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Abstract

We discuss Boltzmann’s explanation of the irreversible thermodynamic evolution of

macroscopic systems on the basis of time-symmetric microscopic laws, providing a

comprehensive presentation of what we call the typicality account. We then discuss

the connection between this general scheme and the H-theorem, demonstrating the

conceptual continuity between them. In our analysis, a special focus lies on the

crucial role of typicality. Putting things in wider perspective, we go on to analyze

the philosophical dimensions of this concept, explaining the connection between

typicality and probability, and demonstrate its relevance for scientific reasoning,

in particular for understanding the supervenience of macroscopic laws on micro-

scopic laws. The second part of the paper responds to recent objections against

the typicality account that have been raised in the philosophical literature. In par-

ticular, the concept of ergodicity, or a variant thereof, named “epsilon-ergodicity”,

which has been promoted by some authors as a crucial additional assumption on

the dynamics, is shown to be of no use for its intended purpose.
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1 Introduction

Over the last two decades, a series of papers by various highly distinguished

mathematical physicists stressed the importance of the concept of typical-

ity as a basis for probabilistic reasoning in physics, in particular as a basis

for the explanation of the second law of thermodynamics by statistical me-

chanics (Goldstein 2001,Lebowitz 1993,Bricmont 1995,Penrose 1999). None

of these authors took much credit for the presented ideas, each of them

rather stressed that he was presenting or recapturing the groundbreaking

insights of Ludwig Boltzmann who had shown how to explain and (in some

sense) derive macroscopic regularities on the basis of the underlying laws for

the microscopic constituents of matter. Nevertheless, reintroducing these

ideas to Physicists, Mathematicians and Philosophers proved to be neces-

sary, as their relevance is rarely appreciated today and the response to the

papers of Lebowitz, Goldstein and others shows that they are still subject

to widespread misconceptions and misunderstandings.

The present paper originated as a response to various publications by

Roman Frigg and Charlotte Werndl (Frigg 2009 and 2011, Frigg and Werndl

2011 and 2012) who established themselves as two of the most outspoken

critics of this approach to the foundations of statistical mechanics, though

in the end, it grew into a more comprehensive discussion of statistical me-

chanics, the “second law” and the concept of typicality. In section 2, we will

recall the basics of Boltzmann’s statical mechanics and its explanation of

the second law of thermodynamics. Section 3 will elaborate on the details

of this explanation, in particular with respect to the role of typicality and

the issue of irreversibility, providing a comprehensive presentation of what

we call the typicality account. In section 4, we will discuss the Boltzmann

equation and the H-theorem and clarify their relationship to the typicality

account, demonstrating the conceptual unity between these two cornerstones

of Boltzmann’s work in statistical mechanics that are often, falsely, viewed

as alternatives. Section 5 is the most philosophical part of the paper, dis-

cussing the meaning of typicality and its relevance to scientific reasoning, in

particular in the context of understanding the precise way in which macro-

scopic laws can be reduced to microscopic laws. In these first sections, we

thus hope to provide a comprehensive and up-to-date account of Boltzman-

nian statistical mechanics and the central concepts involved. In the last two

sections, we will then explicitly address some questions and alleged prob-

lems that came up in the philosophical literature (but which, ideally, at that
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point of our treatment, will not have remained open in the first place). In

section 6, we comment on the role of the dynamics in the typicality account,

responding, in particular, to criticisms of Jos Uffink, Roman Frigg and Char-

lotte Werndl, that we found to be thoroughly misguided. In section 7, we

will explain why the concept of ergodicity, which is often regarded as crucial

to the foundations of statistical mechanics, and, even more so, the concept

of epsilon-ergodicity promoted by Frigg and Werndl are irrelevant to the

explanation of thermodynamic behavior.

2 Boltzmann’s statistical mechanics

The discussion to which we want to contribute is concerned with the expla-

nation of the irreversible thermodynamic behavior of macroscopic systems.

The term “thermodynamic behavior” refers to the ubiquitous phenomenon

that physical systems, prepared or created in a non-equilibrium state and

then suitably isolated from the environment, tend to evolve to and then stay

in a distinguished macroscopic configuration called the equilibrium state. Fa-

miliar examples are the spreading of a gas, the mixing of milk and coffee,

the disappearance of temperature gradients, and so on.

Historically, this empirical regularity was captured by the second law of

thermodynamics, positing the monotonous increase of a macroscopic variable

of state called entropy, which attains its maximum value in equilibrium. The

main task of statistical mechanics is to explain this macroscopic regularity

on the basis of the underlying laws guiding the behavior of the system’s

micro-constituents.

A crucial ingredient to the understanding of this issue is the distinction

between macro- and microstate of a system. Whereas the microstate X(t) of

a system is given by the complete specification of all its microscopic degrees

of freedom (e.g. position and momenta of all the particles constituting the

system), its macrostate M(t) is specified in terms of physical variables that

characterize the system on macroscopic scales (like the volume it occupies,

the pressure of a gas or fluid, the distribution of blue ink in water, and

so on). The macroscopic state of a system is completely determined by

its microscopic configuration, that is M(t) = M(X(t)), but one and the

same macrostate can generally be realized by a large number of different

microstates all of which “look macroscopically the same”. The partitioning of

the set of microstates into different macrostates is therefore called a “coarse-

graining”. Turning to the phase-space picture of Hamiltonian mechanics for
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an N -particle system, a microstate corresponds to one point X = (q, p) in

phase-space Ω ∼= R
3N × R

3N , q being the position- and p the momentum-

coordinates of the N particles, whereas a macrostate M corresponds to an

entire region ΓM ⊆ Ω of phase-space, namely the set of all microstates

that realize M . The microscopic laws of motion are such that any initial

microstate X0 determines the complete microevolution X(t) = φt(X0) of

the system, represented by a unique trajectory in phase-space going through

X0, thereby also determining its complete macro-evolution M(X(t)) as the

microstate passes through different macro-regions.

These concepts are pretty much forced on us if we accept the superve-

nience of macroscopic facts on microscopic facts and they are essential to

understanding the nature of the problem. The second law of thermody-

namics describes an empirical regularity about the macro-evolution M(t) of

physical systems. However, since this macro-evolution supervenes on the

evolution of the microscopic configuration, and since the evolution of the

microscopic configuration is determined by precise and unambiguous laws

of motion, there is no place for macroscopic laws over and above the mi-

croscopic laws, and the empirical regularities expressed in the former must

be explained or justified on the basis of the latter. This seems like quite

a formidable task, though, as it requires us to reconcile the irreversibility

of thermodynamic behavior with the time-reversal symmetry of the micro-

scopic laws of motion. This symmetry implies that for every solution of the

microscopic equations of motion realizing a certain sequence of macrostates,

there exists another solution passing through the same set of macrostates

in opposite order. And yet, we never observe the spontaneous assembly

of a gas in one corner of a box, or the spontaneous unmixing of milk and

coffee, or heat flowing from a colder body to a hotter one. However, the

formidable task of reconciling this macroscopic irreversibility with reversible

microscopic laws was indeed accomplished by Ludwig Boltzmann at the end

of the 19th century. Lebowitz, Penrose, Goldstein and Bricmont reminded

us how. In doing so, each of them stressed two main insights of the great

Austrian physicist:

1. The identification of the (Clausius) entropy with the (logarithm of) the

phase-space volume corresponding to its current macrostate. Formally:

S = kB ln |ΓM(X)|, (1)

where kB is the Boltzmann constant and |ΓM | denotes the volume
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(the Lebesgue- or Liouville-measure) of the phase-space region ΓM .

The Boltzmann entropy is thus de facto a logarithmic measure of the

phase-space volume corresponding to the system’s macrostate.

2. The understanding that the equilibrium macro-region occupies almost

the entire phase-space volume, i.e., that almost every microstate is an

equilibrium state.

Note that the logarithm in the definition of the Boltzmann entropy1 has the

effect that significant differences in entropy correspond to huge differences in

the phase-space volume corresponding to the respective macrostates. And

indeed, we will generally find that for macroscopic systems, i.e. for systems

with a very large number of microscopic degrees of freedom, the partitioning

of microstates into macrostates does not correspond to a partitioning of

phase-space into regions of roughly the same size, but into regions whose

sizes vary by many orders of magnitude, with the region of maximum entropy

– by definition the equilibrium region – being by far the largest.2 This is

also known as Boltzmann’s combinatorial argument.

The two insights stressed above are the key ingredients in Boltzmann’s

account of the second law of thermodynamics. What we learn from them

is that the thermodynamic behavior that we want to explain is in fact not

a feature of certain special micro-evolutions, but rather the kind of macro-

evolution that would correspond to almost any generic trajectory through

phase-space. Since phase-space consists almost entirely of equilibrium states,

the evolution of a system’s microstate, starting out in a low-entropy region,

would have to be extremely peculiar to avoid carrying the system into re-

gions of higher entropy and finally into an equilibrium state, while the evo-

lution of a system starting out in equilibrium would have to be extremely

peculiar to carry the microscopic configuration into the vanishingly small

non-equilibrium region any time soon. Penrose summarizes the argument as

follows:

1which is necessary to identify S with the thermodynamic Clausius entropy that is an

extensive variable of state, i.e. the total entropy of two combined independent systems is

supposed to be the sum of the entropies of the individual systems.
2Many authors choose to define equilibrium as a stationary macrostate of a system.

The problem with this definition is that, in the end, one is talking about the empty set,

since it turns out that the macrostates that one used to refer to as equilibrium-states are

not exactly stationary, though they are states of maximum (Boltzmann-)entropy and as

a consequence thereof (as we will see) for all practical purposes stationary.
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We would seem now to have an explanation for the second law!

For we may suppose that our phase-space point does not move

about in any particularly contrived way, and if it starts off in a

tiny phase-space volume, corresponding to a small entropy, then,

as time progresses, it will indeed be overwhelmingly likely to move

into successively larger and larger phase-space volumes, corre-

sponding to gradually increasing entropy values. (Penrose 1999, p.

408)

The same reasoning, in a different wording, is also found in the other publi-

cations cited above. The authors, as one would expect from scientists of their

stature, say no more or less than necessary and if the reader feels like the

issue is thus already settled, we would readily agree. Yet we notice that their

presentations, aiming for simplicity and generality, spared some of the de-

tails and intricacies of the argument and it seems that they have thus left too

much room for objections and misconceptions, some understandable, some

irritating, all ultimately unnecessary. Lebowitz rightly warned us, quoting

Ruelle, that the ideas of Boltzmann are “at the same time simple and rather

subtle” (Lebowitz 1993, p. 7). The aim of our paper is to spell out these

subtleties, which often remain unspoken, thus addressing the most common

objections and clarifying the role of typicality in the argument.

3 Typicality and irreversibility

3.1 The combinatorial argument

Let’s now discuss the details of the “typicality account” sketched above for

the concrete example of a gas in a box. This example will accompany us

as the paradigmatic case for thermodynamic behavior throughout the entire

paper. We thus consider a system of about N = 1023 particles, interacting

by a repelling, short-range potential – or, in the case of an ideal gas, not

interacting at all – which are confined to a finite volume within a box with

reflecting walls. Now assume that we find, or prepare, the system in the

macrostate M2 sketched below, that is, we consider a configuration of the

particles that looks, macroscopically, like a gas filling out half the volume of

the box. What kind of evolution, on the macroscopic scale, should we expect

for the gas?

Well, as Boltzmann argued, a simple combinatorial argument shows that

the overwhelming majority of microstates that the system could possibly
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Figure 1: Thermodynamic evolution of a gas

evolve in will look, macroscopically, like Meq, i.e. like a gas that is homo-

geneously distributed over the entire volume of the box. In fact, one can

readily conclude that phase-space volume corresponding to this equilibrium

marostate Meq is about 2N ≈ 1010
23

times larger than the phase-space vol-

ume occupied by configurations with substantially lower entropy!3 Hence,

as the particles move with different speeds in different directions, scattering

from each other and occasionally from the walls, the system’s microstate

wanders around on an erratic (though, of course, deterministic) path in the

high-dimensional phase-space that should soon end up in the equilibrium

region. In other words, we should expect, by all reasonable means, that the

evolution of the microscopic configuration will be one that carries the system

from M2 to Meq. However, it is clear (and it was clear to Boltzmann) that

there will be microscopic configurations belonging to the macrostate M2,

configurations, that is, which look like a gas filling the left half of the box,

that will not show this expected macroevolution, but evolve into a state of

lower entropy. This is a consequence of the time-reversal invariance of the

microscopic laws. For if we consider a macrostate of even lower entropy,

M1, we have to conclude that for every solution of the microscopic laws of

motion corresponding to the macro-evolution from M1 to M2 (which is the

evolution that we would now predict by an analogous reasoning), there exists

a solution carrying an initial microstate in ΓM2 into the macro-region ΓM1 –

we just have to take the microstate in ΓM2 that has evolved from ΓM1 and

reverse the momentum of every particle! This was the content of Loschmidt’s

3Comparing, for instance, the possible equilibrium configurations with all possible con-

figurations that coarse-grain to the macrostate M2, we see that every single particle has

roughly twice the volume that it could be in.
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reversibility objection. However, as Boltzmann understood, the microstates

(the initial conditions in ΓM2) that lead to this anti-thermodynamic behavior

are extremely special ones relative to all possible microstates realizing M2.

The correct statement is thus that almost all initial microstates in ΓM2 will

evolve into the equilibrium region Γeq, while only a very small set of “bad”

initial conditions will show the anti-thermodynamic evolution from ΓM2 into

ΓM1 .

It is helpful in this context to consider the set of all solutions with initial

condition in ΓM2 rather than an individual trajectory. The dynamics of a

system of about N ∼ 1023 particles are highly chaotic, in the sense that

even the slightest variation in the initial configuration can lead to consider-

able differences in the future evolution. In other words, nearby solutions of

the equations of motion will in general quickly and considerably diverge in

phase-space.4 Under the Hamiltonian time-evolution, the set of microstates

realizing M2 at the initial time will thus spread all over phase-space (respec-

tively a hypersurface of constant energy, see below) with the overwhelming

majority of microstates soon ending up in the equilibrium-region and only

a small fraction of special initial configurations evolving into other states of

equal or lower entropy.

All in all, the microscopic analysis tells us that it cannot be true that

every non-equilibrium configuration will follow the second law and undergo

an evolution of increasing entropy. We can, however, assert that typical

microscopic configurations, realizing a low-entropy initial macrostate, will

evolve into equilibrium and stay in equilibrium for most of the time. Simply

put, a macroscopic system in an “ordered” state will typically evolve into an

“unordered” state, because, due to the huge number of microscopic degrees

of freedom, there are just vastly many more possibilities to be in disorder

than to be in order.

3.2 The measure of typicality

Throughout this argument, the intuitive notions of almost all or extremely

special, that we used synonymously to typical/atypical, are understood in

terms of the stationary Liouville-measure, i.e. in terms of the phase-space

volume of the set of microstates with the respective property. Stationarity

of the measure, as asserted by Liouville’s theorem, means that the volume of

4In the case of an ideal gas, this microsopic instability comes only from the reflection

of particles on the walls of the box.
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a set of microstates is preserved under time-evolution, or, intuitively spoken,

that the Hamiltonian flow φt behaves like an incompressible fluid on phase-

space. Formally: |φt(A)| = |A| for all t ∈ R and all measurable sets A ⊆ Ω.

This is clearly an essential feature, for it implies that a) the notion of

typicality is timeless, i.e. a typicality statement does not depend on “what

time it is” and b) the Hamiltonian dynamics “care”, so to speak, about the

measure of the macro-regions that played such a central role in the argu-

ment. More precisely, statement b) can be understood in the sense that the

stationary measure, as a measure on initial conditions (at an arbitrary initial

time), carries over to a well-defined measure on solution trajectories, which

is such that the “number” of trajectories passing a phase-space region at any

given time is proportional to the size of that region.

Now, to be more precise, we would have to take into consideration that

for the discussion of a perfectly isolated system, only a small subset of phase-

space is actually relevant, because the evolution of its microstate is confined

to a hypersurface ΓE ⊂ Ω of constant energy E in virtue of energy conserva-

tion (and this total-energy will, in general, figure into the specification of a

system’s macrostate). In this case, the appropriate stationary measure is not

the Liouville measure, but the so-called microcanonical measure, correspond-

ing to the induced surface-measure on ΓE . For simplicity, we will usually

omit this distinction and simply refer to “phase-space” and the “measure” or

“size” of phase-space regions.

Turning back to Boltzmann’s explanation of the second law, we note

that the Liouville measure (respectively the microcanonical measure) as a

typicality measure serves two purposes in the argument:

1. To establish that the region of phase-space corresponding to the macrostate

M2 is very much larger than the region of phase-space corresponding to

the macrostate M1, and that the region of phase-space corresponding

to the equilibrium macrostate Meq is very much larger than the region

of phase-space corresponding to the macrostate M2, so large, in fact,

that it occupies almost the entire phase-space volume.

It is easy to learn about this “dominance of the equilibrium state”5,

and yet hard to appreciate what it is really saying, since the scale of

the proportions expressed by the innocuous term “almost entirely” are

beyond anything that we could intuitively grasp (just think of the ratio

1010
23

: 1 in our example).

5the term seems to have been introduced by (Frigg 2009).
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2. To define or realize a notion of typicality relative to the current macrostate

of the system, i.e. to allow us to assert that almost all initial conditions

in a non-equilibrium macro-region ΓM2 will evolve into equilibrium.

Regarding the meaning of “almost all”, one should note that it is only in

the idealized situation of a thermodynamic limit (where the number of

microscopic degrees of freedom goes to infinity) that one can expect the

exception set of “bad” configurations to be of measure zero, while if we

argue about a realistic system, the atypicality of such configurations

is substantiated by the fact that they have very very small (though

positive) measure compared to that of all microstates realizing M2.

In fact, stationarity of the Liouville measure allows us to estimate the

measure of the good microstates relative to the bad microstates in ΓM2

by the ratio of phase-space volume occupied by M2 to the phase-space

volume corresponding to states of lower entropy. For let B ⊂ ΓM2 be

the set of initial conditions that will have evolved into a lower-entropy

region ΓM1 after a time ∆t, then Φ∆t(B) ⊆ ΓM1 and thus |B| =

|Φ∆t(B)| ≤ |ΓM1 |, so that |B| : |ΓM2 | ≈ |ΓM1 | : |ΓM2 | ≈ 1 : 1010
23

.6

3.3 Irreversibility

By incorporating into our analysis what is essentially Boltzmann’s answer

to Loschmidt’s reversibility objection, we have, in fact, presented the resolu-

tion to the issue that seemed like the greatest challenge to our reductionist

enterprise: the prima facie contradiction between the irreversibility of ther-

modynamic processes and the reversibility of the underlying mechanical laws.

Let’s take a closer look at how this prima facie contradiction is resolved.

To this end, we recall that it was essential to our argument that it al-

ways referred to typical initial conditions relative to the initial macrostate. Of

course, in terms of overall phase-space volume a non-equilibrium macrostate

occupies a vanishingly small fraction of phase-space to begin with, corre-

sponding (if you will) to a very low a priori probability. Hence, the rele-

vant notion of typicality when discussing convergence to equilibrium from a

non-equilibrium macrostate M2 is defined by the Liouville measure (respec-

6Obviously, this number is so vanishingly small, that it doesn’t matter even if there are

just a few, a few thousand, or even millions of possible macrostates of lower entropy into

which the system could evolve from M2. One should note, however, that the relevance

of this estimate relies on the (well-founded) assumption that the macrostate of a system

changes on larger time-scales than its microscopic state, so that it’s legitimate to think of

the macroscopic evolution in discrete time-steps.
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tively the microcanonical measure) conditioned on the fact that the initial

microstate is in the respective phase-space region ΓM2 .

Now, as we already observed, the time-symmetry of the microscopic laws

manifests itself in the fact that the phase-space volume occupied by bad ini-

tial conditions in the equilibrium-region Γeq, initial conditions, that is, for

which the system will fluctuate out of equilibrium into the macrostate M2

(let’s say), is just as large as the phase-space volume occupied by the good ini-

tial conditions in ΓM2 for which the system will relax into equilibrium. (This

follows immediately from stationarity of the Liouville measure together with

its invariance under the time-reversal operation T : (q, p) → (q,−p), revers-

ing the momentum of every particle.) In other words, over any given period

of time, there are just as many solutions that evolve into equilibrium, as there

are solutions evolving out of equilibrium into a lower entropy state, but the

first case is nevertheless typical for systems in non-equilibrium, whereas the

second case is atypical with respect to all possible equilibrium configurations

in Γeq.(An analogous reasoning applies if we compare two non-equilibrium

macrostates M2 and M1 with substantially different entropy.) It is this fact

and this fact alone that establishes the irreversibility of a thermodynamic

evolution.

Hence, while the issue of macroscopic irreversibility is certainly subtle,

mysterious it is not, and we can assure ourselves that our microscopic analysis

offers a clear and precise answer to every well-posed question characterizing

the phenomenon it is supposed to explain.

Q: Why do we find that systems in non-equilibrium evolve into equi-

librium, although we never see systems in equilibrium evolving into non-

equilibrium?

A: Because the evolution into equilibrium is typical for non-equilibrium

configurations, whereas equilibrium configurations evolving into non-equilibrium

(except for small fluctuations) are atypical.

Q: Why are we able to prepare macroscopic systems in states that, once

isolated, undergo an (autonomous) evolution of increasing entropy, but not

in states that will undergo an (autonomous) evolution of decreasing entropy?

A: Because the first task only requires the preparation of ordered, i.e.

low-entropic, macro-structures (which, remarkably enough, we are very good
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at), whereas the second task would require an exceedingly fine-tuned arrange-

ment of a huge humber of microscopic degrees of freedom. For instance, a

rather crude method such as “pushing a piston” is good enough to prepare a

gas in a low-entropy state. Almost every microscopic configuration that the

gas could end up in as a result of this procedure is then a microstate that will

evolve into equilibrium. However, although there are (in a measure-theoretic

sense) just as many equilibrium configurations that would evolve into non-

equilibrium, these are very particular and very exceptional ones out of all

the configurations that coarse-grain to “a gas in equilibrium”. The prepara-

tion of such a state would thus require precise control over roughly 6× 1023

microscopic degrees of freedom, which is practically impossible.

Q: Why does our reasoning, which is based on time-symmetric laws and

by which we conclude that a system in a low-entropy state will undergo an

evolution of increasing entropy not apply to the reversed motion of that very

same system?

A: Because the result of our analysis is a typicality statement and a

system that has evolved from a state of lower entropy is ipso facto atypical

with respect to its evolution in the reversed time-direction.

3.4 Past Hypothesis and the thermodynamic arrow

All in all, we see that it is impossible to understand macroscopic irreversibil-

ity without appreciating the fact that the “second law of thermodynamics”

is a typicality statement, rather than a necessary consequence of the micro-

scopic laws or the result of a logical inference about the behavior of any

individual system (see also the discussion in section 5.). And it is impossi-

ble to understand macroscopic irreversibility without appreciating the sense

in which non-equilibrium states are per se very special, since the thermody-

namic irreversibility that we have “derived” from time-symmetric microscopic

laws is only a result of the assumption – or preparation, or de facto existence

– of these special, i.e. low-entropy, (initial) macrostates. A typical config-

uration simpliciter, i.e. a typical configuration with respect to all possible

microstates is a state for which the system is in equilibrium, will be in equi-

librium for most of its future and has been in equilibrium for most of its past

– which again describes a perfectly time-symmetric situation.

Above we said that every well-posed question about macroscopic irre-

13



versibility receives a clear and precise answer from Boltzmann’s statistical

mechanics. What we should have said, is that we are leaving aside one deep

question that is mostly – though not entirely – orthogonal to our discus-

sion. For if we follow our last thought, we see that the typicality account

is ultimately shifting the explanatory burden from why it is that systems

in non-equilibrium relax into equilibrium, to why it is that we find systems

in such special states in the first place. Of course, as long as we are deal-

ing with boxes of gas, or melting ice-cubes, or other confined systems, their

low-entropy (initial) states will always be attributable to influences from

“outside”, i.e. to the fact that these systems are actually part of some larger

system (possibly containing a physicist, or a freezer) before “branching off”

to undergo a (more or less) autonomous evolution as (more or less) isolated

subsystems. But this presupposes, of course, that these larger systems have

been out of equilibrium themselves, otherwise they could not have given rise

to subsystems with less then maximal entropy without violating the “second

law”. And if we think this through to the end, we finally arrive at the ques-

tion why it is that we find our universe in such a special state, far away from

equilibrium, much further, in fact, than it would have to be to account for

our existence and that of our galaxy. This is what (Goldstein 2001) calls the

hard part of the problem of irreversibility and it concerns, broadly speaking,

the origin of irreversibility and the thermodynamic arrow of time in our uni-

verse. Dealing with the “hard part” would require us to discuss the meaning

and the status and the intricacies of the Past Hypothesis7 stipulating a very

“ordered”, i.e. very low-entropy, initial state of our universe. But these ques-

tions are far beyond the scope of the present paper and hence shall not be

discussed any further (except for a brief remark in section 5, where the “hard

problem” is not completely disentangled from the focus of our discussion).

3.5 Recurrence

So far, we have stressed the fact that, as a conclusion of the microscopic anal-

ysis, it cannot be true that every non-equilibrium configuration will evolve

into equilibrium – only typical ones will. Now, we want to draw the atten-

tion to the fact that, as a conclusion of the microscopic analysis, we cannot

7The term “Past Hypothesis” is due to (Albert 2000), who also discusses its role in

ascertaining the reliability of records and grounding causal asymmetries. The necessity of

such an assumption was, however, already noted by Boltzmann in his lectures on gas theory

(Boltzmann 1896a, p. 252-253). See also (Feynman 1967) and the pertinent chapters

in (Carroll 2010) for a very comprehensible discussion.
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claim that a typical system will stay in equilibrium forever, but must rather

expect that the microstate, evolving in phase-space, will eventually re-enter

the non-equilibrium region, corresponding to the system fluctuating out of

equilibrium into a state of lower entropy. The most striking exemplifica-

tion of this fact is provided by Poincaré’s recurrence theorem, stating that

a typical solution of the microscopic dynamics will eventually revisit every

macro-region (of positive measure) it once passed, meaning, in particular,

that a system starting out in a low-entropy macrostate is bound to return to

this macrostate some time in the future. But the time-scales on which signif-

icant fluctuations out of equilibrium are to be expected are so astronomical

that they have no empirical relevance. For the gas-model, for instance, Boltz-

mann estimates the recurrence time to be about 1010
20

years8 – exceeding

the age of our universe by many orders of magnitude.

Figure 2: Typical entropy curves on physically relevant time-scales (left) and

on time-scales of the Poincaré cycles (right). Note that in the diagram on

the right, the proportions are not accurate. The periods of close-to-maximal

entropy are really vastly longer than the duration of low-entropy “valleys”.

Whereas we learned from Boltzmann’s typicality account and his reply to

Loschmidt’s reversibility objection that the explanation of irreversibility is

to an essential degree about initial conditions, we learn from his reply to the

recurrence objection of Zermelo and Poincaré that it is also essentially about

time-scales. The thermodynamic processes that we observe in our universe

and that we want to explain correspond to an entropy-evolution as depicted

8See (Boltzmann 1896b) for his illuminating reply to the recurrence objection and his

estimate of the recurrence times. Boltzmann does not actually give a numerical value, but

only notes that the coresponding number has “many trillion decimal places”.
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in the left diagram in Figure 2, that is, systems starting out in a low-entropy

state evolving into equilibrium and staying in equilibrium, except for small

fluctuations of the entropy about the maximum value. The characteristic

time-scale associated with this picture is that of the systems’ relaxation time

(the time it typically takes to reach equilibrium), which may be seconds for

the spreading of a gas, minutes for the cooling of a hot bowl of soup, many

years for the decay of radon and many billions of years9 for the heat death

of the universe. But all this is just the blink of an eye compared to the

time-scales of the Poincaré cycles for even the fastest reacting system. On

these time-scales, typical entropy curves will look qualitatively like the graph

on the right – which is, by and large, a time-symmetric picture.10 One will

often find discussions of the statistical mechanics and the “second law” being,

explicitly or implicitly, concerned with the diagram on the right rather than

the diagram the left (see also our discussion of ergodic theory in section 7.)

The reader should be aware that these discussions are then hopelessly out of

focus, since the time-scales associated with this diagram (i.e. the numbers

that we would have to write on the t-axis in any conventional units) are so

ridiculously huge that they have absolutely no empirical relevance.

4 Proving the second law? Typicality and the H-

theorem

Although the formula engraved on Boltzmann’s tombstone in Vienna is equa-

tion (1) connecting the entropy of a microstate with the “probability” of the

corresponding macrostate, his name is at least as intimately associated with

the Boltzmann equation and the H-theorem describing, in a more quanti-

tative manner, convergence to equilibrium for a low-density gas. This H-

theorem is of outmost interest in the light of our previous discussion for

once, because it illustrates very clearly the need for a typicality argument

9probably more like 10100 of years, which is about the time it takes for a black hole of

several solar masses to evaporate
10There are as many segments of increasing entropy as there are segments of decreasing

entropy, except of course for the initial slope. And the latter appears only if the initial

time actually marks the system’s (or the universe’s) beginning, otherwise we should extend

the picture analogously towards the past. This picture, pertaining to a universe whose

history extends infinitely into the past and into the future, is what Boltzmann considered

in his fluctuation hypothesis in an attempt to explain the low-entropy state of the uni-

verse without assuming a special, low-entropy beginning. Feynman calls this fluctuation

hypothesis “ridiculous” (Feynman 1967).
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and furthermore because it can be viewed as a concrete implementation of

the general scheme that we have presented before. In this context, we have

to counter a common misconception, that has most likely arisen from Boltz-

mann’s first presentation of the H-theorem and persisted despite his more

refined argumentation in later writings, namely that the H-theorem and the

probabilistic arguments are somehow competing accounts of macroscopic ir-

reversibility and the convergence to equilibrium. Huw Price, for instance,

writes with respect to the latter:

In essence, I think – although he himself does not present it in

these terms – what Boltzmann offers is an alternative to his own

famous H-Theorem. The H-theorem offers a dynamical argument

that the entropy of a non-equilibrium system must increase over

time, as a result of collisions between its constituent particles.

[...] The statistical approach does away with this dynamical ar-

gument altogether. (Price 2002, p. 27)11

We are convinced that the reason why Boltzmann did not present the “sta-

tistical approach” as an alternative to the H-theorem is that, in fact, it isn’t.

Understood correctly, there is a distinct conceptual continuity between the

H-theorem and the “typicality account” so that the latter does not appear as

a break with Boltzmann’s earlier work, but as a distillation of its essence.12

Understanding these connections, we will also see that many of the objec-

tions that are routinely raised against the conclusiveness of the H-theorem

are unfounded. To make this case, we shall first review what the H-theorem

is actually about and how it is grounded in the microscopic theory.13

Recall that the microstate of an N -particle system is represented by a

point X = (q1, ..., qN ; p1, ..., pN ) ∈ Ω in 6N -dimensional phase-space, com-

prising the position and momenta of all particles. The same state (modulo

permutations of the particles) can also be represented as N points in the 6-

dimensional µ-space, whose coordinates correspond to position and velocity

of a single particle, i.e. X → {(q1, v1), ..., (qN , vN )}, with vi := pi/m. The

H-theorem is concerned with the evolution of a function fX(q, v) on µ-space,

11See also the pertinent entry in the Stanford Encyclopedia of Philosophy (Uffink 2008)

which presents Boltzmann’s work in statistical mechanics as a series of rather incoherent

and ultimately wanting attempts to explain the second law.
12Cf. (Goldstein 2012). See also (Goldstein and Lebowitz 2004) for a mathematical

analysis corroborating this view.
13For a good introduction, see, for instance, (Davies 1977). For a detailed mathematical

treatment, see (Spohn 1991), (Villani 2002), (Lebowitz 1981).
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sometimes called the macroscopic profile, that is supposed to provide an effi-

cient description of the most important (macroscopic) characteristics of the

gas in the microstate X. This function is defined as the empirical distribution

or coarse-grained density of points in µ-space. Intuitively, one can think of

dividing µ-space into little cells whose dimension is large enough to contain

a great number of particles, yet very small compared to the resolution of

macroscopic observations, and counting the relative number of particles in

each cell. For fixed q and v, fX(q, v) thus corresponds to the proportion of

particles located near q with velocity approximately v. In the limit where

the size of the cells go to zero, the empirical distribution becomes the actual

distribution

fX(t)(q, v) :=
1

N

N
∑

i=1

δ(q − qi(t)) δ(v −
1

m
pi(t)).

We are giving this formula to emphasize that, although fX(q, v) is tech-

nically a probability measure, there’s is absolutely nothing random about it.

It is more adequate to think of it as a macroscopic variable, determined, as

it always is, by the microscopic configuration of the system. (More precisely,

the usual macroscopic variables of state can be computed from this empirical

distribution.) Anyway, what’s essential here is that the distribution function

does not describe a random system or an ensemble of systems, but pertains

to a coarse-grained description of an individual system, so that every mi-

crostate X determines a unique fX(q, v), while many different microscopic

configurations will coarse-grain to one and the same µ-space density.

Now the first crucial result is that although the empirical distribution

can be different for different microscopic configurations X, it is in fact (more

or less) the same for an overwhelming majority of possible X. That is, one

can show that for typical X ∈ Γ, the distribution function is of the form

fX(q, v) ∝ e−
1
2
mβv2 ,

for some constant β that is later identified with the inverse temperature of

the system. This is the famous Maxwell or Maxwell-Boltzmann distribution

which is hence the equilibrium distribution of the gas. The distribution

having no q-dependence means that the gas is homogeneously distributed

over the entire volume with no correlations between position and velocities,

i.e. with uniform temperature.

The goal of Boltzmann’s famous H-theorem is thus to show the con-

vergence of an initial non-equilibrium distribution f0(q, v) to the Maxwell-

distribution feq(q, v). The result is thereby based on three claims:
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1) For a low-density gas, the time-evolution of fX(t)(q, v) is well described

by an effective equation now known as the Boltzmann equation.

Starting with an initial distribution f0(q, v) = fX0(q, v), it is important

to distinguish the function fX(t)(q, v) – whose time-evolution is always

determined by that of the microstate X(t), i.e. fX(t)(q, v) is always the

empirical distribution for the system’s actual microscopic configuration

– from the solution f(t, q, v) of the Boltzmann equation with initial con-

dition f(0, q, v) = f0(q, v)
14. The relevant claim is then that for typical

initial conditions, fX(t)(q, v) will be (in a precisely specified way) close to

f(t, q, v) for a sufficiently long period of time, thus providing an effective

description of the system’s time-evolution.

2) For a solution f(t, q, v) of the Boltzmann-equation, the H-function

H(f(t, q, v)) :=

∫

f(t, q, v) log f(t, q, v)dqdv

is monotonously decreasing in t.15

3) The H-functional reaches its minimum for the Maxwell-distribution feq(q, v).

Together with 2) this implies, in particular, that the Maxwell-distribution

is a stationary solution of the Boltzmann-equation.

Statements 2) and 3) are fairly standard mathematical results. The crux

of the matter lies in statement 1). When Boltzmann first presented his H-

theorem in 1872, he argued that a diluted gas must evolve in accord with his

equation; He later had to mitigate this statement claiming, in effect, only

that it would typically do so. Indeed, we will see that 1), and therefore the

H-theorem, are genuinely typicality statements.

Boltzmann’s derivation of what is now known as the Boltzmann equation

is famously based on the Stoßzahlansatz or the assumption of molecular

chaos.16 This is an assumption about the relative frequencies of collisions17

14respectively a smooth approximation thereof.
15Whereas the “true” microscopic H of fX(t)(q, v) will fluctuate and only decrease “on

average”.
16Assumption, unfortunately, is not a perfectly accurate translation of the German word

Ansatz. Whereas the first is sometimes used synonymously with a premise, the later has a

distinctly pragmatic element and can refer to something more akin to an “approximation”

or a “working hypothesis”.
17The (effective) interaction potential of the particles in the gas is assumed to be very

short-range compared to their mean free path – this is the meaning of a “diluted” or “low-

density” gas. An event where two particles come close enough to each other to interact
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between the particles in the gas. Denoting by N (t, q; v1, v2) the number of

collisions happening near q in a small time-interval around t between particles

with velocity (approximately) v1 and v2, the Stoßzahlansatz is:

N (t, q ; v1, v2) ∝ N2 f(t, q, v1)f(t, q, v2) |v1 − v2| dt dq dv1dv2, (2)

i.e. the relative frequency of scattering events between particles of different

velocities happening in the cell around q is assumed to be proportional to the

density of particles with the respective velocities near the respective position.

As the mathematically trained reader will readily notice, the scattering prob-

ability being proportional to the product of f(t, q, v1) and f(t, q, v2) means

that particles of different velocities are assumed to be statistically indepen-

dent as they contribute to collisions. This is, more specifically, the meaning

of molecular chaos.

Boltzmann’s derivation, although a brilliant physical argument, was far

from a rigorous proof. There are many mathematical subtleties involved

in statement 1), concerning, for instance, the existence and uniqueness of

solutions to the Boltzmann equation. However, if we can generously overlook

these points, it is true that if and as long as the assumption of molecular

chaos, respectively equation (2), is valid, statement 1) is correct. Hence, we

have to ask: What is the status of molecular chaos and how is it justified?

It is important to keep in mind that there is really nothing random about

the particle interactions in a gas. Which particles are going to collide and

how they are going to collide is completely determined by the initial condi-

tions and the microscopic laws of motion. For the purpose of illustration,

let’s imagine that we could freeze the system at time t = 0 and arrange

the position and momentum of every single particle before letting the clock

run and the system evolve according to the deterministic laws of Newtonian

mechanics. We could then arrange the initial configuration of the system in

such a way that “slow” particles will almost exclusively scatter with other

“slow” particles and “fast” particles with other “fast” particles (or the other

way around). In fact, given that the gas is sufficiently diluted and the range

of the pair-interactions sufficiently small, we could even arrange the sys-

tem in such a way that the particles won’t “meet” at all. But such initial

configurations are, obviously, very special ones. For typical microscopic con-

is referred to as a “collision”. The potential is, of course, assumed to be repulsive. In the

hard sphere model, which is the simplest microscopic model for the Boltzmann equation,

a “collision” is quite literally a collision.
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figurations, coarse-graining to the initial distribution f0(q, v), we will find

that the relative frequency with which particles of different velocities “meet”

for the first collision is roughly proportional to the density of particles with

the respective velocities near the respective position, i.e. given by eq. (2).

This is nothing more and nothing less than the law of large numbers, based,

in effect, on simple combinatorics. Under the constraint that the number

of particles in a cell about (q, v) is given by N · f0(q, v), there are very few

possibilities to “arrange” the particles in such a way that (let’s say) each

particle meets another one with roughly the same velocity. In comparison,

there are vastly many more initial configuration for which the number of

particles with velocities v1 and v2 colliding near q within an (infinitesimally)

short time-interval is (roughly) proportional to N2f0(q, v1)f0(q, v2) |v1− v2|.

The validity of (2) at the initial time is thus (as all law-of-large-number

statements) a typicality statement and as such another mathematical fact.18

We can observe here the fundamental difference between the probability

density f(t, q, v) and the typicality measure. The “scattering probability”

at time t is defined in terms of f(t, q, v), but it is only for typical initial

conditions that the relative frequency of scatterings is actually close to the

expectation value. And typical initial conditions are defined, as usually, by

the Liouville-measure (respectively the microcanonical measure) restricted

to the initial macro-region ΓI := {X ∈ ΓE | fX(q, v) = f0(q, v)}.

This brings us, finally, to the critical part of the H-theorem. For as-

sume that after an (infinitesimal) time-interval ∆t for which the validity of

the Boltzmann-equation is established, the distribution function has evolved

into f(∆t, q, v). How do we know that (2) is still a good approximation for

all but a small set of initial conditions? It is still true that (2) is approxi-

mately satisfied for typical microscopic configurations realizing the current

distribution, i.e. counting all possible configurations that coarse-grain to

f(∆t, q, v). But we cannot “count” all these configurations, because the

microstates relevant to our considerations are constraint by the condition

that they have evolved from the macro-region corresponding to the initial

distribution f0(q, v). Mathematically, these dynamical constraints on the

“combinatorics” translate into the statement that the µ-space coordinates of

the particles at time t > 0 are no longer statistically independent, making it

questionable, for the time being, whether a law-or-large-number statement

18Note, by the way, that there is no issue here as to whether we let the clock run

“forwards” or “backwards” – the reasoning is perfectly symmetric with the respect to the

time-evolution in both time-directions.
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for the relative frequencies of particle collisions (i.e. molecular chaos) still

holds. This is, notably, the only meaningful way in which interactions build

up correlations. And we note, in particular, that the situation is still identi-

cal with respect to the time evolution towards the “future” as well as towards

the “past” of the distinguished initial state.

Now Boltzmann’s Stoßzahlansatz can be understood as the assumption

that statistical independence is preserved by the microscopic time-evolution,

or, in other words, that the relative frequency of collisions is always the

typical one with respect to the current empirical distribution (≈ the current

macrostate). The mathematician refers to such a proposition as propagation

of molecular chaos. Deriving the Boltzmann equation from a microscopic

model, in a rigorous mathematical sense, is thus to validate this ansatz, i.e.

to show that for typical initial conditions, equation (2) remains approximately

satisfied on sufficiently long time-scales, “sufficiently long”, that is, to describe

the thermodynamic evolution of a gas.

So, does molecular chaos propagate? That is, do the dynamics of a gas

preserve statistical independence well enough to justify the Stoßzahlansatz?

Based on physical intuition and various encouraging results, there is no rea-

sonable doubt that the answer affirmative. Given the fact that the micro-

scopic dynamics are highly chaotic, that the number of particles in a gas

is huge and the gas, by assumption, very diluted, so that problematic re-

collisions (collisions between particles that have already collided in the past)

are very rare, it is more than plausible that the relative frequency of col-

lisions shouldn’t become too special (in the sense of deviating significantly

from the expectation value given by eq. (2)), unless the initial configuration

itself was very special. And yet, this is extremely difficult to prove, as every

mathematician familiar with the problem can testify; so difficult, in fact,

that, as of to date, the best mathematical results available are valid only for

very short times and a very restricted class of particle-interactions.19 How-

ever, one should not be confused about the fact that these difficulties are

technical rather than conceptual in nature, and claims to the opposite, that

19See (Landford 1975) and (King 1975) for the landmark results and (Gallagher et.al.

2012), (Pulvirenti et.al. 2013) for recent extensions to more general interaction potentials.

We should note that in these proofs, which all follow the strategy of (Landford 1975), the

limiting factor, restricting the validity to a relatively short time-interval, is not, strictly

speaking, the propagation of molecular chaos, but rather the existence of the macroscopic

(Boltzmann-) dynamics. The two issues are, however, related (for mathematical reasons

that we cannot go into here) and which one will appear as the greater obstacle is likely to

depend on the strategy of proof.
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is, claims to the effect that there is something wrong with the Boltzmann

equation – or, for that matter, with Boltzmann’s justification of the equation

– are completely unfounded.

In this context, it is also important to understand that, unless one consid-

ers the thermodynamic limit of an infinitely large system, equation (2) will

hold at best approximately for all but a small set of “bad” initial conditions

(i.e. as a weak law-of-large-numbers statement), that this approximation

will get worse with time, and that the approximation is only good enough

until it isn’t. Eventually, a typical system will exhibit sizable fluctuations

out of equilibrium, at which point its evolution can no longer be adequately

described by the Boltzmann equation. It is as astonishing as it is unnec-

essary that after more than a century, there is still confusion about the

question how Boltzmann’s H-theorem squares with the recurrence objection

of Zermelo. The answer is simply that the Boltzmann equation is an effec-

tive description that cannot – and need not – be universally valid, and that,

moreover, the time-scales on which the Boltzmann equation is relevant have

nothing to do with the time-scales on which Poincaré recurrence is relevant.

All in all, we return to our initial point that the Boltzmann equation and

the H-theorem are not an “alternative” way to explain convergence to equilib-

rium and the irreversibility of thermodynamic behavior, but rather a concrete

exemplification of the explanatory scheme that we have presented before in

more general terms. Although the micro/macro distinction does not appear

as prominently in the formulation of the H-theorem, it is essential that the

empirical distribution f(q, v) pertains to a coarse-grained description of the

system, hence distinguishing a macro-region in phase-space consisting of all

microscopic configurations coarse-graining to the same µ-space density. Con-

vergence to equilibrium is then established for typical initial conditions with

respect to that initial non-equilibrium macro-region. And the equilibrium

state – characterized by the Maxwell-distribution to which non-equilibrium

distributions typically converge by virtue of the H-theorem – is, as always,

distinguished by the fact that it is the one realized by the overwhelming ma-

jority of all microscopic configurations. As Boltzmann himself beautifully

explained:

The ensuing, most likely state [...] which we call that of the

Maxwellian velocity-distribution, since it was Maxwell who first

found the mathematical expression in a special case, is not an

outstanding singular state, opposite to which there are infinitely

many more non-Maxwellian velocity-distributions, but it is, to the
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contrary, distinguished by the fact that by far the largest num-

ber of all possible states have the characteristic properties of the

Maxwellian distribution, and that compared to this number the

amount of possible velocity-distributions that deviate significantly

from Maxwell’s is vanishingly small. (Boltzmann 1896a, p. 252,

translation by the authors)

Despite the common focus on Stoßzahlansatz as the basic assumption in

Boltzmann’s derivation of his equation, there is a compelling case to make

that the tendency to equilibrium is by all means explained by the “dominance

of the equilibrium state”. (Although it will not appear among the premises

of the H-theorem, nor necessarily as an explicit part of the proof!) The

explanatory role of the Stoßzahlansatz is then somewhat subsidiary to this

insight, namely to express the fact that the “most likely” evolutions carry a

non-equilibrium distribution into equilibrium because almost all microstates

are equilibrium states.

Finally, and maybe most importantly, we understand that the irreversibil-

ity of the Boltzmann equation (as an effective description of a system’s

macro-evolution) is – as it cannot be otherwise – a consequence of the fact

that non-equilibrium configurations converging to equilibrium are typical

with respect to the corresponding “macrostate”, whereas microscopic con-

figurations leading to the time-reversed evolution are atypical with respect

to all equilibrium configurations, i.e. all microstates realizing the equilibrium

distribution feq(q, v).

One will often encounter the claim that the irreversibility of the Boltz-

mann equation is a result of the Stoßzahlansatz being an explicitly time-

asymmetric assumption (e.g. Uffink 2008, Price 1996, Price 2002). This

is not correct. There is nothing more time-asymmetric about equation (2)

than about the assumption that the probability of drawing a black ball and

a white ball from an urn is proportional to the number of black balls and to

the number of white balls that this contains as you draw. Of course, it would

be hard to see how a time-asymmetric assumption about scattering processes

described by reversible microscopic laws could ever be justified, but Boltz-

mann’s arguments contain no questionable ploys like that. The assumption

of molecular chaos breaks the time-symmetry only in the obvious (and nec-

essary) sense that it applies to the thermodynamic evolution but not to the

reversed motion; this, however, does not mean that any time-asymmetry is

smuggled into the derivation of the H-theorem in addition to the one intro-

duced by the assumption of a non-equilibrium initial distribution.
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This misunderstanding, we believe, is mostly based on the failure to

recognize molecular chaos, respectively the Stoßzahlansatz, as a typicality

statement. For typical initial conditions, equation (2) is equally valid for

the time-evolution in both temporal directions. However, the microscopic

configurations that have evolved from a state of lower entropy are ipso facto

atypical with respect to their evolution in the reversed, i.e. “past”, time

direction.

To put it differently, if the assumption of molecular chaos is justified in

the sense explained before, it will hold for typical initial configurations re-

alizing a non-equilibrium distribution, for which the H-theorem thus asserts

convergence of the distribution function to a Maxwellian distribution (to-

wards the future as well as towards the past) and it will also hold for typical

equilibrium configurations, for which the H-theorem thus asserts that the

equilibrium distribution is stationary. There is no reason, however, why it

must hold for those equilibrium configurations that are the time-reversal of

states that have just evolved from non-equilibrium, which are, after all, a

vanishingly small subset of the equilibrium region. And we know, of course,

that it doesn’t, that those states are precisely contained in the set of bad

configurations for which the particles are correlated in such a way as to

undergo a macro-evolution of decreasing entropy (increasing H) that can-

not be described by the Boltzmann equation. And we also know that the

atypicality of these states (with respect to their evolution in one temporal

direction) is explained by, or at least a necessary consequence of, the fact

that the system is assumed or constrained or observed to be in a special (i.e.

non-equilibrium) state at one particular moment in time.20

The only deeper question that may be left is why the Boltzmann equation

is in fact relevant, i.e. why it is a good description of an actual gas in our

actual world. To understand the answer to this question is thus to appreciate

the meaning and relevance of typicality statements.

20It may still seem that, since all collisions are reversible, it cannot be the case that

the time-reversal of a “good” configuration, for which (2) approximately holds, is a “bad”

configuration for which doesn’t. This is not correct, though, since the time-reverse of a

scattering process v1 + v2 → v′1 + v′2 is not −v1 + −v2 → −v′1 + −v′2, but −v′1 + −v′2 →

−v1 +−v2, that is, a reversal of the time-direction leads to completely different “pairings”

of incoming velocities in the scattering processes.
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5 Typicality and the status of macroscopic laws

5.1 The ‘logic’ of typicality statements

Concerning the philosophical community, one of the hurdles that may have

stood in the way of appreciating Boltzmann’s contribution and the relevance

of typicality is the fact that Nagelian schemes of reduction21 and the related

deductive-nomological models of physical explanation did not quite capture

the subtleties of Boltzmann’s arguments.22 According to these often criti-

cized yet very persistent theories, a microscopic explanation of the second

law of thermodynamics – respectively a reduction by the microscopic theory

– must be a derivation of the macroscopic law from the microscopic laws

plus suitably specified “auxiliary assumptions” or “circumstances” in which

the macroscopic law is supposed to hold. There is a sense in which this

characterization is correct, although to get a grip on what this sense is, we

will have to say more about what we mean by “derive” and what we mean by

a “macroscopic law”. First, we want to emphasize one of the more problem-

atic aspects of this view, which is that an understanding of the relationship

between the macroscopic regularity and the underlying microscopic laws in

purely logical terms misses the crucial role that initial conditions play in the

explanation of a macroscopic phenomenon.

For what is it to derive the thermodynamic behavior of (let’s say) a gas

from the microscopic laws of motion? Is it to show that there exists at least

one microscopic configuration for which the gas will relax to equilibrium?

Is it to show that it will happen for all possible (non-equilibrium) config-

urations? The insufficiency of the first statement and the falsehood of the

second must severely question the adequacy of purely deductive schemes of

explanation. For suppose we wanted to account for the thermodynamic

behavior of a certain type of physical system by a scheme of the form

∀x
(

F (x) ⇒ G(x)
)

, where x ranges of all possible realizations of the cor-

responding microscopic model and the predicate G is a suitable formulation

of “showing effectively/approximately thermodynamic behavior”. Then the

antecedent F (x) would have to contain a clause more or less equivalent to

the statement “The initial conditions of the system x are such that G(x)”.

But then the deduction becomes too trivial to be relevant. Of course there

21For a recent defense of this schemes, see (Dizadji-Bahmani et.al. 2010).
22Physicists and philosophers who did appreciate the relevance of typicality and have

written about it include (Maudlin 2007,Bricmont 2001,Dürr 2009,Goldstein 2012,Zanghì

2005). We owe many of the thoughts expressed in this paper to their teachings.
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exist initial conditions for which the gas will expand. There are also initial

conditions for which the gas will contract. And (possibly) initial conditions

for which the gas will transform into a banana. In other words, for a sys-

tem x with sufficiently many degrees of freedom and sufficiently non-trivial

dynamics it will practically always be possible to maintain that it has the

(macroscopic) property G because the initial conditions were such that G(x).

The only thing that can provide explanatory value in this context is the as-

sertion of typicality, i.e. the assertion that G is not a feature of certain special

initial conditions, but a physical fact that would arise from almost any ini-

tial condition. This is also to assure that the explanatory work is done,

as much as possible, by the fundamental laws, rather than some fine-tuned

arrangement of microscopic degrees of freedom.23

Note however that the relevant statement is now, logically and syntacti-

cally, a proposition about G rather than a proposition about any particular

x. The “logic” of the statistical explanation of the second law is thus not

to state a set of (statistical) assumptions about an individual system from

which to infer its thermodynamic behavior, but to spell out a physical ac-

count that grounds the explanation of thermodynamic behavior in the notion

of typicality.24

5.2 Typicality vs. probability

Now clearly, the more common way of speaking is not to say that a macro-

scopic feature G (a certain type of macro-evolution, a statistical regularity,

a numerical relation between macroscopic variables of state, etc.) is typical,

but that G(x) is very likely or that we infer G(x) with high probability. The

tricky thing about this way of speaking, though, is that while almost every-

body will consent that it is saying something right and relevant, it is hard to

23Thanks to Jenann Ismael for this insight.
24We note that a superficial look on the modus operandi of statistical mechanics may

be deceptive here. Indeed, a quantitative derivation of a thermodynamic law will often be

based on a statistical hypothesis about the distribution of certain microscopic quantities

or events within an individual system (or sometimes an ensemble of systems) – think of

Boltzmann’s Stoßzahlansatz or the assumption of isotropically distributed particle veloci-

ties that enters the derivation of the ideal gas law. However, as we have demonstrated for

the Stoßzahlansatz in section 4 the “statistical hypothesis” itself is ultimately justified by

the fact that the assumed distribution of microscopic quantities is that of a typical con-

figuration (respectively a typical ensemble) with respect to the corresponding macrostate.

The derivation of a thermodynamic law is then, again, most aptly understood as a result

about typical systems, rather than a (logical or probabilistic) inference about a particular

system.
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get to people to agree on what exactly that is. Indeed, such a probabilistic

statement concerning a “macroscopic law” must raise two additional ques-

tions: a) what is it supposed to mean? and b) how did we accomplish the

feat to derive a probabilistic result from deterministic microscopic laws?

We cannot discuss here in detail how the different “interpretations” of the

concept of probability (subjectivist, frequentist, etc.) fare in this context,

but want to make a few general points to capture the intricacy of the issue.

1) It would seem rather odd (and detached from scientific practice) if in order

to account for the second law of thermodynamics we would have to add to

the mechanical laws a quantitative assumption about the distribution of

initial conditions of boxes of gas, or the like, that we find in our universe.

2) The fact that we are generally ignorant about the the exact microstate

of a system is true, but largely irrelevant. It is absurd to think that the

validity of the second law of thermodynamics could in any way depend

on what we know or believe or are able to observe.

3) Finally, if we are serious about our commitment to argue within the

paradigm of a particular deterministic theory, we have to take it to the

conclusion that there is nothing more “random” about the physical pro-

cesses in the universe that give rise to subsystems (e.g. boxes of gas) in

non-equilibrium configurations, than about the entropy-increasing pro-

cesses going on within these subsystems, once they are suitably isolated

and free of macroscopic constraints. Eventually one has to wonder why

it is true as a matter of fact that whenever someone prepares a gas in a

low-entropy state, it never ends up in one of the “bad” microscopic config-

urations for which the gas would contract rather than expand. And then

one has to take seriously the fact that an act of “preparation” is itself a

physical process, following the same set of physical laws, with its outcome

determined by suitably specified initial conditions. Why are these initial

conditions always good ones, then? To defer the source of randomness

to the outside, from the box of gas to the shaky hands of the experimen-

talist or to exterior perturbations preventing the subsystem from being

perfectly isolated, is just to pass the buck. But the buck must stop, even-

tually, with the universe itself. For the universe is what it is, it exists

once and only once, there is nothing before and nothing outside. And

we either live in a universe that obeys the second law of thermodynamics

(on cosmological scales and, with the possibility of very rare exceptions,

in its branching sub-systems) or we don’t.
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So, all that said, what is the difference between a statement of probabil-

ity and a typicality statement, and why is typicality the more appropriate

concept in this context?

For once, it is important to note that, contrary to the conventional use

of probabilities, typicality is not a quantitative concept. The role of the

typicality measure is only to realize and give precise meaning to the notion of

“almost all” or “the overwhelming majority of” initial conditions and although

it is common and convenient and natural to use the Liouville-measure, at

least in the context of classical mechanics, many different measures would

yield the same notion of typicality.25 In particular, we are not committed

to giving meaning to the exact number that the typicality measure assigns

to every (measurable) subset of phase-space. The only “probabilities” that

are meaningful in this context are 1 (or those close to 1) and 0 (or those

close to 0), indicating what Bernoulli (1713) called moral certainty or moral

impossibility.26

Furthermore, in making a typicality statement, we do not commit our-

selves to talking about actual or hypothetical ensembles of systems, nor do

we use probabilistic concepts to express our “guess” (that is, information or

knowledge or believe) about the actual (current or initial) microstate of a

system. A typicality statement refers to nothing more and nothing less than

the fact that a certain (coarse-grained/macroscopic) property or feature or

behavior of a physical system is typical according to the microscopic laws, i.e.

that it is the kind of feature or property or behavior that our fundamental

theory predicts for an overwhelming majority of microscopic configurations

compatible with appropriately specified (macroscopic) boundary conditions:

Typically, a coin tossed repeatedly for a large number of times will land about

as often on heads as on tails. Typically, an ice cube at room temperate will

melt. According to the laws of quantum mechanics, a collection of point-

particles, shot successively through a double-slit, will typically (though not

25On the other hand, many measures would yield a different notion of typicality. One

can think, for instance, of singular measures, concentrated on a single point in phase-space.

Such a measure may even turn out to be stationary, in case that this particular microstate

happens to be a stationary point of the dynamics. So why not take such a measure to

define “typicality”, meaning that a property is typical if and only if it is instantiated by

this one particular configuration? We trust the reader to answer this question for himself.
26Such typicality statements can be understood in the sense of Cournot’s principle,

which is one of the basic principles underlying the philosophy of probability of Kol-

mogorov’s “Grundbegriffe”, but also stands in the philosophical tradition of great mathe-

maticians such as Emile Borel, Maurice Fréchet or Paul Lévy. See (Shafer and Volk 2006)

for a beautiful essay about this topic.
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necessarily) display an interference pattern when registered on a screen be-

hind the slits. According to classical mechanics, it typically won’t (although

it possibly might).

A typicality statement is thus an objective physical fact, in principle

derivable from the fundamental (microscopic) laws that we take as the basis

of our considerations. (It is a fact that, by the way, even Laplace’s demon

should care about, to the degree that he cares about physics as a science and

a means to understand the world.) But what exactly is it a fact about? Well,

typicality is, first and foremost, the answer to the question that stood at the

very beginning of this chapter and, in fact, our entire discussion, namely:

What is the connection between the macroscopic regularities that we want

to account for and the underlying microscopic laws? Another way to put it

is to ask: What is the nomological status of the (so called) ‘macroscopic’ or

‘statistical’ laws?

5.3 Typicality and the status of macroscopic laws

Philosophically, the truly remarkable (yet often unacknowledged) aspect

about the probabilistic character of thermodynamic laws is not the way in

which laws that once have been thought to be exact turn out to be merely

“approximately” true (that is, to hold only effectively or “very likely”), but

the way in which the empirical regularities expressed by these laws turn out

to be contingent rather than necessary truths about the world that we live

in. In other words, if we accept the microscopic laws as fundamental, we

have to accept that the so called “macroscopic laws”, even in an approximate

or statistical sense, are in fact no laws at all in that they lack the status of

nomological necessity. For all we know, the initial conditions of our universe

could have been such that systems, prepared or created in a low-entropy

state, would regularly end up on one of the “bad” trajectories that undergo

an anti-thermodynamic evolution of decreasing entropy. That is to say that

there are possible Newtonian universes in which gases are often found to con-

tract rather than expand, in which heat does sometimes flow from a colder

to a hotter body and in which macroscopic objects such as balls and chairs

and tables do occasionally jump up in the air (while cooling off accordingly

to account for the conservation of energy) simply because a large number of

particles happened to move in the same (upward) direction at the same time.

In these counterfactual but nomologically possible universes, it is simply not
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true that such events are very unlikely, because they happen “all the time”.27

And yet, we would insist, it is more than a mere contingency, more than

a factum brutum that our universe is not like that. And indeed, our physical

theory has more to say here – fortunately without assigning us the impossible

task of determining the actual boundary conditions of our universe – for it

tells us that the initial conditions of a Newtonian universe would have to

be exceedingly special to give rise to subsystems violating thermodynamic

laws as more than astronomically rare exceptions. Thermodynamic laws,

in other words, are statistical regularities of typical universes. And it is this

characterization, we suggest, that specifies their connection to the underlying

microscopic laws and grounds their own “law-like” status.

In (Kripke 1972), Saul Kripke famously explained the difference be-

tween logical and nomological (or natural) supervenience by the following

metaphor: B-properties supervene logically on A-properties if, after fixing

the A-properties of the world, there was nothing else God could or needed to

do for fixing the B-properties. The A-properties, we say, logically entail the

B-properties. In case of a nomological supervenience, however, God, after

making sure of the A-facts, still had some work to do for making sure of the

B-facts by determining laws of nature, relating B-properties to A-properties.

Going one step further, we can say: the properties of our world that are typ-

ical for these laws, are facts and regularities for which God, after fixing the

laws of nature and the fundamental ontology of the world, still had a little

bit of work to do in choosing appropriate initial conditions for our universe

to ensure that these properties are realized. However, he barely had to pay

any attention to this choice, since almost every initial condition he could

have picked (compatible with certain macroscopic constraints he had settled

on) would have been fine. For instance, after deciding to create a universe

hospitable to the kind of ordered macro-structures that we find in ours, and

after deciding to impose on this universe the kind of fundamental laws that

we find to hold in ours, God, in principle, still had a choice as to whether

or not this universe should also abide by the second law of thermodynamics.

However, almost every possible choice of initial conditions (compatible with

the Past Hypothesis, see below) would have lead to a universe in which the

27Of course, among all possible Newtonian universes there will be many with no ther-

modynamic arrow and no interesting structures at all, but here, to make a point, we

consider universes that are hospitable to intelligent life, but in which the second law of

thermodynamics fails to hold in branching systems just so often as to make a fool out of

physicists.
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second law, as in ours, describes a true statistical regularity – whereas God

would have to be utterly malicious to arrange the initial configuration of the

universe in such a way that it doesn’t.

Typicality, we remark, is a very general way of understanding statistical

regularities supervening on deterministic laws. Consider, for instance, the

stock example of the coin toss. For all we know, the initial conditions of

our universe could have been such that almost every coin ever to be tossed

landed on ‘heads’ rather than ‘tails’, or such that ‘heads’ came out twice

as often as ‘tails’, or three times more often, or so on... But such initial

conditions are, of course, atypical. Hence, if we believe that there is some

deep, explanatory connection between the (rotational) symmetry of the me-

chanical laws, the symmetry of a balanced coin and the empirical fact that

the frequency of ‘head’ and ‘tails’ in a sufficiently long series of coin tosses

comes out approximately 50:50, this connection is given by typicality – at

least, we wouldn’t know how else.28.

Returning to the more intricate issue of the second law of thermodynam-

ics, we have to note one subtlety in connection with the Past Hypothesis,

the assumed low-entropy initial state of the universe that is supposed to

account for the origin of low-entropy structures, the reliability of records,

and so on (Albert 2000). According to the Past Hypothesis, the initial

macrostate of our universe was a very special one, marking one end of the

thermodynamic arrow of time. Nevertheless, with respect to this low-entropy

macrostate, the initial microscopic configuration of the universe was typical,

explaining the increase of entropy in the universe as a whole and in any of

its branching subsystems. All in all, there is thus not a contradiction, but

a distinct tension between the typicality account and the Past Hypothesis

and the resolution of this tension is considered by many as one of the most

profound problems of modern physics.29

So, what else is left to say? Not much, we believe. To understand that

a certain regularity is typical and yet to wonder why it is that we observe

this regularity in nature (and why we should expect this regularity to persist

28For typicality as a way to understand “deterministic probabilities” in physics, see

(Maudlin 2007), (Dürr 2009), (Zanghì 2005)
29See, for instance, the discussion in (Penrose 1999) and his “Weyl curvature hypothesis”

as a proposal for an additional law restricting the possible initial states of the universe,

but also (Callender 2004) arguing from a Humean perspective against the need for further

“explanation” of the Past Hypothesis. See (Carroll 2010) for a very readable and compre-

hensive discussion of the problem and (Carroll 2010) as well as (Carroll and Chen 2004)

for attempt to dispose of the Past Hypothesis altogether.
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in the future) is to ask why, in fact, our universe is typical, i.e. why it

is, in this particular respect, like the overwhelming majority of all possible

universes instantiating the same set of fundamental physical laws. And while

we don’t know how to answer (except maybe with Einstein’s bon mot that

“God is subtle, but he is not malicious”) the very question seems to us utterly

uncompelling. Explanations have to end somewhere. If we can establish

that a certain property is typical of a particular kind of system, this should

elevate any sense of wonder or mystery or puzzlement that one might have

had upon finding such a system instantiating the respective property. Hence,

we should consider the phenomenon to be reasonably and conclusively and

convincingly explained on the basis of the microscopic laws. Similarly, if we

can establish that certain macroscopic feature or behavior or regularity is

typical for a certain kind of system, then we should by all reasonable means

expect to find this feature or behavior or regularity realized in a given system

of said kind. Hence, it constitutes a prediction of the microscopic theory.

In this fashion, typicality statements figure in a way of reasoning about

nature. In fact, since the situation we find ourselves in towards the world is

necessarily one in which all we can ever hope to know about its physical state

is compatible with a plurality of fundamental, i.e. microscopic, matters of

fact, the relevant explanatory and behavior guiding statements that we can

extract from the fundamental laws of physics are virtually always results

about typical solutions of their equations of motion.

We shall emphasize once again that a typicality reasoning is a non-

deductive reasoning. Logically, the fact that something has been shown to

be typical doesn’t imply anything about any particular instance. In other

words, it is always possible for a particular system – and ultimately our uni-

verse – to be atypical in the relevant respect. But facts that strike us a

atypical are usually the kind of facts that cry out for further explanation.

This is why a Casino manager has not just economic interest but reasonable

grounds to suspect cheating if a player hits three jackpots in a single night.

And this is why scientific practice would eventually require us to revise our

theory and look for different laws, rather than endorsing an explanation

based on special initial conditions, or, if you will, a streak of bad luck. In

the end, it is not logically but epistemically inconsistent to accept a certain

physical theory and accept at the same time that our universe is somehow

an atypical model of that theory, for this would undermine any reasons to

endorse the theory in the first place.30

30As was put so nicely by Mathias Frisch (private communication).
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5.4 A comment on the ‘measure zero problem’

Despite the many subtleties involved in the concept of typically that would

require a much deeper philosophical investigation than we can provide here,

we believe this way of reasoning to be very natural and intuitive and very

much in line with common scientific practice. Nevertheless, it seems to us

that quite a lot of misunderstandings about Boltzmann’s statistical mechan-

ics are actually misunderstandings about the “logic” of typicality statements.

More concretely, we have found that one of the most common sources of con-

fusion about the typicality account is simply to miss the difference between

a typicality statement and a statement about particular instances. Consider

for instance the objection of Roman Frigg in reply to (Goldstein 2001):

[...]Goldstein suggests that a system approaches equilibrium sim-

ply because the overwhelming majority of states in ΓE are equilib-

rium microstates; in other words, it approaches equilibrium sim-

ply because equilibrium microstates are typical and non-equilibrium

microstates are atypical (with respect to ΓE and µ). [...] This is

wrong. If a system is in an atypical microstate (which it is by

the Past Hypothesis), it does not evolve into a equilibrium mi-

crostate just because the latter are typical; typical states do not

automatically function as attractors. (Uffink 2007, 979–980) pro-

vides the following example. Consider a trajectory x(t), i.e. the

set {x(t) = φt(x(t0)) | t ∈ [t0,∞)}, a set of measure zero in ΓE.

Its complement, the set ΓE \ x(t) of points not laying on x(t),

has measure one. Hence the points on x(t) are atypical while

the ones not on x(t) are typical (with respect to ΓE, µ, and the

property ‘being on x(t)’). But from this we cannot conclude that

a point on x(t) eventually has to move away from x(t) and end

up in Γ \ x(t); in fact the uniqueness theorem for solutions tells

us that it does not. The moral is that non-equilibrium states do

not evolve into equilibrium states simply because there are over-

whelmingly more of the latter than of the former, i.e. because the

former are atypical and the latter are typical. It does not some-

how lie in the ‘nature’ of atypical states to evolve into typical

ones. (Frigg 2009, pp. 8–9).

Before we comment on this objection, we have to make the cautionary remark

that the way in which we have used the term “typical” throughout this paper
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is somewhat different from its use in Roman Frigg’s elaboration. There

is, of course, a sense in which it is correct to say that equilibrium states

are typical and non-equilibrium states atypical with respect to all possible

configurations of the system. The relevant statement would then be that

typical non-equilibrium configurations will evolve into such a typical state, or

that typical trajectories will spend most of the time in typical states. In our

discussion, we have been careful to use the notion of “typicality” only in the

latter sense, referring to initial conditions, respectively solution-trajectories

conditioned on a given initial macrostate – a distinction which unfortunately,

seems to have gone unappreciated by Frigg, but may have helped to resolve

his dissatisfaction.

Of course, no one is claiming, in the naive sense implied by Frigg, that

any specific trajectory will move to equilibrium “simply because” equilib-

rium states are “typical” – just as no one claims that any specific lottery

ticket must lose “ simply because” loosing lottery tickets are typical. In the

alluded sense, a lottery ticket looses “simply because” someone picked the

wrong numbers and a system converges to equilibrium “simply because” its

actual micro-evolution carries the microscopic configuration into an equilib-

rium state. The relevant assertion here is that the regions of space-time that

do not correspond to the thermodynamic equilibrium are extremely special.

And the claim is then that trajectories that wander around in phase-space

yet remain confined for an extensive amount of time to those extremely spe-

cial regions of phase-space will turn out to be themselves extremely special.

And what this means, in other words, is that typical non-equilibrium states

will evolve into equilibrium on relatively short time-scales and that typical

equilibrium states will remain in equilibrium (or close to equilibrium) over

very long periods of time.

So what is the point of the “counterexample” formulated by Jos Uffink

that made such an impression on Roman Frigg? It is obviously correct that

a solution x(t) of the equations of motion will never enter the phase-space

region ΓE \x(t) despite the fact that this particular region is a set of measure

1, thus covering almost the entire available phase-space. Typical solutions,

however, will. In fact, it follows from the “uniqueness theorem” that every

other solution (with the same total energy) lies entirely in the set ΓE \ x(t).

So, leaving aside the fact that this artificially crafted region of phase-space

is of no physical interest whatsoever, it is not clear what this example is

actually supposed to demonstrate. With all due respect, the debate seems

a bit like people trying to explain that a typical lottery ticket will fail to
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win the jackpot because of the huge number of combinations that could be

drawn, and Frigg and Uffink running around with a winning lottery ticket

in order to disprove them.

If Uffink’s example works at all, then as another instance of the so-called

“measure zero problem” which is basically the observation that, as soon as

one goes to a more fine-grade description, any physical system is found to

be atypical with respect to some (more or less natural) properties. In par-

ticular, for a continuous state-space and a nonsingular measure, the actual

microscopic configuration and (as we have just noted) even the entire trajec-

tory of a system will generally constitute a set of measure 0. Although this

observation receives ongoing interest from part of the philosophical commu-

nity and is often presented as a serious objection to typicality arguments

(for instance by Frigg himself (p.23), but see also (Sklar 1993)), we don’t

think that it causes much of an embarrassment for the reasoning that we

have presented.31

There are facts and regularities that can be explained on the basis of the

fundamental laws of physics by virtue of being typical (like the frequency of

‘head’ and ‘tail’ in long series of coin-tosses being approximately 50 : 50).

There are contingent facts about physical systems that are not typical, yet

can be explained in a different sense – usually by tracing them back to

other (even more) special states of affair. For instance, the state of our

office is certainly atypical with respect to the exact distribution of objects

on the desk – there are countless possibilities how any of the objects could

be placed slightly differently, or replaced by some other object – but we can

tell some sort of causal story about how a used coffee mug ended up near

the keyboard and how the battered blue book came to lie on top of the

heavier red one. And finally there are facts like the one that a trajectory

through some physical state-space will never cross its complement – which do

not require further explanation, but seem well-suited for creating confusion

where none is due.

6 The role of the dynamics

6.1 The role of mathematics

Statistical mechanics is often taken as the epitome of a (successful) reduc-

tionist enterprise in physics. The main goal of such an enterprise is to assure

31Thanks to Tim Maudlin for very helpful discussions on this issue.
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logical and conceptual consistency between different levels of description of

the physical world. To this end, the physical analysis has to tell us how

the macroscopic regularities, described by the second law of thermodynam-

ics, can be justified or explained on the basis of the underlying microscopic

theory. By which standards are we supposed to evaluate such an account,

though? According to the most prominent philosophical position, a micro-

scopic explanation of a macroscopic regularity, respectively a reduction by

the microscopic theory, is supposed to be a derivation of the macroscopic law

from the microscopic laws plus suitably specified “auxiliary assumptions” or

“circumstances” in which the macroscopic law is supposed to hold. And al-

though these deductive-nomological models of explanation (and the related

Nagelian schemes of physical reduction) have been regularly criticized and

rejected for various reasons, their basic understanding of what it is that a

microscopic description has to achieve in order to provide an account of a

macroscopic regularity has remained quite pervasive. We don’t mean to get

involved in the larger debate taking place in the philosophy of science, to

which more competent people have made more elaborate contributions, but

make a rather simple point as to why we think this understanding can turn

out to be quite debilitating for the issue at hand.

Clearly, a lot hangs on the notion of a “derivation” and one should note

that the term can in practice mean something different for a physicist than

for a mathematician or a logician, depending on the degree of rigor that it

is supposed to imply. If, however, we side with the latter on this issue and

understand the term in the strict sense as referring to a logical deduction

from precisely stated premises or axioms, i.e. a mathematical proof about

a precisely specified microscopic model, it is just utterly naive to think that

this is even within our means when we are dealing with complex macroscopic

phenomena involving about 6 × 1023 microscopic degrees of freedom (after

all, even simplifying assumptions would ultimately have to be justified or

proven on the basis of the microscopic theory). And even in a suitably spec-

ified thermodynamic limit (where the number N of particles goes to infinity

and other quantitates in the microscopic model scale accordingly), proving

convergence to equilibrium for a more or less realistic microscopic model re-

mains an extremely difficult and largely unresolved problem of mathematical

physics.That aside, the mathematical physicist and the physically minded

mathematician know very well that not every explanation can be turned

into a proof and that not every proof is explanatory. In practice, the “de-

ductive” process that bridges the gap between the simplicity and precision of
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the fundamental laws and the intricacy and complexity of the physical world

is rarely just a series of precise assumptions and logical inferences – and in

fact is not supposed to be. For whereas it lies in the nature of mathematical

proof and logical deduction that the truth of the conclusion depends rigidly

on the truth of the premises (the former is a “truth-preserving function” of

the latter) it is essential for a good physical explanation to be robust against

small “perturbations” of the underlying assumptions, which, after all, may

themselves arise from a process of approximation and idealization without

even the aspiration of factual truth.32

This realization, which stands somewhat antithetically to the neat meta-

scientific theories of the logical positivists, leads to a series of interesting

questions, for instance: What can we learn from a mathematical proof ap-

plying (let’s say) to a class of “well-behaved” interaction potentials which,

however, does not include any of the potentials that we believe to model

real-life systems most realistically? What, for instance, do we learn about

the thermodynamic behavior of a gas by studying a “hard-sphere model”,

since no one actually believes that gas-molecules behave exactly like tiny

billiard balls?

To develop an answer to these questions would lead us far beyond the

scope of this paper. What we mean to demonstrate, though, is that the rela-

tionship between physical understanding and mathematical proof, between

explanation and derivation of a (macroscopic) phenomenon is, for a vari-

ety of reasons, much more complicated than has often been acknowledged.

Anyway, the typicality account that we have presented in this paper is an

explanation or an explanatory scheme – not a proof. It tells us what it is

that we would have to prove, if a rigorous mathematical theorem is what

we are after, but it is neither able, nor intended, nor pretending to short-

cut any of the great technical challenges that constitute such an endeavor.

Overcoming these challenges and proving the thermodynamic evolution of

a suitably complex system is the kind of feat that would get you a Fields

Medal (provided you’re young enough, of course). Whether it would give

you a better understanding of the second law of thermodynamics is, again,

a different question.

32See (Schwartz 1992) for a beautiful elaboration on this point.
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6.2 The role of the dynamics. A reply to critics

The reason for making all these general remarks is that we are irritated by

the kind of criticism that the typicality account has been facing from sev-

eral authors, who have strongly rejected this explanation of the second law

of thermodynamics for a lack of mathematical rigor and an alleged failure

to make precise the “dynamical assumptions” on which the argument rests.

Roman Frigg and Charlotte Werndl even go as far as declaring that the typ-

icality account is “mysterious” because the “connection with the dynamics”

is unclear (Frigg and Werndl 2013, p. 918).

Jos Uffink writes on a similar note (as a conclusion to his “counter-example”

recited by Frigg and discussed in the previous section):

[I]n order to obtain any satisfactory argument why the system

should tend to evolve from non-equilibrium states to the equilib-

rium state, we should make some assumptions about its dynamics.

In any case, judgments like ‘reasonable’ or ‘ridiculous’ remain

partly a matter of taste. The reversibility objection is a request

for mathematical proof (which, as the saying goes, is something

that even convinces an unreasonable person). (Uffink 2007, p. 61)

We have both very much and very little to say about these objections. For

once, while Uffink is entitled to his epistemic standards, we can only repeat

our point that there are usually good reasons to settle for physical expla-

nations that are conclusive enough to convince a reasonable person. If as

an explanation of a macroscopic phenomenon we accepted nothing short of

rigorous mathematical proof, the atomic hypothesis would yet have to earn

its merits.

What is less a matter of epistemic standards and more a matter of keep-

ing separate things separate is the reference to the reversibility objection that

Uffink makes in the same breath. For the reversibility objection, we would

insist, is not so much a “request for mathematical proof” as a request for a

conclusive explanation of macroscopic irreversibility – or so it was in 1874.

Boltzmann gave a perfectly conclusive answer soon after (at least conclusive

enough to convince a reasonable person, to borrow Uffink’s terminology) and

we now have a very good understanding of how irreversible macroscopic be-

havior can arise from reversible microscopic dynamics. Producing a rigorous

result about the macroscopic behavior of a realistically complex model is a

very different issue, involving a very different set of (technical) problems,
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and the reversibility objection is actually not one of them. (And even if it

was, it is not clear why “an assumption about the dynamics” would be of

any help, since one thing that the microscopic dynamics certainly are, by

assumption, is reversible.)

All in all, it is not clear what exactly Uffink is confused about: typicality,

irreversibility, a lack of mathematical precision, or the role of the dynamics.

It just seems to be a lot. Frigg and Werndl, very much to their credit, state

more clearly what they have in mind. In (Frigg and Werndl 2013) they

explain:

In recent years several proposals have been put forward, which aim

to justify (something akin to) TD-like [thermodynamic-like] be-

haviour in terms of typicality (see, for instance, Goldstein 2001).

[...] This programme is on the wrong track. [...] Not all phase

flows lead to TD-like behaviour (for instance, a system of har-

monic oscillators does not). So the phase flows that lead to TD-

like behaviour are a non-trivial subclass of all phase flows on a

given phase space, and the question is how this class can be char-

acterised. [...] What we need is a non-trivial specification of a

property that only those flows that give raise to TD-like behaviour

possess. [pp. 4–5]

Such demands, however, are also much less reasonable than it might seem.

For starters, it is good to keep in mind that we are not actually concerned

with dynamical system theory other than as a mathematical tool for where

it’s useful, that is, we do not really care about measure-preserving flows

on phase space in general, but always have in mind a phase-flow generated

by a huge number of interacting particles, constituting the kind of macro-

scopic system that we want to describe. Obviously, whenever we study a

particular model, whether it possesses the appropriate characteristics, i.e.

whether it describes a gas rather than a fluid – or nothing interesting at

all – and whether it exhibits the right thermodynamic behavior will in the

end depend on the Hamiltonian, comprising the particle interactions and

determining the system’s time-evolution. On the other hand, we understand

from Boltzmann’s analysis that the explanation of thermodynamic behavior

is extremely robust against the details of the microscopic model, precisely be-

cause it doesn’t hinge on any narrowly-conceived properties of the dynamical

system or the interaction potentials. In particular, the explanatory work is al-

most entirely done by the dominance of the equilibrium state and the notion
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of typicality, without the need to emphasize special features of the dynamics.

The reason is simply that once we understand that the non-equilibrium re-

gion of phase-space is vanishingly small compared to the equilibrium region,

we see that there is nothing special or remarkable about dynamics for which

a typical set of solutions, starting in a non-equilibrium region, will quickly

spread over the equilibrium-region and for which equilibrium configurations

will stay in equilibrium for most of the time.

If you throw a rubber duck somewhere into the Atlantic Ocean, what do

you need to know about oceanic currents in order to explain and predict and

understand that it will almost certainly spend most (if not all) of the time

outside the region where the Titanic sank?

We should also keep in mind that dynamical considerations, to a cer-

tain degree, already figure into the partitioning of a system’s phase-space

into macro-regions and the determination of the volume (respectively the

entropy) corresponding to each one of them. In particular, the equilibrium

state, while always being the state of maximal entropy, can look very differ-

ent depending on the broad characteristics of the microscopic interactions.

Think, for instance, of the equilibrium state of a mixture of oil and wa-

ter, which, as we all know, is very different from the homogeneous solution

into which a hydrophilic compound will evolve. Or think of a gravitating

system, whose thermodynamic evolution is one of clumping and collapsing,

very much opposed to that of a (high temperature) gas on which our dis-

cussion has focused.33 But once the stage for the typicality account is thus

set, there is just no mystery as to why a system in non-equilibrium should

undergo a thermodynamic evolution. Indeed, the dynamics would have to

be utterly special to avoid carrying (all but “a few”) non-equilibrium configu-

rations into larger and larger macro-regions. It is precisely this generality of

Boltzmann’s argument that makes it so powerful, giving us an understanding

of thermodynamic behavior as a virtually universal feature of macroscopic

systems.

All that said, we share neither Frigg’s and Werndl’s interest in character-

izing general phase-flows with respect to their thermodynamic behavior, nor

their expectation that it should be possible to state necessary and sufficient

criteria for convergence to equilibrium in terms of simple mathematical prop-

33The reason being that, for an attractive potential, particles moving closer together

pick up kinetic energy, so that, roughly speaking, a macro-configuration that is spatially

more concentrated corresponds, at constant energy, to a much larger phase-space volume

in the momentum-variables.
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erties characterizing the dynamics of roughly 1024 interacting particles.34

In particular, we fail to see anything of physical or philosophical inter-

est in examples such as that of a system of uncoupled harmonic oscillators

not exhibiting thermodynamic behavior.35 In fact, the claim is not entirely

accurate. If one considers a system of oscillators with various but similar

frequencies, there is an interesting sense in which it can converge to equilib-

rium, namely from a state in which the oscillators are more or less in phase

into a state in which they aren’t.36 Presumably, what the authors mean to

say is that if we considered uncoupled harmonic oscillators as a model for

the gas, the argument for its thermodynamic behavior wouldn’t go through.

And presumably, the authors are not actually preoccupied with the ques-

tion why it is that a collection of wiggling particles will not spread over a

given volume, but mean to demonstrate that the typicality account must

be incomplete or inconclusive because its conclusion does not follow from

its premises. But to argue like this is to misunderstand the nature of the

explanation in the first place, which has never been about stating a set of

mathematical assumptions from which to prove thermodynamic behavior in

the abstract. The only thing that the example actually demonstrates, is that

a system of uncoupled harmonic oscillators is not a good model for a gas –

which is hardly a surprising discovery.

Now if any of this is a reason to mystify a physical explanation, why stop

at thermodynamics. Why not be equally puzzled about the phenomenon of

sound (let’s say), unless we see rigorous mathematical proof of the propa-

gation of sound-waves in a Van-der-Waals gas or provide a precise charac-

terization of all the Hamiltonians leading to such a behavior? Boltzmann’s

probabilistic explanation of the second law of thermodynamics is not any

more question-begging, it is just more subtle in that it rests, fundamentally,

on a typicality reasoning, rather than a mechanistic picture of how micro-

scopic dynamics produce a certain microscopic effect.

Indisputably, concerning the microscopic derivation of the second law of

34In section 7 we will explain why the commonplace answer, which is the appeal to

ergodic properties that also Frigg and Werndl advocate, doesn’t get us anywhere.
35Which, by the way, is neither much better nor much worse than other “counterex-

amples” we’ve heard on similar occasions, e.g. that a system will not convergence to

equilibrium if the Hamiltonian is identically 0, i.e. if the particles don’t move at all!

Hence, the reason why we are spending so much breath replying to a short parenthesis

is that we’ve found it to be actually quite representative of a common line of argument

employed by philosophers of science.
36See also the analysis of a system of anharmonic oscillators in (Bricmont 2001).
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thermodynamics, very little is on firm mathematical ground; This is just a

fact about the current status of science. It is a fact that one might be un-

happy about and it is certainly a fact that will continue to motivate further

research. However, it is of utmost importance to understand that, contrary

to what some commentators have suggested, the difference between the ex-

planatory scheme that we have presented and a more rigorous proof of the

second law is not some secret ingredient like a dynamical assumption that

proponents of the typicality account have missed to specify, but a heap of

very hard, very technical work in mathematical physics. Good physics and

good philosophy of physics, on the other hand, is also about appreciating

where our understanding of an issue depends on rigorous formalization and

technical proof and where it doesn’t.

7 Against (epsilon-)ergodicity

The intellectual attractiveness of a mathematical arguments, as

well as the considerable mental labor involved in following it,

makes mathematics a powerful tool of intellectual prestidigitation

– a glittering deception in which some are entrapped, and some,

alas, entrappers. Thus, for instance, the delicious ingenuity of

the Birkhoff ergodic theorem has created the general impression

that it must play a central role in the foundations of statistical

mechanics. [...] The Birkhoff theorem in fact does us the service

of establishing its own inability to be more than a questionably

relevant superstructure upon [the] hypothesis [of absolute conti-

nuity]. (Schwartz 1992)

One of the most tenacious misunderstandings concerning the foundations

of statistical mechanics is the crucial role that many authors have ascribed

to Boltzmann’s ergodic hypothesis, respectively to the concepts of modern

ergodic theory.37 Ergodicity, or stronger properties higher up the ergodic

hierarchy (see (Berkovitz et.al. 2011)), have thereby been assigned various

tasks: to justify the choice of the microcanonical measure as the unique

stationary and absolutely continuous measure on the energy-hypersurface,

37While the original ergodic hypothesis didn’t even appear anymore in Boltzmann’s

second “lectures on gas theory”, it was later revived, in more modern form, by the ground-

breaking work of Birkhoff, von Neumann and Khinchin that established ergodic theory as

a remarkably productive (and indeed quite beautiful) field of mathematics, whose physical

relevance, however, was – and probably still is – hopelessly exaggerated.
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to explain the relevance of Gibbsian ensemble averages by identifying them

with time-averages of a single system, or, most to the point of this paper, to

explain the convergence from non-equilibrium into equilibrium.

To our knowledge, one of the first philosophical papers to question the ex-

planatory merits of ergodicity was Lawrence Sklar’s 1973 publication (Sklar

1973). Sklar entered a much-needed caveat in a time when ergodic theory

was one of the hottest topics in mathematical physics. His critique, however,

was quite subtle and we would say inappropriately subtle, since the way in

which ergodic properties ultimately fail to connect to the relevant physi-

cal circumstances and fulfill the explanatory role that had been bestowed

on them is actually rather striking, as has been pointed out more clearly

in (Schwartz 1992), (Goldstein 2001) or (Bricmont 1995).

Nevertheless, the question that went on to preoccupy people most was

whether or not any of the usual gas-models studied by physicists actually

is an ergodic system, and serious doubts were articulated, for instance, by

(Earman and Rédei 1996) (mirroring a similar discussion in the mathematical

literature, see for instance (Smale 2000)) that seem to have had some impact.

The problem with the question as such is that it inevitably and prematurely

reaffirmed its own relevance. Furthermore, the subject remains to some

degree a matter of faith, as it is extremely difficult to prove ergodic properties

for any realistically complex system.38 Anyway, it is in the light of this debate

that (Vranas 1998) and later (Frigg and Werndl 2012, 2013) proposed the

weaker (although more artificial) notion of epsilon-ergodicity to capture the

way in which systems that fail to be ergodic may turn out to be “almost

ergodic”.

The remarks that we want to add to this discussion are primarily a com-

ment on their most recent publication (Frigg and Werndl 2013), reasserting

the idea of a crucial role of ergodic properties for the explanation of thermo-

dynamic behavior in a self-proclaimed attempt to “demystify” the typicality

account. Before we lose ourselves in more general remarks, let’s recapitulate

what the issue is actually about.

Ergodicity is usually defined in terms of a rather abstract property of

dynamical systems (a dynamical system is called ergodic if the invariant sets

have measure one or zero), which, however, implies particularly nice behavior

for typical solutions. We can call a solution (i.e. a flow-line) of the dynamical

system ergodic if the proportion of time it spends in any possible region of

38Although it seems to be correct, in general, that sufficiently chaotic systems have good

ergodic properties. (Eckmann and Ruelle 1985).
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phase-space over its entire history (i.e. in the limit T → ∞) corresponds to

the proportion of phase-space volume occupied by that region. Formally:

lim
T→∞

1

T

∫ T

0
1A(X(t))dt = |A|/|Ω|, (3)

where 1A(x) is the characteristic function of the set A ⊆ Ω. This is roughly

equivalent (although a bit stronger than) the statement that the solution-

trajectory covers the phase-space densely, i.e. that it comes arbitrarily close

to every single point in phase-space, thus establishing the connection with

the original (quasi-)ergodic hypothesis of Boltzmann.39

The relation between “ergodic systems” and “ergodic trajectories” is the

following: A dynamical system is ergodic if and only if almost all microstates,

that is, all microstates except for a set of measure zero, evolve on an ergodic

trajectory. Epsilon-ergodicity simply relaxes this condition to “all microstates

except for a set of measure ≤ ǫ ” (the relevant measure in both cases is the

normalized microcanonical measure on the energy-hypersurface). As men-

tioned before, it is extremely difficult to assert that any realistic system

is actually ergodic. On the other hand, every dynamical system is epsilon-

ergodic for a sufficiently large value of ǫ, and we understand Frigg and Werndl

as saying that there is numerical evidence indicating that typical Hamiltoni-

ans in a relevant class of gas-models are epsilon-ergodic for reasonably small

values of ǫ that wouldn’t make the property entirely trivial (the two are gen-

erally silent about the order of magnitude of ǫ, but we assume in their favor

that this is what they mean).

Now how is this supposed to figure in an explanation of thermodynamic

behavior? Frigg and Werndl argue that if we assume that a system is epsilon-

ergodic (for some reasonably small value of ǫ), we can conclude that typical

solutions, in the sense of “all solutions except for a set of initial conditions

of measure ≤ ǫ”, are ergodic. Then, according to the two authors, the story

continues as follows:

Consider an initial condition x that lies on an ergodic solution.

The dynamics will carry x to [the equilibrium region] ΓMeq
and

will keep it there most of the time. The system will move out of

the equilibrium region every now and then and visit non-equilibrium

states. Yet since these are small compared to ΓMeq
, it will only

39See for instance (Ehrenfests 1911) on Boltzmann’s ergodic hypothesis, or (Sklar 1973,

pp. 77) for a more recent discussion.
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spend a small fraction of time there. Hence the entropy is close

to its maximum most of the time and fluctuates away from it

only occasionally. Therefore, ergodic solutions behave TD-like

[thermodynamic-like].40 (Frigg and Werndl 2013)

One thing that this argument might accomplish is to demonstrate a bit of

the appeal of ergodic theory. Whereas (as we saw) it’s extremely difficult

to prove anything in a rigorous manner just by following the rationale of

the combinatorial argument, Frigg and Werndl seem to base their conclusion

on a rigorous mathematical statement in form of eq. (7). Unfortunately,

though, even the most elegant mathematical expression comes short of being

explanatory if it fails to connect to physics. As we will see, the problem with

Frigg and Werndl’s conclusion, in particular with their claim that an ergodic

evolution will carry a non-equilibrium state into equilibrium, is that in the

sense in which the statement is correct, it is irrelevant, whereas in the sense

in which it pretends to be relevant, it’s a non-sequitur.

There are various reasons why ergodicity cannot be essential to the expla-

nation of the second law of thermodynamics, the most important being the

stark discrepancy between the characteristic time-scales of thermodynamic

behavior on the one hand and ergodic behavior on the other. The relevant

time-scales for ergodic behavior, the time-scales, that is, on which it starts

to matter that trajectories “wind around” the energy hypersurface, are those

of the Poincaré cycles i.e. in the order of 1010
20

years!41 To argue about a

system with a macroscopic number of degrees of freedom by means of the

ergodic limit is thus to argue about an average over a period of time that is

far beyond imagination and even further beyond physical relevance.

It seems to us that the kind of account that Frigg and Werndl promote

is motivated, at least in part, by the desire to specify a condition for ther-

modynamic behavior that can apply to particular solutions, i.e. to state an

assumption about the dynamical evolution of an individual system which

implies – and thus supposedly explains – its “thermodynamic-like” behav-

ior. However, it can be readily understood that whether or not the macro-

40Frigg and Werndl, alongside other authors, insist on the term “thermodynamic-like

behavior” instead of “thermodynamic behavior”, to draw the contrast between the Boltz-

mann entropy that fluctuates, and the Clausius’ formulation of the second law, according

to which the entropy of a closed system is never decreasing (Frigg and Werndl 2013, p.

3). We did not adopt this terminology, nor do we find it particularly helpful.
41Cf. the discussion in section 3.5. This point was, in fact, already made by the

Ehrenfests (Ehrenfests 1911, p. 61) about a century ago.
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evolution of a system shows the kind of thermodynamic behavior that we

want to explain has really nothing to do with whether or not its micro-

evolution follows an ergodic solution.

Ergodicity is certainly not necessary for thermodynamic behavior since

virtually any generic trajectory through phase-space would spend most of

the time in the equilibrium-region; To do so, it need not cover phase-space

densely anymore than a person’s travel routes need to cover the surface of

the earth densely to account for him spending most of the time outside the

vatican.

And ergodicity is certainly not sufficient for thermodynamic behavior,

since it is a time-symmetric property, that is, the time-reversal of an er-

godic solution is also an ergodic solution. But this means, of course, that a

derivation of an irreversible macro-behavior cannot possibly be a matter of

asserting an ergodic evolution of the microstate.

To put it differently, viz. in the jargon of the previous sections, if

the “good” (thermodynamic) solutions are ergodic, then the “bad” (anti-

thermodynamic) solutions are ergodic as well. Ergodicity, of course, implies

that on the long run – which might be a very very very long run, expressed

by the limit T → ∞ – all of these solutions will eventually return to equi-

librium and spend overall most of its history, from now to eternity, in that

state; however, as emphasized before, this assertion doesn’t tell us anything

about the evolution of a system on time-scales relevant for explaining the

thermodynamic behavior that we observe in nature.

Indeed, if we considered a system in a low entropy state and had good

reasons to believe that it’s described by an ergodic solution of some Hamil-

tonian dynamics, it could be an ergodic solution that will rapidly converge

to equilibrium, but it could also be an ergodic solution for which the entropy

will further decrease – or remain constant – over the next few seconds, or

hours, or years, or billions of years...42 Of course, it would seem that if our

aim was to predict that a gas will either expand or contract or stay roughly

the same, we could have turned to classical logic rather than dynamical sys-

tem theory. The crucial and subtle point is still to argue that one alternative

is much more likely than the other, or better, that one alternative is in fact

42The authors briefly acknowledge the issue of “relaxation times” in (Frigg and Werndl

2013), where they go on to argue by citing numerical results about gas-systems that could

be ergodic and seem to converge to equilibrium with very short relaxation times, as if that

was somehow empirical evidence in their favor. However, no one disputes that ergodic

systems will typically converge to equilibrium with relatively short relaxation times. What

is disputed is the claim that their ergodicity is essential to this fact.
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typical with respect to the system’s initial macrostate. This argument was

given by Boltzmann and discussed in detail in the first sections of this paper.

Ergodicity, we recall, had no part in it.

In addition to the inadequacy of ergodicity for explaining thermody-

namic behavior in general, there is a further issue with the notion of epsilon-

ergodicity promoted by Frigg and Werndl that makes it a particularly useless

concept. That is, even if we established this property for a particular sys-

tem and some very small value of ǫ, it is very well possible that the order of

magnitude of ǫ is comparable to, or even much larger than, the proportion of

phase-space (respectively of the energy hypersurface) occupied by a generic

low-entropy macrostate (which, after all, may be of the order of 10−1020 or

even much smaller). In this case, epsilon-ergodictiy de facto establishes er-

godic behavior only for typical systems among those whose initial state is

already in equilibrium, but doesn’t allow us to conclude anything about the

more relevant case of systems starting out in non-equilibrium macrostates,

since these are potentially among the exception-sets of measure ≤ ǫ.43

8 Conclusion

Joel Lebowitz begins his beautiful discussion of Boltzmann’s statistical me-

chanics by noting:

Boltzmann’s very original ideas were, perhaps not surprisingly,

difficult to grasp for some of his contemporaries. What is surpris-

ing is that some of the confusion created by these misunderstand-

ings, the so-called “controversies” with Zermelo and others still

persist at present. There is really no excuse for this considering

the clarity of Boltzmann’s responses and later writings. (Lebowitz

1993, p. 2)

One could add to this last sentence the clarity of Lebowitz’ own writings,

alongside those of Roger Penrose, Shelly Goldstein, Jean Bricmont, and oth-

ers. With the present paper, we’ve made our own effort to eliminate excuses

for confusion about Boltzmann’s statistical mechanics and his explanation

of the “second law”.

It is often said, and rightly so, that in science, controversy drives progress.

Certainly, when it comes to the foundations or the philosophy of physics, this

43See our discussion in section 3.1. and 3.2 for why Frigg’s and Werndl’s account fails

in this respect and Boltzmann’s doesn’t.
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is as true as ever. And yet, every once in a while, someone just happens to

get things right – in which case one can get farther by standing on a giants’

shoulder than by desperately trying to tear him down. And for all that can

be said – and that we did say – to translate Boltzmann’s insights into a

more modern language, and for all that can be done – and still needs to

be done – to supplement his arguments with rigorous mathematical results:

Boltzmann just got it right. And his critics got it wrong.

Of course, distinctions have to be made here. The first person who raised

the recurrence objection made a very relevant and instructive point. The

hundredth’s person to raise the same objection more than a century later,

still insisting that it reveals a fundamental inconsistency in Boltzmann’s

arguments, is no longer advancing the issue. On the other hand, some of the

objections raised by modern philosophers of science, dwelling on the trivial

observation that the typicality account is not a rigorous mathematical proof,

were rather unrewarding even the first time.

This is not to say that there are no open issues – quite the contrary.

Standing on solid foundations, the substantial questions and the most promis-

ing paths to move forward become only more clear. In our paper, we have

identified several such questions and shown how they can be understood

and approached on the basis of Boltzmannian statistical mechanics. From

a physical perspective, the deepest question, arguably, concerns the Past

Hypothesis, i.e. the origin of irreversibility and the thermodynamic arrow

of time in our universe, that appears to lie in a very special macrostate of

the early universe. In mathematics, epochal problems like the validity and

the solution theory of the Boltzmann equation are only the most promi-

nent examples illustrating the need to develop new techniques to handle the

complexity of many-particle physics and the micro-to-macro transition.44

Finally, we think that the philosophical debate would greatly benefit from

appreciating and further elaborating typicality as a form of non-deductive

reasoning and maybe even as a fundamental philosophical category. In this

paper, we have tried to demonstrate the great relevance of the concept of typ-

icality for understanding probabilities in physics, describing macro-to-micro

reduction and grounding the nomological status of macroscopic laws. And

yet, there seems to be disappointingly little precedence in the philosophical

literature, so that much remains to be said, more insights to gain and more

benefits to reap. However not here.

44See (Villani 2002) for a survey of recent developments.
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