance, see Lemma 2.2.5 in [10]). This is then sometimes
referred to as Chernoff’s inequality,

(1) P (X > t) ≤ exp (−Λ∗(t)) , t > EX.

We say that X has regular upper tails if this upper bound is asymptotically tight in the
following sense:

(2) P (X > t) = exp
(

− (1 + o(1))Λ∗(t)
)

, as t → +∞.

Note that when X is bounded above, P (X > t) = 0 and Λ∗(t) = +∞ for all t >
ess supX , so in this case, condition (2) is vacuously satisfied and X has regular upper
tails. Examples with regular upper tails include Gaussian, exponential, gamma, Poisson
random variables. On the other hand, it is not difficult to construct random variables
without regular upper tails (see Section 4).

For the purposes of this note, we say that a random variable X is good, if it is symmetric
(meaning −X has the same distribution as X), Λ(t) < ∞ for all |t| < δ for some δ > 0
and X has regular upper tails. In particular, all symmetric bounded random variables
are good. If X is good and unbounded, then Λ∗ < ∞ and Λ∗ is even, convex strictly
increasing on (0,+∞) with Λ∗(0) = 0, so that the inverse Λ−1

∗ : [0,∞) → [0,∞) of
Λ∗|[0,∞) is well-defined. In general, for t ≥ 0, we set Λ−1

∗ (t) = inf{s,Λ∗(s) ≥ t}, the
usual generalised inverse of Λ∗. For instance, in the degenerate case, when X = 0 a.s.,
Λ ≡ 0, and Λ∗(0) = 0 and Λ∗ = +∞ elsewhere, so Λ−1

∗ ≡ 0.

Examples of good random variables include of course standard Gaussian or two-sided
exponential.

Our main results provide asymptotically tight high probability bounds on extremal-
weight common combinatorial structures (perfect matchings, spanning trees, Hamilton
cycles, paths between two fixed vertices, copies of a fixed graph) in complete graphs
with edge-weights being i.i.d. copies of a good random variable. Thanks to symmetry,
the distribution of the minimum is the same as of negative the maximum and thus we
shall only focus on the latter.
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Theorem 1. Let Kn,n = ([n], [n], [n] × [n]) be the complete bipartite graph with each
edge e assigned an independent copy Xe of a good random variable X with rate function
Λ∗. Let Cn be the set of perfect matchings in Kn,n and let Wn be the weight of an
optimal matching,

Wn = max







∑

e∈E(M)

Xe, M ∈ Cn







.

Then,
Wn = (1 + o(1))nΛ−1

∗ (logn), w.h.p.1

Recall that the density of a graph H = (V,E) is d(H) = |E|/|V | and the graph H is
called balanced if its density is not smaller than the density of any of its subgraphs, that
is max d(H ′) = d(H) where the maximum is over all subgraphs H ′ of H .

Theorem 2. Let Kn = ([n],
(

[n]
2

)

) be the complete (undirected) graph with each edge e
assigned an independent copy Xe of a good random variable X with rate function Λ∗.
Given a set Cn of subgraphs of Kn, we let Wn be the weight of an optimal one,

Wn = max







∑

e∈E(H)

Xe, H ∈ Cn







.

In each of the following cases

(a) Cn is the set of all spanning trees of Kn,
(b) Cn is the set of all Hamilton cycles in Kn,
(c) Cn is the set of all paths from vertex 1 to 2 in Kn,

we have
Wn = (1 + o(1))nΛ−1

∗ (log n), w.h.p.

(d) If Cn is the set of all copies in Kn of a fixed balanced graph H0 with ℓ edges and
density d, then

Wn = (1 + o(1))ℓΛ−1
∗

(

d−1 logn
)

, w.h.p.

In the vast body of works mentioned in passing in the introduction, where the weights
are nonnegative, it is natural to think of them as cost and those optimisation problems
provide the size of the cheapest structure. Here, when the weights have a symmetric
distribution, the paradigm is different and we may think of the random weight Xe

assigned to an edge e as a gain from the edge (when positive) or, a loss (when negative,
occurring equally likely, by symmetry). It then seems natural to ask for the maximal
possible total gain over all structures, so in particular, Wn above is the highest possible
gain over all assignments (matchings), spanning trees, etc.

In the case of the optimal matching (the assignment problem), in their independent
work [38], Lifshits and Tadevosian have recently obtained the asymptotics of EWn for
general i.i.d. weights whose quantile function tends to infinity and slowly varies at zero.

In the important case of Gaussian weights, Λ∗ is explicit (quadratic). Moreover, the
concentration for the supremum of a Gaussian process allows to obtain asymptotic values
of the expectation as well. In the case of the optimal matching, the asymptotics of EWn

1with high probability, that is with probability tending to 1 as n → ∞
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was recently found by Mordant and Segers (see Theorem 2.3 in [42]) and, independently,
by Lifshits and Tadevosian (see Theorem 1 in [37]), however with a different argument
for the lower bound (via a greedy construction, whilst we employ pruning).

Corollary 3. If in Theorem 1 or 2 we let the distribution of X be standard Gaussian
(mean 0, variance 1), then in Theorem 1 as well as Theorem 2 (a), (b), (c), we have

Wn = (1 + o(1))n
√

2 logn, w.h.p. and EWn = (1 + o(1))n
√

2 logn,

whilst in Theorem 2 (d),

Wn = (1 + o(1))ℓ
√

2d−1 log n, w.h.p. and EWn = (1 + o(1))ℓ
√

2d−1 logn.

3. Proofs

3.1. Overview. Our upper bounds are based on the union bound. They turn out to be
tight and are matched by lower bounds, obtained by means of constructions exploiting
threshold probabilities for binomial random graphs.

3.2. Regular tails. We shall need the following simple lemma which establishes as-
ymptotic behaviour of certain sequences showing up in the proofs of our main results.
The lemma is based on the tail regularity of good random variables.

Lemma 4. Let α > 0. Let ωn be a positive sequence such that ωn → ∞ with ωn = no(1).
Let X be a good random variable and define xn = inf{t > 0, P (X > t) ≤ ωnn

−α}. Then,
for all n large enough, we have

(1 − o(1))Λ−1
∗ (α logn) ≤ xn ≤ Λ−1

∗ (α logn).

Proof. Excluding the degenerate situation, when X = 0 a.s. (in which case xn = 0 and
Λ−1
∗ ≡ 0, so the lemma holds trivially), we can assume without loss of generality that

xn > 0 for all n (since ωnn
−α → 0). As ωn → ∞, let us also assume that ωn ≥ 1 for all

n.

By the definition of xn, for every θ ∈ (0, 1), we have P (X > θxn) ≥ ωnn
−α ≥ n−α.

On the other hand, by Chernoff’s inequality (1), P (X > θxn) ≤ e−Λ∗(θxn). Combining
these two bounds yields Λ∗(θxn) ≤ α logn, so xn ≤ θ−1Λ−1

∗ (α logn), which proves the
upper bound on xn.

For the lower bound, if X is bounded, say A = ess sup|X |, 0 < A < ∞, then xn → A
as n → ∞, as well as Λ−1

∗ (α logn) → A as n → ∞ (because Λ∗(t) = +∞ for every
t > A). Suppose now that X is not bounded. Then xn → ∞ as n → ∞. By assumption
(2), there is a positive sequence εn → 0 such that P (X > xn) = e−(1+εn)Λ∗(xn). By
the definition of xn, P (X > xn) ≤ ωnn

−α, thus (1 + εn)Λ∗(xn) ≥ − logωn + α logn, so

Λ∗(xn) ≥ θnα logn with θn = (1 + εn)
−1(1 − logωn

α logn ). By the assumptions on ωn, we

have θn < 1 with θn → 1, consequently θnα logn ≥ Λ∗(θnΛ
−1
∗ (α logn)) (the convexity

of Λ∗ and Λ∗(0) = 0 imply that u 7→ Λ∗(u)/u is nondecreasing, which we shall also use
several times in the sequel). We thus get xn ≥ θnΛ

−1
∗ (α logn) = (1− o(1))Λ−1

∗ (α logn),
as desired. �

Remark 5. Thanks to Lemma 4, the asymptotic values of Wn from Theorems 1 and 2
can be equivalently stated in terms of the sequences xn, which may be easier to compute
than Λ−1

∗ (logn) for a given distribution of X .
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3.3. Proof of Theorem 1. We begin with a high probability upper bound on Wn.
Note that thanks to Chernoff’s bound (1), if X1, . . . , Xk are i.i.d. copies of X , then for
every t > 0,

(3) P (X1 + · · ·+Xk > kt) ≤ exp {−kΛ∗(t)}

(by independence, the rate function of X1+ · · ·+Xk at kt is kΛ∗(t)). Using first a union
bound and then this, for δn ≥ 0, we obtain

P
(

Wn > (1 + δn)nΛ
−1
∗ (log n)

)

≤
∑

M∈Cn

P





∑

e∈E(M)

Xe > (1 + δn)nΛ
−1
∗ (log n)





≤ exp
{

log |Cn| − nΛ∗

(

(1 + δn)Λ
−1
∗ (log n)

)

}

≤ exp
{

log |Cn| − (1 + δn)n logn
}

,(4)

where in the last inequality we use the monotonicity of Λ∗(u)/u. Since |Cn| = n! ≤ nn+1

en ,

for every n ≥ 7, choosing δn = n−1 yields

Wn ≤ (1 + n−1)nΛ−1
∗ (log n) with probability at least 1− e−n.

To establish a matching lower bound, we construct a random subgraph comprising only
large weights, which contains a perfect matching w.h.p. We set

(5) pn =
2 logn

n
and xn = inf{t > 0, P (X > t) ≤ pn}.

Excluding again the trivial case of X = 0 a.s., we have xn > 0 (eventually), and then
for every 0 < δn < 1, we have p′n = P (X > (1− δn)xn) > pn. Since the weights Xe are
i.i.d., the random bipartite graph ([n], [n], {e ∈ [n] × [n], Xe > (1 − δn)xn}) is in fact
Gn,n,p′

n
, so by the classical result of Erdös and Renyi (see [15] or Theorem 6.1 in [19]),

w.h.p. it contains a perfect matching which gives

Wn ≥ n(1− δn)xn, w.h.p.

We choose δn arbitrarily with δn = o(1) as n → ∞ and it remains to show that

xn ≥ (1 − o(1))Λ−1
∗ (logn).

This follows from Lemma 4 applied to α = 1 and ωn = 2 logn. �

3.4. Proof of Theorem 2. We follow exactly the same strategy as in the proof of
Theorem 1.

Case (a), (b), (c): the upper bound. In case (a) and (b) respectively, every graph
G ∈ Cn has the same number of edges, n − 1 and n respectively. Repeating verbatim
the derivation of (4) yields in each case

P
(

Wn > (1 + δn)nΛ
−1
∗ (logn)

)

≤ exp
{

log |Cn| − (1 + δn)n logn
}

.
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The same holds in case (c) because letting ℓ(P ) be the number of edges on a path P ,
using (3), we have

P
(

Wn > (1 + δn)nΛ
−1
∗ (logn)

)

≤
∑

P∈Cn

P





∑

e∈E(P )

Xe > (1 + δn)nΛ
−1
∗ (log n)





≤
∑

P∈Cn

exp

{

−ℓ(P )Λ∗

(

(1 + δn)
n

ℓ(P )
Λ−1
∗ (log n)

)}

≤
∑

P∈Cn

exp
{

− (1 + δn)n logn
}

,

where in the last inequality we use the convexity of Λ∗ and (1 + δn)
n

ℓ(P ) ≥ 1. In

case (a), (b), (c), we have |Cn| = nn−2, |Cn| = 1
2 (n − 1)!, |Cn| =

∑n−2
l=0

(

n−2
l

)

l! =

(n− 2)!
∑n−2

l=0
1

(n−2−l)! ≤ e(n− 2)!, respectively, so in each case, setting δn = 0 suffices

to get log |Cn| − (1 + δn)n logn → −∞ and as a result,

Wn ≤ nΛ−1
∗ (logn), w.h.p.

Case (a), (b), (c): the lower bound. We define pn, p
′
n and xn as in the proof of Theorem 1,

see (5). Considering the random graph G = ([n], {e ∈
(

[n]
2

)

, Xe > (1 − δn)xn}) which
is distributed as Gn,p′

n
, we get in each case that Wn ≥ (n− 1)(1 − δn)xn w.h.p. This

is because p′n > 2 logn
n guarantees that G is w.h.p. (a) connected, (b) Hamiltonian, (c)

Hamiltonian-connected (in particular G has a path of length n between vertices 1 and
2), see [13], [33], [4] respectively, or Theorems 4.1, 6.5 and Exercise 6.7.11 in [19]. Then
Lemma 4 finishes the argument.

Case (d): the upper bound. Let v and ℓ denote the number of vertices and edges in H0,
respectively. The density of H0 is d = ℓ

v . For the cardinality |Cn|, that is the number

of copies of H0 in Kn, we have |Cn| ≤
(

n
v

)

v! ≤ nv. As in (4), we obtain

P
(

Wn > (1 + δn)ℓΛ
−1
∗ (d−1 logn)

)

≤ exp
{

log |Cn| − ℓΛ∗

(

(1 + δn)Λ
−1
∗ (d−1 logn)

)}

≤ exp
{

v logn− (1 + δn)ℓd
−1 logn

}

= exp {−δnv logn} .
Choosing, say δn = (logn)−1/2, we conclude

Wn ≤ (1 + δn)ℓΛ
−1
∗ (d−1 log n), w.h.p.

Case (d): the lower bound. It is a classical result of Erdös and Rényi from [14] (see
also Theorem 5.3 in [19]) that for a balanced graph H0, when pn1/d → ∞, the random
graph Gn,p contains a copy of H0 w.h.p. Therefore, letting pn = ωnn

−1/d with ωn → ∞,
defining xn as in (5) and considering the random graph G, we obtain as in cases (a), (b),
(c), Wn ≥ ℓ(1 − δn)xn w.h.p. It remains to show that xn ≥ (1 − o(1))Λ−1

∗ (d−1 logn).
This follows from Lemma 4 applied to α = d−1 as long as we choose ωn → ∞ with
ωn = no(1). �

Remark 6. Using the common approach based on moment generating functions (for
example, see the proof of (A.3) in Appendix A.2 in [5]), we can also obtain the following
upper bound on the expectation in Theorems 1 and 2,

(6) EWn ≤ lΛ−1
∗ (l−1 log |Cn|),

where l = maxH∈Cn
|E(H)| is the maximal number of edges in the graphs from a given

class Cn (so l = n, n − 1, n, n, ℓ in Theorems 1 and 2 (a), (b), (c), (d), respectively).
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Moreover, in each of the cases, the right hand side is asymptotic to the high probability
bound on Wn from Theorems 1 and 2. A proof of (6) can be sketched as follows: using
maxxk ≤ 1

t log
∑

k e
txk valid for all t > 0 and xk ∈ R, the concavity of the log function

and independence, we get

EWn ≤ 1

t
log

∑

H∈Cn

Eet
∑

e∈E(H) Xe =
1

t
log

∑

H∈Cn

e|E(H)|Λ(t) ≤ log |Cn|+ lΛ(t)

t
.

Taking the infimum over t > 0 finishes the argument.

3.5. Proof of Corollary 3. When X is standard Gaussian, EetX = et
2/2, so Λ∗(t) =

t2

2

and Λ−1
∗ (t) =

√
2t. If we let l = maxH∈Cn

|E(H)|, then the variance of each Gaussian
that Wn takes the maximum over is bounded by l, Var(

∑

e∈E(H) Xe) = |E(H)| ≤ l.

From the concentration of the maximum of a Gaussian process around its expectation
(see for instance Theorem 7.1 in [34]), we get

(7) P (|Wn − EWn| ≥ t) ≤ 2e−t2/(2l), t ≥ 0.

In the case of Theorem 1, l = n, so taking, say t = n, we get from the above that |Wn −
EWn| < n w.h.p. Combining this with Theorem 1 which gives Wn = (1+o(1))n

√
2 logn

w.h.p., we obtain EWn = (1 + o(1))n
√
2 logn, as desired. We proceed analogously in

the case of Theorem 2 (and omit the details). �

4. Final remarks

4.1. Conclusion. We have determined asymptotically typical values of the weight of the
minimal-weight common combinatorial structures in complete graphs with independent
identically distributed symmetric weights having regular tails, that is satisfying (2). A
natural next step would be to establish limit theorems and the order of fluctuations.

4.2. Fluctuations. Even in the case of Gaussian weights, where many tools exist (e.g.
[5, 6, 11]), finding the asymptotic value of the variance seems interesting and challenging.
In particular, for optimal matchings, i.e. in the setting of Theorem 1, it follows from
(7) that Var(Wn) ≤ 4n. On the other hand, Mordant and Segers argued in [42] that
Var(Wn) ≥ 1 (exploiting symmetries of the covariance structure). They also noted that
by a general phenomenon in superconcentration (Theorem 8.1 of Chatterjee from [5])
and the asymptotics of the mean EWn, the upper bound in fact improves and we have
Var(Wn) = o(n), however the exact order of fluctuations Var(Wn) seems elusive.

4.3. Refinements. It is instructive to see the shortcoming of our main result when
applied to nonnegative weights. Suppose we consider the minimum spanning tree prob-
lem on the complete graph with independent weights Ye, each uniformly distributed on
[0, 2]. Since Xe = Ye − 1 is uniform on [−1, 1], applying Theorem 2 (and Remark 5)

with xn = inf{t > 0, P (X > t) ≤ 2 logn
n } = 1− 4 logn

n , w.h.p., we have

−(1 + o(1))n

(

1− 4 logn

n

)

= Wn = min
T

∑

e∈E(T )

Xe =



min
T

∑

e∈E(T )

Ye



− (n− 1).

Without knowing the implicit o(1) term, we cannot infer the asympototic behaviour of
minT

∑

e∈E(T ) Ye (which by Frieze’s result from [18], tends to 2ζ(3) in probability). It

7



would be of interest to remedy this and refine the o(1) term for (general) symmetric
distributions.

4.4. Measures without regular tails. Recall that a random variable X is said to

have regular upper tails if limt→∞
− log P(X>t)

Λ∗(t)
= 1, see (2). We show an example of

X for which this does not hold. The idea of our example comes from [29]. Fix an
increasing sequence of positive numbers 0 = x0 < x1 < x2 < . . . such that xn → ∞ and
let log 2 = y0 < y1 < y2 < . . . be an increasing sequence of positive numbers such that
yn → ∞. Define the following nonincreasing right-continuous step function

T (t) =

∞
∑

n=0

e−yn1[xn,xn+1)(t), t ≥ 0.

Let X be a symmetric random variable such that P (X > t) = T (t), t ≥ 0. In other
words, X is discrete taking the values ±xn with probabilities e−yn−1−e−yn , n = 1, 2, . . . .
Choosing yn growing much faster relative to xn, it is easily guaranteed that Λ(t) < ∞
for every t ∈ R (it suffices that

∑

etxn−yn−1 < ∞ for every t > 0). We show that we

can choose the yn such that lim supt→∞
− log P(X>t)

Λ∗(t)
= ∞ and consequently, X does not

have regular upper tails and hence is not good (in the sense of (2) of our definition).
By Chernoff’s inequality, e−yn−1 = P (X ≥ xn) ≤ e−Λ∗(xn), so Λ∗(xn) ≤ yn−1 for every
n = 1, 2, . . . . Therefore, by the convexity of Λ∗, for α ∈ (0, 1),

Λ∗(αxn + (1 − α)xn+1) ≤ αyn−1 + (1− α)yn

and we obtain

− logP (X > αxn + (1− α)xn+1)

Λ∗(αxn + (1− α)xn+1)
=

yn
Λ∗(αxn + (1 − α)xn+1)

≥ yn
αyn−1 + (1− α)yn

.

If we choose the sequence (yn) to grow fast enough, specifically such that yn−1

yn

→ 0 (say

yn = 2n
2

, n ≥ 1), then we get lim supt→∞
− log P(X>t)

Λ∗(t)
≥ 1

1−α . Letting α → 1 finishes

the argument.
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