
Typing Access Control and Secure Information Flow in Sessions

Sara Capecchia, Ilaria Castellanib, Mariangiola Dezani-Ciancaglinia

aDipartimento di Informatica, Università di Torino, corso Svizzera 185, 10149 Torino, Italy
bINRIA, 2004 route des Lucioles, 06902 Sophia Antipolis, France

Abstract

We consider a calculus for multiparty sessions with delegation, enriched with security levels for session participants
and data. We propose a type system that guarantees both session safety and a form of access control. Moreover, this
type system ensures secure information flow, including controlled forms of declassification. In particular, it prevents
information leaks due to the specific control constructs of the calculus, such as session opening, selection, branching and
delegation. We illustrate the use of our type system with a number of examples, which reveal an interesting interplay
between the constraints of security type systems and those used in session types to ensure properties like communication
safety and session fidelity.

Keywords: Communication-centred computing, session types, access control, secure information flow.

1. Introduction

With the advent of web technologies and the proliferation of programmable and interconnectable devices, we
are faced today with a powerful and heterogeneous computing environment. This environment is inherently parallel
and distributed and, unlike previous computing environments, it heavily relies on communication. It therefore calls
for a new programming paradigm which is sometimes called communication-centred. Moreover, since computations
take place concurrently in all kinds of different devices, controlled by parties which possibly do not trust each other,
security properties such as the confidentiality and integrity of data become of crucial importance. The issue is then
to develop models, as well as programming abstractions and methodologies, to be able to exploit the rich potential of
this new computing environment, while making sure that we can contain its complexity and get around its security
vulnerabilities. To this end, calculi and languages for communication-centred programming have to be security-minded
from their very conception, and make use of specifications not only for data structures, but also for communication
interfaces and for security properties.

The aim of this paper is to investigate type systems for safe and secure sessions. A session is an abstraction
for various forms of “structured communication” that may occur in a parallel and distributed computing environment.
Examples of sessions are a client-service negotiation, a financial transaction, or a multiparty interaction among different
services within a web application.

Language-based support for sessions has now become the subject of active research. Primitives for enabling pro-
grammers to code sessions in a flexible way, as well as type systems ensuring the compliance of programs to session
specifications (session types), have been studied in a variety of calculi and languages in the last decade. Session types
were originally introduced in a variant of the pi-calculus [29]. We refer to [12] for a survey on the session type literature.
The key properties ensured by session types are communication safety, namely the consistency of the communication
patterns exhibited by the partners (implying the absence of communication errors), and session fidelity, ensuring that
channels which carry messages of different types do it in a specific order.

Enforcement of security properties via session types has been studied in [3, 24]. These papers propose a compiler
which, given a multiparty session description, implements cryptographic protocols that guarantee session execution
integrity. A type system assuring that services always comply with the policy regulating data exchange is presented in
[20]. The question of ensuring access control in binary sessions has been recently addressed in [19] for the Calculus of
Services with Pipelines and Sessions of [4], where delegation is absent. On the other hand, the property of secure infor-
mation flow has not been investigated within session calculi so far. This property, first studied in the early eighties [14],

IWork partially funded by the INRIA Sophia Antipolis COLOR project MATYSS, by the ANR-SETI-06-010 and ANR-08-EMER-
010 grants, and by the MIUR Projects DISCO and IPODS.

Preprint submitted to Information and Computation November 25, 2013

has regained interest in the last decade, due to the evolution of the computing environment. It has now been thoroughly
studied for both programming languages (cf [25] for a review) and process calculi [13, 15, 18].

In this paper, we address the question of incorporating mandatory access control and secure information flow within
session types. We consider a calculus for multiparty sessions with delegation, enriched with security levels for both
session participants and data, and providing a form of declassification for data [27], as required by most practical
applications. We propose a type system that ensures access control, namely that each participant receives data of
security level less than or equal to its own. For instance, in a well-typed session involving a Customer, a Seller and a
Bank, the secret credit card number of the Customer will be communicated to the Bank, but not to the Seller. Moreover,
our type system prevents insecure flows that could occur via the specific constructs of the language, such as session
opening, selection, branching and delegation. Finally, we show that it allows controlled forms of declassification during
communication, namely those explicitly permitted by the sender and respecting the access control policy in the receiver.
Our work reveals an interesting interplay between the constraints of security type systems and those used in session
types to ensure properties like communication safety and session fidelity.

The rest of the paper is organised as follows. Section 2 motivates our access control and declassification policies
with an example. Sections 3 and 4 introduce the syntax and semantics of our calculus. Section 5 defines the secure
information flow property. Section 6 illustrates this property by means of examples. Section 7 presents our type system
and Section 8 establishes its soundness. Section 9 discusses future work. Appendix Appendix A discusses a more
expressive notion of security (called robust security) and shows that our type system remains sound for this new notion.
Appendix Appendix B summarises various features of the running example introduced in Section 2.

This paper is a deeply revised version of [9], with improved definitions, new examples and results and complete
proofs. In a companion paper [8] we give a monitored semantics, which only assures secure information flow, for a
simplification of the present calculus without declassification and delegation.

2. An Example on Access Control and Declassification

In this section we illustrate by an example the basic features of our typed calculus, as well as our access control
policy and our specific form of declassification. The question of secure information flow will only be briefly touched
upon here, while it will be discussed in depth in Sections 5 and 6, once the semantics of the calculus has been formally
defined. Suffice it to say, for the time being, that a process has secure information flow if none of its actions depends
on some input action of higher or incomparable level.

For the sake of simplicity, in this introductory example we shall only consider binary sessions, and two security
levels for data and participants, namely high (secret) and low (public)1. In our calculus, the level of data represents
their degree of confidentiality, while the level of participants represents their reading rights: thus a high participant can
read both high and low data, whereas a low participant can only read low data.

Consider the following scenario, involving a bookseller, a client and a bank. A client C sends the title of a book to
a bookseller S. The seller S delegates to a bank B both the reception of C’s credit card number and its validity check.
This frequently happens in online shopping, when clients are redirected to a new page for a secure payment. Delegation
is crucial for assuring the secrecy of the credit card number, which should be read by B but not by S. To express this
access control constraint, the typing will assign high security level to the credit card and to B, and low security level to S.
Then B notifies S about the result of the validity check: since this result is low and the card is high, for this information
flow to be admissible a declassification is needed. Finally, if the credit card is valid, C receives a delivery date from S,
otherwise the deal falls through. More precisely, the protocol is as follows:

1. C opens a connection with S and sends a title to S;
2. S opens a connection with B and delegates to B part of his conversation with C;
3. C sends his secret credit card number apparently to the low party S but really - thanks to delegation - to the high

party B; moreover C authorises the high recipient of his card number to declassify it (although not knowing B, C
knows that a delegation to a high party must take place since S is low);

4. B reads the credit card number and then delegates back to S the conversation with C;
5. B selects the answer ok or ko for the low party S depending on the validity or not of the credit card, thus

performing a declassification;
6. S sends to C either ok and a date, or just ko, depending on the label ok or ko chosen by B.

1However, our formal treatment will cover the general case of a finite lattice of security levels, and a number of examples involving
multiparty sessions will be discussed in Section 6.

2

I = ā[2] | b̄[2]

C = a[1](α1).α1!〈2,Title⊥〉.α1!⊥〈2,CreditCard>〉. α1&(2,{ok : α1?(2,date⊥).0,ko : 0})

S = a[2](α2).α2?(1,x⊥).b[2](β2).β2!〈〈1,α2〉〉.β2?((1,η)).
β2&(1,{ok : η⊕〈1,ok〉.η!〈1,Date⊥〉.0,ko : η⊕〈1,ko〉.0})

B = b[1](β1).β1?((2,ζ)).ζ ?>(2,cc⊥).β1!〈〈2,ζ 〉〉. if valid(cc⊥) then β1⊕〈2,ok〉.0 else β1⊕〈2,ko〉.0

Table 1: Processes of the C, S, B example.

1. C→ S :
〈
String⊥

〉
2. S �δ S→ B : 〈T 〉
3. C→ S :

〈
Number>↓⊥

〉
4. B→ S : 〈T ′〉
5. B→ S : {ok : end,ko : end}
6. S→ C : {ok : S→ C :

〈
String⊥

〉
;end,ko : end}

Table 2: Global types of the C, S, B example.

Notice that this scenario could not be represented by a unique protocol involving C, S, and B, i.e., by a ternary session,
since this would imply that the client knows the bank used by the bookseller for payments.
In our calculus, which is an enrichment with security levels of the calculus in [2], this scenario may be described as
the parallel composition of the processes shown in Table 1, where security levels appear as superscripts on both data
and operators. Here > means “secret” and ⊥ means “public”, and a level appears on an I/O operator whenever a
declassification is involved. For the sake of simplicity, we omit the security levels on the other operators. They will be
filled in later in the paper, and this running example, completed with all security levels, will be recalled in Table 6.

A session is a particular activation of a service, involving a number of parties with predefined roles. Here C and S

communicate by opening a session on service a, while S and B communicate by opening a session on service b. The
initiators ā[2] and b̄[2] specify the number of participants of each service. We associate integers with participants in
services: here C=1, S=2 in service a and B=1, S=2 in service b.

In process C, the prefix a[1](α1) means that C wants to act as participant 1 in service a using channel α1, matching
channel α2 of participant 2, who is S. When the session is established, C sends to S a title of level ⊥ and a credit
card number of level >, indicating (by the superscript ⊥ on the output operator) that the credit card number may be
declassified to ⊥. Then he waits for either ok, followed by a date, or ko.

Process S receives a value from C in service a and then enters service b as participant 2. Here the output β2!〈〈1,α2〉〉
sends channel α2 to the participant 1 of b, who is B, thus delegating to B the use of α2. This means that B will now act
as participant 2 in service a, thus directly interacting with C. Then S waits back for the channel α2 from B. Henceforth,
S communicates using both channels β2 and α2: on channel β2 he waits for one of the labels ok or ko, which he then
forwards to C on α2, sending also a date if the label is ok.

Forgetting about session opening and abstracting from values to types, we may represent the whole communication
protocol by the global types of Table 2 (where we use B, C, S instead of 1, 2), where the left-hand side and right-hand
side describe services a and b, respectively. Line 1 says that C sends a String of level ⊥ to S. In line 2, S�δ means that
the channel from S to C is delegated: this delegation is realised by the transmission of the channel (with type T) from S

to B, as shown on the right-hand side. Line 3 says that C sends a Number of level> to S, allowing him to declassify it to
⊥. Notice that due to the previous delegation the Number is received by B and not by S. Line 4 describes a delegation
which is the inverse of that in Line 2: here the (behavioural) type of the channel has changed to T ′, since the channel
has already been used to receive the Number. Line 5 says that B sends to S one of the labels ok or ko. Finally, line 6
says that S sends to C either the label ok followed by a String of level ⊥, or the label ko. Since B’s choice of the label
ok or ko depends on a test on the Number, it is crucial that Number be previously declassified to ⊥, otherwise the
reception of a String of level ⊥ by C would depend on a value of level > (this is where secure information flow comes
into play).

Type T represents the conversation between C and S after the first communication, seen from the viewpoint of
S. Convening that ?(−), !〈−〉 represent input and output in types, that “;” stands for sequencing and that ⊕〈−{−}〉
represents the choice of sending one among different labels, the session type T is:

3

P ::= ū[n] n-ary session initiator
| u[p](α).P p-th session participant
| c!`〈Π,e〉.P Value sending
| c?`(p,x`′).P Value receiving
| c!`〈〈q,c′〉〉.P Delegation sending
| c?`((p,α)).P Delegation reception
| c⊕` 〈Π,λ 〉.P Selection
| c&`(p,{λi : Pi}i∈I) Branching
| if e then P else Q Conditional
| P | Q Parallel
| 0 Inaction
| (νa`)P Name hiding
| def D in P Recursion
| X〈e,c〉 Process call

r ::= a` | s Service/Session Name

c ::= α | s[p] Channel

u ::= x` | a` Identifier

v ::= a | true | false | . . . Value

e ::= x` | v` | e and e′ | not e | . . . Expression

D ::= X(x`,α) = P Declaration

Π ::= {p} | Π∪{p} Set of participants

ϑ ::= v`↓`′ | s[p]` | λ ` Message content

m ::= (p,Π,ϑ) Message in transit

h ::= m ·h | ε Queue

H ::= H ∪{s : h} | /0 Q-set

Table 3: Syntax of processes, expressions and queues.

?
(
C,Number>↓⊥

)
;⊕
〈
C,{ok :!

〈
C,String⊥

〉
;end,ko : end}

〉
where the communication partner of S (namely C) is explicitly mentioned. The session type T ′ is the rest of type T after
the first communication has been done:

⊕
〈
C,{ok :!

〈
C,String⊥

〉
;end,ko : end}

〉
As hinted previously, to formalise access control we give security levels to service participants, and require that a
participant of a given level does not receive data of higher or incomparable level. Since the only secret data in our
example is CreditCard, it is natural to associate ⊥ with participant S in both services a and b, and > with participant
B in service b. Notice that participant C may indifferently have level > or ⊥ in service a, since he only sends, but does
not receive, the high data CreditCard.

3. Syntax

Our calculus for multiparty asynchronous sessions is essentially the same as that considered in [2], with the addition
of runtime configurations and security levels.

4

Let (S ,≤) be a finite lattice of security levels, ranged over by `,`′. We denote by t and u the join and meet
operations on the lattice, and by ⊥ and > its minimal and maximal elements.

We assume the following sets:

• service names, ranged over by a,b, . . . , each of which has an arity n ≥ 2 (its number of participants) and a
security level `,

• value variables, ranged over by x,y, . . . , all decorated with security levels,

• identifiers, i.e., service names and value variables, ranged over by u,w, . . . , all decorated with security levels,

• channel variables, ranged over by α,β , . . . ,

• labels, ranged over by λ ,λ ′, . . . (acting like labels in labelled records).

Values v are either service names or basic values (boolean values, integers, etc.). When treated as an expression,
a value is decorated with a security level `; when used in a message, it is decorated with a declassified level of the
form ` ↓ `′, where `′ ≤ `. When `′ = `, we will write simply ` instead of ` ↓ `. In this case we will speak of trivial
declassification. Let us point out that declassification of services is not allowed in our calculus, for lack of evidence of
its usefulness (see Example 6.5). Hence, if v is a service name, its level will always be of the simple form `.

Sessions, the central abstraction of our calculus, are denoted with s,s′ A session represents a particular instance
or activation of a service. Hence sessions only appear at runtime. We use p, q,. . . to denote the participants of a session.
In an n-ary session (a session corresponding to an n-ary service) p, q are assumed to range over the natural numbers
1, . . . ,n. We denote by Π a non empty set of participants. Each session s has an associated set of channels with role s[p],
one for each participant. Channel s[p] is the private channel through which participant p communicates with the other
participants in the session s. A new session s on an n-ary service a` is opened when the initiator ā`[n] of the service
synchronises with n processes of the form a`[1](α1).P1, . . . ,a`[n](αn).Pn. We use c to range over channel variables and
channels with roles. Finally, we assume a set of process variables X ,Y, . . . , in order to define recursive behaviours.

As in [16], in order to model TCP-like asynchronous communications (with non-blocking send but message order
preservation between a given pair of participants), we use queues of messages, denoted by h; an element of h may be
a value message (p,Π,v`↓`′), indicating that the value v` is sent by participant p to all participants in Π, with the right
of declassifying it from level ` to level `′; a channel message (p,q,s[p′]`), indicating that p delegates to q the role of
p′ with level ` in the session s; and a label message (p,Π,λ `), indicating that p selects the process with label λ among
those offered by the set of participants Π. The empty queue is denoted by ε , and the concatenation of a new message
m to a queue h by h ·m. Conversely, m ·h means that m is the head of the queue. Since there may be nested and parallel
sessions, we distinguish their queues by naming them. We denote by s : h the named queue h associated with session s.
We use H,K to range over sets of named queues, also called Q-sets.

The set of expressions, ranged over by e,e′, . . . , and the set of processes, ranged over by P,Q . . . , are given in
Table 3, together with the runtime syntax of the calculus (sessions, channels with role, messages, queues), which
appears shaded for ease of reading. We say that a process is a user process if it can be written without using runtime
syntax.

Let us informally comment on the primitives of the language, whose operational semantics will be given in the next
section. The primitive for session initiation ū[n] opens a new n-ary session for the shared service u by synchronising
with n processes of the form u[p](αp).Pp, for p = 1, . . . ,n. The effect of this synchronisation is to create a new session
s with an associated queue s : ε , and to replace the channel αp in each process Pp by the channel with role s[p].
This is the only synchronous interaction of the calculus. All the other communications, which take place within an
established session, are performed asynchronously in two steps, via push and pop operations on the queue associated
with the session, using the next three pairs of primitives: the send and receive of a value; the send and receive of a
delegation (where one participant transmits to another one the capability of participating in another session with a given
role); and the selection and branching operators (where one participant chooses one of the branches offered by another
participant). The send/receive and choice primitives are decorated with security levels, whose use will be justified later.

When there is no risk of confusion we will omit the set delimiters {,}, particularly around singletons.

4. Operational Semantics

In this section we define the operational semantics of our calculus, which consists of a reduction relation on con-
figurations, coupled with a structural equivalence.

A configuration is a pair C =< P , H > of a process P and a Q-set H, possibly restricted with respect to service
and session names, or a parallel composition C‖C of configurations. In a configuration of the form (νs) < P , H >, all
occurrences of s[p] in P and H and of s in H are bound. By abuse of notation we will often write P instead of < P , /0 >.

5

P | 0≡ P P | Q≡ Q | P (P | Q) | R≡ P | (Q | R) (νr)P | Q≡ (νr)(P | Q)

(νrr′)P≡ (νr′r)P (νr)0≡ 0 def D in 0≡ 0 def D in (νr)P≡ (νr)def D in P

(def D in P) | Q≡ def D in (P | Q) def D in (def D′ in P)≡ def D′ in (def D in P)

h · (p,Π,ϑ) · (p′,Π′,ϑ ′) ·h′ ≡ h · (p′,Π′,ϑ ′) · (p,Π,ϑ) ·h′ if Π∩Π′ = /0 or p 6= p′

h · (p,Π,ϑ) ·h′ ≡ h · (p,Π′,ϑ) · (p,Π′′,ϑ) ·h′ if Π = Π′∪Π′′ and Π′∩Π′′ = /0

h≡ h′ ⇒ H ∪{s : h} ≡ H ∪{s : h′}

P≡ Q and H ≡ K ⇒ < P , H >≡< Q , K > C ≡ C′ ⇒ (νr)C ≡ (νr)C′

(ν r̃) < P , H > ‖(ν r̃′) < Q , K > ≡ (ν ˜rr′) < P | Q , H ∪K > if qn(H)∩qn(K) = /0

(νrr′)C ≡ (νr′r)C (νr)(< P , H >) ≡ < (νr)P , H > (νr)(< P , H >) ≡ < P , (νr)H >

Table 4: Structural equivalence.

Let qn(H) stand for the queue names of H. Then the structural equivalence ≡ for processes, queues and config-
urations is given in Table 4, where assuming Barendregt convention no bound name can occur free or in two different
bindings. The rules for processes are standard [22]. Among the rules for queues, we have one for commuting indepen-
dent messages and another one for splitting a message for multiple recipients. Modulo ≡ each configuration has the

form (ν r̃) < P , H >, where (ν r̃)C stands for (νr1) · · ·(νrk)C if r̃ = r1 · · ·rk. In a configuration (νa`)C, we assume
that α-conversion on the name a` preserves the level `.

The transitions for configurations have the form C −→C′. They are derived using the reduction rules in Table 5.
Let us briefly comment on these rules.

Rule [Link] describes the initiation of a new session among n processes, corresponding to an activation of the
service a` of arity n. After the connection, the participants share a private session name s and the corresponding queue,
initialised to s : ε . In each participant Pp, the channel variable αp is replaced by the channel with role s[p].

The output rules [Send], [DelSend] and [Label] push values, channels and labels, respectively, into the queue s : h.
In rule [Send], e ↓ v` denotes the evaluation of the expression e to the value v`, where if v is a basic value, ` is the join of
the security levels of the variables and values occurring in e, while if v is a service name, ` is simply the level associated
with the service. The superscript `′ on the output sign indicates that v` can be declassified to level `′ when received by
an input process s[q]?`(p,x`′).P. This is why the value needs to be recorded with both levels in the queue. Recall that
in case v is a service name, then `′ = ` (services cannot be declassified).

The rules [Rec], [DelRec] and [Branch] perform the corresponding complementary operations. Rule [ScopC] is a
standard contextual rule. In this rule, Barendregt convention ensures that the names in s̃ are disjoint from those in r̃ and
do not appear in C′′. We will often omit the level on the I/O operators s[p]!`

′〈Π,e〉.P and s[q]?`(p,x`′).P when ` = `′,
using the simpler notation s[p]!〈Π,e〉.P and s[q]?(p,x`).P.

As usual, we use −→∗ for the reflexive and transitive closure of −→.

4.1. Semantics of the Client, Seller, Bank example
We illustrate the use of our reduction rules on the introductory example of Section 2. We start by rewriting in Table

6 the various components equipped with all the required security levels. Then the global process has the reductions
shown in Table 7, where the continuation processes PC,PS,PB are given by:

PC = sa[1]&⊥(2,{ok : sa[1]?⊥(2,date⊥).0,ko : 0})
PS = sb[2]&⊥(1,{ok : η⊕⊥ 〈1,ok〉.η!⊥〈1,Date⊥〉.0,ko : η⊕⊥ 〈1,ko〉.0})
PB = sb[1]!⊥〈〈2,sa[2]〉〉.if valid(cc⊥) then sb[1]⊕⊥ 〈2,ok〉.0 else sb[1]⊕⊥ 〈2,ko〉.0

6

a`[1](α1).P1 | ... | a`[n](αn).Pn | ā`[n] −→ (νs) < P1{s[1]/α1} | ... | Pn{s[n]/αn} , s : ε >
[Link]

< s[p]!`
′〈Π,e〉.P , s : h >−→< P , s : h · (p,Π,v`↓`′) > (e↓v`)

[Send]

< s[q]?`(p,x`′).P , s : (p,q,v`↓`′) ·h > −→< P{v`′/x`′} , s : h >
[Rec]

< s[p]!`〈〈q,s′[p′]〉〉.P , s : h >−→< P , s : h · (p,q,s′[p′]`) >
[DelSend]

< s[q]?`((p,α)).P , s : (p,q,s′[p′]`) ·h >−→< P{s′[p′]/α} , s : h >
[DelRec]

< s[p]⊕` 〈Π,λ 〉.P , s : h >−→< P , s : h · (p,Π,λ `) >
[Label]

< s[q]&`(p,{λi : Pi}i∈I) , s : (p,q,λ `
i0) ·h >−→< Pi0 , s : h > (i0 ∈ I)

[Branch]

if e then P else Q−→ P (e ↓ true`) if e then P else Q−→ Q (e ↓ false`)
[If-T, If-F]

def X(x`,α) = P in (X〈e,s[p]〉 | Q) −→ def X(x`,α) = P in (P{v`/x`}{s[p]/α} | Q) (e ↓ v`)
[Def]

< P , H >−→ (ν s̃) < P′ , H ′ > ⇒ < def D in P , H >−→ (ν s̃) < def D in P′ , H ′ >
[Defin]

C −→ (ν s̃)C′ ⇒ (ν r̃)(C‖C′′)−→ (ν r̃)(ν s̃)(C′ ‖C′′)
[ScopC]

Table 5: Reduction rules.

5. Information Flow Security in Sessions

Let us turn now to the main concern of this work, namely that of ensuring secure information flow [11] within
sessions. We shall be interested in the classical property of noninterference (NI) [14], combined with a limited form
of declassification [1, 27], which is assumed to only take place during the transmission of a basic value. The property
of NI requires that there is no dependency or information flow from objects of a given level to objects of lower or
incomparable level [30, 28, 25]. Such an information flow is considered insecure since by observing the latter objects
one could potentially reconstruct information about the former.
To set the stage for our information flow analysis, the first questions to ask are:

1. Which objects of the calculus should carry security levels?
2. Which information leaks can occur and how can they be detected?

As concerns objects, we shall see that besides basic values, also labels, delegated channels and services need security
levels. Since this question requires some discussion, which is best understood through examples, we defer it to the next
section, just assuming here as a fact that queue messages have the form (p,Π,ϑ), where ϑ may be of the form v`↓`′ ,
λ ` or s[p]`. We shall focus here on the observation model, which will be based on a notion of bisimulation as is now
standard for concurrent processes [28, 26].

We are looking for a security property which is persistent in the sense of [5], namely which holds in any reachable
state of a process, assuming the process may be restarted with fresh Q-sets at each step. This means that we view
processes as evolving in a dynamic and potentially hostile environment, where at each step an attacker may change the
high context by adding or subtracting messages, or changing their content.

Before formally introducing the security property, let us illustrate by a couple of examples the kinds of insecure
flow that may arise in our calculus. Essentially, we have an insecure information flow – or information leak – when a
communication action of level ` depends on an input action of level `′ 6≤ `.

7

I = ā⊥[2] | b̄⊥[2]

C = a⊥[1](α1).α1!⊥〈2,Title⊥〉.α1!⊥〈2,CreditCard>〉. α1&⊥(2,{ok : α1?⊥(2,date⊥).0,ko : 0})

S = a⊥[2](α2).α2?⊥(1,x⊥).b⊥[2](β2).β2!⊥〈〈1,α2〉〉.β2?⊥((1,η)).
β2&⊥(1,{ok : η⊕⊥ 〈1,ok〉.η!⊥〈1,Date⊥〉.0,ko : η⊕⊥ 〈1,ko〉.0})

B = b⊥[1](β1).β1?⊥((2,ζ)).ζ ?>(2,cc⊥).β1!⊥〈〈2,ζ 〉〉.if valid(cc⊥) then β1⊕⊥ 〈2,ok〉.0 else β1⊕⊥ 〈2,ko〉.0

Table 6: Processes of the C,S,B example with all security levels.

I | C | S | B −→
(νsa)(< b̄⊥[2] | sa[1]!⊥〈2,Title⊥〉. · · · | sa[2]?⊥(1,x⊥). · · · | b⊥[1](β1). · · · , {sa : ε}>)

−→
(νsa)(< b̄⊥[2] | sa[1]!⊥〈2,CreditCard>〉. · · · | sa[2]?⊥(1,x⊥). · · · | b⊥[1](β1). · · · , {sa : (1,2,Title⊥↓⊥)}>)

−→
(νsa)(< b̄⊥[2] | sa[1]!⊥〈2,CreditCard>〉. · · · | b⊥[2](β2). · · · | b⊥[1](β1). · · · , {sa : ε}>)

−→
(νsa)(νsb)(< sa[1]!⊥〈2,CreditCard>〉. · · · | sb[2]!⊥〈〈1,sa[2]〉〉. · · · | sb[1]?⊥((2,ζ)). · · · , {sa : ε,sb : ε}>)
−→

(νsa)(νsb)(< sa[1]!⊥〈2,CreditCard>〉. · · · | sb[2]?⊥((1,η)). · · · | sb[1]?⊥((2,ζ)). · · · , {sa : ε,sb : (2,1,sa[2]⊥)}>)
−→

(νsa)(νsb)(< sa[1]!⊥〈2,CreditCard>〉.PC | sb[2]?⊥((1,η)).PS | sa[2]?>(2,cc⊥).PB , {sa : ε,sb : ε}>)
−→

(νsa)(νsb)(< PC | sb[2]?⊥((1,η)).PS | sa[2]?>(1,cc⊥).PB , {sa : (1,2,CreditCard>↓⊥),sb : ε}>)

Table 7: Some reductions of the C,S,B example.

A typical information leak occurs when a low action is guarded by a high input, as in the following process P,
where s is some previously opened session with three participants:

(∗) P = s[1]?(2,x>).s[1]!〈3,e〉.0 where e↓v⊥

In process P, participant 1 waits for a high message from participant 2, and then sends a low message to participant 3.
This process is insecure because the low output is guarded by a high input whose occurrence depends on whether

or not a matching message is offered by the high environment, which is something we do not control. Since input is
a blocking operator, the low output will be able to occur in the first case but not in the latter, and the observer will
conclude that the low output depends on the high input. Note that in process P the value v⊥ of the expression e cannot
depend on the value received for x>, since in this case e should contain x> and therefore its value would have level >2.
Hence the leak in P is only due to the presence or absence of a high message in the environment, and not on its value.

Another typical leak occurs when a high input guards a conditional which tests the received value in order to choose
between two different low behaviours. Consider the following process:

(∗∗) Q = s[2]!〈1,true>〉.0 | s[1]?(2,x>).if x> then s[1]!〈3,true⊥〉.0 else s[1]!〈3, false⊥〉.0

Again, session s has three participants. Here participant 1 receives a message from participant 2, and depending on its
value sends two different low values to participant 3. This process is insecure because the value of the low message sent
by participant 1 to participant 3 depends on the value of the high message received by participant 1 from participant 2.
Here the leak is caused by the value of the high message rather than by its presence or absence.

In fact, Example (∗∗) is not completely correct, since in our persistent notion of security we assume that the attacker
can add or withdraw high messages at each step. Hence, after participant 2 has sent the message to participant 1, this
message could disappear again from the queue, in which case participant 1 would be blocked just like participant 1
in Example (∗). However, Example (∗∗) can be easily adapted by rendering both components of process Q recursive,
so that the high message is continuously offered by participant 2 and hence the high input of participant 1 is indeed
guaranteed to occur (Example 6.4 is the recursive version of this example).

2Recall that the level of an expression value is the join of the levels of the variables and values occurring in the expression.

8

Let us turn now to the definition of security. Security is a behavioural property, based on a notion of observation of
processes. In our calculus, what is observable of processes is the way they transform the Q-sets at each step. Moreover,
for defining security one uses a set of observers, one for each downward-closed set of security levels L (the intuition
being that an observer who can see messages of level ` should also be able to see all messages of level `′ lower than `).
For every L , the L -observer is only able to see Q-set messages whose level belongs to L (in case of a declassified
value v`↓`′ , the observed level is the lowest one). Let us call these messages L -messages, and the complementary
ones L -messages. Hence, two Q-sets containing the same L -messages will be indistinguishable for the L -observer.
This will be formalised by a notion of L -equality =L on Q-sets. Based on =L , a notion of L -bisimulation 'L on
processes will then formalise indistinguishability of processes by the L -observer: two processes will be L -bisimilar
if they transform L -equal Q-sets into L -equal Q-sets. Then, a process will be secure for the L -observer if it is
L -bisimilar to itself when run with L -equal Q-sets, namely if it preserves at each step the L -equality of Q-sets.
Intuitively, this means that the process cannot exhibit different L -behaviours when fed with equal L -messages but
different L -messages (in fact, as we shall see the situation is slightly more complex since Q-sets are not simply
multisets of messages, but they have some structure). Finally, a process is secure if it is secure for every L -observer.

In the following, we shall always use L to denote a downward-closed set of levels of S .
Formally, a queue s : h is L -observable if it contains some L -message, that is, some message with level in L .

Then two Q-sets are L -equal if their L -observable queues have the same names and contain the same L -messages.
This equality is based on the following L -projection operation on Q-sets, which discards all messages whose level is
not in L .

Definition 5.1. Let the functions lev↑ and lev↓ be defined by:

lev↑(v`↓`′) = ` lev↓(v`↓`′) = `′ lev↑(s[p]`) = lev↑(λ `) = ` = lev↓(s[p]`) = lev↓(λ `).

Definition 5.2. The projection operation ⇓L is defined inductively on messages, queues and Q-sets as follows:

(p,Π,ϑ) ⇓L =

{
(p,Π,ϑ) if lev↓(ϑ) ∈L ,

ε otherwise.

ε ⇓L = ε (m ·h) ⇓L = m ⇓L ·h ⇓L

/0 ⇓L = /0 (H ∪{s : h}) ⇓L =

{
H ⇓L ∪{s : h ⇓L } if h ⇓L 6= ε,

H ⇓L otherwise.

Notice that the projection operation ⇓L discards a message (p,Π,v`↓`′) only if `′ 6∈L . This implies that the message
containing the CreditCard (declassified to ⊥) in the C, S, B example is present in all projections.

Definition 5.3 (L -Equality of Q-sets).
Two Q-sets H and K are L -equal, written H =L K, if H ⇓L = K ⇓L .

When L = {⊥}, we shall write =⊥ instead of ={⊥} (and similarly for ⊥-observer, ⊥-equality, ⊥-security).
We proceed now to introduce our notion of L -bisimulation. The idea is to test processes by running them in

conjunction with L -equal Q-sets. However, when combining processes with Q-sets we cannot allow arbitrary queues,
otherwise we could rule out processes which are intuitively secure. Indeed, what could be safer than a process which
just wants to write a bottom value in a queue or read a bottom value from a queue? However, even these simple
processes turn out to be insecure without conditions on Q-sets.

For example, the process P = s[1]!〈2,true⊥〉.0 does not react in the same way when combined with the two Q-sets
{s : ε}=⊥ /0. Indeed, while P reduces when combined with {s : ε}, it is stuck when combined with /0. Formally:

< P , {s : ε}>−→< 0 , {s : (1,2,true⊥)}> < P , /0 > 6−→

Here the ⊥-observer would detect an insecurity by looking at the resulting Q-sets {s : (1,2,true⊥)} 6=⊥ /0.
To get around this problem, we require that the Q-sets contain enough queues to enable all outputs of the process to

reduce. For this it suffices that in a configuration < P , H >, every session name that occurs free in P has a corresponding
queue in H. Let fsn(P) denote the set of free session names in P.

Definition 5.4. A configuration 〈P,H〉 is saturated if all free session names in P have corresponding queues in H, i.e.
s ∈ fsn(P) implies s ∈ qn(H).

9

It is easy to check that saturation is preserved by reduction, since only rule [Link] creates new sessions, always
together with the corresponding queues. In particular, starting from a closed user process and the empty Q-set, we
always obtain saturated configurations. This is formally established by the following definitions and lemma.

Definition 5.5 (Initial configurations).
A configuration 〈P,H〉 is initial if P is a closed user process and H = /0.

Definition 5.6 (Reachable configurations).
A configuration C is reachable if there is an initial configuration C0 such that C0 −→∗ C.

Lemma 1. A reachable configuration is saturated.

A dual phenomenon occurs with inputs. Consider the process Q = s[2]?(1,x⊥).0 with the Q-sets H1 =⊥ H2:

H1 = {s : (1,2,true⊥)}, H2 = {s : (1,2,true>) · (1,2,true⊥)}

Here we have < Q , H1 >−→< 0 , {s : ε} >, while < Q , H2 > 6−→. Again, the ⊥-observer would detect a leak
since {s : ε} 6=⊥ H2. What happens here is that the top level message in H2 is transparent for the ⊥-equality, but it
prevents the process from reading the subsequent bottom level message. Note that the problem comes from the fact
that both messages have the same receiver and the same sender, since if instead of H2 we took H3 = {s : (3,2,true>) ·
(1,2,true⊥)}, then we would have a matching transition < Q , H3 >−→< 0 , {s : (3,2,true>)} >, thanks to the
structural equivalence on queues given in Table 4.

Our way out of this problem is to ask that queues are monotone, namely that the security levels of messages with
the same sender and common receivers can only stay equal or increase along a queue. Intuitively, this means that an
attacker can only experiment on a process by providing or not high messages, as well as changing their content, but
cannot affect the availability of low messages. In this way we allow the Q-sets H1 and H3 in the above example, but
forbid H2. More formally:

Definition 5.7. A queue h is monotone if lev↓(ϑ1)≤ lev↓(ϑ2) whenever the message (p,Π1,ϑ1) precedes the message
(p,Π2,ϑ2) in h and Π1∩Π2 6= /0. A Q-set is monotone if it contains only monotone queues.

Unlike saturation, monotonicity is not preserved by reduction, since for example

< s[1]!〈2,true>〉.s[1]!〈2,true⊥〉.0 , {s : ε}>−→∗< 0 , {s : (1,2,true>) · (1,2,true⊥)}>

This could not be avoided by starting from initial configurations only, since the above process occurs as a subprocess in
a configuration that is reachable from the initial configuration:

< ā⊥[2] | a⊥[1](α).α!〈2,true>〉.α!〈2,true⊥〉.0 | a⊥[2](β).β?(1,x>).β?(1,y⊥).0 , /0 >

Notice that all the presented processes are typable in standard session type systems, for example in that of [2]. All these
processes will also be typable in the type system we will define in Section 7, except for a⊥[2](β).β?(1,x>).β?(1,y⊥).0,
since a high input will not be allowed to guard a low action. In particular, the process s[1]!〈2,true>〉.s[1]!〈2,true⊥〉.0
will be typable, in spite of the fact that it generates a non monotone queue. In Theorem 14 we will show that our type
system assures monotonicity of Q-sets that are generated by well-typed initial configurations.

We are now ready for defining our bisimulation. A relation R on processes is a L -bisimulation if, whenever
two related processes are coupled with L -equal monotone Q-sets yielding saturated configurations, then the reduction
relation preserves both the relation R on processes and the L -equality of Q-sets:

Definition 5.8 (L -Bisimulation on processes).
A symmetric relation R ⊆ (Pr×Pr) is a L -bisimulation if P1 R P2 implies, for any pair of monotone Q-sets H1 and
H2 such that H1 =L H2 and each < Pi , Hi > is saturated:

If < P1 , H1 >−→ (ν r̃) < P′1 , H ′1 >, then either H ′1 =L H2 and P′1 R P2, or there exist

P′2,H
′
2 such that < P2 , H2 >−→∗ (ν r̃) < P′2 , H ′2 > , where H ′1 =L H ′2 and P′1 R P′2.

Processes P1,P2 are L -bisimilar, P1 'L P2, if P1 R P2 for some L -bisimulation R.

10

Note that r̃ may either be the empty string or a single name, since it appears after a one-step transition. If it is a
name, it may either be a service name a` (extrusion of a private service) or a fresh session name s (opening of a new
session). In the latter case, s cannot occur in P2 and H2 by Barendregt convention.

Intuitively, a transition that adds or removes a message with level in L must be simulated in one or more steps,
producing the same effect on the Q-set, whereas a transition that only affects messages with level not in L may be
simulated by inaction.

The notions of L -security and security are now defined in the standard way:

Definition 5.9 (L -Security). A process P is L -secure if P'L P.

Notice that each process is S -secure, since for L = S the L -equality of saturated Q-sets reduces to syntactic
identity, and hence 'S reduces to ordinary bisimilarity, which is a reflexive relation.

The soundness of our definition of L -security comes from the observation that for an arbitrary process P the
monotone Q-set HP = {s : ε | s ∈ fsn(P)} gives a saturated configuration < P , HP >.

Definition 5.10 (Security). A process P is secure if it is L -secure for every L .

The necessity of considering all down-closed sets of levels included in S is justified by the following example. Let
S = {⊥, `,>} where ⊥≤ `≤> and

P = s[2]?(1,x>).s[2]!`〈1,true`〉.0

The process P is ⊥-secure (and S -secure), but it is not {⊥, `}-secure, as can be seen by taking the two {⊥, `}-equal
Q-sets H1 = {s : (1,2,true>)} and H2 = {s : ε}.

6. Examples of Information Flow Security in Sessions

In this section we illustrate the various kinds of information flow that can occur in our calculus, by means of simple
examples. Since we aim at justifying the introduction of security levels in the syntax, other than on basic values and
participants, we initially omit levels on all other objects. Then, as we go along examining examples, we will find out
that other objects need to carry security levels. These levels will be used in the type system to reject processes that are
innocuous in isolation but may be dangerous in some contexts. For the sake of simplicity, we use here just two security
levels ⊥ and > (also called low and high).

6.1. Insecurity of high input followed by low action
Consider the process P (which coincides with that of Example (*) at page 8, assuming e = true⊥), together with

the Q-sets H1 and H2, where H1 =⊥ H2:

P = s[1]?(2,x>).s[1]!〈3,true⊥〉.0, H1 = {s : (2,1,true>)} H2 = {s : ε}
Here we have < P , H1 >−→< s[1]!〈3,true⊥〉.0 , {s : ε}>=< P1 , H ′1 >, while < P , H2 > 6−→. Since H ′1 = {s : ε}=
H2, we can proceed with P1 = s[1]!〈3,true⊥〉.0 and P2 = P. Take now K1 = K2 = {s : ε}. Then < P1 , K1 >−→<
0 , {s : (1,3,true⊥)}>, while < P2 , K2 > 6−→. Since {s : (1,3,true⊥)} 6=⊥ {s : ε}= K2, P is not ⊥-secure.

With a similar argument we could show that the process s[1]?(2,x>).s[1]?(3,y⊥).0 is not ⊥-secure.

6.2. Security of declassified high-to-low input followed by low action
Consider the following process Q, which differs from process P in Example 6.1 in that the input action declassifies

the received value from high to low:

Q = s[1]?>(2,x⊥).s[1]!〈3,true⊥〉.0,

Let H1 = {s : (2,1,v>↓⊥)}. Note that H1 6=⊥ {s : ε}. Indeed, for H2 to be such that H1 =⊥ H2, it must be the case that
H2 ≡ {s : (2,1,v>↓⊥) · h} ∪ H, where {s : h} ∪ H =⊥ {s : ε}. Then, it is easy to see that < Q , H1 >−→< Q′ , H ′1 >
implies < Q , H2 >−→< Q′ , H ′2 >, with H ′1 =⊥ H ′2. This is enough to conclude that Q is secure.

Interestingly, an insecure component may be “sanitised” by its context, so that the insecurity is not detectable in the
overall process. Clearly, in case the insecure component is wrapped into a deadlocked context such as (νb)b[1](β1).[],
the insecurity disappears simply because the component is not executed. However, the curing context could also be a
partner of the component, as shown by the next example.

11

6.3. Insecurity sanitised by recursion and parallel context
Let us consider the recursive version R of the process P of Example 6.1, in parallel with a process R that continu-

ously emits a matching message, and take again the Q-sets H1 = {s : (2,1,true>)}=⊥ {s : ε}= H2:

R = def X(x,α) = α?(2,y>).α!〈3,x〉.X(x,α) in X〈true⊥,s[1]〉
R = def Y (z,β) = β !〈1,z〉.Y (z,β) in Y 〈true>,s[2]〉

Then the input move < R | R , H1 >−→< s[1]!〈2,true⊥〉.R | R , {s : ε}> can be simulated by a sequence of two moves,
namely an output of R followed by an input of R:

< R | R , H2 >−→< R | R , {s : (2,1,true>)}>−→< s[1]!〈2,true⊥〉.R | R , {s : ε}>

Note that it would make no difference if instead of starting with H1 = {s : (2,1,true>)} we started with H3 = {s :
(2,1, false>)}.

6.4. Insecurity of high conditional with different low branches
Consider the following process Q̂, which is the recursive version of process Q in Example (**) of page 8:

Q̂ = Q1 | Q2
Q1 = def X(x,α) = α?(2,z>).if z> then α!〈3,x〉.X(x,α) else α!〈3,not x〉.X(x,α)in X〈true⊥,s[1]〉
Q2 = def Y (y,β) = β !〈1,y〉.Y (y,β) in Y 〈true>,s[2]〉

Take the Q-sets H1 = {s : (2,1, false>)} and H2 = {s : ε}. We have H1 =⊥ H2. Now, if < Q̂ , H1 > starts by reading the
message (2,1, false>) from H1, then < Q̂ , H2 > could try to reply by a two-step reduction, letting first Q2 output the
message (2,1,true>) and then Q1 read this message. In both cases we would be left with the Q-set H ′1 = H ′2 = {s : ε}.
However this would result in the replacement of different values for z> in the conditional, leading in the next steps to
the output of two different low values from participant 1 to participant 3, yielding the non ⊥-equal Q-sets H ′′1 = {s :
(1,3, false⊥)} and H ′′2 = {s : (1,3,true⊥)}.

The next series of examples justifies the introduction of security levels on services, labels and delegated channels,
by showing that they are necessary in the type system to rule out some indirect information flows.

6.5. Need for levels on services
Consider the following process:

s[2]?(1,x>).b̄[2] | b[1](β1).β1!〈2,true⊥〉.0 | b[2](β2).β2?(1,y⊥).0

This process is insecure since if there is no >-message in the Q-set the process is blocked, hence it has a null ⊥-
behaviour, while if there is a >-message in the Q-set the process subsequently exhibits a ⊥-action. To be able to rule
out this kind of leak in our type system, we annotate service names with security levels which in a typable process will
act as a lower bound for all the actions executed by the service. Then service b will have to be of level > since it is
guarded by an input of a >-value, and hence it will not be allowed to perform the exchange of the value true⊥.

The communication of a service name only makes sense if the name is restricted, and it is used for allowing a set
of participants to start a session on that private name. The above example shows that the service name must have the
same security level in the initiator and in all participants, otherwise the session could not start. This is why we do not
allow service declassification.

6.6. Need for levels on selection and branching
Consider the process:

s[2]?(1,x>).s[2]⊕〈3,λ 〉.0 | s[3]&(2,{λ : s[3]!〈4,true⊥〉.0}) | s[4]?(3,y⊥).0

As in the previous example, this process is insecure because if there is no>-message in the Q-set the process is blocked,
while if there is a >-message in the Q-set the process subsequently exhibits a ⊥-action. To prevent this kind of leak,
the selection and branching operators will be annotated with a security level which acts as a lower bound for all actions
executed in the various branches.

12

6.7. Need for levels on delegated channels
Consider the following process:

s[2]?(1,x>).s[2]!〈〈3,s′[1]〉〉.0 | s[3]?((2,η)).η!〈2,true⊥〉.0 | s′[2]?(1,y⊥).0

This process is insecure since if there is no>-message in the Q-set the process is blocked, while if there is a>-message
in the Q-set the process subsequently exhibits a⊥-action. This shows that delegation send and receive should also carry
a level, which will act as a lower bound for all actions executed in the receiving participant after the delegation.

6.8. Need for levels in queue messages
So far, we have identified which objects of the calculus need security levels, namely: basic values, service names,

and the operators of selection, branching and delegation. Let us now discuss how levels are recorded into queue
messages.

Values are recorded in the queues with both their original level and their declassified level. The reason for recording
also the original level is access control: the semantics does not allow a low input process to fetch a high value declas-
sified to low. More formally, a value v>↓⊥ in the queue can only be read by a process s[q]?>(p,x⊥).P. Concerning
service names a`, the level ` guarantees that the session initiator and all the participants get started in a context of level
`′ ≤ ` (see Example 6.5). Once the session is established, the name a` disappears and it is its global type (cf next
section) that will ensure that all participants perform actions of levels greater than or equal to `. As for the operators of
branching/selection and delegation, they disappear after the reduction and their level is recorded respectively into labels
and delegated channels within queue messages. This is essential to ensure that the sender and receiver have matching
security levels, since in this case the communication is asynchronous and occurs in two steps. In conclusion, queue
messages need to be of the form (p,Π,ϑ), where ϑ is of one of v`↓`′ , s[p]`, or λ `.

To conclude this section, note that while P1 = s[1]?(2,x>).s[1]?(2,y⊥).0 and P2 = s[1]?(2,x>).s[1]!〈2,true⊥〉.0
are insecure, their dual processes Q1 = s[2]!〈1,true>〉.s[2]!〈1,true⊥〉.0 and Q2 = s[2]!〈1,true>〉.s[2]?(1,true⊥).0 are
secure. Intuitively, this is because output is not blocking.

Finally, we let the reader verify that the process of the C, S, B example in Section 4.1 is secure.

7. Type system

In this section we present our type system for secure sessions and state its properties. Just like process syntax, types
will contain security levels.

7.1. Safety Global Types
A safety global type is a pair 〈L,G〉`, decorated with a security level `, describing a service where:

• L : {1, . . . ,n}→S is a safety mapping from participants to security levels;

• G is a global type, describing the whole conversation scenario of an n-ary service;

• ` is the meet of all levels appearing in G, denoted by M(G).

The grammar of global types is:

Global G ::= p→Π : 〈U〉.G Exchange U ::= S`↓`′ | T | 〈L,G〉`
| p→Π : {λi : Gi}`i∈I Sorts S ::= bool | . . .
| p �δ .G
| µt.G | t | end

The type p→ Π : 〈U〉.G says that participant p multicasts a message of type U to all participants in Π and then the
interactions described in G take place.

Exchange types U may be sort types S`↓`′ for values (base types decorated with a declassification ` ↓ `′), session
types T for channels (defined below), or safety global types for services. If U = T , then Π is a singleton. We use S` as
short for S`↓`, called a trivial declassification.

Type p→ Π : {λi : Gi}`i∈I , where `≤
d

i∈I M(Gi), says that participant p multicasts one of the labels λi to the
participants in Π. If λ j is sent, interactions described in G j take place.

13

Type p �δ .G says that the role of p is delegated to another participant; this construct does not appear in the original
global types of [16]. It is needed here to “mark” the delegated part of the type, which is discharged when calculating its
join (see below).

Type µt.G is a recursive type, where the type variable t is guarded in the standard way. In the grammar of exchange
types, we suppose that G does not contain free type variables. Type end represents the termination of a session.

The meet of global types is needed for information flow control, and it takes into account the lower level of declas-
sified exchanged values, and the level of all other constructs, including delegation. More precisely the meet of global
types is defined as follows, using the meet of session types given in next section.

M(p→Π : 〈S`↓`′〉.G) = `′uM(G) M(p→Π : 〈〈L,G〉`〉.G) = `uM(G)
M(p→ q : 〈T 〉.G) = M(T)uM(G) M(p→Π : {λi : Gi}`i∈I) = `
M(p �δ .G) = M(G) M(t) =>
M(µt.G) = M(G) M(end) =>

The condition `≤
d

i∈I M(Gi) (see above) justifies the absence of M(Gi) in the definition of M(G) for the case of label
exchanges.

7.2. Session Types
While global types represent the whole session protocol, session types correspond to the communication actions,

representing each participant’s contribution to the session.

Session T ::= !〈Π,S`↓`′〉;T send
| !〈Π,〈L,G〉`〉;T servsend
| !`〈q,T 〉;T ′ delsend
| ⊕`〈Π,{λi : Ti}i∈I〉 selection
| µt.T recursive
| �δ ;T delegation

| ?(p,S`↓`′);T receive
| ?(Π,〈L,G〉`);T servreceive
| ?`(p,T);T ′ delreceive
| &`(p,{λi : Ti}i∈I) branching
| t variable
| end end

The send and servsend types (!〈Π,S`↓`′〉;T and !〈Π,〈L,G〉`〉;T) express the sending to all participants in Π of a value of
type S of level `, declassified to `′ and of a service of type 〈L,G〉` of level ` respectively, followed by the communications
described in T . The two different types for sending are necessary since services cannot be declassified. The delsend
type !`〈q,T 〉;T ′says that a channel of type T is sent to participant q, and then the protocol specified by T ′ takes place.
The selection type ⊕`〈Π,{λi : Ti}i∈I〉, represents the transmission to all participants in Π of a label λ j in {λi | i ∈ I},
followed by the communications described in Tj. The delegation type �δ ;T , says that the communications described
in T will be delegated to another agent. The receive, servreceive, delreceive and branching types are dual to the send,
servsend delsend, and selection ones. In all cases, the need for the security level ` is motivated by one of the examples
in Section 6. Recursive types are considered modulo fold/unfold.

We say that !〈Π,S`↓`′〉, !〈Π,〈L,G〉`〉, !`〈q,T 〉,?(p,S`↓`′),?(p,〈L,G〉`),?`(p,T) are type prefixes and we use τ to
range over them.

A type prefix τ occurs in a session type T if one of the following conditions holds:
• T = τ;T ′;
• T = τ ′;T ′ or T = µt.T ′ or T =�δ ;T ′ and τ occurs in T ′;
• T =⊕`〈Π,{λi : Ti}i∈I〉 or T = &`(p,{λi : Ti}i∈I) and τ occurs in Ti for some i ∈ I.
A type prefix τ precedes a type prefix τ ′ in a session type T if one of the following conditions holds:
• T = τ;T ′ and τ ′ occurs in T ′;
• T = τ ′′;T ′ or T = µt.T ′ or T =�δ ;T ′ and τ precedes τ ′ in T ′;
• T =⊕`〈Π,{λi : Ti}i∈I〉 or T = &`(p,{λi : Ti}i∈I) and τ precedes τ ′ in Ti for some i ∈ I.

As for M(G), we denote by M(T) the meet of all security levels appearing in T .

M(!〈Π,S`↓`′〉;T) = `′uM(T) M(?(p,S`↓`′);T) = `′

M(!〈Π,〈L,G〉`〉;T) = `uM(T) M(?(p,〈L,G〉`);T) = `

M(!`〈q,T 〉;T ′) = `uM(T ′) M(?`(p,T);T ′) = `

M(⊕`〈Π,{λi : Ti}i∈I〉) = ` M(&`(p,{λi : Ti}i∈I)) = `
M(t) => M(µt.T) = M(T)
M(�δ ;T) = M(T) M(end) =>

The type system will assure some relations between levels appearing in types and meets of continuations that justify
the definition of M(T) in the cases of inputs, output of a channel, selection and branching, see Proposition 2.

14

7.3. Projections
The relation between global types and session types is formalised by the notion of projection [16]. The projection

of G onto q, denoted (G � q), gives participant q’s view of the protocol described by G.

Definition 7.1. The projection of G onto q (written G � q) is defined by induction on G:

(p→Π : 〈S`↓`′〉.G′) � q =

!〈Π,S`↓`′〉;(G′ � q) if q = p,

?(p,S`↓`′);(G′ � q) if q ∈Π,

G′ � q otherwise.

(p→Π : 〈〈L,G〉`〉.G′) � q =

!〈Π,〈L,G〉`〉;(G′ � q) if q = p,

?(p,〈L,G〉`);(G′ � q) if q ∈Π,

G′ � q otherwise.

(p→ p′ : 〈T 〉.G′) � q =

!`〈p′,T 〉;(G′ � q) if q = p,

?`(p,T);(G′ � q) if q = p′,

G′ � q otherwise
where `= M(T).

(p→Π : {λi : Gi}`i∈I) � q =
⊕`(Π,{λi : Gi � q}i∈I) if q = p

&`(p,{λi : Gi � q}i∈I) if q ∈Π

G1 � q if q 6= p,q 6∈Π and
Gi � q = G j � q for all i, j ∈ I.

p �δ .G′ � q =

{
�δ ;(G′ � q) if q = p,

G′ � q otherwise.

(µt.G′) � q =

{
µt.(G′ � q) if q occurs in G′,
end otherwise.

t � q = t end � q = end

The mapping of the global type for message multicasting assures that the message has sort S and security level `
declassified to `′ in both the sender and the receivers. The mapping of the global type for delegation assures that the
security levels of the projections be the same and equal to the meet of the session type of the delegated channel. From
Example 6.7 it is clear that we could choose for the projections also a level less than this meet, but this would render
projection a relation instead of a function. The condition Gi � q = G j � q for all i, j ∈ I assures that the projections of
all the participants not involved in the branching are identical session types.

7.4. Well-formedness of safety global types
To formulate the well-formedness condition for safety global types, we define the join J(T) of a session type

T . Intuitively, while M(T) is needed for secure information flow, J(T) will be used for access control. Recall from
Section 2 our access control policy, requiring that participants in a session only read data of level less than or equal to
their own level. This motivates our (slightly non standard) definition of join: in short, J(T) is the join of all the security
levels decorating the input constructs in T (receive, servreceive, delreceive, branching) and selection:

J(!〈Π,S`↓`′〉;T) = J(T) J(?(p,S`↓`′);T) = `tJ(T)
J(!〈Π,〈L,G〉`〉;T) = J(T) J(?(p,〈L,G〉`);T) = `tJ(T)
J(!`〈q,T 〉;T ′) = J(T ′) J(?`(p,T);T ′) = `tJ(T ′)
J(⊕`〈Π,{λi : Ti}i∈I〉) = `t

⊔
i∈I J(Ti) J(&`(p,{λi : Ti}i∈I)) = `t

⊔
i∈I J(Ti)

J(t) =⊥ J(µt.T) = J(T)
J(�δ ;T) =⊥ J(end) =⊥

Notice that in the definition of J(T) we cannot omit ` in the case of selection, because we could have M(T) 6≤ J(T).
For example M(end) = M(µt.t) => and J(end) = J(µt.t) =⊥. Then, if all Ti are such that M(Ti) => and J(Ti) =⊥,
we have

⊔
i∈I J(Ti) =⊥ and ` =

d
i∈I M(Ti) => and thus

⊔
i∈I J(Ti) =⊥ 6=>= `t

⊔
i∈I J(Ti).

15

The condition of well-formedness for safety global types requires that the security level of the participant p is greater
than or equal to the join of the p-th projection of the global type. More formally, the condition of well-formedness is
the following, where dom(L) denotes the domain of L:

A safety global type 〈L,G〉` is well formed if for all p ∈ dom(L): L(p)≥ J(G � p).

Henceforth we shall only consider well-formed safety global types.

7.5. Typing rules
Typing expressions. The typing judgments for expressions are of the form:

Γ ` e : S`

where Γ is the standard environment which maps variables with security levels to sort types with trivial declassification
or to safety global types, service names with security levels to safety global types, and process variables to pairs of sort
types with trivial declassification and session types. Formally, we define:

Γ ::= /0 | Γ,x` : S`′ | Γ,x` : 〈L,G〉`
′
| Γ,a` : 〈L,G〉`

′
| Γ,X : S` T

assuming that we can write Γ,x` : S`′ or Γ,x` : 〈L,G〉`′ (respectively Γ,a` : 〈L,G〉`′) only if there does not exist `′′ such
that x`′′ (respectively a`′′) belongs to the domain of Γ, that is, Γ should not contain the same variable or service name
with two different security levels. Similarly, when writing Γ,X : S` T , we assume that X does not belong to the domain
of Γ.

An environment Γ is well formed if x` : S`′ ∈ Γ, x` : 〈L,G〉`′ ∈ Γ, or a` : 〈L,G〉`′ ∈ Γ implies that `′ = `. In the
following we will only consider well-formed environments.

We type values by decorating their type with their security level, and names according to Γ:

Γ ` true`, false` : bool` Γ,u : S` ` u : S`

We type expressions by decorating their type with the join of the security levels of the variables and values they are
built from. For example a typing rule for and is:

Γ ` e1 : bool`1 Γ ` e2 : bool`2

Γ ` e1 and e2 : bool`1t`2

Typing processes. The typing judgments for processes are of the form:

Γ `` P.∆

where ∆ is the process environment which associates session types with channels:

∆ ::= /0 | ∆,c : T

We decorate the derivation symbol ` with the security level ` inferred for the process: this level is a lower bound for
the actions and communications performed in the process. The set of typing rules for processes is given in Table 8.

bSUBSc allows the security level inferred for a process to be decreased.

bINACTc This rule gives security level > to 0 since a terminated process cannot leak any information. The hypothesis
assures that there is no further behaviour after inaction.

bCONCc This rule allows the parallel composition of two processes P,Q to be typed if both processes are typable and their
process environments have disjoint domains. The level of the resulting process is the level of both P and Q. If P,Q
should have different levels `1, `2 we can give them the level `1u `2 using rule bSUBSc.

bIFc This rule requires that the two branches P,Q of a conditional be typed with the same process environment ∆, and with
the same security level `. Note that the classical requirement that the security level `′ of the tested expression be less
than or equal to the security level ` of the branches is not needed here. This is because the process if e then P else Q
can only be executed if the expression e can be evaluated, and this is the case only if all the variables occurring in e
have been instantiated by previous inputs. Since these inputs guard the conditional, the join of their levels will be
less than or equal to ` by Rule bRCVc. This means that the process if e then P else Q is typable whenever P and Q
are typable with the same process environment ∆, since the levels of the branches can always be made equal using
Rule bSUBSc.

16

Γ `` P.∆ `′ ≤ `
bSUBSc

Γ ``′ P.∆

∆ end only
bINACTc

Γ `> 0.∆

Γ `` P.∆ Γ `` Q.∆
′

bCONCc
Γ `` P | Q.∆,∆′

Γ ` e : bool`
′

Γ `` P.∆ Γ `` Q.∆

bIFc
Γ `` if e then P else Q.∆

Γ,a` : 〈L,G〉` ``′ P.∆

bNRESc
Γ ``′ (νa`)P.∆

Γ ` e : S` `′ = M(T) ∆ end only
bVARc

Γ,X : S` T ``u`′ X〈e,c〉.∆,c : T

Γ,X : S` T,x` : S` ``u`′ P.{α : T} `′ = M(T) Γ,X : S` T ``′′ Q.∆

bDEFc
Γ ``′′ def X(x`,α) = P in Q.∆

dom(L) = {1, . . . ,n}
bMINITc

Γ,u : 〈L,G〉` `` ū[n]. /0

Γ,u : 〈L,G〉` `` P.∆,α : G � p
bMACCc

Γ,u : 〈L,G〉` `` u[p](α).P.∆

Γ ` e : S`
Γ ``′′ P.∆,c : T `′′ ≤ `′ ≤ `

bSENDc
Γ ``′′ c!`

′
〈Π,e〉.P.∆,c : !〈Π,S`↓`′〉;T

Γ,x`′ : S`′ ``′ P.∆,c : T `′ ≤ `
bRCVc

Γ ``′ c?`(p,x`′).P.∆,c :?(p,S`↓`′);T

Γ ` e : 〈L,G〉` Γ ``′ P.∆,c : T `′ ≤ `
bSERVSENDc

Γ ``′ c!`〈Π,e〉.P.∆,c : !〈Π,〈L,G〉`〉;T

Γ,x` : 〈L,G〉` `` P.∆,c : T
bSERVRCVc

Γ `` c?`(p,x`).P.∆,c :?(p,〈L,G〉`);T

Γ `` P.∆,c : T `≤ `′ = M(T ′)
bDELEGc

Γ `` c!`
′
〈〈q,c′〉〉.P.∆,c : !`

′
〈q,T ′〉;T,c′ :�δ ;T ′

Γ `` P.∆,c : T,α : T ′ ` = M(T ′)
bSRECc

Γ `` c?`((p,α)).P.∆,c :?`(p,T ′);T

Γ `` P.∆,c : Tj j ∈ I `≤ `′ ≤
l

i∈I

M(Ti)

bSELc
Γ `` c⊕`′ 〈Π,λ j〉.P.∆,c :⊕`′〈Π,{λi : Ti}i∈I〉

Γ `` Pi .∆,c : Ti `≤
l

i∈I

M(Ti)

bBRANCHc
Γ `` c&`(p,{λi : Pi}i∈I).∆,c : &`(p,{λi : Ti}i∈I)

Table 8: Typing rules for processes.

bNRESc This rule types the restriction of a process: the use of the restricted name a` in the process P is constrained by
the premise.

bVARc This rule types X〈e,c〉 with a level which is the meet of the security level of expression e and the security levels
of the communications performed on channel c. In this way we take into account the levels of all communications
which can be performed by a process bound to X , see also rule bDEFc.

bDEFc The process P is typed with the meet of the security levels associated with x and α , in agreement with rule bVARc.
The levels of P and Q can be unrelated, since X could not occur in Q. Clearly if X occurs in Q we get `′′ ≤ `u `′.

bMINITc In this rule the standard environment must associate with the identifier u a safety global type. The premise
matches the number of participants in the domain of L with the number declared by the initiator. The emptiness
of the process environment in the conclusion specifies that there is no further communication behaviour after the
initiator.

bMACCc In this rule the standard environment must also associate with u a safety global type. The premise guarantees
that the type of the continuation P in the p-th participant is the p-th projection of the global type G of u. Concerning
security levels, in rule bMACCc we check that the continuation process P conforms to the security level ` associated
with the service name u. Note that this condition does not follow from well-formedness of environments, since the
process P may participate in other sessions, but it is necessary to avoid information leaks. For example, without this

17

condition we could type

ā>[2] | a>[1](α1).α1!〈2,true>〉.0 | a>[2](α2).α2?(1,x>).b̄>[2]
| b>[1](β1).c⊥[1](γ1).γ1!〈2,true⊥〉.0 | b>[2](β2).0

c̄⊥[2] | c[2](γ2).γ2?(1,y⊥).0

bSENDc This rule types the sending of the basic value followed by the conversation P. The first hypothesis binds expres-
sion e with type S`, where ` is the join of all variables and values in e. The second hypothesis imposes typability
of the continuation of the output with security level `′′. The third hypothesis relates levels `, `′′ and `′ (the level to
which e will be declassified), preserving the invariant that `′′ is a lower bound for all security levels of the actions
in the process.
Note that the hypothesis `′′ ≤ `′ ≤ ` is not really constraining, since P can always be downgraded to `′′ using rule
bSUBSc and `′ ≤ ` follows from well-formedness of S`↓`′ .

bRCVc This rule is the dual of rule bSENDc, but it is more restrictive in that it requires the continuation P to be typable
with exactly the level `′.
Notice for instance that we cannot type the reception of a >-value followed by a ⊥-action. In particular we cannot
type a process which receives a >-value and then sends it declassified to ⊥. On the other hand we can type the
reception of a > ↓ ⊥-value followed by a ⊥-action. For instance, in our introductory example of Section 2, rule
[Rcv] allows the delegation send in process B to be decorated by ⊥: this is essential for the typability of process B
with the first projection of the global type of service b.

bSERVSENDc This rule types the sending of a service name followed by the conversation P. The first hypothesis binds
expression e with type 〈L,G〉`, where ` = M(G). The second hypothesis imposes typability of the continuation of
the output with security level `′. The third hypothesis relates levels ` and `′ preserving the invariant that `′ is a lower
bound for all security levels of the actions in the process. As for rule bSENDc the hypothesis `′ ≤ ` is not really
constraining, since P can always be downgraded to `′ using rule bSUBSc.

bSERVRCVc This rule is the dual of rule bSERVSENDc, but it is more restrictive in that it requires the continuation P to
be typable with exactly the level ` (like bRECVc).

bDELEGc This rule types a delegating process with the meet of the type of the delegated channel, provided the continuation
process P is typable with a lower or equal level.

bSRECc This rule is the dual of the bDELEGc rule.

bSELc This rule types a selecting process with the level associated with the selection operator, which is less than or equal
to the meets of the types in the different possible continuations.

bBRANCHc This rule is the dual of the bSELc rule.

We say that a process P is typable in Γ if Γ `` P.∆ holds for some `, ∆.

The following relations between derived types can be easily shown by induction on type derivations.

Proposition 2. Let Γ ``′′ P.∆ and c : T ∈ ∆.

• T =?(p,S`↓`′);T ′ implies `′ ≤M(T ′),

• T =?(p,〈L,G〉`);T ′ implies `≤M(T ′),

• T = !`〈q,T ′〉;T ′′ or T =?`(p,T ′);T ′′ imply ` = M(T ′),

• T =?`(p,T ′);T ′′ implies `≤M(T ′′),

• T =⊕`〈Π,{λi : Ti}i∈I〉 or T = &`(p,{λi : Ti}i∈I) imply `≤
d

i∈I M(Ti).

Proposition 3. Let Γ``′′ P.∆ and c : T ∈∆. If τ1 precedes τ2 in T , where τ1 ∈{?(p1,S
`1↓`
1),?(p1,〈L1,G1〉`),?`(p1,T1)}

and τ2 ∈ {?(p2,S
`2↓`′
2),?(p2,〈L2,G2〉`

′
),?`′(p2,T2)}, then `≤ `′.

By way of example, let us consider the typing of a fragment of the component S in our C,S,B example of Section 4.1.
Letting:

P = β2&⊥(1,{ok : η⊕⊥ 〈1,ok〉.η!⊥〈Date⊥,1〉.0,ko : η⊕⊥ 〈1,ko〉.0})
we can derive:

18

`⊥ P.{β2 : &⊥(1,{ok : end,ko : end}),η : T ′}

and hence:

`⊥ β2!⊥〈〈1,α2〉〉.β2?⊥((1,η)).P.{α2 : �δ ;T, β2 : !⊥〈1,T 〉; ?⊥(1,T ′);&⊥(1,{ok : end,ko : end})}

where

T =?(1,Number>↓⊥);T ′ T ′ =⊕⊥〈1,{ok :!〈1,String⊥↓⊥〉;end,ko : end}〉

7.6. Typing queues and Q-sets
We type queues describing the messages they contain: message types represent the messages contained in the

queues.

Message T ::= !〈Π,S`↓`′〉 message value send | !〈Π,〈L,G〉`〉 message service send
| !`〈q,T 〉 message delegation | ⊕`〈Π,λ 〉 message selection
| T;T′ message sequence

The message value send type !〈Π,S`↓`′〉, the message service send type !〈Π,〈L,G〉`〉 and the message delegation type
!`〈q,T 〉 express the communication to all p ∈Π or to q of a value of type S` declassified to level `′, of a service of type
〈L,G〉`, or of a channel of type T with ` = M(T). The message selection type ⊕`〈Π,λ 〉 represents the communication
to all p ∈ Π of the label λ with level ` and T;T′ represents sequencing of message types (we assume associativity for
;). For example ⊕⊥〈{1,3},ok〉 is the message type for the message (2,{1,3},ok⊥).

In order to take into account the structural congruence on queues given in Table 4, we consider message types mod-
ulo the equivalence relation≈ induced by the rules shown in Table 9 (with \ ∈ {!, !`,⊕`} and Z ∈ {S`↓`′ ,〈L,G〉`,T,λ}).

T; \〈Π,Z〉; \′〈Π′,Z〉;T′ ≈ T; \′〈Π′,Z〉; \〈Π,Z〉;T′ if Π∩Π′ = /0
T; \〈Π,Z〉;T′ ≈ T; \〈Π′,Z〉; \〈Π′′,Z〉;T′ if Π = Π′∪Π′′,Π′∩Π′′ = /0

Table 9: Equivalence relation on message types.

bQINITc
Γ ` s : ε . /0

Γ ` s : h.Θ Γ ` v` : S`

bQSENDc
Γ ` s : h · (p,Π,v`↓`′).Θ;{s[p] : !〈Π,S`↓`′〉}

Γ ` s : h.Θ Γ ` v` : 〈L,G〉`
bQSERVSENDc

Γ ` s : h · (p,Π,v`↓`).Θ;{s[p] : !〈Π,〈L,G〉`〉}

Γ ` s : h.Θ

bQDELEGc
Γ ` s : h · (p,q,s′[p′]`).Θ,s′[p′] : T ;{s[p] : !`〈q,T 〉}

Γ ` s : h.Θ

bQSELc
Γ ` s : h · (p,Π,λ `).Θ;{s[p] :⊕`〈Π,λ 〉}

Γ ` s : h.Θ Θ≈Θ
′

bQCONGc
Γ ` s : h.Θ

′

Table 10: Typing rules for single queues.

bQSINITc
Γ ` /0 /0 . /0

Γ `Σ H .Θ Γ ` s : h.Θ
′

bQSUNIONc
Γ `Σ,s H ∪{s : h} .Θ,Θ′

Table 11: Typing rules for Q-sets.

Typing judgments for queues have the shape
Γ ` s : h.Θ

where Θ is a queue environment associating session types or message types with channels:

Θ ::= /0 |Θ,s[p] : T |Θ,s[p] : T

19

The equivalence ≈ on message types can be trivially extended to queue environments:

{s[pi] : Ti | i ∈ I} ≈ {s[pi] : T′i | i ∈ I} if Ti ≈ T′i for all i ∈ I

Typing rules for queues are given in Table 10. The empty queue has an empty queue environment (rule bQINITc).
In rules bQSENDc, bQSERVSENDc, bQDELEGc and bQSELc, each message adds an output type to the current type
of the sending channel. Rule bQDELEGc also adds a session type for the delegated channel. The composition “;” of
queue environments is defined only if no channel has a session type in both environments. This condition is essential
for channel linearity, since it assures that the same channel cannot be exchanged in more than one message at time.
More precisely:

Θ;Θ′ = {s[p] : T;T′ | s[p] : T ∈Θ and s[p] : T′ ∈Θ′} ∪{s[p] : T | s[p] : T ∈Θ and s[p] 6∈ dom(Θ′)}∪
{s[p] : T′ | s[p] 6∈ dom(Θ) and s[p] : T′ ∈Θ′}∪{s[p] : T | s[p] : T ∈Θ∪Θ′}

if s[p] : T ∈Θ implies s[p] 6∈ dom(Θ′) and s[p] : T ∈Θ′ implies s[p] 6∈ dom(Θ).
Rule bQCONGc allows a queue to be typed with equivalent queue environments.

Example: we can derive ` s : (2,{1,3},ok>).{s[2] :⊕>〈{1,3},ok〉}.
Typing judgments for Q-sets have the shape:

Γ `Σ H .Θ

where Σ is the set of session names which occur free in H.
Typing rules for Q-sets are given in Table 11. As for process environments, Σ,Σ′ and Θ,Θ′ are defined only if

Σ∩Σ′ = /0 and dom(Θ)∩dom(Θ′) = /0, respectively.
The empty Q-set has an empty queue environment (rule bQSINITc). Rule bQSUNIONc types the addition of a queue
to the set H by checking that a queue associated with that session name is not already present.

7.7. Typing configurations
Typing judgments for runtime configurations C have the form:

Γ `Σ C . < ∆�Θ >

They associate with a configuration the environments ∆ and Θ mapping channels to session and message types, respec-
tively. We call < ∆ �Θ > a configuration environment. Channel linearity is assured also by forbidding a channel to
occur both in the process and in a message as delegated channel. This condition is mirrored by the following definition
of well-formedness of configuration environments.

Definition 7.2. A configuration environment < ∆�Θ > is well formed if no channel with a session type in Θ occurs in
∆, i.e. if s[p] : T ∈Θ implies s[p] 6∈ dom(∆).

A configuration type is a session type, or a message type, or a message type followed by a session type:

Configuration T ::= T session
| T message
| T;T continuation

An example of configuration type is:

⊕⊥〈{1,3},ok〉; !〈{3},String>〉; ?(3,Number⊥);end

It is easy to check that for typable initial configurations the set of session names and the process and queue envi-
ronments are all empty.

Since channels with roles occur both in processes and in queues, a configuration environment associates configura-
tion types with channels.

Definition 7.3. The configuration type of a channel s[p] in a configuration environment < ∆�Θ > (notation < ∆�Θ >
(s[p])) is defined by:

< ∆�Θ > (s[p]) =

T;T if s[p] : T ∈Θ and s[p] : T ∈ ∆,

T if s[p] : T ∈Θ and s[p] 6∈ dom(∆),
T if s[p] : T ∈Θ and s[p] 6∈ dom(∆),
T if s[p] 6∈ dom(Θ) and s[p] : T ∈ ∆,

end if s[p] 6∈ dom(Θ)∪dom(∆).

20

Γ `` P.∆ Γ `Σ H .Θ < ∆�Θ > is coherent
bCINITc

Γ `Σ< P , H > . < ∆�Θ >

Γ `Σ1 C1 . < ∆1 �Θ1 > Γ `Σ2 C2 . < ∆2 �Θ2 >
< ∆1,∆2 �Θ1,Θ2 > is coherent

bCPARc
Γ `Σ1,Σ2 C1‖C2 . < ∆1,∆2 �Θ1,Θ2 >

Γ `Σ C . < ∆�Θ >
bGSRESc

Γ `Σ\s (νs)C . < ∆\ s�Θ\ s >

Γ,a` : 〈L,G〉` `Σ C . < ∆�Θ >
bGNRESc

Γ `Σ (νa`)C . < ∆�Θ >

Table 12: Typing rules for configurations.

Clearly the configuration types of all channels are defined only for well-formed configuration environments.

Configuration types can be projected on participants.

Definition 7.4. The projection of the configuration type T onto q , denoted by T � q , is defined by:

(!〈Π,S`↓`′〉;T) � q =

{
!S`↓`′ ;T � q if q ∈Π,

T � q otherwise.
(!〈Π,〈L,G〉`〉;T) � q =

{
!〈L,G〉`;T � q if q ∈Π,

T � q otherwise.

(!`〈p,T 〉;T) � q =

{
!`T ;T � q if q = p,

T � q otherwise.
(⊕`〈Π,λ 〉;T) � q =

{
⊕`λ ;T � q if q ∈Π,

T � q otherwise.

(?(p,S`↓`′);T) � q =

{
?S`↓`′ ;T � q if q = p

T � q otherwise.
(?(p,〈L,G〉`);T) � q =

{
?〈L,G〉`;T � q if q = p

T � q otherwise.

(?`(p,T);T ′) � q =

{
?`T ;T ′ � q if q = p

T ′ � q otherwise.
(µt.T) � q =

{
µt.(T � q) if q occurs in T,

end otherwise.

(⊕`〈Π,{λi : Ti}i∈I〉) � q =

{
⊕`{λi : Ti � q}i∈I if q ∈Π,

T1 � q otherwise.
(&`(p,{λi : Ti}i∈I)) � q =

{
&`{λi : Ti � q}i∈I if q = p,

T1 � q otherwise.
t � q = t (�δ ;T) � q = T � q end � q = end

We also define a duality relation ./ between projections of configuration types, which holds when opposite com-
munications are offered (input/output, selection/branching).

Definition 7.5. The duality relation between projections of configuration types is the minimal symmetric relation which
satisfies:

end ./ end t ./ t T ./ T ′ =⇒ µt.T ./ µt.T ′
∀i ∈ I Ti ./ T ′i =⇒ ⊕`{λi : Ti}i∈I ./ &`{λi : T ′i }i∈I

T ./ T =⇒ !S`↓`′ ;T ./ ?S`;T T ./ T =⇒ !〈L,G〉`;T ./ ?〈L,G〉`;T T ./ T =⇒ !`T ′;T ./ ?`T ′;T
∃i ∈ I λ = λi & T ./ Ti =⇒ ⊕`λ ;T ./ &`{λi : Ti}i∈I

The above definitions are needed to define coherence of well-formed configuration environments. Informally, this
holds when the inputs and the branchings offered by the process agree both with the outputs and the selections offered
by the process and with the messages in the queues. More formally:

Definition 7.6. A well-formed configuration environment < ∆�Θ > is coherent if s[p] ∈ dom(∆)∪dom(Θ) and s[q] ∈
dom(∆)∪dom(Θ) imply

< ∆�Θ > (s[p]) � q ./ < ∆�Θ > (s[q]) � p.

The typing rules for configurations are given in Table 12. Rule bCPARc types the parallel composition of two config-
urations. Rules bGSRESc and bGNRESc type restriction on session and service names respectively, where Σ \ s, ∆ \ s
and Θ\ s are defined as expected:

• Σ\ s = {s′| s′ ∈ Σ & s′ 6= s}

21

• ∆\ s = {s′[p] : T | s′[p] ∈ Dom(∆) & s′ 6= s}
• Θ\ s = {s′[p] : T| s′[p] ∈ Dom(Θ) & s′ 6= s}.

Typing rules assure that configurations are always typed with coherent environments.

Proposition 4. If Γ `Σ C . < ∆�Θ >, then < ∆�Θ > is coherent.

Proof. All rules assure that the configuration environments in the conclusions are coherent. Rules bCINITc and bCPARc
explicitly check this condition. For rule bGSRESc, note that the coherence of < ∆\ s�Θ\ s > follows easily from the
coherence of < ∆�Θ >.

Let us look back again at the C,S,B example of Section 4.1. Recall the following definitions:
PC = sa[1]&⊥(2,{ok : sa[1]?⊥(2,date⊥).0,ko : 0})
PS = sb[2]&⊥(1,{ok : η⊕⊥ 〈1,ok〉.η!⊥〈1,Date⊥〉.0,ko : η⊕⊥ 〈1,ko〉.0})
PB = sb[1]!⊥〈〈2,sa[2]〉〉.if valid(cc⊥) then sb[1]⊕⊥ 〈2,ok〉.0 else sb[1]⊕⊥ 〈2,ko〉.0

Then we can type the configuration

< PC | sb[2]?⊥((1,η)).PS | sa[2]?>(1,cc⊥).PB , {sa : (1,2,CreditCard>↓⊥),sb : ε}>

by the configuration environment:

< {sa[1] : Ta,1,sa[2] : Ta,2,sb[1] : Tb,1,sb[2] : Tb,2}�{sa[1] :!〈2,Number>↓⊥〉}>

where:
Ta,1 = &⊥(2,{ok :?(2,String⊥↓⊥);end,ko : end})
Ta,2 =?(1,Number>↓⊥);⊕⊥〈1,{ok :!〈1,String⊥↓⊥〉;end,ko : end}〉
Tb,1 =!⊥〈2,⊕⊥〈1,{ok :!〈1,String⊥↓⊥〉;end,ko : end}〉〉;⊕⊥(2,{ok : end,ko : end})
Tb,2 =?⊥(1,⊕⊥〈1,{ok :!〈1,String⊥↓⊥〉;end,ko : end}〉);&⊥(1,{ok : end,ko : end})

7.8. Reduction of configuration environments
Since process and queue environments represent future communications, by reducing processes we get different

configuration environments. This is formalised by the notion of reduction of configuration environments, denoted by
< ∆�Θ > ⇒ < ∆′ �Θ′ >.

Definition 7.7 (Reduction of configuration environments). Let⇒ be the reflexive and transitive relation on config-
uration environments generated by:

1. < {s[p] : !〈Π,S`↓`′〉; T}�Θ > ⇒ < {s[p] : T}�Θ;{s[p] : !〈Π,S`↓`′〉}>
2. < {s[p] : !〈Π,〈L,G〉`〉; T}�Θ > ⇒ < {s[p] : T}�Θ;{s[p] : !〈Π,〈L,G〉`〉}>
3. < {s[p] : !`〈q,T 〉; T ′,s′[p′] : T}�Θ > ⇒ < {s[p] : T ′}�Θ;{s[p] : !`〈q,T 〉,s′[p′] : T}>
4. < {s[p] :⊕`〈Π,{λi : Ti}i∈I〉}�Θ > ⇒ < {s[p] : Tj}�Θ;{s[p] :⊕`(Π,λ j)}> (j ∈ I)
5. < {s[q] :?(p,S`↓`′); T}�{s[p] : !〈q,S`↓`′〉};Θ > ⇒ < {s[q] : T}�Θ >
6. < {s[q] :?(p,〈L,G〉`); T}�{s[p] : !〈q,〈L,G〉`〉};Θ > ⇒ < {s[q] : T}�Θ >
7. < {s[q] :?`(p,T); T ′}�{s[p] : !`〈q,T 〉,s′[p′] : T};Θ > ⇒ < {s[q] : T ′,s′[p′] : T}�Θ >
8. < {s[q] : &`(p,{λi : Ti}i∈I)}�{s[p] :⊕`(q,λ j)};Θ > ⇒ < {s[q] : Tj}�Θ > (j ∈ I)
9. < ∆,∆′′ �Θ > ⇒ < ∆′,∆′′ �Θ′ > if < ∆�Θ > ⇒ < ∆′ �Θ′ >

where message types are considered modulo the equivalence relation of Table 9.

The first four rules correspond to participant p putting a value, a session name, a channel or a label in the queue.
The following four rules correspond to participant p reading a value, a session name, a channel or a label from the
queue. Notice that in the rules for delegation the type of the delegated channel is only moved from ∆ to Θ and vice
versa. All these rules are computational.3 The last rule is contextual: notice that we add only statements to the process
environments, since only one statement is considered in the first eight reduction rules, while we do not need to add
statements to the queue environments, which are always arbitrary.

We say that a queue is generated by service a, or a-generated, if it is created by applying rule [Link] to the parallel
composition of a’s participants and initiator.

3We refer to [23], Section 3.3, for the difference between computational and contextual rules.

22

8. Properties

We are now able to state our main results, namely type preservation under reduction and the soundness of our type
system for both access control and noninterference.

Our type system also preserves the fundamental properties ensured by classical session types, i.e. linearity of
communications inside sessions and absence of communication mismatches. This is easy to see, once we observe that
our type system projects down to the classical session type system of [2] when we ignore security levels and associated
type constraints. We shall therefore concentrate here on establishing the security properties.

8.1. Subject Reduction
We first state some auxiliary results that are used in the subject reduction proof. The first lemma says that reduction

of configuration environments preserves coherence.

Lemma 5. If < ∆�Θ > is coherent and < ∆�Θ > ⇒ < ∆′ �Θ′ >, then < ∆′ �Θ′ > is coherent.

Proof. Easy by induction on the definition of⇒ (Definition 7.7).

The next three lemmas are inversion lemmas for processes, Q-sets and configurations, which immediately follow
from our typing rules.

Lemma 6 (Inversion Lemma for Processes).
1. If Γ `` 0.∆, then ∆ end only.
2. If Γ `` P | Q.∆, then ∆ = ∆1,∆2 and Γ `` P.∆1 and Γ `` Q.∆2.

3. If Γ `` if e then P else Q.∆, then Γ ` e : bool`
′

and Γ `` P.∆ and Γ `` Q.∆.
4. If Γ ``′ (νa`)P.∆, then Γ,a` : 〈L,G〉` ``′ P.∆.
5. If Γ `` X〈e,c〉.∆, then Γ = Γ′,X : S`′ T and ∆ = ∆′,c : T and Γ ` e : S`′ and `≤ `′uM(T) and ∆′ end only.
6. If Γ ``′ def X(x`,α) = P in Q.∆, then Γ,X : S` T,x` : S` ``uM(T) P.{α : T} and Γ,X : S` T ``′ Q.∆.

7. If Γ `` ū[n].∆, then Γ = Γ′,u : 〈L,G〉` and dom(L)={1, . . . ,n} and ∆ = /0.
8. If Γ `` u[p](α).P.∆, then Γ = Γ′,u : 〈L,G〉` and Γ `` P.∆,α : G � p.
9. If Γ ``′′ c!`

′〈Π,e〉.P.∆, then
(a) either ∆ = ∆′,c : !〈Π,S`↓`′〉;T and Γ ` e : S` and Γ ``′′ P.∆′,c : T and `′′ ≤ `′ ≤ `;
(b) or ∆ = ∆′,c : !〈Π,〈L,G〉`〉;T and Γ ` e : 〈L,G〉` and Γ ``′′ P.∆′,c : T and `′′ ≤ `′ = `.

10. If Γ ``′′ c?`(p,x`′).P.∆, then
(a) either ∆ = ∆′,c :?(p,S`↓`′);T and Γ,x`′ : S`′ ``′′ P.∆′,c : T and `′′ = `′ ≤ `;
(b) or ∆ = ∆′,c :?(p,〈L,G〉`);T and Γ,x` : 〈L,G〉` ``′′ P.∆′,c : T and `= `′ = `′′.

11. If Γ `` c!`
′〈〈q,c′〉〉.P.∆, then ∆ = ∆′,c : !`

′〈q,T ′〉;T,c′ :�δ ;T ′ and Γ `` P.∆′,c : T and `≤ `′ = M(T ′).
12. If Γ ``′ c?`((p,α)).P.∆, then ∆ = ∆′,c :?`(p,T ′);T and Γ ``′ P.∆′,c : T,α : T ′ and ` = `′ = M(T ′).
13. If Γ `` c⊕`′ 〈Π,λ j〉.P . ∆, then ∆ = ∆′,c : ⊕`′〈Π,{λi : Ti}i∈I〉 and j ∈ I and Γ `` P . ∆′,c : Tj and ` ≤ `′ ≤d

i∈I M(Ti).
14. If Γ ``′ c&`(p,{λi : Pi}i∈I).∆, then ∆ = ∆′,c : &`(p,{λi : Ti}i∈I) and Γ ``′ Pi .∆′,c : Ti for all i ∈ I and ` = `′ ≤d

i∈I M(Ti).

Lemma 7 (Inversion Lemma for Queues and Q-sets).
1. If Γ ` s : ε .Θ, then Θ = /0.
2. If Γ ` s : h · (p,Π,v`↓`′).Θ, then Γ ` s : h.Θ′ and

(a) either Θ≈Θ′;{s[p] : !〈Π,S`↓`′〉} and Γ ` v` : S`;
(b) or v` = a` and Θ≈Θ′;{s[p] : !〈Π,〈L,G〉`〉} and Γ ` a : 〈L,G〉`.

3. If Γ ` s : h · (p,q,s′[p′]).Θ, then Θ≈Θ′,s′[p′] : T ;{s[p] : !〈q,T 〉} and Γ ` s : h.Θ′.
4. If Γ ` s : h · (p,Π,λ `).Θ, then Θ≈Θ′;{s[p] :⊕`〈Π,λ 〉} and Γ ` s : h.Θ′.
5. If Γ `Σ /0 .Θ, then Σ = Θ = /0.
6. If Γ `Σ H ∪{s : h} .Θ, then Σ = Σ′,s and Θ = Θ1,Θ2 and Γ `Σ′ H .Θ1, Γ ` s : h.Θ2.

Lemma 8 (Inversion Lemma for Configurations).
1. If Γ `Σ< P , H > . < ∆�Θ >, then Γ `` P.∆ and Γ `Σ H .Θ and < ∆�Θ > is coherent.

23

2. If Γ `Σ C1‖C2 . < ∆ �Θ >, then Σ = Σ1,Σ2 and ∆ = ∆1,∆2 and Θ = Θ1,Θ2 and Γ `Σ1 C1 . < ∆1 �Θ1 > and
Γ `Σ2 C2 . < ∆2 �Θ2 > and < ∆�Θ > is coherent.

3. If Γ `Σ (νs)C . < ∆�Θ >, then Σ = Σ′\s and ∆ = ∆′ \ s and Θ = Θ′ \ s and Γ `Σ′ C . < ∆′ �Θ′ >.
4. If Γ `Σ (νa`)C . < ∆�Θ >, then Γ,a` : 〈L,G〉` `Σ C . < ∆�Θ >.

The next lemma characterises the types due to messages occurring as heads of queues.

Lemma 9.
1. If Γ ` s : h1 · (p,Π,v`↓`′) ·h2 .Θ, then Γ ` s : hi .Θi (i = 1,2) and

(a) either Θ≈Θ1;{s[p] : !〈Π,S`↓`′〉};Θ2 and Γ ` v` : S`;
(b) or v` = a` and Θ≈Θ1;{s[p] : !〈Π,S`↓`′〉};Θ2 and Γ ` a` : 〈L,G〉`.

2. If Γ ` s : h1 · (p,q,s′[p′]`) ·h2 .Θ, then Θ≈Θ1;{s[p] : !`〈q,T 〉};Θ2,s′[p′] : T and Γ ` s : hi .Θi (i = 1,2).
3. If Γ ` s : h1 · (p,Π,λ `) ·h2 .Θ, then Θ≈Θ1;{s[p] :⊕`〈Π,λ 〉};Θ2 and Γ ` s : hi .Θi (i = 1,2).

The proof of this Lemma is standard, by induction on the length of queues.

Theorem 10 (Type Preservation under Equivalence). If Γ `Σ C . < ∆�Θ > and C ≡C′, then Γ `Σ C′ . < ∆�Θ >.

Proof. By induction on the definition of ≡.

Lemma 11 (Substitution Lemma).
1. If Γ ` v` : S` and Γ,x`′ : S`′ ``′′ P.∆ and `′′ ≤ `′ ≤ `, then Γ ``′′ P{v`′/x`′}.∆.
2. If Γ ` a` : 〈L,G〉` and Γ,x` : 〈L,G〉` ``′ P.∆ and `′ ≤ `, then Γ ``′ P{a`/x`}.∆.
3. If Γ `` P.∆,α : T , then Γ `` P{s[p]/α}.∆,s[p] : T .

Proof. By standard induction on P.

Theorem 12 (Subject Reduction). Suppose Γ `Σ C . < ∆ �Θ > and C −→∗ C′. Then Γ `Σ C′ . < ∆′ �Θ′ > with
< ∆�Θ > ⇒ < ∆′ �Θ′ >.
Moreover if C =< P , H >, C′ =< P′ , H ′ > and Γ `` P.∆, then Γ `` P′ .∆′.

Proof. We prove the simpler statement (of which Theorem 12 is an immediate corollary):

If Γ `Σ< P , H > . < ∆�Θ > and Γ `` P.∆ and < P , H >−→< P′ , H ′ >, then
Γ `Σ< P′ , H ′ > . < ∆′ �Θ′ > and Γ `` P′ .∆′ with < ∆�Θ > ⇒ < ∆′ �Θ′ >.

by induction on the derivation of C −→C′, with a case analysis on the final rule. We only consider some paradigmatic
cases.

[Link]
a`[1](α1).P1 | ... | a`[n](αn).Pn | ā`[n]−→ (νs) < P1{s[1]/α1} | ... | Pn{s[n]/αn} , s : ε >

By hypothesis we have

Γ `Σ< a`[1](α1).P1 | ... | a`[n](αn).Pn | ā`[n] , /0 > . < ∆�Θ >

which implies by Lemma 8(1)

Γ ``′ a`[1](α1).P1 | ... | a`[n](αn).Pn | ā`[n].∆ (1)

Γ `Σ /0 .Θ (2)

From (2) by Lemma 7(5) we get Σ = Θ = /0.
From (1) by Lemma 6(2) we get ∆ =

⋃n
i=1 ∆i∪∆′ and

Γ ``′ a`[i](αi).Pi .∆i (1≤ i≤ n) (3)

Γ ``′ ā`[n].∆
′ (4)

From (4) by Lemma 6(7) we get Γ = Γ′,a` : 〈L,G〉`′ and ∆′ = /0. Since Γ is a well formed environment, this
implies ` = `′.

24

From (3) by Lemma 6(8) we get
Γ `` Pi .∆i,αi : G � i (1≤ i≤ n)

which implies by Lemma 11(3)

Γ `` Pi{s[i]/αi}.∆i,s[i] : G � i (1≤ i≤ n).

Applying rules bCONCc and bQINITc we derive

Γ `` P1{s[1]/α1}|...|Pn{s[n]/αn}.
n⋃

i=1
(∆i,s[i] : G � i) (5)

Γ ` s : ε . /0 (6)

From (6) using rules bQSINITc and bQSUNIONc we derive

Γ `{s} s : ε . /0 (7)

Applying rule bCINITc to (5) and (7) we derive

Γ `{s}< P1{s[1]/α1}|...|Pn{s[n]/αn} , s : ε > . <
n⋃

i=1
(∆i,s[i] : G � i)� /0 >

which implies by rule bGSRESc, taking into account that ∆ =
⋃n

i=1 ∆i

Γ ` /0 (νs) < P1{s[1]/α1}|...|Pn{s[n]/αn} , s : ε > . < ∆� /0 >

This concludes the proof for this case, since⇒ is reflexive.

[Send]
< s[p]!`

′
〈Π,e〉.P , s : h >−→< P , s : h · (p,Π,v`↓`′) > (e ↓ v`)

By hypothesis we have
Γ `Σ< s[p]!`

′
〈Π,e〉.P , s : h > . < ∆�Θ >

which implies by Lemma 8(1)

Γ ``′′ s[p]!`
′
〈Π,e〉.P.∆ (8)

Γ `Σ s : h .Θ (9)

From (8) by Lemma 6(9) we get

1. either ∆ = ∆′,s[p] : !〈Π,S`0↓`′〉;T and `′′ ≤ `′ ≤ `0 and

Γ ` e : S`0 (10)

Γ ``′′ P.∆
′,s[p] : T (11)

From (10) by subject reduction on expressions we have:

Γ ` v` : S`0 (12)

which implies `0 = ` by our assumption on the typing of values.
From (9) by Lemma 7(5) and (6) we get Σ = {s} and

Γ ` s : h.Θ (13)

Applying rule bQSENDc on (12) and (13) we derive

Γ ` s : h · (p,Π,v`↓`′).Θ;{s[p] : !〈Π,S`↓`′〉}

which implies by rules bQSINITc and bQSUNIONc:

Γ `{s} s : h · (p,Π,v`↓`′) .Θ;{s[p] : !〈Π,S`↓`′〉} (14)

Applying rule bCINITc on (11) and (14) we derive

Γ `{s}< P , s : h · (p,Π,v`↓`′) > . < ∆
′,s[p] : T �Θ;{s[p] : !〈Π,S`↓`′〉}>

This concludes the proof, since

< ∆
′,{s[p] : !〈Π,S`↓`′〉; T}�Θ > ⇒ < ∆

′,s[p] : T �Θ;{s[p] : !〈Π,S`↓`′〉}>

25

2. or ∆ = ∆′,c : !〈Π,〈L,G〉`0〉;T and `′′ ≤ `′ = `0 and

Γ ` e : 〈L,G〉`0 (15)

Γ ``′′ P.∆
′,c : T (16)

From (15) by subject reduction on expressions we have:

Γ ` v` : 〈L,G〉`0 (17)

which implies ` = `0 by our assumption on the typing of values. From (9) by Lemma 7(5) and (6) we get
Σ = {s} and

Γ ` s : h.Θ (18)

Applying rule bQSERVSENDc on (17) and (18) we derive

Γ ` s : h · (p,Π,v`).Θ;{s[p] : !〈Π,〈L,G〉`〉}

which implies by rules bQSINITc and bQSUNIONc:

Γ `{s} s : h · (p,Π,v`) .Θ;{s[p] : !〈Π,〈L,G〉`〉} (19)

Applying rule bCINITc on (11) and (19) we derive

Γ `{s}< P , s : h · (p,Π,v`) > . < ∆
′,s[p] : T �Θ;{s[p] : !〈Π,〈L,G〉`〉}>

This concludes the proof, since

< ∆
′,{s[p] : !〈Π,〈L,G〉`〉; T}�Θ > ⇒ < ∆

′,s[p] : T �Θ;{s[p] : !〈Π,〈L,G〉`〉}>

[Rec]
< s[q]?`(p,x`′).P , s : (p,q,v`↓`′) ·h >−→< P{v`′/x`′} , s : h >

By hypothesis we have

Γ `Σ< s[q]?`(p,x`′).P , s : (p,q,v`↓`′) ·h > . < ∆�Θ >

which implies by Lemma 8(1)

Γ ``′′ s[q]?`(p,x`′).P.∆ (20)

Γ `Σ s : (p,q,v`↓`′) ·h .Θ (21)

From (20) by Lemma 6(10) we get

1. either ∆ = ∆′,s[q] :?(p,S`↓`′);T and `′′ = `′ ≤ ` and

Γ,x`′ : S`′ ``′ P.∆
′,s[q] : T (22)

From (21) by Lemma 7(5) and (6) we get Σ = {s} and

Γ ` s : (p,q,v`↓`′) ·h.Θ

which implies by Lemma 9(1) Γ ` s : h.Θ′ and :
(a) either Θ≈ {s[p] : !〈Π,S`↓`′〉};Θ′ and

Γ ` v` : S`
0 (23)

(b) or Θ≈ {s[p] : !〈Π,〈L0,G0〉`〉};Θ′ and

Γ ` v` : 〈L0,G0〉` (24)

26

By the coherence of < ∆�Θ > only case (a) is possible with S = S0, and therefore from (22) and (23) by
Lemma 11(1) we have

Γ ``′ P{v`′/x`′}.∆
′,s[q] : T (25)

From Γ ` s : h.Θ′ using rules bQSINITc and bQSUNIONc we derive:

Γ `{s} s : h .Θ
′ (26)

Applying rule bCINITc on (25) and (26) we derive

Γ `{s}< P{v`′/x`′} , s : h > . < ∆
′,s[q] : T �Θ

′ >

This concludes the proof, since

< ∆
′,s[q] :?(p,S`↓`′);T �{s[q] : !〈p,S`↓`′〉};Θ

′ > ⇒ < ∆
′,s[q] : T �Θ

′ >

2. or ∆ = ∆′,c :?(p,〈L,G〉`);T and ` = `′ and

Γ,x` : 〈L,G〉` ``′′ P.∆
′,c : T (27)

From (21) by Lemma 7(5) and (6) we get Σ = {s} and

Γ ` s : (p,q,v`↓`′) ·h.Θ

which implies by Lemma 9(1) Γ ` s : h.Θ′ and
(a) either Θ≈ {s[p] : !〈Π,S`↓`′〉};Θ′ and (23)
(b) or Θ≈ {s[p] : !〈Π,〈L0,G0〉`〉};Θ′ and (24).

By the coherence of < ∆�Θ > only case (b) is possible with L0 = L and G0 = G, and therefore from (27)
and (23) by Lemma 11(2) we have

Γ ``′ P{v`′/x`′}.∆
′,s[q] : T (28)

From Γ ` s : h.Θ′ using rules bQSINITc and bQSUNIONc we derive:

Γ `{s} s : h .Θ
′ (29)

Applying rule bCINITc on (28) and (29) we derive

Γ `{s}< P{v`′/x`′} , s : h > . < ∆
′,s[q] : T �Θ

′ >

This concludes the proof, since

< ∆
′,s[q] :?(p,〈L,G〉`);T �{s[q] : !〈p,〈L,G〉`〉};Θ

′ > ⇒ < ∆
′,s[q] : T �Θ

′ >.

8.2. Properties of T-reachable configurations
The definition of coherence (Definition 7.6) does not require that each input has a corresponding output, each

branching has a corresponding selection and vice versa. On the other hand, as usual for session types, this holds for
configurations reachable from a typable initial configuration.

Definition 8.1 (T-reachable configurations).
A configuration C is T-reachable if there is a typable initial configuration C0 such that C0 −→∗ C.

Definition 8.2. A configuration environment is complete if < ∆�Θ > (s[p]) � q 6= end implies s[q]∈ dom(∆)∪dom(Θ).

Following [23], Section 3.3, notice that in Table 5 the first nine rules are computational rules and the last two rules
are contextual.

Lemma 13. If (ν s̃)C is a T-reachable configuration and C does not contain session restrictions, then
Γ `{s̃} C . < ∆�Θ > for some Γ,∆,Θ and the configuration environment < ∆�Θ > is complete.

27

Proof. The proof is by induction on the length n of the reduction sequence C0 −→∗ (ν s̃)C, and then by induction on
the inference of the last transition. The basic case C0 = (ν s̃)C is trivial. Suppose that C0 −→∗ (ν s̃′)Cn−1 −→ (ν s̃)C.
By Theorem 12 and Lemma 8(3) we get
Γ `{s̃′} Cn−1 . < ∆n−1 �Θn−1 > for some Γ,∆n−1,Θn−1. Consider the last computational rule applied to infer the

transition (ν s̃′)Cn−1 −→ (ν s̃)C. We distinguish two cases, depending on whether the transition creates or not a new
queue s.

Suppose s̃ = s̃′ ·s. Then the last computational rule applied is [Link], and the result holds by definition of projection
of global type.

Suppose now s̃ = s̃′. Then the last computational rule applied cannot be [Link] and < ∆�Θ > is obtained from <
∆n−1�Θn−1 > using the reduction relation of Definition 7.7. More precisely the reduction < ∆n−1 �Θn−1 > ⇒ < ∆�Θ >
is obtained by applying one of the eight computational rules and the contextual rule of Definition 7.7. In all cases it is
easy to check that if < ∆n−1 �Θn−1 > is complete, then < ∆�Θ > is complete too.

Theorem 14. The Q-set of a T-reachable configuration is monotone.

Proof. Toward a contradiction assume that lev↓(ϑ1) 6≤ lev↓(ϑ2) and the message (p,Π1,ϑ1) precedes the message
(p,Π2,ϑ2) in a queue belonging to a T-reachable configuration C and Π1 ∩Π2 6= /0. We only consider the case Π1 =
Π2 = {q} and ϑi = v`i↓`′i

i where vi is not a service name for i = 1,2, since the proof for the other cases is similar. In this
case lev↓(ϑi) = `′i for i = 1,2. Suppose C = (ν s̃)C′, where C′ does not contain session restrictions, and let C0 be the
typable initial configuration from which C is T-reachable.

By Theorem 12 and Lemma 8(3) we get Γ `{s̃} C′ . < ∆�Θ > for some Γ,∆,Θ. Then, by Lemma 7(2) and Lemma
9(1), the queue environment Θ must contain s[p] : T; !〈q,S`1↓`′1〉;T′; !〈q,S`2↓`′2〉;T′′ for some S,T,T′,T′′. Lemma
13 ensures completeness of the configuration environment < ∆ �Θ >. We know that < ∆ �Θ > is also coherent by
Proposition 4; this implies that the process environment ∆ will contain s[q] : T for some session type T such that
?(p,S`1↓`′1) precedes ?(p,S`2↓`′2) in T . Proposition 3 requires `′1 ≤ `′2, and this contradicts `′1 6≤ `′2.

8.3. Soundness for Access Control
We introduce a notion of join for message types and configuration types. The join of message types is always ⊥.

Since a configuration type is a message type, or a session type, or a message type followed by a session type, the join
of a configuration type is defined to be the join of its building types. More formally:

J(T) =

{
J(T) if T = T;T or T = T
⊥ if T = T

Notice that the join of a configuration type is well defined also if output prefixes and message types cannot be always
distinguished, since outputs do not contribute to the join.

Lemma 15. Let C0 be an initial configuration, and suppose Γ ` /0 C0 . < /0� /0 > for some standard environment Γ such
that a` : 〈L,G〉` ∈ Γ. If C0 −→∗ (νs)C and s is an a-generated queue of C, then, assuming Γ `{s} C . < ∆ �Θ >, it
holds that J(< ∆�Θ > (s[p]))≤ J(G � p) for each participant p ∈ dom(L).

Proof. The proof is by induction on the length n of the reduction sequence−→∗, and then by induction on the inference
of the last transition.

In the basic case, for n = 1, we have C0 −→ (νs)C. Then the last computational rule applied is necessarily [Link],
and since < ∆�Θ > (s[p]) = G � p, we may immediately conclude.

Consider now the inductive case. Let C0 −→∗ Cn−1 −→ (νs)C. We distinguish two cases, according to whether
the queue s is created in the last step (in which case it does not appear in Cn−1) or not.

If Cn−1 does not contain the queue s then, as in the basic case, the last computational rule applied is [Link] and the
result follows from the fact that < ∆�Θ > (s[p]) = G � p.

Otherwise let Cn−1 = (νs)C′. By Theorem 12 and Lemma 8(3), we have Γ `{s} C′ . < ∆′ �Θ′ > for some
∆′,Θ′. Then, by induction, J(< ∆′ �Θ′ > (s[p])) ≤ J(G � p). Now, if the last applied rule does not involve the
queue s, we are done by induction. Otherwise, the last computational rule applied cannot be [Link]. In this case
< ∆′ �Θ′ > ⇒ < ∆�Θ > by applying one of the eight computational rules and the contextual rule of Definition 7.7.
In all cases it is easy to verify that J(< ∆�Θ > (s[p]))≤ J(< ∆′ �Θ′ > (s[p])), and we may conclude.

Theorem 16 (Access Control). Let C0 be an initial configuration, and suppose that Γ ` /0 C0 . < /0 � /0 > for some
standard environment Γ such that a` : 〈L,G〉` ∈ Γ. If C0 −→∗ (νs)C, where the queue of name s in C is a-generated and
contains the message (p,q,ϑ), then lev↑(ϑ)≤ L(q).

28

Proof. We only consider the case ϑ = v`↓`′ where v is not a service name, since the proof for the other cases is similar.
By Theorem 12 and Lemma 8(3) we get Γ `{s} C . < ∆�Θ > for some ∆,Θ. Then, by Lemma 7(2) and Lemma 9(1),
the queue environment Θ must contain s[p] : T; !〈q,S`↓`′〉;T′ for some S,T,T′. Lemma 13 ensures completeness of
the configuration environment < ∆ �Θ >. We know that < ∆ �Θ > is also coherent by Proposition 4; this implies
that the process environment ∆ will contain s[q] : T for some session type T such that ?(p,S`↓`′) occurs in T . By
definition of join and of configuration type (Definition 7.3) we have then `≤ J(< ∆�Θ > (s[q])) and by Lemma 15 we
get J(< ∆ �Θ > (s[q])) ≤ J(G � q). Then we may conclude, since the well-formedness of safety global types implies
J(G � q)≤ L(q).

If we changed the C, S, B example by avoiding delegation and sending the (declassified) CreditCard to the seller,
we would incur a violation of access control, since lev↑(CreditCard

>↓⊥) = > and L(S) = ⊥. In fact such a process
would not be typable, as may be checked directly or derived from Theorem 16.

8.4. Soundness for Noninterference
In this section we prove the soundness of our type system for the security property. This result is based, as usual,

on a Confinement Lemma, which states that if a process is typable with a “high” type, then it cannot affect any “low”
queue. For each L ⊆S , it is useful to distinguish the class of typable processes which are “essentially L -typed”, that
is, which can only be typed with levels ` ∈L . Following the terminology of [6], we call these processes L -bounded.
The following definitions and Lemmas are then quite standard.

Definition 8.3 (L -Boundedness).
A process P is L -bounded in Γ if P is typable in Γ and Γ `` P.∆ implies ` ∈L .

On the set of typable processes, we call L -highness the complement of non L -boundedness.

Definition 8.4 (L -highness).
A process P is L -high in Γ if Γ `` P.∆ for some ` 6∈L .

Lemma 17 (Confinement).
Let P be a L -high process in Γ. Then, for any Q-set H:

〈P,H〉−→∗(ν r̃)〈P′,H ′〉 implies H =L H ′ and P′ L -high in Γ.

Proof. We prove the result for a one-step reduction < P , H >−→ (ν r̃) < P′ , H ′ >, by induction on the inference
of the transition. Then the general result will follow as a simple corollary, observing that Γ `` P′ . ∆ by Theorem 12
(Subject Reduction). We consider the most interesting base cases, leaving out the inductive cases which are easy.

• [Link] In this case, since Γ `` P.∆ is deduced using the typing rules bMINITc, bMACCc and bCONCc, we have
P = ā`[n] | ∏

n
p=1 a`[p](αp).Qp, with Γ ` a : 〈L,G〉`, and the reduction has the form:

< ā`[n] |
n

∏
p=1

a`[p](αp).Qp , /0 >−→ (νs) <
n

∏
p=1

Qp{s[p]/αp} , s : ε >

for some fresh name s. Then we may conclude, since /0 =L s : ε for any L .

• [Send] In this case, since Γ `` P . ∆ is deduced using the typing rule bSENDc, there exist `1, `2 such that ` ≤
`2 ≤ `1 and P = s[p]!`2〈Π,e〉.P′, with Γ ` e : S`1 . Here the reduction has the form:

< s[p]!`2〈Π,e〉.P′ , s : h >−→< P′ , s : h · (p,Π,v`1↓`2) >,

where e ↓ v`1 .
Now, `≤ `2 implies `2 /∈L . From this we deduce that s : h =L s : h · (p,Π,v`1↓`2).

• [Rec] In this case, since Γ `` P . ∆ is deduced using the typing rule bRCVc, there exist `1,P′′ such that ` ≤ `1
and P = s[q]?`1(p,x`).P′′. Then P′ = P′′{v`/x`} and the reduction is:

< s[q]?`1(p,x`).P′′ , s : (p,q,v`1↓`) ·h >−→< P′′{v`/x`} , s : h >

and s : (p,q,v`1↓`) ·h =L s : h.

29

• [DelRec] In this case, since Γ `` P . ∆ is deduced by the typing rule bSRECc, there exists P′′ such that P =
s[p]?`((q,α)).P′′. Then P′ = P′′{s′[p′]/α} and the reduction is:

< s[q]?`((p,α)).P′′ , s : (p,q,s′[p′]`) ·h >−→< P′′{s′[p′]/α} , s : h >

Since ` /∈L , we conclude that s : (p,q,s′[p′]`) ·h =L s : h.

• [Label] In this case, since Γ `` P.∆ is deduced by the typing rule bSELc, we have P = s[p]⊕` 〈Π,λ 〉.P′ and the
reduction is:

< s[p]⊕` 〈Π,λ 〉.P′ , s : h >−→< P′ , s : h · (p,Π,λ `) >

Again, since ` /∈L , we may conclude that s : h =L s : h · (p,Π,λ `).

Lemma 18 (L -security of L -high processes).
If P is L -high in Γ, then P is L -secure.

Proof. We show that the relation R = {(P1,P2) | Pi is L -high in Γ for i = 1,2} is a L -bisimulation. Suppose that
H1,H2 are such that H1 =L H2. Let now 〈P1,H1〉 −→ (ν r̃)〈P′1,H ′1〉. By Lemma 17, H1 =L H ′1 and P′1 is L -high in
Γ. Then we may choose the empty move as the matching move for < P2 , H2 >, given that H ′1 =L H1 =L H2 and
(P′1,P2) ∈R.

We next define the bisimulation relation that will be used in the proof of soundness.

Definition 8.5 (Bisimulation for soundness proof).
Given a down-closed set of security levels L , the relation RL

Γ
on processes is defined inductively by:

P1 RL
Γ

P2 if P1,P2 are typable in Γ and
i) either P1,P2 are L -high in Γ

ii) or P1,P2 are L -bounded in Γ and one of the following holds:

1. P1 = P2;

2. Pi = a`[p](αp).Q
(i)
p , and ∀s fresh: Q(1)

p {s[p]/αp}RL
Γ

Q(2)
p {s[p]/αp};

3. Pi = s[p]!`
′〈Π,e〉.P′i , where P′1 RL

Γ
P′2 and ∃v, ∃`≥ `′ such that e ↓ v`;

4. Pi = s[q]?`(p,x`′).P′i , where ∀v: P′1{v`′/x`′}RL
Γ

P′2{v`′/x`′};
5. Pi = s[p]!`〈〈q,s′[p′]〉〉.P′i , where P′1 RL

Γ
P′2;

6. Pi = s[q]?`((p,αi)).P′i , where ∀p′, ∀s′ fresh: P′1{s′[p′]/α1}RL
Γ

P′2{s′[p′]/α2};
7. Pi = if e then P′i else P′′i where P′1 RL

Γ
P′2 and P′′1 RL

Γ
P′′2 ;

8. Pi = s[p]⊕` 〈Π,λ 〉.Qi, where Q1 RL
Γ

Q2;

9. Pi = s[p]&`(q,{λ j : Q(i)
j } j∈J), where ∀ j ∈ J : Q(1)

j RL
Γ

Q(2)
j ;

10. Pi = (νr)P′i , where P′1 RL
Γ

P′2;

11. Pi = def D in P′i , where P′1 RL
Γ

P′2;

12. Pi = ∏
m
j=1 Q(i)

j , where ∀ j (1≤ j ≤m) : Q(1)
j RL

Γ
Q(2)

j follows from one of the previous clauses (including
the clause of high processes).

For the proof of soundness, it is convenient to use the following alternative definition of L -bisimulation (where we
need to put ≡ in the matching reduction sequence for the case where it is the empty sequence and we have to apply ≡
to obtain the same restriction as in the first process):

Definition 8.6 (L -Bisimulation on processes (alternative formulation)).
A symmetric relation R ⊆ (Pr×Pr) is a simple L -bisimulation if P1 R P2 implies, for any pair of monotone Q-sets
H1 and H2 such that H1 =L H2 and each < Pi , Hi > is saturated:

If < P1 , H1 >−→ (ν r̃) < P′1 , H ′1 >, then there exist P′2,H
′
2 such that

< P2 , H2 >−→∗≡ (ν r̃) < P′2 , H ′2 > , where H ′1 =L H ′2 and P′1 R P′2.

Processes P1,P2 are L -bisimilar, P1 'L P2, if P1 R P2 for some L -bisimulation R.

30

Theorem 19 (Noninterference). If P is typable, then P is secure.

Proof. The proof consists in showing that the relation RL
Γ

presented in Definition 8.5 is a L -bisimulation containing
the pair (P,P). Note that we have PRL

Γ
P by Clause 1. Suppose that P1 RL

Γ
P2, Γ ``i Pi . ∆i and H1,H2 are two

monotone Q-sets such that H1 =L H2 and 〈Pi,Hi〉 is saturated for i = 1,2. We want to show that each reduction
< P1 , H1 >−→ (ν r̃) < P′1 , H ′1 > is matched by a possibly empty sequence of reductions < P2 , H2 >−→∗≡ (ν r̃) <

P′2 , H ′2 > such that H ′1 =L H ′2 and P′1 RL
Γ

P′2. Typability of the 〈P′i ,H ′i 〉will be given by Lemma 12 (Subject Reduction),
which we will use without mentioning it. We proceed by induction on the definition of RL

Γ
. Let us examine the two

clauses of Definition 8.5:

i) Both P1,P2 are L -high in Γ;

ii) Both P1,P2 are L -bounded in Γ and P1 RL
Γ

P2 by one of the Clauses 1-12 of Definition 8.5.

Note that, since L -highness is preserved by execution, as we go along executing processes we can pass from Clause
ii) to Clause i), but not vice versa.

i) Let Pi be L -high in Γ for i = 1,2. Consider a move < P1 , H1 >−→ (ν r̃) < P′1 , H ′1 >. By the Confinement
Lemma (Lemma 17) H ′1 =L H1 and P′1 is L -high in Γ. This move can then be matched by the empty move of
< P2 , H2 >, namely < P2 , H2 > ≡(ν r̃) < P2 , H2 >, where H ′1 =L H1 =L H2. Then we may conclude, since
P′1 RL

Γ
P2 by Clause i) again.

ii) Suppose now that the Pi’s are L -bounded. We consider some interesting cases.

• Let Pi = s[p]!`
′〈Π,e〉.P′i , where P′1 RL

Γ
P′2 and ∃v, ∃`≥ `′ such that e ↓ v`. In this case the reduction is obtained

by rule [Send]. Applicability of rule [Send] assures that there is a queue s : h1 in H1. Since 〈P2,H2〉 is saturated,
there will be a queue s : h2 in H2. Then, assuming Hi = Ki ∪ s : hi, we have H ′1 = K1 ∪ s : h1 · (p,Π,v`↓`′), and
the matching move will be < P2 , H2 >−→ (ν r̃) < P′2 , H ′2 >, where H ′2 = K2 ∪ s : h2 · (p,Π,v`↓`′). Indeed, if
`′ /∈L then H ′1 =L H1 =L H2 =L H ′2. If `′ ∈L then H ′1 =L H ′2 follows from K1 =L K2 and s : h1 =L s : h2.

• If Pi = s[q]?`((p,αi)).P′i , then the reduction is obtained by rule [DelRec]. Since Γ ``i Pi . ∆i is deduced by
the typing rule bSRECc, we know that ` = `i. Moreover `i ∈ L because Pi is L -bounded, hence ` ∈ L .
Applicability of rule [DelRec] ensures that a message (p,q,s′[p′]`) must occur at the head of queue s in H1.
Given that H1 =L H2, the same message must occur in H2. Since H2 is monotone, the message (p,q,s′[p′]`)
must occur at the head of queue s also in H2. Then, assuming Hi = Ki∪ s : (p,q,s′[p′]`) ·hi, we get:

< P1 , K1∪ s : (p,q,s′[p′]`) ·h1 >−→< P′1{s′[p′]/α1} , K1∪ s : h1 >

< P2 , K2∪ s : (p,q,s′[p′]`) ·h2 >−→< P′2{s′[p′]/α2} , K2∪ s : h2 >

We may then conclude since by hypothesis P′1{s′[p′]/α1}RL
Γ

P′2{s′[p′]/α2}, and H1 =L H2 implies K1 ∪ s :
h1 =L K2∪ s : h2.

• If Pi = def D in P′i , then either < P1 , H1 > reduces by applying rule [Def] or < P′1 , H1 > reduces.
In the first case let D be X(x`,α) = Q and P′1 = X〈e,s[p]〉 | Q1. From P′1 RL

Γ
P′2, by Clauses 12 and 1 of

Definition 8.5 we get P′2 = X〈e,s[p]〉 | Q2 and Q1 RL
Γ

Q2. Then, if e ↓ v` we get
< P1 , H1 >−→< def D in (Q{v`/x`}{s[p]/α} | Q1) , H1 > and
< P2 , H2 >−→< def D in (Q{v`/x`}{s[p]/α} | Q2) , H2 >, and we may conclude using Clause 12.
In the second case we can apply the induction hypothesis to P′1 RL

Γ
P′2.

• Let Pi = ∏
m
j=1 Q(i)

j , where ∀ j (1≤ j ≤ m) : Q(1)
j RL

Γ
Q(2)

j follows from one of the previous clauses (including

the clause of high processes). Then the move of < P1 , H1 > comes either from a single component Q(1)
j , or

from a group of components synchronising among themselves to open a session. Without loss of generality, we
may assume that in the first case the moving component is Q(1)

1 , and in the second case the group of moving

components is ā`[n] | ∏
n+1
j=2 a`[p j](αp j).R

(1)
p j . Let us examine the two cases.

(a) If Q(1)
1 moves alone, then we have a move < P1 , H1 >−→ (ν r̃) < Q′(1)

1 | ∏
n
j=2 Q(1)

j , H ′1 >, which is

deduced from < Q(1)
1 , H1 >−→ (ν r̃) < Q′(1)

1 , H ′1 >. Since Q(1)
1 RL

Γ
Q(2)

1 , by induction we have a move

< Q(2)
1 , H2 >−→∗ ≡(ν r̃) < Q′(2)

1 , H ′2 > with Q′(1)
1 RL

Γ
Q′(2)

1 and H ′1 =L H ′2, whence we may infer

< P2 , H2 >−→∗ ≡(ν r̃) < Q′(2)
1 | ∏

n
j=2 Q(2)

j , H ′2 >, and thus we conclude by Clause 12 again.

(b) Let now P1 = ā`[n] | ∏
n+1
j=2 a`[p j](αp j).R

(1)
p j | ∏

m
j=n+2 Q(1)

j and suppose that a new session is created

through a synchronisation of all processes in ā`[n] | ∏
n+1
j=2 a`[p j](αp j).R

(1)
p j .

31

Let then < P1 , H1 >−→ (νs) < ∏
n+1
j=2 R(1)

p j {s[p j]/αp j} | ∏
m
j=n+2 Q(1)

j , H1 ∪ {s : ε} >. This move is

deduced from < ā`[n] | ∏
n+1
j=2 a`[p j](αp j).R

(1)
p j , H1 >−→ (νs) < ∏

n+1
j=2 R(1)

p j {s[p j]/αp j} , H1∪{s : ε}>.

We distinguish two cases, according to whether ` ∈L or ` 6∈L :

∗ If ` ∈L , by the typing rule bMACCc each Q(1)
j with 1 ≤ j ≤ n + 1 must be L -bounded. In this

case Q(1)
1 RL

Γ
Q(2)

1 follows from Clause 1 and for each j such that 2≤ j≤ n+1 Q(1)
j RL

Γ
Q(2)

j follows

from Clause 2. Hence Q(2)
1 = ā`[n], Q(2)

j = a`[p j](αp j).R
(2)
p j and R(1)

p j {s[p j]/αp j}RL
Γ

R(2)
p j {s[p j]/αp j}.

Then < ā`[n] | ∏
n+1
j=2 a`[p j](αp j).R

(2)
p j , H2 >−→ (νs) < ∏

n+1
j=2 R(2)

p j {s[p j]/αp j} , H2 ∪ {s : ε} >,

whence we deduce < P2 , H2 >−→ (νs) < ∏
n+1
j=2 R(2)

p j {s[p j]/αp j} | ∏
m
j=n+2 Q(2)

j , H2 ∪{s : ε} >.

Since R(1)
p j {s[p j]/αp j}RL

Γ
R(2)
p j {s[p j]/αp j} for 2≤ j ≤ n+1, we may conclude by Clause 12 again.

∗ If ` 6∈L , then by the typing rule bMACCc each Q(1)
j with 1≤ j ≤ n+1 must be L -high in Γ. Then

also each Q(2)
j must be L -high in Γ because Q(1)

j RL
Γ

Q(2)
j follows necessarily from Clause i) (since

in all the other clauses both processes must be L -bounded). Hence < ∏
n+1
j=1 Q(2)

j , H1 > may simulate

the move < ā`[n] | ∏
n+1
j=2 a`[p j](αp j).R

(1)
p j , H1 >−→ (νs) < ∏

n+1
j=2 R(1)

p j {s[p j]/αp j} , H1 ∪{s : ε} >

by the empty move, since H1 ∪ {s : ε} =L H1 =L H2 (because empty queues are not observed)
and by Lemma 17 we know that ∏

n+1
j=2 R(1)

p j {s[p j]/αp j} is L -high in Γ. Since Q(2)
j L -high in Γ for

1 ≤ j ≤ n + 1 implies ∏
n+1
j=1 Q(2)

j L -high in Γ, we conclude ∏
n+1
j=2 R(1)

p j {s[p j]/αp j} RL
Γ ∏

n+1
j=1 Q(2)

j
by Clause i). Then, recomposing with the remaining components, < P2 , H2 > may also reply by the
empty move to the move: < P1 , H1 >−→ (νs) < ∏

n+1
j=2 R(1)

p j {s[p j]/αp j} | ∏
m
j=n+2 Q(1)

j , H ′1 >, since

∏
n+1
j=2 R(1)

p j {s[p j]/αp j} | ∏
m
j=n+2 Q(1)

j RL
Γ ∏

m
j=2 Q(2)

j by Clause 12 again.

Note that in the proof of non-interference we used both the saturation and the monotonicity conditions as defined in
Section 5. We claim that these conditions are reasonable, since they hold for all T-reachable configurations, i.e. for all
configurations that can be obtained by reducing typable user processes with the empty Q-set, as shown in Lemma 1 and
Theorem 14.

We conclude with an observation about the compositionality of our notion of security. It is clear that security
is not preserved by input prefixing in case the input is “high”. In the absence of restrictions on the application of our
semantic rules, our security notion is not preserved by parallel composition either. Indeed, the three processes discussed
in Section 6.5, Section 6.6, Section 6.7, are not secure, although all their components are secure. Let us just recall here
the first of these examples, completed with security levels on services:

Consider the following process:

s[2]?(1,x>).b̄`[2] | b`[1](β1).β1!〈2,true⊥〉.0 | b`[2](β2).β2?(1,y⊥).0

As argued in Section 6.5, this process is insecure while all its components are secure. Note that this process is untypable,
whatever the choice of `. Indeed, in a well-formed environment Γ, the service b` must be given a safety global type
〈L,G〉` and then the typing rule bMACCc requires both participant bodies β1!〈2,true⊥〉.0 and β2?(1,y⊥).0 to be typable
at level `. This is only possible if ` = ⊥. But then the first component cannot be typed, since the typing rule bRCVc
requires b̄`[2] to be typable at level >.

On the other hand, if we swapped the levels > and ⊥ in the above process, then we would obtain:

s[2]?(1,x⊥).b̄`[2] | b`[1](β1).β1!〈2,true>〉.0 | b`[2](β2).β2?(1,y>).0

which is both secure and typable for ` => (recall that the level of a service is the meet of its global type).
Indeed, as an easy consequence of our soundness Theorem, security is preserved by parallel composition if the

components are typable with respect to the same standard environment:

Corollary 20 (Security compositionality for typable processes).
Let P and Q be typable with respect to the same standard environment. If P and Q are secure, then also P | Q is secure.

Proof. If P and Q are typable with respect to the same standard environment, then also P | Q is typable with respect to
that environment, hence by the previous theorem it is also secure.

32

9. Conclusion and future work

In this work, we have investigated the integration of security requirements into session types. Interestingly, there
appears to be an influence of session types on security.

For instance, it is well known that one of the causes of insecure information flow in a concurrent scenario is the
possibility of different termination behaviours in the branches of a high conditional. In our calculus, we may distinguish
three termination behaviours: (proper) termination, deadlock and divergence. Now, the classical session types of [29]
already exclude some combinations of these behaviours in conditional branches. For instance, a non-trivial divergence
(whose body contains some communication actions) in one branch cannot coexist with a non-trivial termination in the
other branch. Moreover, session types prevent local deadlocks due to a bad matching of the communication behaviours
of participants in the same session. By adding to classical session types the interaction typing of [2], we would also
exclude most of the global deadlocks due to a bad matching of the protocols of two interleaved sessions. However, this
typing still does not prevent deadlocks due to inverse session calls (for instance, a partner that calls service a and then
service b, while the dual partner calls first b and then a). We plan to study a strengthening of interaction typing that
would rule out also this kind of deadlock taking inspiration from [17].

The form of declassification considered in this work is admittedly quite simple. To justify our choice, let us first
remark that a local declassification construct, such as that proposed in [7] for a classical language with sequential
composition, would not be appropriate for our calculus. Indeed, such a construct specifies which additional information
flows - with respect to the security policy in force - are authorised within its scope. If we adopted this construct in our
calculus, where the only form of sequential composition is prefixing, the scope of a declassification for an input process
would span over its whole continuation. In other words, after a declassification it would never be possible to restore the
original policy. This is why we chose here a simpler and more punctual form of declassification, which applies to single
values rather than to whole subprocesses. On the other hand, we retained from [7] the idea that declassification should
be constrained by the access control policy, since a declassified value may only be received by a trusted participant,
namely one whose security level is greater than or equal to the original level of the value.

A specificity of our declassification mechanism is that a value v is declassified from ` to `′ while being transmitted
from one participant to another. Moreover, this value is treated as an `′-value by the sender (the value v`↓`′ is L -
observable for any L containing `′) while it is treated in a mixed way by the receiver, who receives it as if it were a
`-value but then uses it freely as a `′-value. It might be objected that this is a rather abstract and implicit way to perform
declassification, and that the role played by the bisimulation in controlling declassification is not obvious. Indeed, in
the receiver the usage of the declassified value is not constrained by the bisimulation (since v`↓`′ is already an `′-value
when it is read from the queue4); it is only constrained by the access control mechanism, which requires the receiver to
be `-trusted, and therefore assumed to make good use of the original `-value by processing it with a function that safely
downgrades it to level `′ (what is sometimes called a “permitted function” or a “downgrading policy” [21]). A more
explicit solution would consist in replacing v`↓`′ by f`↓`′(v) in the queue, where f is some permitted function (say, an
encryption function) used by the sender to safely transmit the value as an `′-level one - here the subscript ` ↓ `′ indicates
that f takes an `-level argument and yields an `′-level result. Then the trusted receiver could retrieve v as an `-level
value (using the decryption function), and subsequently process it with his own permitted function g`↓`′ to produce the
declassified `′-level result. Here the function f would be used by the sender to protect the value v while it transits in
the queue, whereas the function g would be used by the receiver to actually perform the declassification.). On the other
hand, in the sender the usage of v`↓`′ is constrained by the bisimulation (and a fortiori by the type system), since by
observing v`↓`′ as an `′-level value in the queue we prevent the sender to receive any `-level value before performing
the declassified send. This means in particular that the sender cannot have previously received v` from some other
participant. In other words, the sender must own the high value v` in order to be able to transmit it to the receiver with
the authorisation to declassify it. Moreover, since the declassified send of v` cannot depend on any other high value, the
bisimulation ensures that the sender discloses no more than the value v` itself. To conclude, declassification is controlled
by a combined effect of the bisimulation in the sender and of access control in the receiver. The bisimulation itself has
no specific clause to deal with declassification. Indeed, we take here the stand that, since our declassification applies
to single values and not to security levels, it can be implemented without modifying the definition of bisimulation, thus
departing from other approaches ([27], [1]).

Our notion of security could be strengthened by allowing empty queues corresponding to low services to be ob-
served. Then the initiation of a low session would always be observable, no matter whether a low message is exchanged
or not in the session. In this way we could avoid requiring saturation of Q-sets, since the empty Q-set would no longer

4Note that this is an obliged choice, given our definition of bisimulation. If v`↓`′ were treated as an `-value in the queue, then the
bisimulation would systematically fail in the receiver, as soon as the value is actually declassified and used as an `′-value.

33

be L -equal to a Q-set consisting of an empty queue corresponding to a low service. Indeed, let us look back at the
example that motivated the introduction of the saturation condition, at page 9. If low empty queues were observable,
the bisimulation would never test the process P = s[1]!〈2,true⊥〉.0 in combination with the two Q-sets /0 and {s : ε},
since these would no more be equivalent for the low observer. However, notice that this would require adding security
levels to queues, since the empty queue that is created for a high service should remain unobservable. As a matter of
fact, we did explore this alternative definition, in the hope to obtain compositionality for our security property (in its
robust variant defined in the Appendix). However, it turned out that adding levels to queues was still not sufficient for
compositionality. This is why we adopted the simpler (and weaker) form of observation here.

To enhance the practical use of the present calculus we plan to develop a type inference algorithm, which applied to
a typable process returns its type together with the required security levels of session participants in order to guarantee
access control.

Acknowledgments We would like to thank Nobuko Yoshida for her encouragement to engage in this work, Bernard
Serpette for enlightening remarks and the anonymous referees for insightful comments, which allowed us to improve
the presentation of the paper and to clarify some important points.

References

[1] A. Almeida Matos and G. Boudol. On Declassification and the Non-Disclosure Policy. Journal of Computer
Security, 17:549–597, 2009.

[2] L. Bettini, M. Coppo, L. D’Antoni, M. De Luca, M. Dezani-Ciancaglini, and N. Yoshida. Global Progress in
Dynamically Interleaved Multiparty Sessions. In Proc. CONCUR’08, volume 5201 of LNCS, pages 418–433.
Springer, 2008.

[3] K. Bhargavan, R. Corin, P.-M. Deniélou, C. Fournet, and J. J. Leifer. Cryptographic Protocol Synthesis and
Verification for Multiparty Sessions. In Proc. CSF’09, pages 124–140. IEEE Computer Society, 2009.

[4] M. Boreale, R. Bruni, R. De Nicola, and M. Loreti. Sessions and Pipelines for Structured Service Programming.
In Proc. FMOODS ’08, volume 5051 of LNCS, pages 19–38. Springer, 2008.

[5] A. Bossi, R. Focardi, C. Piazza, and S. Rossi. Verifying persistent security properties. Computer Languages,
Systems & Structures, 30(3-4):231 – 258, 2004.

[6] G. Boudol and I. Castellani. Noninterference for Concurrent Programs and Thread Systems. Theoretical Computer
Science, 281(1):109–130, 2002.

[7] G. Boudol and M. Kolundzija. Access Control and Declassification. In Proc. Computer Network Security, vol-
ume 1 of CCIS, pages 85–98. Springer, 2007.

[8] S. Capecchi, I. Castellani, and M. Dezani-Ciancaglini. Information Flow Safety in Multiparty Sessions. In Proc.
EXPRESS’11, volume 64 of EPTCS, pages 16–31, 2011.

[9] S. Capecchi, I. Castellani, M. Dezani-Ciancaglini, and T. Rezk. Session Types for Access and Information Flow
Control. In Proc. CONCUR’10, volume 6269 of LNCS, pages 237–252. Springer, 2010.

[10] R. De Nicola and M. Hennessy. Testing Equivalence for Processes. In Proc. ICALP’83, volume 154, pages
548–560. Springer-Verlag, 1983.

[11] D. E. R. Denning. Cryptography and Data Security. Addison-Wesley, 1982.

[12] M. Dezani-Ciancaglini and U. de’ Liguoro. Sessions and Session Types: an Overview. In Proc. WSFM’09,
volume 6194 of LNCS, pages 1–28. Springer, 2010.

[13] R. Focardi and R. Gorrieri. Classification of Security Properties (Part I: Information Flow). In Proc. FOSAD’00,
volume 2171 of LNCS, pages 331–396. Springer, 2001.

[14] J. A. Goguen and J. Meseguer. Security Policies and Security Models. In Proc. IEEE Symposium on Security and
Privacy, pages 11–20. IEEE Computer Society, 1982.

34

[15] K. Honda and N. Yoshida. A Uniform Type Structure for Secure Information Flow. In Proc. POPL’02, pages
81–92. ACM Press, 2002.

[16] K. Honda, N. Yoshida, and M. Carbone. Multiparty Asynchronous Session Types. In Proc. POPL’08, pages
273–284. ACM Press, 2008.

[17] N. Kobayashi. A Type System for Lock-Free Processes. Information and Computation, 177:122–159, 2002.

[18] N. Kobayashi. Type-Based Information Flow Analysis for the Pi-Calculus. Acta Informatica, 42(4–5):291–347,
2005.

[19] M. Kolundzija. Security Types for Sessions and Pipelines. In Proc. WSFM’08, volume 5387 of LNCS, pages
175–190. Springer, 2009.

[20] A. Lapadula, R. Pugliese, and F. Tiezzi. Regulating Data Exchange in Service Oriented Applications. In Proc.
FSEN’07, volume 4767 of LNCS, pages 223–239. Springer, 2007.

[21] P. Li and S. Zdancewic. Downgrading policies and relaxed noninterference. In Proc. POPL’05, pages 158–170.
ACM Press, 2005.

[22] R. Milner. Communicating and Mobile Systems: the Pi-Calculus. CUP, 1999.

[23] B. C. Pierce. Types and Programming Languages. MIT Press, 2002.

[24] J. Planul, R. Corin, and C. Fournet. Secure Enforcement for Global Process Specifications. In Proc. CONCUR’09,
volume 5710 of LNCS, pages 511–526. Springer, 2009.

[25] A. Sabelfeld and A. C. Myers. Language-Based Information-Flow Security. IEEE Journal on Selected Areas in
Communications, 21(1):5–19, Jan. 2003.

[26] A. Sabelfeld and D. Sands. Probabilistic Noninterference for Multi-threaded Programs. In Proc. CSFW’00, pages
200–214. IEEE Computer Society, 2000.

[27] A. Sabelfeld and D. Sands. Dimensions and Principles of Declassification. In Proc. CSFW’05, pages 255–269.
IEEE Computer Society, 2005.

[28] G. Smith and D. Volpano. Secure Information Flow in a Multi-threaded Imperative Language. In Proc. POPL’98,
pages 355–364. ACM Press, 1998.

[29] K. Takeuchi, K. Honda, and M. Kubo. An Interaction-based Language and its Typing System. In Proc. PARLE’94,
volume 817 of LNCS, pages 398–413. Springer, 1994.

[30] D. Volpano, C. Irvine, and G. Smith. A Sound Type System for Secure Flow Analysis. Journal of Computer
Security, 4(2,3):167–187, 1996.

35

Appendix

Appendix A. Robust security

We define an alternative notion of L -bisimulation, which leads to a more discriminating security property, which is
closer to typability. We call these new notions robust. The idea of robust L -bisimulation stems from the observation
that, while the asynchronous communications among participants can be observed by looking at the changes they
induce on the Q-sets, there is no means to observe the behaviour of a potential session participant, as long as it is not
triggered by the initiator together with a complete set of matching participants. This means that an “incomplete process”
like a⊥[1](α).α!〈2,true⊥〉.0 is always considered bisimilar to 0. However, it is clear that it behaves differently when
plugged into a complying context. For instance, if we put a⊥[1](α).α!〈2,true⊥〉.0 in parallel with the initiator and the
missing partner we get:

< ā⊥[2] | a[1](α).α!〈2,true⊥〉.0 | a⊥[2](β).β?(1,x⊥).0 , /0 >−→ (νs)(< s[2]?(1,x⊥).0 , {s : (1,2,true⊥)}>)

while if we put 0 in the same context we get < ā⊥[2] | 0 | a⊥[2](β).β?(1,x⊥).0 , /0 > 6−→.
Since session initiation is a synchronous interaction, which is blocking for all session participants, it would not

make sense to use the Q-sets to keep track of it. We therefore introduce a notion of tester, a sort of behaviourless
process which triggers session participants in order to reveal their potential behaviour. Intuitively, testers play the same
role as “high contexts” in previous work on security. They also bear a strong analogy with the notion of test introduced
by De Nicola and Hennessy in the 80’s [10], although they are much simpler in our case, since they are only used to
explore potential participant behaviours, and not to test active processes. Moreover, they are not aimed at establishing
a testing equivalence, but merely at rendering the bisimulation more contextual.

Formally, a tester is a parallel composition of session initiators and degenerate session participants, which cannot
reduce by itself.

Definition Appendix A.1. The syntax of pre-testers is

M ::= ā`[n] | a`[p](α).0 |M |M

A tester is an irreducible pre-tester.

To run processes together with testers, we introduce an asymmetric (non commutative) triggering operator P � M, whose
behaviour is given by the two new “external link” rules [ExtLink1] and [ExtLink2] in Table A.13, which only differ for
the presence or not of the initiator inside the process. Note that rule [ExtLink1] also allows P � M to move alone, in
case k = n. From now on we denote by −→ the reduction obtained by adding the rules [ExtLink1] and [ExtLink2] to
those in Table 5. Then the moves of P � M can take place in any static context. Let us stress that in all cases the tester
M disappears after the reduction. This is because testers are not interesting in themselves but only insofar as they may
reveal the ability of processes to contribute to a session initiation. A term P � M is read “P triggered by M”.

We are now ready for defining our bisimulation. A relation R on processes is a robust L -bisimulation if, whenever
two related processes are put in parallel with the same tester and then coupled with L -equal monotone Q-sets yielding
saturated configurations, then the reduction relation preserves both the relation R on processes and the L -equality of
Q-sets:

(a`[i1](αi1).Pi1 | ... | a`[ik](αik).Pik | ā`[n]) � (a`[ik+1](αik+1).0 | ... | a`[in](αin).0)−→

(νs) < Pi1{s[i1]/αi1} | ... | Pik{s[ik]/αik} , s : ε >
[ExtLink1]

(a`[i1](αi1).Pi1 | ... | a`[ik](αik).Pik) � (a`[ik+1](αik+1).0 | ... | a`[in](αin).0 | ā`[n]) −→

(νs) < Pi1{s[i1]/αi1} | ... | Pik{s[ik]/αik} , s : ε >
[ExtLink2]

Table A.13: External link rules.

36

Definition Appendix A.2 (Robust L -Bisimulation on processes).
A symmetric relation R ⊆ (Pr×Pr) is a robust L -bisimulation if P1 R P2 implies, for any tester M and any pair of
monotone Q-sets H1 and H2 such that H1 =L H2 and each < Pi , Hi > is saturated:

If < P1� M , H1 >−→ (ν r̃) < P′1 , H ′1 >, then either H ′1 =L H2 and P′1 R P2, or there exist

P′2,H
′
2 such that < P2� M , H2 >−→∗ (ν r̃) < P′2 , H ′2 > , where H ′1 =L H ′2 and P′1 R P′2.

Processes P1,P2 are robustly L -bisimilar, P1 'L P2, if P1 R P2 for some robust L -bisimulation R.

Let us illustrate the use of testers with some examples. Note that although “complete processes” may reduce au-
tonomously without the help of any tester, we do not allow the empty process as a tester. Indeed, its use may be
simulated by any tester whose names are disjoint from those of the tested process, what we shall call a fresh tester. In
fact, in Definition Appendix A.2, the quantification over M may be restricted in practice only to those testers that make
the process react, by triggering some of its waiting participants, together with one fresh tester that forces the process to
progress by itself, if possible, and get stuck otherwise.

Example 21. Consider the three processes:

P1 = 0
P2 = a⊥[1](α).α!〈2,true⊥〉.0
P3 = ā⊥[2] | a⊥[1](α).α!〈2,true⊥〉.0 | a⊥[2](β).β?(1,x⊥).0

Let L = {⊥}. It is easy to see that no pair of Pi is in the L -bisimilarity relation. Assume in all cases the starting
Q-sets to be /0. To distinguish P2 from P3, which is a complete process and thus can progress by itself, we may use
the fresh tester b̄⊥[2], which will just stay idle in parallel with P3 while this moves to a state P′3 by opening a session
s, generating the Q-set {s : ε}. Since the tester b̄⊥[2] cannot make P2 react, P2 will respond by staying put, thus
keeping unchanged the Q-set /0 =L {s : ε}. So far so good. But now, if P2 and P′3 are tested again with b̄⊥[2] and
coupled with the Q-set {s : ε}, then P′3 will produce the Q-set {s : (1,2,true⊥)} while P2 remains stuck on the Q-set
{s : ε} 6=L {s : (1,2,true⊥)}.

To distinguish P1 from P2, we may use the tester ā⊥[2] | a⊥[2](β).0, which produces no effect on P1 but will activate
P2, allowing it to move to a new state P′2 by opening a session s, generating the Q-set {s : ε}. From this point onwards,
we proceed as for P′3 above.

To distinguish P1 from P3 we may use the same fresh tester b̄⊥[2] and a similar argumentation.

Testers may also be used to explore some deadlocked processes, when the deadlock is caused by inverted service
calls to different services in dual components, for instance. However, as expected, the bisimulation will not equate such
a deadlocked process with a correct process where the two calls occur in the same order in the two components.

Example 22. Consider the following processes, where s is a previously opened session on some service:

P1 = ā⊥[2] | a⊥[1](α1).b⊥[1](β1).s[1]!〈2,true⊥〉.0
b̄⊥[2] | b⊥[2](β2).a⊥[2](α2).0

P2 = ā⊥[2] | a⊥[1](α1).b⊥[1](β1).s[1]!〈2,true⊥〉.0
b̄⊥[2] | a⊥[2](α2).b⊥[2](β2).0

Process P1 is deadlocked because the “service calls” to a and b occur in reverse order in its two components. Instead,
the calls occur in the same order in the components of P2. Hence P2 may progress by itself and thus, as above, it is
sufficient to test it with a fresh tester to distinguish it from the blocked process P1.

The notions of robust L -security and robust security are now defined as usual:

Definition Appendix A.3 (Robust L -Security). A process P is robustly L -secure if P'L P.

Definition Appendix A.4 (Robust Security). A process P is robustly secure if it is robustly L -secure for every L .

It is easy to see that robust L -bisimilarity is more discriminating than L -bisimilarity, as shown by the process
a⊥[1](α1).s[1]!〈2,true⊥〉.0, which is L -bisimilar to 0 but not robustly L -bisimilar to 0. As a consequence, the
property of robust security is stronger than security, as shown by the following example.

37

Example 23. Consider the process:

s[1]?(2,x>).a>[1](α).s[1]!〈2,true⊥〉.0

This processes is secure but not robustly secure. Note that when put in parallel with the initiator and the missing partner
of a>[1](α).0, then it becomes insecure too. Note that this process is not typable.

We prove now that typability implies robust security. The proof will make use of the same relation RL
Γ

used
for security and presented in Definition 8.5. Note that it is not possible here to use an alternative definition of L -
bisimulation similar to Definition 8.6, since in case P2 � M does an empty move, then M does not disappear. Hence we
need to use the original Definition Appendix A.2 in the proof.

Lemma 24 (Robust confinement).
Let P be a L -high process in Γ. Then, for any Q-set H:

〈P � M,H〉−→∗(ν r̃)〈P′,H ′〉 implies H =L H ′ and P′ L -high in Γ.

Proof. Simple variation of the proof of Lemma 17 (Confinement Lemma). Note that the residual of 〈P � M,H〉 after
the first step of the reduction is a pure process.

Theorem 25 (Soundness for robust security). If P is typable, then P is robustly secure.

Proof. The proof consists in showing that the relation RL
Γ

presented in Definition 8.5 is a L -bisimulation containing
the pair (P,P). Note that we have PRL

Γ
P by Clause 1. Suppose that P1 RL

Γ
P2, Γ ``i Pi . ∆i and H1,H2 are two

monotone Q-sets such that H1 =L H2 and 〈Pi,Hi〉 is saturated for i = 1,2. We want to show that for any tester M,
and for each reduction < P1 � M , H1 >−→ (ν r̃) < P′1 , H ′1 >, either we have H ′1 =L H2 and P′1 R P2, or < P2 �
M , H2 >−→∗ (ν r̃) < P′2 , H ′2 >, where H ′1 =L H ′2 and P′1 RL

Γ
P′2 (typability of the 〈P′i ,H ′i 〉 will be given by Lemma 12

(Subject Reduction), which we will use without mentioning it). We proceed by induction on the definition of RL
Γ

. Let
us examine the two clauses of Definition 8.5:

i) P1,P2 are L -high in Γ (i.e. both P1,P2 are not L -bounded in Γ);

ii) Both P1 and P2 are L -bounded in Γ and P1 RL
Γ

P2 by one of the Clauses 1-12 of Definition 8.5.

Note that, since L -highness is preserved by execution, as we go along executing processes we can pass from Clause
ii) to Clause i), but not vice versa.

i) Let P1,P2 be L -high in Γ. Consider a move < P1 � M , H1 >−→ (ν r̃) < P′1 , H ′1 >. By Lemma 24, we know
that H ′1 =L H1 =L H2 and P′1 is L -high in Γ. Then we conclude, since P′1 RL

Γ
P2 by Clause i) again. ii) Suppose now

that P1 and P2 are L -bounded. We consider some interesting cases. Note that a tester can only interact with the process
in Clauses 2, 11 and 12. Hence we do not need to consider testers in the other cases. Indeed, we will omit these cases
here, since they are treated exactly as in the proof of Theorem 19.

• If Pi = a`[p](αp).Q
(i)
p , let M = ā`[n] | ∏q∈{1,...,n},q6=p a`[q](αq).0, where n is the arity of a. Then we can only

apply rule [Link], so we get < P1 � M , H1 >−→ (νs) < Q(1)
p {s[p]/αp} , H1∪{s : ε}>, where s is fresh. Now,

this move can be matched by < P2 � M , H2 >−→ (νs) < Q(2)
p {s[p]/αp} , H2 ∪{s : ε} >, since by hypothesis

Q(1)
p {s[p]/αp}RL

Γ
Q(2)
p {s[p]/αp}, and H1 =L H2 implies H1∪{s : ε}=L H2∪{s : ε}.

• Let Pi = ∏
m
j=1 Q(i)

j , where ∀ j (1≤ j ≤ n) : Q(1)
j RL

Γ
Q(2)

j follows from one of the previous clauses (including

the clause of high processes). Then the move of < P1 � M , H1 > comes either from a single component Q(1)
j ,

or from a group of components synchronising among themselves and possibly with the tester to open a session.
Without loss of generality, we may assume that in the first case the moving component is Q(1)

1 , and in the second

case the group of moving components is ∏
k
j=1 a`[p j](αp j).R

(1)
p j or ā`[n] | ∏

k
j=1 a`[p j](αp j).R

(1)
p j , for some k≤ n.

Let us examine the two cases.

(a) If Q(1)
1 moves alone, then the move < P1 � M , H1 >−→ (ν r̃) < Q′(1)

1 | ∏
m
j=2 Q(1)

j , H ′1 >, is deduced

from < Q(1)
1 � M , H1 >−→ (ν r̃) < Q′(1)

1 , H ′1 >. Since Q(1)
1 RL

Γ
Q(2)

1 , by induction we have either

H ′1 =L H2 and Q′(1)
1 RL

Γ
Q(2)

1 , and therefore Q′(1)
1 | ∏

m
j=2 Q(1)

j RL
Γ

Q(2)
1 | ∏

m
j=2 Q(2)

j by Clause 12, or

< Q(2)
1 � M , H2 >−→ (ν r̃) < Q′(2)

1 , H ′2 > with Q′(1)
1 RL

Γ
Q′(2)

1 and H ′1 =L H ′2, whence we infer < P2 �

M , H2 >−→ (ν r̃) < Q′(2)
1 | ∏

m
j=2 Q(2)

j , H ′2 > and we may conclude by Clause 12 again.

38

(b) Here we assume that P1 = ∏
k
j=1 Q(1)

j | ∏
m
j=k+1 Q(1)

j and that all the processes in ∏
k
j=1 Q(1)

j synchronise,
possibly with the help of the tester.

Let us consider the case where Q(1)
j = a`[p j](αp j).R

(1)
p j for 1 ≤ j ≤ k (the case that includes the initiator

is similar, and would use the rule [ExtLink1] instead of [ExtLink2]). Let M be a tester which allows the
application of rule [ExtLink2]. Suppose that the move of < P1 � M , H1 > is
< P1 � M , H1 >−→ (νs) < ∏

k
j=1 R(1)

p j {s[p j]/αp j} | ∏
m
j=k+1 Q(1)

j , H1 ∪ {s : ε} >, deduced from <

∏
k
j=1 a`[p j](αp j).R

(1)
p j � M , H1 >−→ (νs) < ∏

k
j=1 R(1)

p j {s[p j]/αp j} , H1∪{s : ε}>.

We distinguish two cases, according to whether ` ∈L or ` 6∈L :

∗ If ` ∈ L , then by the typing rule bMACCc no Q(1)
j with 1 ≤ j ≤ k can be high. In this case, for

each j such that 1 ≤ j ≤ k, we know that Q(1)
j RL

Γ
Q(2)

j follows from Clause 2, and hence Q(2)
j =

a`[p j](αp j).R
(2)
p j and R(1)

p j {s[p j]/αp j}RL
Γ

R(2)
p j {s[p j]/αp j} (note that if we were in the case including

an initiator Q(1)
1 = ā`[n] = Q(2)

1 , then Q(1)
1 RL

Γ
Q(2)

1 would follow from Clause 1 instead). In this case,

< ∏
k
j=1 a`[p j](αp j).R

(2)
p j � M , H2 > may simulate < ∏

k
j=1 a`[p j](αp j).R

(1)
p j � M , H1 > by consum-

ing the same part of M:< ∏
k
j=1 a`[p j](αp j).R

(2)
p j � M , H2 >−→ (νs) < ∏

k
j=1 R(2)

p j {s[p j]/αp j} , H2∪
{s : ε} >. Then < P2 � M , H2 >−→ (νs) < ∏

k
j=1 R(2)

p j {s[p j]/αp j} | ∏
m
j=k+1 Q(2)

j , H2 ∪{s : ε} >.

Since R(1)
p j {s[p j]/αp j}RL

Γ
R(2)
p j {s[p j]/αp j}, we may conclude by Clause 12 again.

∗ If ` 6∈L , then the typing rule bMACCc requires that each component Q(1)
j with 1 ≤ j ≤ k is high.

Then also each Q(2)
j must be high because Q(1)

j RL
Γ

Q(2)
j follows necessarily from Clause i) (since in

all the other clauses both processes must be L -bounded). In this case, in reply to the move
< ∏

k
j=1 a`[p j](αp j).R

(1)
p j � M , H1 >−→ (νs) < ∏

k
j=1 R(1)

p j {s[p j]/αp j} , H1∪{s : ε}>, by Lemma 24

we have H1∪{s : ε}=L H1 =L H2 and ∏
k
j=1 R(1)

p j {s[p j]/αp j} RL
Γ ∏

k
j=1 Q(2)

j .

Then, recomposing with the remaining components, in reply to the move:
< P1 � M , H1 >−→ (νs) < ∏

k
j=1 R(1)

p j {s[p j]/αp j} | ∏
m
j=k+1 Q(1)

j , H ′1 >

we have H1∪{s : ε}=L H1 =L H2 and, by Clause 12 again:

∏
k
j=1 R(1)

p j {s[p j]/αp j} | ∏
m
j=k+1 Q(1)

j RL
Γ ∏

m
j=1 Q(2)

j .

Appendix B. The Client, Seller, Bank example at a glance

We recap here the definition, semantics and typing of our Client, Seller, Bank example, introduced in Section 2 and
used as a running example throughout the paper.

Syntax: process definition

I = ā⊥[2] | b̄[⊥]2

C = a⊥[1](α1).α1!⊥〈2,Title⊥〉.α1!⊥〈2,CreditCard>〉. α1&⊥(2,{ok : α1?⊥(2,date⊥).0,ko : 0})

S = a⊥[2](α2).α2?⊥(1,x⊥).b⊥[2](β2).β2!⊥〈〈1,α2〉〉.β2?⊥((1,η)).
β2&⊥(1,{ok : η⊕⊥ 〈1,ok〉.η!⊥〈1,Date⊥〉.0,ko : η⊕⊥ 〈1,ko〉.0})

B = b⊥[1](β1).β1?⊥((2,ζ)).ζ ?>(2,cc⊥).β1!⊥〈〈2,ζ 〉〉.
if valid(cc⊥) then β1⊕⊥ 〈2,ok〉.0 else β1⊕⊥ 〈2,ko〉.0

39

Semantics: some reductions

I | C | S | B −→
(νsa)(< b̄⊥[2] | sa[1]!⊥〈2,Title⊥〉. · · · | sa[2]?⊥(1,x⊥). · · · | b⊥[1](β1). · · · , {sa : ε}>)

−→
(νsa)(< b̄⊥[2] | sa[1]!⊥〈2,CreditCard>〉. · · · | sa[2]?⊥(1,x⊥). · · · | b⊥[1](β1). · · · , {sa : (1,2,Title⊥↓⊥)}>)

−→
(νsa)(< b̄⊥[2] | sa[1]!⊥〈2,CreditCard>〉. · · · | b⊥[2](β2). · · · | b⊥[1](β1). · · · , {sa : ε}>)

−→
(νsa)(νsb)(< sa[1]!⊥〈2,CreditCard>〉. · · · | sb[2]!⊥〈〈1,sa[2]〉〉. · · · | sb[1]?⊥((2,ζ)). · · · , {sa : ε,sb : ε}>)

−→
(νsa)(νsb)(< sa[1]!⊥〈2,CreditCard>〉. · · · | sb[2]?⊥((1,η)). · · · | sb[1]?⊥((2,ζ)). · · · , {sa : ε,sb : (2,1,sa[2]⊥)}>)

−→
(νsa)(νsb)(< sa[1]!⊥〈2,CreditCard>〉.PC | sb[2]?⊥((1,η)).PS | sa[2]?>(2,cc⊥).PB , {sa : ε,sb : ε}>)

−→
(νsa)(νsb)(< PC | sb[2]?⊥((1,η)).PS | sa[2]?>(1,cc⊥).PB , {sa : (1,2,CreditCard>↓⊥),sb : ε}>)

where the continuation processes PC,PS,PB are defined by:

PC = sa[1]&⊥(2,{ok : sa[1]?⊥(2,date⊥).0,ko : 0})
PS = sb[2]&⊥(1,{ok : η⊕⊥ 〈1,ok〉.η!⊥〈1,Date⊥〉.0,ko : η⊕⊥ 〈1,ko〉.0})
PB = sb[1]!⊥〈〈2,sa[2]〉〉.if valid(cc⊥) then sb[1]⊕⊥ 〈2,ok〉.0 else sb[1]⊕⊥ 〈2,ko〉.0

Typing of processes

The following process P is a fragment of the component S:

P = β2&⊥(1,{ok : η⊕⊥ 〈1,ok〉.η!⊥〈Date⊥,1〉.0,ko : η⊕⊥ 〈1,ko〉.0})
Then we can derive:

`⊥ P.{β2 : &⊥(1,{ok : end,ko : end}),η : T ′}

and hence

`⊥ β2!⊥〈〈1,α2〉〉.β2?⊥((1,η)).P.{α2 : �δ ;T, β2 : !⊥〈1,T 〉; ?⊥(1,T ′);&⊥(1,{ok : end,ko : end})}
where

T =?(1,Number>↓⊥);T ′ T ′ =⊕⊥〈1,{ok :!〈1,String⊥↓⊥〉;end,ko : end}〉

Typing of configurations

We can type the configuration

< PC | sb[2]?⊥((1,η)).PS | sa[2]?>(1,cc⊥).PB , {sa : (1,2,CreditCard>↓⊥),sb : ε}>

by the configuration environment:

< {sa[1] : Ta,1,sa[2] : Ta,2,sb[1] : Tb,1,sb[2] : Tb,2}�{sa[1] :!〈2,Number>↓⊥〉}>

where:

Ta,1 = &⊥(2,{ok :?(2,String⊥↓⊥);end,ko : end})

Ta,2 =?(1,Number>↓⊥);⊕⊥〈1,{ok :!〈1,String⊥↓⊥〉;end,ko : end}〉

Tb,1 =!⊥〈2,⊕⊥〈1,{ok :!〈1,String⊥↓⊥〉;end,ko : end}〉〉;⊕⊥(2,{ok : end,ko : end})

Tb,2 =?⊥(1,⊕⊥〈1,{ok :!〈1,String⊥↓⊥〉;end,ko : end}〉);&⊥(1,{ok : end,ko : end})

40

	Introduction
	An Example on Access Control and Declassification
	Syntax
	Operational Semantics
	Semantics of the Client, Seller, Bank example

	Information Flow Security in Sessions
	Examples of Information Flow Security in Sessions
	Insecurity of high input followed by low action
	Security of declassified high-to-low input followed by low action
	Insecurity sanitised by recursion and parallel context
	Insecurity of high conditional with different low branches
	Need for levels on services
	Need for levels on selection and branching
	Need for levels on delegated channels
	Need for levels in queue messages

	Type system
	Safety Global Types
	Session Types
	Projections
	Well-formedness of safety global types
	Typing rules
	Typing queues and Q-sets
	Typing configurations
	Reduction of configuration environments

	Properties
	Subject Reduction
	Properties of T-reachable configurations
	Soundness for Access Control
	Soundness for Noninterference

	Conclusion and future work
	Robust security
	The Client, Seller, Bank example at a glance

